1
|
Chen Y, Bhattacharya S, Bergmann L, Correy GJ, Tan S, Hou K, Biel J, Lu L, Bakanas I, Polizzi NF, Fraser JS, DeGrado WF. Emergence of binding and catalysis from a designed generalist binding protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635804. [PMID: 39975260 PMCID: PMC11838529 DOI: 10.1101/2025.01.30.635804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The evolution of proteins that bind to small molecules and catalyze chemical transformations played a central role in the emergence of life. While natural proteins have finely tuned affinity for their primary ligands, they also often have weak affinities for other molecules. These interactions serve as starting points for the evolution of new specificities and functions. Inspired by this concept, we determined the ability of a simple de novo protein to bind a set of diverse small molecules (< 300 Da) by crystallographic fragment screening. We then used this information to design one variant that binds fluorogenic molecule and another that acts as a highly efficient Kemp eliminase enzyme. Collectively, our work illuminates how the evolution of novel protein functions can emerge from existing proteins.
Collapse
|
2
|
Murke S, Chen W, Pezzotti S, Havenith M. Tuning Acid-Base Chemistry at an Electrified Gold/Water Interface. J Am Chem Soc 2024; 146:12423-12430. [PMID: 38599583 PMCID: PMC11082902 DOI: 10.1021/jacs.3c13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Acid-base reactions are ubiquitous in solution chemistry, as well as in electrochemistry. However, macroscopic concepts derived in solutions, such as pKa and pH, differ significantly at electrified metal-aqueous interfaces due to specific solvation and applied voltage. Here, we measure the pKa values of an amino acid, glycine, at a gold/water interface under a varying applied voltage by means of spectroscopic titration. With the help of simulations, we propose a general model to understand potential-dependent shifts in pKa values in terms of local hydrophobicity and electric fields. These parameters can be tuned by adjusting the metal surface and applied voltage, respectively, offering promising, but still unexplored, paths to regulate reactivity. Our results change the focus with respect to common interpretations based on, for example, apparent local pH effects and open interesting perspectives for electrochemical reaction steering.
Collapse
Affiliation(s)
| | | | | | - Martina Havenith
- Department of Physical Chemistry
II, Ruhr University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
3
|
Jabeen H, Beer M, Spencer J, van der Kamp MW, Bunzel HA, Mulholland AJ. Electric Fields Are a Key Determinant of Carbapenemase Activity in Class A β-Lactamases. ACS Catal 2024; 14:7166-7172. [PMID: 38721371 PMCID: PMC11075022 DOI: 10.1021/acscatal.3c05302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 01/06/2025]
Abstract
Resistance to antibiotics is a public health crisis. Although carbapenems are less susceptible to resistance than other β-lactam antibiotics, β-lactamases mediating resistance against these drugs are spreading. Here, we dissect the contributions of electric fields to carbapenemase activity in class A β-lactamases. We perform QM/MM molecular dynamics simulations of meropenem acyl-enzyme hydrolysis that correctly discriminate carbapenemases. Electric field analysis shows that active-site fields in the deacylation transition state and tetrahedral intermediate are important determinants of activity. The active-site fields identify several residues, some distal, that distinguish efficient carbapenemases. Our field analysis script (www.github.com/bunzela/FieldTools) may help in understanding and combating antibiotic resistance.
Collapse
Affiliation(s)
- Hira Jabeen
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
| | - Michael Beer
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- School
of Cellular and Molecular Medicine, University
of Bristol, BS8 1TD Bristol, United Kingdom
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, BS8 1TD Bristol, United Kingdom
| | - Marc W. van der Kamp
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- School
of Biochemistry, University of Bristol, BS8 1TD Bristol, United Kingdom
| | - H. Adrian Bunzel
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
- Department
of Biosystem Science and Engineering, ETH
Zurich, 4056 Basel, Switzerland
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, BS8 1TS Bristol, United Kingdom
| |
Collapse
|
4
|
Ruiz-Pernía JJ, Świderek K, Bertran J, Moliner V, Tuñón I. Electrostatics as a Guiding Principle in Understanding and Designing Enzymes. J Chem Theory Comput 2024; 20:1783-1795. [PMID: 38410913 PMCID: PMC10938506 DOI: 10.1021/acs.jctc.3c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Enzyme design faces challenges related to the implementation of the basic principles that govern the catalytic activity in natural enzymes. In this work, we revisit basic electrostatic concepts that have been shown to explain the origin of enzymatic efficiency like preorganization and reorganization. Using magnitudes such as the electrostatic potential and the electric field generated by the protein, we explain how these concepts work in different enzymes and how they can be used to rationalize the consequences of point mutations. We also discuss examples of protein design in which electrostatic effects have been implemented. For the near future, molecular simulations, coupled with the use of machine learning methods, can be used to implement electrostatics as a guiding principle for enzyme designs.
Collapse
Affiliation(s)
| | - Katarzyna Świderek
- Biocomp
group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón Spain
| | - Joan Bertran
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Vicent Moliner
- Biocomp
group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón Spain
| | - Iñaki Tuñón
- Departament
de Química Física, Universitat
de València, 46100 Burjassot, Spain
| |
Collapse
|
5
|
Jiang Y, Ding N, Shao Q, Stull SL, Cheng Z, Yang ZJ. Substrate Positioning Dynamics Involves a Non-Electrostatic Component to Mediate Catalysis. J Phys Chem Lett 2023; 14:11480-11489. [PMID: 38085952 PMCID: PMC11211065 DOI: 10.1021/acs.jpclett.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Substrate positioning dynamics (SPD) orients the substrate in the active site, thereby influencing catalytic efficiency. However, it remains unknown whether SPD effects originate primarily from electrostatic perturbation inside the enzyme or can independently mediate catalysis with a significant non-electrostatic component. In this work, we investigated how the non-electrostatic component of SPD affects transition state (TS) stabilization. Using high-throughput enzyme modeling, we selected Kemp eliminase variants with similar electrostatics inside the enzyme but significantly different SPD. The kinetic parameters of these mutants were experimentally characterized. We observed a valley-shaped, two-segment linear correlation between the TS stabilization free energy (converted from kinetic parameters) and substrate positioning index (a metric to quantify SPD). The energy varies by approximately 2 kcal/mol. Favorable SPD was observed for the distal mutant R154W, increasing the proportion of reactive conformations and leading to the lowest activation free energy. These results indicate the substantial contribution of the non-electrostatic component of SPD to enzyme catalytic efficiency.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sebastian L. Stull
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zihao Cheng
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
6
|
Pan X, Van R, Pu J, Nam K, Mao Y, Shao Y. Free Energy Profile Decomposition Analysis for QM/MM Simulations of Enzymatic Reactions. J Chem Theory Comput 2023; 19:8234-8244. [PMID: 37943896 PMCID: PMC10835707 DOI: 10.1021/acs.jctc.3c00973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In enzyme mechanistic studies and mutant design, it is highly desirable to know the individual residue contributions to the reaction free energy and barrier. In this work, we show that such free energy contributions from each residue can be readily obtained by postprocessing ab initio quantum mechanical molecular mechanical (ai-QM/MM) free energy simulation trajectories. Specifically, through a mean force integration along the minimum free energy pathway, one can obtain the electrostatic, polarization, and van der Waals contributions from each residue to the free energy barrier. Separately, a similar analysis procedure allows us to assess the contribution from different collective variables along the reaction coordinate. The chorismate mutase reaction is used to demonstrate the utilization of these two trajectory analysis tools.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Laboratory of Computational Biology, National, Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20824, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yuezhi Mao
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
7
|
Yang ZJ, Shao Q, Jiang Y, Jurich C, Ran X, Juarez RJ, Yan B, Stull SL, Gollu A, Ding N. Mutexa: A Computational Ecosystem for Intelligent Protein Engineering. J Chem Theory Comput 2023; 19:7459-7477. [PMID: 37828731 PMCID: PMC10653112 DOI: 10.1021/acs.jctc.3c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/14/2023]
Abstract
Protein engineering holds immense promise in shaping the future of biomedicine and biotechnology. This Review focuses on our ongoing development of Mutexa, a computational ecosystem designed to enable "intelligent protein engineering". In this vision, researchers will seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic peptides, and diagnostic proteins through a finely-tuned computational machine, akin to Amazon Alexa's role as a versatile virtual assistant. The technical foundation of Mutexa has been established through the development of a database that combines and relates enzyme structures and their respective functions (e.g., IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.
Collapse
Affiliation(s)
- Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher Jurich
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Reecan J. Juarez
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department
of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Sebastian L. Stull
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
8
|
Bofill JM, Severi M, Quapp W, Ribas-Ariño J, Moreira IDPR, Albareda G. An algorithm to find the optimal oriented external electrostatic field for annihilating a reaction barrier in a polarizable molecular system. J Chem Phys 2023; 159:114112. [PMID: 37724726 DOI: 10.1063/5.0167749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
The use of oriented external electric fields (OEEFs) to promote and control chemical reactivity has motivated many theoretical and computational studies in the last decade to model the action of OEEFs on a molecular system and its effects on chemical processes. Given a reaction, a central goal in this research area is to predict the optimal OEEF (oOEEF) required to annihilate the reaction energy barrier with the smallest possible field strength. Here, we present a model rooted in catastrophe and optimum control theories that allows us to find the oOEEF for a given reaction valley in the potential energy surface (PES). In this model, the effective (or perturbed) PES of a polarizable molecular system is constructed by adding to the original, non-perturbed, PES a term accounting for the interaction of the OEEF with the intrinsic electric dipole and polarizability of the molecular system, so called the polarizable molecular electric dipole (PMED) model. We demonstrate that the oOEEF can be established by locating a point in the original PES with unique topological properties: the optimal barrier breakdown or bond-breaking point (oBBP). The essential feature of the oBBP structure is the fact that this point maintains its topological properties for all the applied OEEFs, also for the unperturbed PES, thus becoming much more relevant than the commonly used minima and transition state structures. The PMED model proposed here has been implemented in an open access package and is shown to successfully predict the oOEEF for two processes: an isomerization reaction of a cumulene derivative and the Huisgen cycloaddition reaction.
Collapse
Affiliation(s)
- Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Marco Severi
- Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, D-04009 Leipzig, Germany
| | - Jordi Ribas-Ariño
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ibério de P R Moreira
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Guillermo Albareda
- Ideaded, Carrer de la Tecnologia, 35, 08840 Viladecans, Barcelona, Spain
| |
Collapse
|
9
|
Shao Q, Jiang Y, Yang ZJ. EnzyHTP Computational Directed Evolution with Adaptive Resource Allocation. J Chem Inf Model 2023; 63:5650-5659. [PMID: 37611241 PMCID: PMC11211066 DOI: 10.1021/acs.jcim.3c00618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Directed evolution facilitates enzyme engineering via iterative rounds of mutagenesis. Despite the wide applications of high-throughput screening, building "smart libraries" to effectively identify beneficial variants remains a major challenge in the community. Here, we developed a new computational directed evolution protocol based on EnzyHTP, a software that we have previously reported to automate enzyme modeling. To enhance the throughput efficiency, we implemented an adaptive resource allocation strategy that dynamically allocates different types of computing resources (e.g., GPU/CPU) based on the specific need of an enzyme modeling subtask in the workflow. We implemented the strategy as a Python library and tested the library using fluoroacetate dehalogenase as a model enzyme. The results show that compared to fixed resource allocation where both CPU and GPU are on-call for use during the entire workflow, applying adaptive resource allocation can save 87% CPU hours and 14% GPU hours. Furthermore, we constructed a computational directed evolution protocol under the framework of adaptive resource allocation. The workflow was tested against two rounds of mutational screening in the directed evolution experiments of Kemp eliminase (KE07) with a total of 184 mutants. Using folding stability and electrostatic stabilization energy as computational readout, we identified all four experimentally observed target variants. Enabled by the workflow, the entire computation task (i.e., 18.4 μs MD and 18,400 QM single-point calculations) completes in 3 days of wall-clock time using ∼30 GPUs and ∼1000 CPUs.
Collapse
Affiliation(s)
- Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
10
|
Yan S, Ji X, Peng W, Wang B. Evaluating the Transition State Stabilization/Destabilization Effects of the Electric Fields from Scaffold Residues by a QM/MM Approach. J Phys Chem B 2023; 127:4245-4253. [PMID: 37155960 DOI: 10.1021/acs.jpcb.3c01054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The protein scaffolds of enzymes not only provide structural support for the catalytic center but also exert preorganized electric fields for electrostatic catalysis. In recent years, uniform oriented external electric fields (OEEFs) have been widely applied to enzymatic reactions to mimic the electrostatic effects of the environment. However, the electric fields exerted by individual residues in proteins may be quite heterogeneous across the active site, with varying directions and strengths at different positions of the active site. Here, we propose a QM/MM-based approach to evaluate the effects of the electric fields exerted by individual residues in the protein scaffold. In particular, the heterogeneity of the residue electric fields and the effect of the native protein environment can be properly accounted for by this QM/MM approach. A case study of the O-O heterolysis reaction in the catalytic cycle of TyrH shows that (1) for scaffold residues that are relatively far from the active site, the heterogeneity of the residue electric field in the active site is not very significant and the electrostatic stabilization/destabilization due to each residue can be well approximated with the interaction energy between a uniform electric field and the QM region dipole; (2) for scaffold residues near the active site, the residue electric fields can be highly heterogeneous along the breaking O-O bond. In such a case, approximating the residue electric fields as uniform fields may misrepresent the overall electrostatic effect of the residue. The present QM/MM approach can be applied to evaluate the residues' electrostatic impact on enzymatic reactions, which also can be useful in computational optimization of electric fields to boost the enzyme catalysis.
Collapse
Affiliation(s)
- Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Xinwei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
11
|
Eberhart ME, Wilson TR, Johnston NW, Alexandrova AN. Geometry of Charge Density as a Reporter on the Role of the Protein Scaffold in Enzymatic Catalysis: Electrostatic Preorganization and Beyond. J Chem Theory Comput 2023; 19:694-704. [PMID: 36562645 DOI: 10.1021/acs.jctc.2c01060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enzymes host active sites inside protein macromolecules, which have diverse, often incredibly complex, and atom-expensive structures. It is an outstanding question what the role of these expensive scaffolds might be in enzymatic catalysis. Answering this question is essential to both enzymology and the design of artificial enzymes with proficiencies that will match those of the best natural enzymes. Protein rigidifying the active site, contrasted with the dynamics and vibrational motion promoting the reaction, as well as long-range electrostatics (also known as electrostatic preorganization) were all proposed as central contributions of the scaffold to the catalysis. Here, we show that all these effects inevitably produce changes in the quantum mechanical electron density in the active site, which in turn defines the reactivity. The phenomena are therefore fundamentally inseparable. The geometry of the electron density-a scalar field characterized by a number of mathematical features such as critical points-is a rigorous and convenient descriptor of enzymatic catalysis and a reporter on the role of the protein. We show how this geometry can be analyzed, linked to the reaction barriers, and report in particular on intramolecular electric fields in enzymes. We illustrate these tools on the studies of electrostatic preorganization in several representative enzyme classes, both natural and artificial. We highlight the forward-looking aspects of the approach.
Collapse
Affiliation(s)
- Mark E Eberhart
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Timothy R Wilson
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Nathaniel W Johnston
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
A catastrophe theory-based model for optimal control of chemical reactions by means of oriented electric fields. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractThe effect of oriented external electric fields (OEEF) on chemical reactivity has been studied theoretically and computationally in the last decades. A central goal in this research area is to predict the orientation and the smallest amplitude electric field that renders a barrierless chemical process with the smallest possible strength. Recently, a model to find the optimal electric field has been proposed and described (Bofill JM et al., J. Chem. Theory Comput. 18:935, 2022). We here proof that this model is based on catastrophe and optimum control theories. Based on both theories a technical treatment of the model is given and applied to a two-dimensional generic example that provides insight into its nature and capability. Finally, the model is applied to determine the optimal OEEF for the trans-to-cis isomerization of a [3]cumulene derivative.
Collapse
|
13
|
Jiang Y, Stull SL, Shao Q, Yang ZJ. Convergence in determining enzyme functional descriptors across Kemp eliminase variants. ELECTRONIC STRUCTURE (BRISTOL, ENGLAND) 2022; 4:044007. [PMID: 37425623 PMCID: PMC10327861 DOI: 10.1088/2516-1075/acad51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Molecular simulations have been extensively employed to accelerate biocatalytic discoveries. Enzyme functional descriptors derived from molecular simulations have been leveraged to guide the search for beneficial enzyme mutants. However, the ideal active-site region size for computing the descriptors over multiple enzyme variants remains untested. Here, we conducted convergence tests for dynamics-derived and electrostatic descriptors on 18 Kemp eliminase variants across six active-site regions with various boundary distances to the substrate. The tested descriptors include the root-mean-square deviation of the active-site region, the solvent accessible surface area ratio between the substrate and active site, and the projection of the electric field (EF) on the breaking C-H bond. All descriptors were evaluated using molecular mechanics methods. To understand the effects of electronic structure, the EF was also evaluated using quantum mechanics/molecular mechanics methods. The descriptor values were computed for 18 Kemp eliminase variants. Spearman correlation matrices were used to determine the region size condition under which further expansion of the region boundary does not substantially change the ranking of descriptor values. We observed that protein dynamics-derived descriptors, including RMSDactive_site and SASAratio, converge at a distance cutoff of 5 Å from the substrate. The electrostatic descriptor, EFC-H, converges at 6 Å using molecular mechanics methods with truncated enzyme models and 4 Å using quantum mechanics/molecular mechanics methods with whole enzyme model. This study serves as a future reference to determine descriptors for predictive modeling of enzyme engineering.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
| | - Sebastian L Stull
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
| | - Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States of America
- Data Science Institute, Vanderbilt University, Nashville, TN 37235, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, United States of America
| |
Collapse
|
14
|
Peng W, Yan S, Zhang X, Liao L, Zhang J, Shaik S, Wang B. How Do Preorganized Electric Fields Function in Catalytic Cycles? The Case of the Enzyme Tyrosine Hydroxylase. J Am Chem Soc 2022; 144:20484-20494. [DOI: 10.1021/jacs.2c09263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Langxing Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| |
Collapse
|
15
|
Natural Evolution Provides Strong Hints about Laboratory Evolution of Designer Enzymes. Proc Natl Acad Sci U S A 2022; 119:e2207904119. [PMID: 35901204 PMCID: PMC9351539 DOI: 10.1073/pnas.2207904119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Laboratory evolution combined with computational enzyme design provides the opportunity to generate novel biocatalysts. Nevertheless, it has been challenging to understand how laboratory evolution optimizes designer enzymes by introducing seemingly random mutations. A typical enzyme optimized with laboratory evolution is the abiological Kemp eliminase, initially designed by grafting active site residues into a natural protein scaffold. Here, we relate the catalytic power of laboratory-evolved Kemp eliminases to the statistical energy ([Formula: see text]) inferred from their natural homologous sequences using the maximum entropy model. The [Formula: see text] of designs generated by directed evolution is correlated with enhanced activity and reduced stability, thus displaying a stability-activity trade-off. In contrast, the [Formula: see text] for mutants in catalytic-active remote regions (in which remote residues are important for catalysis) is strongly anticorrelated with the activity. These findings provide an insight into the role of protein scaffolds in the adaption to new enzymatic functions. It also indicates that the valley in the [Formula: see text] landscape can guide enzyme design for abiological catalysis. Overall, the connection between laboratory and natural evolution contributes to understanding what is optimized in the laboratory and how new enzymatic function emerges in nature, and provides guidance for computational enzyme design.
Collapse
|
16
|
Zhang S, Zhang J, Luo W, Wang P, Zhu Y. A preorganization oriented computational method for de novo design of Kemp elimination enzymes. Enzyme Microb Technol 2022; 160:110093. [DOI: 10.1016/j.enzmictec.2022.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/13/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
17
|
Piskorz TK, Martí-Centelles V, Young TA, Lusby PJ, Duarte F. Computational Modeling of Supramolecular Metallo-organic Cages-Challenges and Opportunities. ACS Catal 2022; 12:5806-5826. [PMID: 35633896 PMCID: PMC9127791 DOI: 10.1021/acscatal.2c00837] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Indexed: 01/18/2023]
Abstract
Self-assembled metallo-organic cages have emerged as promising biomimetic platforms that can encapsulate whole substrates akin to an enzyme active site. Extensive experimental work has enabled access to a variety of structures, with a few notable examples showing catalytic behavior. However, computational investigations of metallo-organic cages are scarce, not least due to the challenges associated with their modeling and the lack of accurate and efficient protocols to evaluate these systems. In this review, we discuss key molecular principles governing the design of functional metallo-organic cages, from the assembly of building blocks through binding and catalysis. For each of these processes, computational protocols will be reviewed, considering their inherent strengths and weaknesses. We will demonstrate that while each approach may have its own specific pitfalls, they can be a powerful tool for rationalizing experimental observables and to guide synthetic efforts. To illustrate this point, we present several examples where modeling has helped to elucidate fundamental principles behind molecular recognition and reactivity. We highlight the importance of combining computational and experimental efforts to speed up supramolecular catalyst design while reducing time and resources.
Collapse
Affiliation(s)
- Tomasz K. Piskorz
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Valencia 46022, Spain
| | - Tom A. Young
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Paul J. Lusby
- EaStCHEM
School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster
Road, Edinburgh, Scotland EH9 3FJ, United Kingdom
| | - Fernanda Duarte
- Chemistry
Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
18
|
Jiang Y, Yan B, Chen Y, Juarez RJ, Yang ZJ. Molecular Dynamics-Derived Descriptor Informs the Impact of Mutation on the Catalytic Turnover Number in Lactonase Across Substrates. J Phys Chem B 2022; 126:2486-2495. [PMID: 35324218 DOI: 10.1021/acs.jpcb.2c00142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics simulations have been extensively employed to reveal the roles of protein dynamics in mediating enzyme catalysis. However, simulation-derived predictive descriptors that inform the impacts of mutations on catalytic turnover numbers remain largely unexplored. In this work, we report the identification of molecular modeling-derived descriptors to predict mutation effect on the turnover number of lactonase SsoPox with both native and non-native substrates. The study consists of 10 enzyme-substrate complexes resulting from a combination of five enzyme variants with two substrates. For each complex, we derived 15 descriptors from molecular dynamics simulations and applied principal component analysis to rank the predictive capability of the descriptors. A top-ranked descriptor was identified, which is the solvent-accessible surface area (SASA) ratio of the substrate to the active site pocket. A uniform volcano-shaped plot was observed in the distribution of experimental activation free energy against the SASA ratio. To achieve efficient lactonase hydrolysis, a non-native substrate-bound enzyme variant needs to involve a similar range of the SASA ratio to the native substrate-bound wild-type enzyme. The descriptor reflects how well the enzyme active site pocket accommodates a substrate for reaction, which has the potential of guiding optimization of enzyme reaction turnover for non-native chemical transformations.
Collapse
Affiliation(s)
- Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yu Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Reecan J Juarez
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States.,Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States.,Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
19
|
Li WL, Hao H, Head-Gordon T. Optimizing the Solvent Reorganization Free Energy by Metal Substitution for Nanocage Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wan-Lu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hongxia Hao
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Shao Q, Jiang Y, Yang ZJ. EnzyHTP: A High-Throughput Computational Platform for Enzyme Modeling. J Chem Inf Model 2022; 62:647-655. [DOI: 10.1021/acs.jcim.1c01424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qianzhen Shao
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Zhongyue J. Yang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
21
|
Bofill JM, Quapp W, Albareda G, Moreira IDPR, Ribas-Ariño J. Controlling Chemical Reactivity with Optimally Oriented Electric Fields: A Generalization of the Newton Trajectory Method. J Chem Theory Comput 2022; 18:935-952. [PMID: 35044173 DOI: 10.1021/acs.jctc.1c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of oriented external electric fields (OEEF) as a tool to accelerate chemical reactions has recently attracted much interest. A new model to calculate the optimal OEEF of the least intensity to induce a barrierless chemical reaction path is presented. A suitable ansatz is provided by defining an effective potential energy surface (PES), which considers the unperturbed or original PES of the molecular reactive system and the action of a constant OEEF on the overall dipole moment of system. Based on a generalization of the Newton Trajectories (NT) method, it is demonstrated that the optimal OEEF can be determined upon locating a special point of the potential energy surface (PES), the so-called "optimal bond-breaking point" (optimal BBP), for which two different algorithms are proposed. At this point, the gradient of the original or unperturbed PES is an eigenvector of zero eigenvalue of the Hessian matrix of the effective PES. A thorough discussion of the geometrical aspects of the optimal BBP and the optimal OEEF is provided using a two-dimensional model, and numerical calculations of the optimal OEEF for a SN2 reaction and the 1,3-dipolar retrocycloaddition of isoxazole to fulminic acid plus acetylene reaction serve as a proof of concept. The knowledge of the orientation of optimal OEEF provides a practical way to reduce the effective barrier of a given chemical process.
Collapse
Affiliation(s)
- Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, D-04009 Leipzig, Germany
| | - Guillermo Albareda
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Ibério de P R Moreira
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Jordi Ribas-Ariño
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
22
|
Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Chen K, Li WL, Head-Gordon T. Linear Combination of Atomic Dipoles to Calculate the Bond and Molecular Dipole Moments of Molecules and Molecular Liquids. J Phys Chem Lett 2021; 12:12360-12369. [PMID: 34936765 DOI: 10.1021/acs.jpclett.1c03476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a linear combination of atomic dipole (LCAD) method for calculating the bond dipole moments of molecules. We show that the LCAD method reproduces the known molecular dipole moments of small to large molecules with a small error with respect to experimental and benchmark ab initio calculations, and molecular dipole distributions of bulk water that agree with maximally localized Wannier functions. The bond dipole moments derived from LCAD are also chemically interpretable in terms of the trend in bond ionicity in going from neutral to charged molecules. Moreover, the LCAD method accurately captures the influence of electric fields, supported by the correct trend in the change of the dipole moment under a uniform external electric field. The better grounding of bond dipole calculations indicates that it should also serve as a useful approach to bond dipole-field models used in catalysis or to reconstruct the small dipole of a H-terminated graphene flake.
Collapse
Affiliation(s)
- Kaixuan Chen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, California 94720, United States
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Wan-Lu Li
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, California 94720, United States
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, California 94720, United States
- Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
24
|
Schneider S, Kozuch J, Boxer SG. The Interplay of Electrostatics and Chemical Positioning in the Evolution of Antibiotic Resistance in TEM β-Lactamases. ACS CENTRAL SCIENCE 2021; 7:1996-2008. [PMID: 34963893 PMCID: PMC8704030 DOI: 10.1021/acscentsci.1c00880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 05/25/2023]
Abstract
The interplay of enzyme active site electrostatics and chemical positioning is important for understanding the origin(s) of enzyme catalysis and the design of novel catalysts. We reconstruct the evolutionary trajectory of TEM-1 β-lactamase to TEM-52 toward extended-spectrum activity to better understand the emergence of antibiotic resistance and to provide insights into the structure-function paradigm and noncovalent interactions involved in catalysis. Utilizing a detailed kinetic analysis and the vibrational Stark effect, we quantify the changes in rates and electric fields in the Michaelis and acyl-enzyme complexes for penicillin G and cefotaxime to ascertain the evolutionary role of electric fields to modulate function. These data are combined with MD simulations to interpret and quantify the substrate-dependent structural changes during evolution. We observe that this evolutionary trajectory utilizes a large preorganized electric field and substrate-dependent chemical positioning to facilitate catalysis. This governs the evolvability, substrate promiscuity, and protein fitness landscape in TEM β-lactamase antibiotic resistance.
Collapse
Affiliation(s)
| | | | - Steven G. Boxer
- Chemistry Department, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Prah A, Mavri J, Stare J. An electrostatic duel: subtle differences in the catalytic performance of monoamine oxidase A and B isoenzymes elucidated at the residue level using quantum computations. Phys Chem Chem Phys 2021; 23:26459-26467. [PMID: 34806105 DOI: 10.1039/d1cp03993h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The origin of the immense catalytic power of enzymes remains one of the biggest unresolved questions in biochemistry, with electrostatics being one of the main contenders. Herein, we report results that not only confirm that electrostatics is the driving force behind enzyme catalysis, but also that it is capable of tuning subtle differences in the catalytic performance between structurally similar enzymes, as demonstrated using the example of isoenzymes, monoamine oxidases A and B. Using our own computationally efficient multiscale model [A. Prah, et al., ACS Catal., 2019, 9, 1231] we analyzed the rate-limiting step of the reaction between phenylethylamine and both isoenzymes and deduced that the electrostatic environment provided by isoenzyme B has a perceivably higher catalytic influence on all the considered parameters of the reaction (energy barrier, charge transfer, dipole moment, and HOMO-LUMO gap). This is in full agreement with the available experimental kinetic data and with our own simulations of the reaction in question. In-depth analysis of individual amino acid contributions of both isoenzymes to the barrier (based on the interaction between the electric field provided by the enzyme and the dipole moment of the reacting moiety) shows that the majority of the difference between the isoenzymes can be attributed to a small number of sizable differences between the aligned amino acid pairs, whereas in most of the pairs the difference in contribution to the barrier is vanishingly small. These results suggest that electrostatics largely controls the substrate selectivity of enzymes and validates our approach as being capable of discerning fine nuances in the selectivity of structurally related isoenzymes.
Collapse
Affiliation(s)
- Alja Prah
- Theory Department, National Institute of Chemistry, Slovenia. .,University of Ljubljana, Faculty of Pharmacy, Slovenia
| | - Janez Mavri
- Theory Department, National Institute of Chemistry, Slovenia.
| | - Jernej Stare
- Theory Department, National Institute of Chemistry, Slovenia.
| |
Collapse
|
26
|
Besalú-Sala P, Solà M, Luis JM, Torrent-Sucarrat M. Fast and Simple Evaluation of the Catalysis and Selectivity Induced by External Electric Fields. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P Manuel Lardizabal 3, E-20018 Donostia/San Sebastián, Euskadi, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
27
|
Xu X, Yan S, Hou X, Song W, Wang L, Wu T, Qi M, Wu J, Rao Y, Wang B, Liu L. Local Electric Field Modulated Reactivity of Pseudomonas aeruginosa Acid Phosphatase for Enhancing Phosphorylation of l-Ascorbic Acid. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 360015, P. R. China
| | - Xiaodong Hou
- State Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Lei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Tianfu Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengya Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- State Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 360015, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
28
|
Evolution of dynamical networks enhances catalysis in a designer enzyme. Nat Chem 2021; 13:1017-1022. [PMID: 34413499 DOI: 10.1038/s41557-021-00763-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
Activation heat capacity is emerging as a crucial factor in enzyme thermoadaptation, as shown by the non-Arrhenius behaviour of many natural enzymes. However, its physical origin and relationship to the evolution of catalytic activity remain uncertain. Here we show that directed evolution of a computationally designed Kemp eliminase reshapes protein dynamics, which gives rise to an activation heat capacity absent in the original design. These changes buttress transition-state stabilization. Extensive molecular dynamics simulations show that evolution results in the closure of solvent-exposed loops and a better packing of the active site. Remarkably, this gives rise to a correlated dynamical network that involves the transition state and large parts of the protein. This network tightens the transition-state ensemble, which induces a negative activation heat capacity and non-linearity in the activity-temperature dependence. Our results have implications for understanding enzyme evolution and suggest that selectively targeting the conformational dynamics of the transition-state ensemble by design and evolution will expedite the creation of novel enzymes.
Collapse
|
29
|
Zhang J, Kong K, Li X, Zhang Q. Kemp-type elimination of 1-arylsulfonyl-3-iodo-1 H-indazoles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1939053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jiawei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Kaimin Kong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiangjun Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Bunzel HA, Anderson JLR, Mulholland AJ. Designing better enzymes: Insights from directed evolution. Curr Opin Struct Biol 2021; 67:212-218. [PMID: 33517098 DOI: 10.1016/j.sbi.2020.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/03/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
De novo enzymes can be created by computational design and directed evolution. Here, we review recent insights into the origins of catalytic power in evolved designer enzymes to pinpoint opportunities for next-generation designs: Evolution precisely organizes active sites, introduces catalytic H-bonding networks, invokes electrostatic catalysis, and creates dynamical networks embedding the active site in a reactive protein scaffold. Such insights foster our fundamental knowledge of enzyme catalysis and fuel the future design of tailor-made enzymes.
Collapse
Affiliation(s)
- H Adrian Bunzel
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| |
Collapse
|
31
|
Li WL, Head-Gordon T. Catalytic Principles from Natural Enzymes and Translational Design Strategies for Synthetic Catalysts. ACS CENTRAL SCIENCE 2021; 7:72-80. [PMID: 33532570 PMCID: PMC7844850 DOI: 10.1021/acscentsci.0c01556] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 05/19/2023]
Abstract
As biocatalysts, enzymes are characterized by their high catalytic efficiency and strong specificity but are relatively fragile by requiring narrow and specific reactive conditions for activity. Synthetic catalysts offer an opportunity for more chemical versatility operating over a wider range of conditions but currently do not reach the remarkable performance of natural enzymes. Here we consider some new design strategies based on the contributions of nonlocal electric fields and thermodynamic fluctuations to both improve the catalytic step and turnover for rate acceleration in arbitrary synthetic catalysts through bioinspired studies of natural enzymes. With a focus on the enzyme as a whole catalytic construct, we illustrate the translational impact of natural enzyme principles to synthetic enzymes, supramolecular capsules, and electrocatalytic surfaces.
Collapse
Affiliation(s)
- Wan-Lu Li
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Kenneth
S. Pitzer Center for Theoretical Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Department of Chemical and Biomolecular Engineering, and Department of
Bioengineering, University of California
Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Catalytic Effect of Electric Fields on the Kemp Elimination Reactions with Neutral Bases. Chemphyschem 2020; 21:2594-2604. [PMID: 32916041 DOI: 10.1002/cphc.202000667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Indexed: 11/11/2022]
Abstract
The effect of solvent reaction fields and oriented electric fields on the Kemp elimination reaction between methylamine or imidazole and 5-nitrobenzisoxazole has been theoretically studied. The Kemp reaction is the most widely used for the design of new enzymes. Our results, using the SMD continuous model for solvents, are in quite good agreement with the experimental fact that the rate of the analogous reaction with butylamine is one order of magnitude smaller in water than in acetonitrile. In the case of external electric fields, our results show that they can increase or decrease the energy barrier depending on the magnitude and orientation of the field. A duly oriented electric field may have a notable catalytic effect on the reaction. So, external electric fields and reaction fields due to the medium can contribute to the design of new enzymes. Several factors that must be taken into account to increase the catalytic effect are discussed.
Collapse
Affiliation(s)
- Carles Acosta-Silva
- Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193, Bellaterra, Spain.,Port d'Informació Científica (PIC), Campus UAB, c/ Albareda s/n, 08193, Bellaterra, Spain
| | - Joan Bertran
- Departament e Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Vicenç Branchadell
- Departament e Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antoni Oliva
- Departament e Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
33
|
Martí S, Tuñón I, Moliner V, Bertran J. Are Heme-Dependent Enzymes Always Using a Redox Mechanism? A Theoretical Study of the Kemp Elimination Catalyzed by a Promiscuous Aldoxime Dehydratase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio Martí
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
34
|
Crean RM, Gardner JM, Kamerlin SCL. Harnessing Conformational Plasticity to Generate Designer Enzymes. J Am Chem Soc 2020; 142:11324-11342. [PMID: 32496764 PMCID: PMC7467679 DOI: 10.1021/jacs.0c04924] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 02/08/2023]
Abstract
Recent years have witnessed an explosion of interest in understanding the role of conformational dynamics both in the evolution of new enzymatic activities from existing enzymes and in facilitating the emergence of enzymatic activity de novo on scaffolds that were previously non-catalytic. There are also an increasing number of examples in the literature of targeted engineering of conformational dynamics being successfully used to alter enzyme selectivity and activity. Despite the obvious importance of conformational dynamics to both enzyme function and evolvability, many (although not all) computational design approaches still focus either on pure sequence-based approaches or on using structures with limited flexibility to guide the design. However, there exist a wide variety of computational approaches that can be (re)purposed to introduce conformational dynamics as a key consideration in the design process. Coupled with laboratory evolution and more conventional existing sequence- and structure-based approaches, these techniques provide powerful tools for greatly expanding the protein engineering toolkit. This Perspective provides an overview of evolutionary studies that have dissected the role of conformational dynamics in facilitating the emergence of novel enzymes, as well as advances in computational approaches that allow one to target conformational dynamics as part of enzyme design. Harnessing conformational dynamics in engineering studies is a powerful paradigm with which to engineer the next generation of designer biocatalysts.
Collapse
Affiliation(s)
- Rory M. Crean
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Jasmine M. Gardner
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Shina C. L. Kamerlin
- Department of Chemistry -
BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| |
Collapse
|
35
|
Beker W, Sokalski WA. Bottom-Up Nonempirical Approach To Reducing Search Space in Enzyme Design Guided by Catalytic Fields. J Chem Theory Comput 2020; 16:3420-3429. [PMID: 32282205 PMCID: PMC7467639 DOI: 10.1021/acs.jctc.0c00139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently developed protocols of theozyme design still lead to biocatalysts with much lower catalytic activity than enzymes existing in nature, and, so far, the only avenue of improvement was the in vitro laboratory-directed evolution (LDE) experiments. In this paper, we propose a different strategy based on "reversed" methodology of mutation prediction. Instead of common "top-down" approach, requiring numerous assumptions and vast computational effort, we argue for a "bottom-up" approach that is based on the catalytic fields derived directly from transition state and reactant complex wave functions. This enables direct one-step determination of the general quantitative angular characteristics of optimal catalytic site and simultaneously encompasses both the transition-state stabilization (TSS) and ground-state destabilization (GSD) effects. We further extend the static catalytic field approach by introducing a library of atomic multipoles for amino acid side-chain rotamers, which, together with the catalytic field, allow one to determine the optimal side-chain orientations of charged amino acids constituting the elusive structure of a preorganized catalytic environment. Obtained qualitative agreement with experimental LDE data for Kemp eliminase KE07 mutants validates the proposed procedure, yielding, in addition, a detailed insight into possible dynamic and epistatic effects.
Collapse
Affiliation(s)
- Wiktor Beker
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | | |
Collapse
|
36
|
Dittner M, Hartke B. Globally optimal catalytic fields for a Diels-Alder reaction. J Chem Phys 2020; 152:114106. [PMID: 32199410 DOI: 10.1063/1.5142839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In a previous paper [M. Dittner and B. Hartke, J. Chem. Theory Comput. 14, 3547 (2018)], we introduced a preliminary version of our GOCAT (globally optimal catalyst) concept in which electrostatic catalysts are designed for arbitrary reactions by global optimization of distributed point charges that surround the reaction. In this first version, a pre-defined reaction path was kept fixed. This unrealistic assumption allowed for only small catalytic effects. In the present work, we extend our GOCAT framework by a sophisticated and robust on-the-fly reaction path optimization, plus further concomitant algorithm adaptions. This allows smaller and larger excursions from a pre-defined reaction path under the influence of the GOCAT point-charge surrounding, all the way to drastic mechanistic changes. In contrast to the restricted first GOCAT version, this new version is able to address real-life catalysis. We demonstrate this by applying it to the electrostatic catalysis of a prototypical Diels-Alder reaction. Without using any prior information, this procedure re-discovers theoretically and experimentally established features of electrostatic catalysis of this very reaction, including a field-dependent transition from the synchronous, concerted textbook mechanism to a zwitterionic two-step mechanism, and diastereomeric discrimination by suitable electric field components.
Collapse
Affiliation(s)
- Mark Dittner
- Institute for Physical Chemistry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Bernd Hartke
- Institute for Physical Chemistry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| |
Collapse
|
37
|
Welborn VV, Li WL, Head-Gordon T. Interplay of water and a supramolecular capsule for catalysis of reductive elimination reaction from gold. Nat Commun 2020; 11:415. [PMID: 31964874 PMCID: PMC6972886 DOI: 10.1038/s41467-019-14251-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/18/2019] [Indexed: 02/04/2023] Open
Abstract
Supramolecular assemblies have gained tremendous attention due to their ability to catalyze reactions with the efficiencies of natural enzymes. Using ab initio molecular dynamics, we identify the origin of the catalysis by the supramolecular capsule Ga4L612- on the reductive elimination reaction from gold complexes and assess their similarity to natural enzymes. By comparing the free energies of the reactants and transition states for the catalyzed and uncatalyzed reactions, we determine that an encapsulated water molecule generates electric fields that contributes the most to the reduction in the activation free energy. Although this is unlike the biomimetic scenario of catalysis through direct host-guest interactions, the electric fields from the nanocage also supports the transition state to complete the reductive elimination reaction with greater catalytic efficiency. However it is also shown that the nanocage poorly organizes the interfacial water, which in turn creates electric fields that misalign with the breaking bonds of the substrate, thus identifying new opportunities for catalytic design improvements in nanocage assemblies.
Collapse
Affiliation(s)
- Valerie Vaissier Welborn
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, CA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Labs, Berkeley, CA, USA.,Department of Chemistry, Virginia Tech University, Blacksburg, VA, 24061, USA
| | - Wan-Lu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, CA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA.,Chemical Sciences Division, Lawrence Berkeley National Labs, Berkeley, CA, USA
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, CA, USA. .,Department of Chemistry, University of California, Berkeley, CA, USA. .,Chemical Sciences Division, Lawrence Berkeley National Labs, Berkeley, CA, USA. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
38
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Kemp Elimination Reaction Catalyzed by Electric Fields. Chemphyschem 2020; 21:295-306. [PMID: 31840917 DOI: 10.1002/cphc.201901155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/12/2019] [Indexed: 12/20/2022]
Abstract
The Kemp elimination reaction is the most widely used in the de novo design of new enzymes. The effect of two different kinds of electric fields in the reactions of acetate as a base with benzisoxazole and 5-nitrobenzisoxazole as substrates have been theoretically studied. The effect of the solvent reaction field has been calculated using the SMD continuum model for several solvents; we have shown that solvents inhibit both reactions, the decrease of the reaction rate being larger as far as the dielectric constant is increased. The diminution of the reaction rate is especially remarkable between aprotic organic solvents and protic solvents as water, the electrostatic term of the hydrogen bonds being the main factor for the large inhibitory effect of water. The presence of an external electric field oriented in the direction of the charge transfer (z axis) increases it and, so, the reaction rate. In the reaction of the nitro compound, if the electric field is oriented in an orthogonal direction (x axis) the charge transfer to the NO2 group is favored and there is a subsequent increase of the reaction rate. However, this increase is smaller than the one produced by the field in the z axis. It is worthwhile mentioning that one of the main effects of external electric fields of intermediate intensity is the reorientation of the reactants. Finally, the implications of our results in the de novo design of enzymes are discussed.
Collapse
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
39
|
Welborn VV, Head-Gordon T. Fluctuations of Electric Fields in the Active Site of the Enzyme Ketosteroid Isomerase. J Am Chem Soc 2019; 141:12487-12492. [DOI: 10.1021/jacs.9b05323] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Valerie Vaissier Welborn
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Yang Z, Liu F, Steeves AH, Kulik HJ. Quantum Mechanical Description of Electrostatics Provides a Unified Picture of Catalytic Action Across Methyltransferases. J Phys Chem Lett 2019; 10:3779-3787. [PMID: 31244268 DOI: 10.1021/acs.jpclett.9b01555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methyl transferases (MTases) are a well-studied class of enzymes for which competing enzymatic enhancement mechanisms have been suggested, ranging from structural methyl group CH···X hydrogen bonds (HBs) to electrostatic- and charge-transfer-driven stabilization of the transition state (TS). We identified all Class I MTases for which reasonable resolution (<2.0 Å) crystal structures could be used to form catalytically competent ternary complexes for multiscale (i.e., quantum-mechanical/molecular-mechanical or QM/MM) simulation of the SN2 methyl transfer reaction coordinate. The four Class I MTases studied have both distinct functions (e.g., protein repair or biosynthesis) and substrate nucleophiles (i.e., C, N, or O). While CH···X HBs stabilize all reactant complexes, no universal TS stabilization role is found for these interactions in MTases. A consistent picture is instead obtained through analysis of charge transfer and electrostatics, wherein much of cofactor-substrate charge separation is maintained in the TS region, and electrostatic potential is correlated with substrate nucleophilicity (i.e., intrinsic reactivity).
Collapse
Affiliation(s)
- Zhongyue Yang
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Fang Liu
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Adam H Steeves
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Heather J Kulik
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
41
|
Fuller J, Wilson TR, Eberhart ME, Alexandrova AN. Charge Density in Enzyme Active Site as a Descriptor of Electrostatic Preorganization. J Chem Inf Model 2019; 59:2367-2373. [DOI: 10.1021/acs.jcim.8b00958] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jack Fuller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tim R. Wilson
- Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Mark E. Eberhart
- Molecular Theory Group, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems
Institute, Los Angeles, California 90095, United States
| |
Collapse
|
42
|
Prah A, Frančišković E, Mavri J, Stare J. Electrostatics as the Driving Force Behind the Catalytic Function of the Monoamine Oxidase A Enzyme Confirmed by Quantum Computations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04045] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Alja Prah
- Theory Department, National Institute of Chemistry, 1001 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Eric Frančišković
- Theory Department, National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Janez Mavri
- Theory Department, National Institute of Chemistry, 1001 Ljubljana, Slovenia
| | - Jernej Stare
- Theory Department, National Institute of Chemistry, 1001 Ljubljana, Slovenia
| |
Collapse
|
43
|
Kulkarni Y, Kamerlin SCL. Computational physical organic chemistry using the empirical valence bond approach. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.apoc.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Krylov A, Windus TL, Barnes T, Marin-Rimoldi E, Nash JA, Pritchard B, Smith DGA, Altarawy D, Saxe P, Clementi C, Crawford TD, Harrison RJ, Jha S, Pande VS, Head-Gordon T. Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science. J Chem Phys 2018; 149:180901. [DOI: 10.1063/1.5052551] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anna Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Theresa L. Windus
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Taylor Barnes
- Molecular Sciences Software Institute, Blacksburg, Virginia 24061, USA
| | | | - Jessica A. Nash
- Molecular Sciences Software Institute, Blacksburg, Virginia 24061, USA
| | | | | | - Doaa Altarawy
- Molecular Sciences Software Institute, Blacksburg, Virginia 24061, USA
| | - Paul Saxe
- Molecular Sciences Software Institute, Blacksburg, Virginia 24061, USA
| | - Cecilia Clementi
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, Texas 77005, USA
- Department of Mathematics and Computer Science, Freie Universitt Berlin, Arnimallee 6, 14195 Berlin, Germany
| | | | - Robert J. Harrison
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shantenu Jha
- Electrical and Computer Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Vijay S. Pande
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Teresa Head-Gordon
- Department of Chemistry, Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
45
|
Affiliation(s)
- Valerie Vaissier Welborn
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
46
|
|
47
|
Impact of long-range electrostatic and dispersive interactions on theoretical predictions of adsorption and catalysis in zeolites. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Dittner M, Hartke B. Globally Optimal Catalytic Fields - Inverse Design of Abstract Embeddings for Maximum Reaction Rate Acceleration. J Chem Theory Comput 2018; 14:3547-3564. [PMID: 29883539 DOI: 10.1021/acs.jctc.8b00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The search for, and understanding of, good catalysts for chemical reactions is a central issue for chemists. Here, we present first steps toward developing a general computational framework to better support this task. This framework combines efficient, unbiased global optimization techniques with an abstract representation of the catalytic environment, to shrink the search space. To analyze the resulting catalytic embeddings, we employ dimensionality reduction and clustering techniques. This not only provides an inverse design approach to new catalytic embeddings but also illuminates the actual interactions behind catalytic effects. All this is illustrated here with a strictly electrostatic model for the environment and with two versions of a selected example reaction. We close with detailed discussions of future improvements of our framework.
Collapse
Affiliation(s)
- Mark Dittner
- Institute for Physical Chemistry , Christian-Albrechts-University Kiel , 24098 Kiel , Germany
| | - Bernd Hartke
- Institute for Physical Chemistry , Christian-Albrechts-University Kiel , 24098 Kiel , Germany
| |
Collapse
|
49
|
Vaissier V, Sharma SC, Schaettle K, Zhang T, Head-Gordon T. Computational Optimization of Electric Fields for Improving Catalysis of a Designed Kemp Eliminase. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03151] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Valerie Vaissier
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | | | | | | | - Teresa Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
50
|
Wang L, Fried SD, Markland TE. Proton Network Flexibility Enables Robustness and Large Electric Fields in the Ketosteroid Isomerase Active Site. J Phys Chem B 2017; 121:9807-9815. [DOI: 10.1021/acs.jpcb.7b06985] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lu Wang
- Department
of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Stephen D. Fried
- Medical Research
Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Thomas E. Markland
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|