1
|
Ding S, Du Z, Qu R, Wu M, Xiao R, Wang P, Chen X, Chu W. Reactivity, Pathways, and Iodinated Disinfection Byproduct Formation during Chlorination of Iodotyrosines Derived from Edible Seaweed. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17999-18008. [PMID: 39322975 DOI: 10.1021/acs.est.4c03542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Iodine derived from edible seaweed significantly enhances the formation of iodinated disinfection byproducts (I-DBPs) during household cooking. Reactions of chlorine with monoiodotyrosine (MIT) and diiodotyrosine (DIT) derived from seaweed were investigated. Species-specific second-order rate constants (25 °C) for the reaction of hypochlorous acid with neutral and anionic MIT were calculated to be 23.87 ± 5.01 and 634.65 ± 75.70 M-1 s-1, respectively, while the corresponding rate constants for that with neutral and anionic DIT were determined to be 12.51 ± 19.67 and 199.12 ± 8.64 M-1 s-1, respectively. Increasing temperature facilitated the reaction of chlorine with MIT and DIT. Based on the identification of 59 transformation products/DBPs from iodotyrosines by HPLC/Q-Orbitrap HRMS, three dominant reaction pathways were proposed. Thermodynamic results of computational modeling using density functional theory revealed that halogen exchange reaction follows a stepwise addition-elimination pathway. Among these DBPs, 3,5-diiodo-4-hydroxy-benzaldehyde and 3,5-diiodo-4-hydroxy-benzacetonitrle exhibited high toxic risk. During chlorination of MIT and DIT, iodinated trihalomethanes and haloacetic acids became dominant species at common cooking temperature (80 °C). These results provide insight into the mechanisms of halogen exchange reaction and imply important implications for the toxic risk associated with the exposure of I-DBPs from household cooking with iodine-containing food.
Collapse
Affiliation(s)
- Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu Province 210098, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Ruixin Qu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Menglin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Pin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiaoyan Chen
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Banerjee S, Vanka K. The Role of Aromatic Alcohol Additives on Asymmetric Organocatalysis Reactions: Insights from Theory. Chem Asian J 2024; 19:e202300997. [PMID: 38270228 DOI: 10.1002/asia.202300997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.
Collapse
Affiliation(s)
- Subhrashis Banerjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr.Homi Bhabha Road, Pune, 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Wang F, Chen C, Meng Q. Comprehensive Theoretical Study of Cp*Ir III-Catalyzed Intermolecular Enantioselective Allylic C-H Amidation: Reaction Mechanism, Electronic Processes, and Regioselectivity. J Org Chem 2023; 88:2493-2504. [PMID: 36716217 DOI: 10.1021/acs.joc.2c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Density functional theory was used to elucidate the reaction mechanism of Cp*IrIII-catalyzed intermolecular regioselective C(sp3)-H amidation of alkenes with methyl dioxazolones. All substrates, intermediates, and transition states were fully optimized at the ωB97XD/6-31G(d,p) level (LANL2DZ(f) for Ir). The computational results revealed that this amidation occurred through the IrIII/IrV catalytic cycle, involving four important elementary steps: C-H bond activation, oxidative addition of methyl dioxazolone, reductive elimination, and proto-demetalation, and the first was the rate-determining step. The C-H bond activation showed good α- and branch-regioselectivity, decided by the distortion energy of 2-pentene and the interaction energy of the transition state, respectively. The oxidative addition of dioxazolone occurred in one elementary step with CO2 disassociation. The reductive elimination showed good branch-regioselectivity determined by the distorted energy of the allyl group. In the proto-demetalation, hydrogen directly transferred from the oxygen atom to the nitrogen atom. Moreover, to clarify the effect of the substituted groups, selected 12 substrates were also discussed in this text.
Collapse
Affiliation(s)
- Fen Wang
- College of Chemistry and Chemical Engineering, Taishan University, Taian271000, Shandong, People's Republic of China
| | - Changbao Chen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian271018, Shandong, People's Republic of China.,Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs, Taian271018, Shandong, People's Republic of China
| | - Qingxi Meng
- College of Chemistry and Material Science, Shandong Agricultural University, Taian271018, Shandong, People's Republic of China.,Key Laboratory of Agricultural Film Application, Ministry of Agriculture and Rural Affairs, Taian271018, Shandong, People's Republic of China
| |
Collapse
|
4
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Liu SN, Liu JB, Huang F, Wang WJ, Wang Q, Yang C, Sun QM, Chen DZ. Origins of Stereospecificity and Divergent Reactivity of Pd-Catalyzed Cross Coupling with α,α-Disubstituted Alkenyl Hydrazones. J Org Chem 2022; 87:15608-15617. [PMID: 36321171 DOI: 10.1021/acs.joc.2c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article presents an exploration of stereospecificity and divergent reactivity of Pd-catalyzed α,α-disubstituted alkenyl hydrazones to synthesize 1,4-dienes in the Z configuration and vinylcyclopropane. We calculated the energy profiles of four α,α-disubstituted alkenyl hydrazones. The results show that the energy profiles of the whole catalytic cycle are basically the same before the syn-carbopalladation step. Subsequent syn-β-C elimination yields skipping dienes, or direct β-H elimination yields vinylcyclopropane. Current theoretical calculations reveal that the stereospecificity and the divergent reactivity of reactions result from the competition between syn-β-C elimination and β-H elimination. The C-C bond rotation and subsequent syn-β-C elimination step control the stereospecificity of the reaction by changing the olefin stereostructure from E to Z configuration. The steric factor of α-substituted groups mediates the transformation between syn-β-C elimination and β-H elimination. The results are of great significance for the scientific design of substrates to achieve accurate synthesis of target products.
Collapse
Affiliation(s)
- Sheng-Nan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wen-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Chong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Qing-Min Sun
- Shandong Kaisheng New Materials Co., Ltd., Zibo 255185, P. R. China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
6
|
Zhu L, Wang D. Deciphering the cooperative effect of base and N-substituents on the origin of enantioselectivity switching for Mannich reactions of glycinate by carbonyl catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Bestwick JS, Jones DJ, Jones HE, Kalomenopoulos PG, Szabla R, Lawrence AL. Total Synthesis and Prediction of Ulodione Natural Products Guided by DFT Calculations. Angew Chem Int Ed Engl 2022; 61:e202207004. [PMID: 35670364 PMCID: PMC9401604 DOI: 10.1002/anie.202207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 11/11/2022]
Abstract
A biomimetic synthetic strategy has resulted in a two-step total synthesis of (±)-ulodione A and the prediction of two potential natural products, (±)-ulodiones C and D. This work was guided by computational investigations into the selectivity of a proposed biosynthetic Diels-Alder dimerization, which was then utilized in the chemical synthesis. This work highlights how biosynthetic considerations can both guide the design of efficient synthetic strategies and lead to the anticipation of new natural products.
Collapse
Affiliation(s)
- Jacob S. Bestwick
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - David J. Jones
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Helen E. Jones
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
- Current address: Oncology R&DAstraZenecaCambridgeCB4 0WGUK
| | - Panagiotis G. Kalomenopoulos
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
- Current address: Process ChemistryPharmaronHoddesdonEN11 9FHUK
| | - Rafal Szabla
- Department of Physical and Quantum ChemistryFaculty of ChemistryWrocław University of Science and TechnologyWrocławPoland
| | - Andrew L. Lawrence
- EaStCHEM School of ChemistryUniversity of Edinburgh Joseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
8
|
Bestwick JS, Jones DJ, Jones HE, Kalomenopoulos PG, Szabla R, Lawrence AL. Total Synthesis and Prediction of Ulodione Natural Products Guided by DFT Calculations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jacob S. Bestwick
- The University of Edinburgh EaStCHEM School of Chemistry UNITED KINGDOM
| | - David J. Jones
- The University of Edinburgh EaStCHEM School of Chemistry UNITED KINGDOM
| | - Helen E. Jones
- The University of Edinburgh EaStCHEM School of Chemistry UNITED KINGDOM
| | | | - Rafal Szabla
- Wroclaw University of Science and Technology: Politechnika Wroclawska Department of Physical and Quantum Chemistry POLAND
| | - Andrew Leslie Lawrence
- University of Edinburgh EaStCHEM School of Chemistry Joseph Black BuildingDavid Brewster Road EH9 3FJ Edinburgh UNITED KINGDOM
| |
Collapse
|
9
|
Chen Y, Zhang Y, Xue Y. Computational insight into the mechanism and stereoselectivity of cycloaddition between donor-acceptor spirocyclopropane and aldehyde catalyzed by Brønsted acid TsOH. Org Biomol Chem 2022; 20:4006-4015. [PMID: 35506536 DOI: 10.1039/d2ob00140c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and diastereoselectivity of the cycloaddition reaction between D-A spirocyclopropane and aldehydes, catalyzed by para-toluenesulfonic acid (TsOH) in dichloromethane to produce 2,5-disubstituted tetrahydrofuran-type lignans, have been investigated by density functional theory (DFT) at the M06-2X/6-311+G(d,p)//B3LYP-D3/6-31G(d,p) level combined with the solvation SMD model. Our calculations show that the entire reaction process includes three stages: the activation of the D-A cyclopropane by Brønsted acid, TsOH, the nucleophilic attack of the aldehyde on the spirocyclopropane, and the formation of the final product, 2,5-disubstituted tetrahydrofuran. It was concluded from the conceptual density functional theory (CDFT) reactivity index analysis that aldehydes with electron-rich substituents are more nucleophilic and more favorable for the reaction to proceed. Furthermore, based on the analyses of energetics as well as the noncovalent interaction (NCI) and reduced density gradient (RDG) in the key transition states, the origin of stereoselectivity was revealed to be determined thermodynamically rather than kinetically. The present work explains the experimental phenomenon well, and provides useful theoretical information for the future design of similar reactions.
Collapse
Affiliation(s)
- Yao Chen
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Yan Zhang
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Ying Xue
- College of Chemistry, Key Lab of Green Chemistry and Technology in Ministry of Education, Sichuan University, Chengdu 610064, People's Republic of China.
| |
Collapse
|
10
|
Design, synthesis, and applications of stereospecific 1,3-diene carbonyls. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Prasad VK, Pei Z, Edelmann S, Otero-de-la-Roza A, DiLabio GA. BH9, a New Comprehensive Benchmark Data Set for Barrier Heights and Reaction Energies: Assessment of Density Functional Approximations and Basis Set Incompleteness Potentials. J Chem Theory Comput 2021; 18:151-166. [PMID: 34911294 DOI: 10.1021/acs.jctc.1c00694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The calculation of accurate reaction energies and barrier heights is essential in computational studies of reaction mechanisms and thermochemistry. To assess methods regarding their ability to predict these two properties, high-quality benchmark sets are required that comprise a reasonably large and diverse set of organic reactions. Due to the time-consuming nature of both locating transition states and computing accurate reference energies for reactions involving large molecules, previous benchmark sets have been limited in scope, the number of reactions considered, and the size of the reactant and product molecules. Recent advances in coupled-cluster theory, in particular local correlation methods like DLPNO-CCSD(T), now allow the calculation of reaction energies and barrier heights for relatively large systems. In this work, we present a comprehensive and diverse benchmark set of barrier heights and reaction energies based on DLPNO-CCSD(T)/CBS called BH9. BH9 comprises 449 chemical reactions belonging to nine types common in organic chemistry and biochemistry. We examine the accuracy of DLPNO-CCSD(T) vis-a-vis canonical CCSD(T) for a subset of BH9 and conclude that, although there is a penalty in using the DLPNO approximation, the reference data are accurate enough to serve as a benchmark for density functional theory (DFT) methods. We then present two applications of the BH9 set. First, we examine the performance of several density functional approximations commonly used in thermochemical and mechanistic studies. Second, we assess our basis set incompleteness potentials regarding their ability to mitigate basis set incompleteness errors. The number of data points, the diversity of the reactions considered, and the relatively large size of the reactant molecules make BH9 the most comprehensive thermochemical benchmark set to date and a useful tool for the development and assessment of computational methods.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Zhipeng Pei
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Simon Edelmann
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Alberto Otero-de-la-Roza
- Departamento de Química Física y Analítica and MALTA Consolider Team, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
12
|
Hui E, Sumey JL, Caliari SR. Click-functionalized hydrogel design for mechanobiology investigations. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:670-707. [PMID: 36338897 PMCID: PMC9631920 DOI: 10.1039/d1me00049g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The advancement of click-functionalized hydrogels in recent years has coincided with rapid growth in the fields of mechanobiology, tissue engineering, and regenerative medicine. Click chemistries represent a group of reactions that possess high reactivity and specificity, are cytocompatible, and generally proceed under physiologic conditions. Most notably, the high level of tunability afforded by these reactions enables the design of user-controlled and tissue-mimicking hydrogels in which the influence of important physical and biochemical cues on normal and aberrant cellular behaviors can be independently assessed. Several critical tissue properties, including stiffness, viscoelasticity, and biomolecule presentation, are known to regulate cell mechanobiology in the context of development, wound repair, and disease. However, many questions still remain about how the individual and combined effects of these instructive properties regulate the cellular and molecular mechanisms governing physiologic and pathologic processes. In this review, we discuss several click chemistries that have been adopted to design dynamic and instructive hydrogels for mechanobiology investigations. We also chart a path forward for how click hydrogels can help reveal important insights about complex tissue microenvironments.
Collapse
Affiliation(s)
- Erica Hui
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Jenna L Sumey
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
| | - Steven R Caliari
- Department of Chemical Engineering, University of Virginia, 102 Engineer's Way, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
13
|
Zhu LH, Yuan HY, Zhang JP. Enantioselective synthesis of chiral tetrasubstituted allenes: harnessing electrostatic and noncovalent interactions in a bifunctional activation model for N-triflylphosphoramide catalysis. Org Chem Front 2021. [DOI: 10.1039/d0qo01250e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DFT calculation reveals that the oxygen activation model is preferred than the nitrogen activation model due to the preferred chiral electrostatic environment.
Collapse
Affiliation(s)
- Li-Han Zhu
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hai-Yan Yuan
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Jing-Ping Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
14
|
Jana K, Wakchaure PD, Hussain N, Mukherjee D, Ganguly B. The mechanism of conversion of substituted glycals to chiral acenes via Diels-Alder reaction: a computational study. Org Biomol Chem 2021; 19:6353-6367. [PMID: 34231642 DOI: 10.1039/d1ob00408e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of linearly fused aromatic systems using a glycal-based diene with an aryne is a long-standing topic of interest in glycal chemistry. We have examined the mechanistic pathways for the transformation of substituted glycals to chiral fused aromatic cores via Diels-Alder (DA) reaction using the SMDACN-M06-2X/6-31G(d) level of theory. The DA reactions of E (1a) and Z (1a') forms of C-2 alkenyl glycal and an aryl glycal (1b) as a diene were examined with a benzyne intermediate generated as a dienophile. The computational results reveal that 1a and 1b can only be transformed into the fused aromatic cores by the base-catalyzed reaction because a [1,5] sigmatropic hydrogen shift is not feasible. The activation free energy barrier for the base-catalyzed proton abstraction process is 4.2 kcal mol-1 and there is almost no barrier for stereoisomeric 1a DA-complexes. The activation free energy barrier values for stereoisomeric 1b DA-complexes for the base-catalyzed proton abstraction process are 10.8 and 12.4 kcal mol-1. The appropriate orientation of glycal-ring-oxygen and hydrogen at the 5th position of Z (1a') forms of C-2 alkenyl glycal facilitates the [1,5] sigmatropic hydrogen shift; however, the base-catalyzed reaction is energetically more favored than the former case. The rate-determining step for 1a and 1a' is the ring-opening step (18.2 and 19.5 kcal mol-1 for the S-stereoisomer), whereas the DA adduct formation step is the rate-determining step for 1b (16.1 kcal mol-1 for the S-stereoisomer). The structural analysis reveals the formation of the preferred S-stereoisomer over the R-stereoisomer with the respective dienes.
Collapse
Affiliation(s)
- Kalyanashis Jana
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201 002, India
| | - Padmaja D Wakchaure
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201 002, India
| | - Nazar Hussain
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201 002, India and Natural Product Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Jammu 180001, India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201 002, India and Natural Product Chemistry Division, Indian Institute of Integrative Medicine (IIIM), Jammu 180001, India
| | - Bishwajit Ganguly
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India. and Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
15
|
Wang H, Zhang Y, Yang T, Guo X, Gong Q, Wen J, Zhang X. Chiral Electron-Rich PNP Ligand with a Phospholane Motif: Structural Features and Application in Asymmetric Hydrogenation. Org Lett 2020; 22:8796-8801. [DOI: 10.1021/acs.orglett.0c03159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Heng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yao Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tilong Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaochong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Quan Gong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jialin Wen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
16
|
Tian J, Yuan H, Zhang J. Mechanistic details of metal-free cyclization reaction of organophosphorus oxide with alkynes mediated by 2,6-lutidine and Tf 2 O. J Comput Chem 2020; 41:1709-1717. [PMID: 32323872 DOI: 10.1002/jcc.26212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Theoretical investigations have elucidated the mechanism of metal-free electrophilic phosphinative cyclization of alkynes reaction reported by Miura and coworkers. Two competitive mechanisms I and II were explored without or with 2,6-lutidine. Both of I and II involve transformation of P(V) to P(III), electrophilic addition, ring opening and cyclization/cyclization, hydrogen-transfer, and oxidation. The rate-determining step of mechanism I and competitive less-step II is electrophilic [2 + 1] cycloaddition and electrophilic addition via single CP bond formation with activation barrier of 13.5 and 10.6 kcal/mol, respectively. Our calculation results suggested that the cumulative effect of the isomer of 2,6-lutidine and Tf2 O as well as TfO- affects the title reaction to some extent, and simultaneously activates key reaction sites and reverses the polarities of them via the formation of abundant noncovalent interactions to decrease activation barriers of TSs. In addition, the effects of two series substituents on reactivity of phosphine oxide were investigated. Therefore, our study will serve as useful guidance for more efficient metal-free synthesis of organophosphorus compounds mediated by pyridine reagents.
Collapse
Affiliation(s)
- Jiamei Tian
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Haiyan Yuan
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Jingping Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
| |
Collapse
|
17
|
Changotra A, Bhaskararao B, Hadad CM, Sunoj RB. Insights on Absolute and Relative Stereocontrol in Stereodivergent Cooperative Catalysis. J Am Chem Soc 2020; 142:9612-9624. [DOI: 10.1021/jacs.9b13962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bangaru Bhaskararao
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
The effect of CF3 functional group substituent on bifunctional activation model and enantioselectivity for BINOL N-triflylphosphoramides catalyzed rearrangement reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Zhu L, Yuan H, Zhang J. Chiral Phosphoric Acid-Catalyzed Enantioselective Direct Arylation of Iminoquinones: A Case Study of the Model Selectivity. J Org Chem 2019; 84:13473-13482. [PMID: 31536352 DOI: 10.1021/acs.joc.9b01714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral phosphoric acid (CPA)-catalyzed enantioselective arylation reactions have attracted immense attention recently. However, the preferential activation model in the stereodetermining step is controversial, and hence, the origin of enantioselectivity is still far from being understood. Two stereochemical models are provided on the basis of the asymmetric arylations of iminoquinones with naphthylamines (reaction 1) or naphthols (reaction 2) catalyzed by (R/S)-TRIP to explain the high enantioselectivity and the effect of CPAs scaffolds. Unexpectedly, our calculations reveal that substrate naphthylamines or naphthols prefer enantioselective aminal formation model II or 1,4-addition model I, respectively, which is the reverse of Tan's and Xu's model. The different noncovalent and steric interactions between catalysts and substrates are responsible for the observed model preference. Moreover, the enantioselectivity arises from distortion (reaction 1) and noncovalent interactions (reaction 2) that discriminate between the diastereomeric transition states. We further investigated the effect of SPINOL-based CPAs on the enantioselectivity and found that the more rigid skeleton and a smaller binding pocket lead to lower enantioselectivity as compared with that of BINOL-based CPA. The new insights into the reaction activation model rationalize the stereoselectivity outcome of direct asymmetric arylation reactions, and our general model can be extended to related transformations.
Collapse
Affiliation(s)
- Lihan Zhu
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Haiyan Yuan
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| | - Jingping Zhang
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , China
| |
Collapse
|
20
|
Xing YY, Liu JB, Sun QM, Sun CZ, Huang F, Chen DZ. A Computational Mechanistic Study of Pd(II)-Catalyzed Enantioselective C(sp 3)-H Borylation: Roles of APAO Ligands. J Org Chem 2019; 84:10690-10700. [PMID: 31419383 DOI: 10.1021/acs.joc.9b01227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A computational mechanistic study has been performed on Pd(II)-catalyzed enantioselective reactions involving acetyl-protected aminomethyl oxazolines (APAO) ligands that significantly improved reactivity and selectivity in C(sp3)-H borylation. The results support a mechanism including initiation of C(sp3)-H bond activation generating a five-membered palladacycle and ligand exchange, followed by HPO42--promoted transmetalation. These resulting Pd(II) complexes further undergo sequential reductive elimination by coordination of APAO ligands and protonation to afford the enantiomeric products and deliver Pd(0) complexes, which will then proceed by oxidation and deprotonation to regenerate the catalyst. The C(sp3)-H activation is found to be the rate- and enantioselectivity-determining step, in which the APAO ligand acts as the proton acceptor to form the two enantioselectivity models. The results demonstrate that the diverse APAO ligands control the enantioselectivity by differentiating the distortion and interaction between the major and minor pathways.
Collapse
Affiliation(s)
- Yang-Yang Xing
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Jian-Biao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Qing-Min Sun
- Shandong Kaisheng New Materials Co., Ltd. , Zibo 255185 , People's Republic of China
| | - Chuan-Zhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - De-Zhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Shandong Normal University , Jinan 250014 , People's Republic of China
| |
Collapse
|
21
|
Zhang C, Li H, Pei C, Qiu L, Hu W, Bao X, Xu X. Selective Vinylogous Reactivity of Carbene Intermediate in Gold-Catalyzed Alkyne Carbocyclization: Synthesis of Indenols. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hongli Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chao Pei
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lihua Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Wei HR, Xing YY, Liu JB, Wang WJ, Huang F, Sun CZ, Chen DZ. A mechanism exploration of stereodivergent coupling of aldehydes and alkynes catalyzed synergistically by rhodium and amine. Org Chem Front 2019. [DOI: 10.1039/c9qo00667b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stereodivergent coupling of alkynes and aldehydes with a synergistic catalyst approach using rhodium and amine.
Collapse
Affiliation(s)
- Hao-Ran Wei
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Yang-Yang Xing
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Jian-Biao Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Wen-Juan Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Fang Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - Chuan-Zhi Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| | - De-Zhan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Institute of Molecular and Nano Science
- Shandong Normal University
| |
Collapse
|
23
|
Jia F, Zhang B. Mechanistic insight into the silver-catalyzed cycloaddition synthesis of 1,4-disubstituted-1,2,3-triazoles: the key role of silver. NEW J CHEM 2019. [DOI: 10.1039/c9nj01700c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using DFT calculations, we disclose the reason why silver(i) catalytically promotes the activity and regioselectivity of the cycloaddition of 1,4-disubstituted-1,2,3-triazoles.
Collapse
Affiliation(s)
- Feiyun Jia
- School of Basic Medical Sciences, North Sichuan Medical College
- Nanchong
- P. R. China
| | - Bo Zhang
- School of Basic Medical Sciences, North Sichuan Medical College
- Nanchong
- P. R. China
| |
Collapse
|
24
|
Zhu L, Mohamed H, Yuan H, Zhang J. The control effects of different scaffolds in chiral phosphoric acids: a case study of enantioselective asymmetric arylation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01420a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DFT calculations disclosed that the sign of enantioselectivity in chiral-phosphoric-acid catalyzed reactions can be tuned by BINOL- or SPINOL-derived backbones.
Collapse
Affiliation(s)
- Lihan Zhu
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hend Mohamed
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Haiyan Yuan
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Jingping Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
25
|
Zhu L, Yuan HY, Zhang J. Mechanistic investigation-inspired activation mode of DBU and the function of the α-diazo group in the reaction of the α-amino ketone compound and EDA: [DBU-H]+-DMF-H2O and α-diazo as strong N-terminal nucleophiles. Org Chem Front 2019. [DOI: 10.1039/c9qo00602h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations disclosed a dramatic electronic turnover of the α-diazo group based on an unexpected DBU activation mode.
Collapse
Affiliation(s)
- Lihan Zhu
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hai-Yan Yuan
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Jingping Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
26
|
Qian M, Qin B, Yuan H, Li W, Zhang J. Mechanistic insights into N-Bromosuccinimide-promoted synthesis of imidazo[1,2-a]pyridine in water: Reactivity mediated by substrates and solvent. J Comput Chem 2018; 39:2324-2332. [PMID: 30238601 DOI: 10.1002/jcc.25564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/05/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
The mechanism of N-Bromosuccinimide (NBS) promoted synthesis of imidazo[1,2-a]pyridine in water as well as the effective activation modes of NBS was investigated by Density Functional Theory (DFT) calculations. Two main mechanisms that differ in the reaction sequence of substrate were explored: styrene with NBS then followed by 2-aminopyridine (M1) or simultaneously with NBS and 2-aminopyridine (M2), and water-assisted M2 is the more favored one. We found that the adding sequence of 2-aminopyridine affects profoundly on the title reaction. Moreover, upon the assistance of water and NBS, the preferential mechanistic scenario involves three major processes: nucleophilic addition, stepwise H-shift and intramolecular cyclization, three-step deprotonation, rather than a classical bromonium ion species. Specifically, the cooperative interaction of NBS and water plays a critical role in the title reaction. Water acts as solvent, reactant, anchoring, stabilizer, and catalyst. NBS promotes the above three processes by the effective forms of Br+ /Br- , succinimide, and its ethanol isomer. Furthermore, noncovalent interactions between catalysts and substrates are responsible for the different reactive activities of M1 and M2. Our results indicate that simultaneous adding of all reactants is recommended toward economical synthesis. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Min Qian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Bowen Qin
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiyan Yuan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wenliang Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jingping Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
27
|
Yuan H, Zhu L, Li W, Zhang J. Mechanistic insight on water and substrate catalyzed the synthesis of 3-(1H-indol-3-yl)-2-(4-methoxybenzyl)isoindolin-1-one: Driving by noncovalent interactions. J Comput Chem 2018; 39:2316-2323. [PMID: 30284296 DOI: 10.1002/jcc.25563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/13/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022]
Abstract
The mechanisms of the synthesis of 2-substituted-3-(1H-indol-3-yl)-isoindolin-1-one derivatives have been investigated theoretically under unassisted, self-assisted, and water-assisted conditions. Being different from previously proposed catalyst-free by Hu et al., our results show that the title mechanism can be altered and accelerated by solvent and substrate 2. Two types of mechanisms have been developed by DFT calculations differ in the reaction sequence of substrates 1 with 3 (M1) or 2 (M2) followed by 2 (M1) or 3 (M2), and water-assisted M1 is the most favored one. It was found that the nucleophilicity of substrate 3 is stronger than that of 2. Our calculations suggest that the water-assisted pathway in M1 is the most favorable case, which undergoes nucleophilic addition and H-shift, C-N bond formation and water elimination, and intramolecular cyclization and water elimination. The rate-determining step is the nucleophilic attack process. Moreover, we also explored the effect of nucleophilic attack of the nitrogen of (4-methoxyphenyl)methanamine on hydroxyl or carbonyl group carbon of phthalaldehydic acid on the activation energy. More importantly, we found that water molecules play a critical role in the whole reaction, not only act as solvent but also as an efficient catalyst, proton shuttle, and stabilizer to stabilize the structures of transition states and intermediates via π···H-O, O···H-N, O···H-C, and O···H-O interactions. The origin of the different reactivity of M1 and M2 is ascribed to the pivotal noncovalent interactions exist between catalyst (water and substrate 2) and reactants. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haiyan Yuan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Lihan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wenliang Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jingping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
28
|
Bhai S, Jana K, Ganguly B. Probing the Structural and Electronic Effects on the Origin of π-Facial Stereoselectivity in 1-Methylphosphole 1-Oxide Cycloadditions and Cyclodimerization. ACS OMEGA 2018; 3:10945-10952. [PMID: 31459205 PMCID: PMC6645475 DOI: 10.1021/acsomega.8b01165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/28/2018] [Indexed: 06/10/2023]
Abstract
We have examined the π-facial stereoselectivity in the Diels-Alder reactions of phosphole oxides computationally. The experimentally observed syn-cycloadditions have been rationalized with the Cieplak model and distortion-interaction model. The natural bond orbital analysis suggests that the hyperconjugative interactions are energetically preferred between the antiperiplanar methyl group present in the -P=O unit and the developing incipient (-C-C-) bond in syn-adducts in accordance with the Cieplak model. The distortion-interaction analysis carried out for syn and anti transition states of Diels-Alder reactions of 1-substituted phosphole 1-oxide with different dienophiles reveals that the syn selectivity is favored by distortions and interaction energies compared with the anti selectivity. The formation of a syn adduct is also stabilized by the πCC-σ*PO orbital interaction, and the repulsive n-π interaction destabilizes the anti adduct that leads to the 7.0 kcal/mol thermodynamic preference for the former adduct. Furthermore, the distortion-interaction model rationalizes the formation of stereospecific products in these Diels-Alder reactions, which however is not explicable with the much-debated Cieplak model.
Collapse
|
29
|
Lin S, Xu C, Peng D, Peng L, Yang D, Long Y, Chang Y, Gu FL. Study on the mechanism of platinum(ii)-catalyzed asymmetric ring-opening addition of oxabicyclic alkenes with arylboronic acids. Phys Chem Chem Phys 2018; 20:14105-14116. [PMID: 29748667 DOI: 10.1039/c8cp01682h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of an asymmetric ring-opening (ARO) addition of oxabicyclic alkenes catalyzed by a platinum(ii) catalyst was investigated by M06-2X/6-311G(d,p) using density functional theory (DFT). All the structures were optimized in the solvent model density (SMD) solvation model (solvation = the mixture of H2O/CH2Cl2 1 : 10, v/v) for consistence with experimental conditions. The overall mechanism is considered as a four-step reaction including transmetalation, carboplatinum, β-oxygen elimination, and hydrolysis. The transmetalation and carboplatinum steps are multi-step processes, and both the regioselectivity and the enantioselectivity lie in the carboplatinum process. Based on the natural population analysis (NPA) and the orbital composition analysis of oxabicyclic alkenes, the preferable coordination site with a platinum(ii) center is considered as the bridging oxygen atom by exo-coordination because of the less steric hindrance and the stronger electronic effect. This coordination is thought of as origin of the regioselectivity and the enantioselectivity, which is different from that proposed previously. The Gibbs free energy profiles show that the rate-determining step involves the migration of an aryl group from the platinum(ii) center to one of the closer enantiotopic carbon atoms in an alkene of the oxabicyclic alkenes. The theoretically predicted enantiomeric excess (ee) value of 82% for this reaction is very close to the experimental ee value of 80%. It was found that the hydrogen bonds between the oxabicyclic alkenes and water molecules promotes the platinum(ii) catalyst leaving the reaction system effortlessly and entering the next catalysis recycle. In the overall catalytic cycle, the highest free energy barrier is 30.1 kcal mol-1 and the process releases an energy of 26.3 kcal mol-1. The results confirm that the Pt(ii)-catalyzed ARO reactions take place at mild experimental conditions, which is consistent with the experiment observations. Thus, this study is important for understanding the catalytic behavior of the transition metal platinum(ii) in an asymmetric ring-opening reaction.
Collapse
Affiliation(s)
- Sipeng Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry & Environment, South China Normal University, Guangzhou 510006, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Taimoory SM, Sadraei SI, Fayoumi RA, Nasri S, Revington M, Trant JF. Preparation and Characterization of a Small Library of Thermally-Labile End-Caps for Variable-Temperature Triggering of Self-Immolative Polymers. J Org Chem 2018; 83:4427-4440. [PMID: 29589930 DOI: 10.1021/acs.joc.8b00135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reaction between furans and maleimides has increasingly become a method of interest as its reversibility makes it a useful tool for applications ranging from self-healing materials, to self-immolative polymers, to hydrogels for cell culture and for the preparation of bone repair. However, most of these applications have relied on simple monosubstituted furans and simple maleimides and have not extensively evaluated the potential thermal variability inherent in the process that is achievable through simple substrate modification. A small library of cycloadducts suitable for the above applications was prepared, and the temperature dependence of the retro-Diels-Alder processes was determined through in situ 1H NMR analyses complemented by computational calculations. The practical range of the reported systems ranges from 40 to >110 °C. The cycloreversion reactions are more complex than would be expected based on simple trends expected based on frontier molecular orbital analyses of the materials.
Collapse
Affiliation(s)
- S Maryamdokht Taimoory
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - S Iraj Sadraei
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - Rose Anne Fayoumi
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - Sarah Nasri
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - Matthew Revington
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| | - John F Trant
- Department of Chemistry and Biochemistry , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada.,Canadian Centre for Alternatives to Animal Methods , University of Windsor , 401 Sunset Avenue , Windsor , Ontario N9B 3P4 , Canada
| |
Collapse
|
31
|
Smith LJ, Taimoory SM, Tam RY, Baker AEG, Binth Mohammad N, Trant JF, Shoichet MS. Diels-Alder Click-Cross-Linked Hydrogels with Increased Reactivity Enable 3D Cell Encapsulation. Biomacromolecules 2018; 19:926-935. [PMID: 29443512 DOI: 10.1021/acs.biomac.7b01715] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineered hydrogels have been extensively used to direct cell function in 3D cell culture models, which are more representative of the native cellular microenvironment than conventional 2D cell culture. Previously, hyaluronan-furan and bis-maleimide polyethylene glycol hydrogels were synthesized via Diels-Alder chemistry at acidic pH, which did not allow encapsulation of viable cells. In order to enable gelation at physiological pH, the reaction kinetics were accelerated by replacing the hyaluronan-furan with the more electron-rich hyaluronan-methylfuran. These new click-cross-linked hydrogels gel faster and at physiological pH, enabling encapsulation of viable cells, as demonstrated with 3D culture of 5 different cancer cell lines. The methylfuran accelerates Diels-Alder cycloaddition yet also increases the retro Diels-Alder reaction. Using computational analysis, we gain insight into the mechanism of the increased Diels-Alder reactivity and uncover that transition state geometry and an unexpected hydrogen-bonding interaction are important contributors to the observed rate enhancement. This cross-linking strategy serves as a platform for bioconjugation and hydrogel synthesis for use in 3D cell culture and tissue engineering.
Collapse
Affiliation(s)
- Laura J Smith
- Department of Chemical Engineering and Applied Chemistry, Donnelly Centre , University of Toronto , 160 College Street , Toronto , Ontario M5S3E1 , Canada
| | | | - Roger Y Tam
- Department of Chemical Engineering and Applied Chemistry, Donnelly Centre , University of Toronto , 160 College Street , Toronto , Ontario M5S3E1 , Canada
| | - Alexander E G Baker
- Department of Chemical Engineering and Applied Chemistry, Donnelly Centre , University of Toronto , 160 College Street , Toronto , Ontario M5S3E1 , Canada
| | - Niema Binth Mohammad
- Department of Chemical Engineering and Applied Chemistry, Donnelly Centre , University of Toronto , 160 College Street , Toronto , Ontario M5S3E1 , Canada
| | - John F Trant
- Department of Chemistry , University of Windsor , Windsor , Ontario N9B 3P4 , Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Donnelly Centre , University of Toronto , 160 College Street , Toronto , Ontario M5S3E1 , Canada
| |
Collapse
|
32
|
Wang Q, Huang F, Jiang L, Zhang C, Sun C, Liu J, Chen D. Comprehensive Mechanistic Insight into Cooperative Lewis Acid/Cp*CoIII-Catalyzed C–H/N–H Activation for the Synthesis of Isoquinolin-3-ones. Inorg Chem 2018; 57:2804-2814. [DOI: 10.1021/acs.inorgchem.7b03216] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Qiong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Langhuan Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Chuanxue Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Chuanzhi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jianbiao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Dezhan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
33
|
Yuan C, Zhu L, Zeng R, Lan Y, Zhao Y. Ruthenium(II)-Catalyzed C−H Difluoromethylation of Ketoximes: Tuning the Regioselectivity from the meta
to the para
Position. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711221] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chunchen Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 40030 P.R. China
| | - Runsheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing 40030 P.R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province; College of Chemistry, Chemical Engineering, and Materials Science; Soochow University; Suzhou 215123 P.R. China
| |
Collapse
|
34
|
Yuan C, Zhu L, Zeng R, Lan Y, Zhao Y. Ruthenium(II)-Catalyzed C-H Difluoromethylation of Ketoximes: Tuning the Regioselectivity from the meta to the para Position. Angew Chem Int Ed Engl 2018; 57:1277-1281. [PMID: 29215181 DOI: 10.1002/anie.201711221] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Indexed: 11/06/2022]
Abstract
A highly para-selective CAr -H difluoromethylation of ketoxime ethers under ruthenium catalysis has been developed. A wide variety of ketoxime ethers are compatible with the reaction, which leads to the corresponding para-difluoromethylated products in moderate to good yield. A mechanistic study clearly showed that chelation-assisted cycloruthenation is the key factor in the para selectivity of the difluoromethylation of ketoxime ethers. Density functional theory was used to gain a theoretical understanding of the para selectivity.
Collapse
Affiliation(s)
- Chunchen Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 40030, P.R. China
| | - Runsheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 40030, P.R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
35
|
Zhu LH, Yuan HY, Li WL, Zhang JP. A computational mechanistic study of substrate-controlled competitive O–H and C–H insertion reactions catalyzed by dirhodium(ii) carbenoids: insight into the origin of chemoselectivity. Org Chem Front 2018. [DOI: 10.1039/c8qo00475g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DFT calculations disclosed the chemoselectivity of rhodium carbenoid and water co-catalyzed O–H and C–H insertion reactions with three 1,3-diketone substrates.
Collapse
Affiliation(s)
- Li-Han Zhu
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Hai-Yan Yuan
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Wen-Liang Li
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Jing-Ping Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| |
Collapse
|
36
|
Jia F, Luo J, Zhang B. Using a traceless directing group for the silver-mediated synthesis of 3-trifluoromethylpyrazoles: a computational study on the mechanism and origins of regioselectivity. Org Chem Front 2018. [DOI: 10.1039/c8qo01051j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The silver-mediated one-pot synthesis of 3-trifluoromethylpyrazoles using a traceless directing group was investigated by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Feiyun Jia
- School of Basic Medical Sciences
- North Sichuan Medical College
- Nanchong
- P. R. China
| | - Jiewei Luo
- School of Basic Medical Sciences
- North Sichuan Medical College
- Nanchong
- P. R. China
| | - Bo Zhang
- School of Basic Medical Sciences
- North Sichuan Medical College
- Nanchong
- P. R. China
| |
Collapse
|
37
|
Li M, Xue XS, Cheng JP. Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of β-Keto Esters with N-Trifluoromethylthiophthalimide as Electrophilic SCF3 Source. ACS Catal 2017. [DOI: 10.1021/acscatal.7b03007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Man Li
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Xiao-Song Xue
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jin-Pei Cheng
- State
Key Laboratory of Elemento-Organic Chemistry, College of Chemistry,
Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, People’s Republic of China
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
38
|
Wang C, Jiang YY, Qi CZ. Mechanism and Origin of Chemical Selectivity in Oxaziridine-Based Methionine Modification: A Computational Study. J Org Chem 2017; 82:9765-9772. [DOI: 10.1021/acs.joc.7b02026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chen Wang
- Zhejiang
Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
- Department
of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yuan-Ye Jiang
- School
of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People’s Republic of China
| | - Chen-Ze Qi
- Zhejiang
Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
39
|
Cheng QQ, Deng Y, Lankelma M, Doyle MP. Cycloaddition reactions of enoldiazo compounds. Chem Soc Rev 2017; 46:5425-5443. [PMID: 28726896 PMCID: PMC5575991 DOI: 10.1039/c7cs00324b] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enoldiazo esters and amides have proven to be versatile reagents for cycloaddition reactions that allow highly efficient construction of various carbocycles and heterocycles. Their versatility is exemplified by (1) [2+n]-cycloadditions (n = 3, 4) by the enol silyl ether units of enoldiazo compounds with retention of the diazo functionality to furnish α-cyclic-α-diazo compounds that are themselves subject to further transformations of the diazo functional group; (2) [3+n]-cycloadditions (n = 1-5) by metallo-enolcarbenes formed by catalytic dinitrogen extrusion from enoldiazo compounds; (3) [2+n]-cycloadditions (n = 3, 4) by donor-acceptor cyclopropenes generated in situ from enoldiazo compounds that produce cyclopropane-fused ring systems. The role of dirhodium(ii) and the emergence of copper(i) catalysts are described, as are the different outcomes of reactions initiated with these catalysts. This comprehensive review on cycloaddition reactions of enoldiazo compounds, with emphasis on methodology development, mechanistic insight, and catalyst-controlled chemodivergence, aims to provide inspiration for future discoveries in the field and to catalyze the application of enoldiazo reagents by the wider synthetic community.
Collapse
Affiliation(s)
- Qing-Qing Cheng
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA.
| | | | | | | |
Collapse
|
40
|
Kramer NJ, Hoang TT, Dudley GB. Reaction Discovery Using Neopentylene-Tethered Coupling Partners: Cycloisomerization/Oxidation of Electron-Deficient Dienynes. Org Lett 2017; 19:4636-4639. [DOI: 10.1021/acs.orglett.7b02261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nicholas J. Kramer
- Department of Chemistry
and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Tung T. Hoang
- Department of Chemistry
and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Gregory B. Dudley
- Department of Chemistry
and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
41
|
De Silvestro I, Drew SL, Nichol GS, Duarte F, Lawrence AL. Total Synthesis of a Dimeric Thymol Derivative Isolated from Arnica sachalinensis. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Irene De Silvestro
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Samuel L. Drew
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
- Present address: Department of Chemistry; University of California; Irvine CA 92697-2025 USA
| | - Gary S. Nichol
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Fernanda Duarte
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Andrew L. Lawrence
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
42
|
Yu P, Li W, Houk KN. Mechanisms and Origins of Selectivities of the Lewis Acid-Catalyzed Diels–Alder Reactions between Arylallenes and Acrylates. J Org Chem 2017; 82:6398-6402. [DOI: 10.1021/acs.joc.7b01132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peiyuan Yu
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wei Li
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
43
|
De Silvestro I, Drew SL, Nichol GS, Duarte F, Lawrence AL. Total Synthesis of a Dimeric Thymol Derivative Isolated from Arnica sachalinensis. Angew Chem Int Ed Engl 2017; 56:6813-6817. [DOI: 10.1002/anie.201701481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Irene De Silvestro
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Samuel L. Drew
- Research School of Chemistry; Australian National University; Canberra ACT 2601 Australia
- Present address: Department of Chemistry; University of California; Irvine CA 92697-2025 USA
| | - Gary S. Nichol
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Fernanda Duarte
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Andrew L. Lawrence
- EaStCHEM School of Chemistry; University of Edinburgh; Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
44
|
Changotra A, Das S, Sunoj RB. Reversing Enantioselectivity Using Noncovalent Interactions in Asymmetric Dearomatization of β-Naphthols: The Power of 3,3′ Substituents in Chiral Phosphoric Acid Catalysts. Org Lett 2017; 19:2354-2357. [DOI: 10.1021/acs.orglett.7b00890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|