1
|
Moeed S, Bousbih R, Ayub AR, Jafar NNA, Aljohani M, Jabir MS, Amin MA, Zubair H, Majdi H, Waqas M, Hadia NMA, Khera RA. A theoretical investigation for improving the performance of non-fullerene organic solar cells through side-chain engineering of BTR non-fused-ring electron acceptors. J Mol Graph Model 2024; 131:108792. [PMID: 38797085 DOI: 10.1016/j.jmgm.2024.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.
Collapse
Affiliation(s)
- Sidra Moeed
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - R Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ali Raza Ayub
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Nadhir N A Jafar
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, 56001, Iraq
| | - Mohammed Aljohani
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Iraq
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hira Zubair
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Hasan Majdi
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - N M A Hadia
- Department of Physics, College of Science, Jouf University, Sakaka, 2014, Al-Jouf, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Meng C, Tang A, Cong P, Dai T, Geng Y, Zhou E. Control of Multi-Fluorination Number and Position in D-π-A Type Polymers and Their Impact on High-Voltage Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31428-31437. [PMID: 38843444 DOI: 10.1021/acsami.4c05694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Exploring the structure-performance relationship of high-voltage organic solar cells (OSCs) is significant for pushing material design and promoting photovoltaic performance. Herein, we chose a D-π-A type polymer composed of 4,8-bis(thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene (BDT-T) and benzotriazole (BTA) units as the benchmark to investigate the effect of the fluorination number and position of the polymers on the device performance of the high-voltage OSCs, with a benzotriazole-based small molecule (BTA3) as the acceptor. F00, F20, and F40 are the polymers with progressively increasing F atoms on the D units, while F02, F22, and F42 are the polymers with further attachment of F atoms to the BTA units based on the above three polymers. Fluorination positively affects the molecular planarity, dipole moment, and molecular aggregations. Our results show that VOC increases with the number of fluorine atoms, and fluorination on the D units has a greater effect on VOC than on the A unit. F42 with six fluorine atom substitutions achieves the highest VOC (1.23 V). When four F atoms are located on the D units, the short-circuit current (JSC) and fill factor (FF) plummet, and before that, they remain almost constant. The drop in JSC and FF in F40- and F42-based devices may be attributed to inefficient charge transfer and severe charge recombination. The F22:BTA3 system achieves the highest power conversion efficiency of 9.5% with a VOC of 1.20 V due to the excellent balance between the photovoltaic parameters. Our study provides insights for the future application of fluorination strategies in molecular design for high-voltage organic photovoltaics.
Collapse
Affiliation(s)
- Chao Meng
- National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Peiqing Cong
- National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Dai
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanfang Geng
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
3
|
Guo P, Gan X, Guan S, Gao P, Wang Q, Shi F, Zhou Y, Wang C, Xia Y. Effect of fluorine on the photovoltaic properties of 2,1,3-benzothiadiazole-based alternating conjugated polymers by changing the position and number of fluorine atoms. RSC Adv 2024; 14:11659-11667. [PMID: 38605895 PMCID: PMC11007488 DOI: 10.1039/d4ra01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Fluorination is one of the most effective ways to manipulate molecular packing, optical bandgap and molecular energy levels in organic semiconductor materials. In this work, different number of fluorine atoms was introduced into the acceptor moiety 2,2'-dithiophene linked 2,1,3-benzothiadiazole, utilizing the alkylthiophene modified dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b] (DTBDT) as the donor unit, three polymers: PDTBDT-0F-BTs, PDTBDT-2F-BTs and PDTBDT-6F-FBTs were synthesized. With the number of fluorine atoms in each repeat unit of polymers varying from 0 to 2 and then up to 6, PDTBDT-0F-BTs, PDTBDT-2F-BTs and PDTBDT-6F-FBTs exhibited gradually downshifted energy levels and improved dielectric constants (εr) from 3.4 to 4.3 to 5.8, further successively increased charge transport mobilities. As a result, the power conversion efficiency (PCE) of the bulk heterojunction organic photovoltaic devices (BHJ-OPV) from the blend films of aforementioned polymers paired with PC71BM were gradually increased from 1.69 for PDTBDT-0F-BTs to 1.89 for PDTBDT-2F-BTs and then to 5.28 for PDTBDT-6F-FBTs. The results show that the continuous insertion of fluorine atoms into the repeating units of the benzothiadiazole conjugated polymer leads to the deepening of HOMO energy level, the increase of εr and the increase of charge mobility, which improve the efficiency of charge transfer and electron collection, thus improving the photovoltaic performance of BHJ-OPV.
Collapse
Affiliation(s)
- Pengzhi Guo
- National Engineering Research Center for Technology and Equipment of Green Coating, Lanzhou Jiaotong University Lanzhou 730070 China +86-0931-495-6058
| | - Xuemei Gan
- National Engineering Research Center for Technology and Equipment of Green Coating, Lanzhou Jiaotong University Lanzhou 730070 China +86-0931-495-6058
| | - Sheng Guan
- National Engineering Research Center for Technology and Equipment of Green Coating, Lanzhou Jiaotong University Lanzhou 730070 China +86-0931-495-6058
| | - Peili Gao
- Organic Semiconductor Materials and Applied Technology Research Center of Gansu Province, School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Qian Wang
- Organic Semiconductor Materials and Applied Technology Research Center of Gansu Province, School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Furong Shi
- Organic Semiconductor Materials and Applied Technology Research Center of Gansu Province, School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| | - Yuan Zhou
- National Engineering Research Center for Technology and Equipment of Green Coating, Lanzhou Jiaotong University Lanzhou 730070 China +86-0931-495-6058
| | - Chenglong Wang
- National Engineering Research Center for Technology and Equipment of Green Coating, Lanzhou Jiaotong University Lanzhou 730070 China +86-0931-495-6058
| | - Yangjun Xia
- Organic Semiconductor Materials and Applied Technology Research Center of Gansu Province, School of Material Science and Engineering, Lanzhou Jiaotong University Lanzhou 730070 China
| |
Collapse
|
4
|
Tang H, Bai Y, Zhao H, Qin X, Hu Z, Zhou C, Huang F, Cao Y. Interface Engineering for Highly Efficient Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2212236. [PMID: 36867581 DOI: 10.1002/adma.202212236] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/07/2023] [Indexed: 07/28/2023]
Abstract
Organic solar cells (OSCs) have made dramatic advancements during the past decades owing to the innovative material design and device structure optimization, with power conversion efficiencies surpassing 19% and 20% for single-junction and tandem devices, respectively. Interface engineering, by modifying interface properties between different layers for OSCs, has become a vital part to promote the device efficiency. It is essential to elucidate the intrinsic working mechanism of interface layers, as well as the related physical and chemical processes that manipulate device performance and long-term stability. In this article, the advances in interface engineering aimed to pursue high-performance OSCs are reviewed. The specific functions and corresponding design principles of interface layers are summarized first. Then, the anode interface layer, cathode interface layer in single-junction OSCs, and interconnecting layer of tandem devices are discussed in separate categories, and the interface engineering-related improvements on device efficiency and stability are analyzed. Finally, the challenges and prospects associated with application of interface engineering are discussed with the emphasis on large-area, high-performance, and low-cost device manufacturing.
Collapse
Affiliation(s)
- Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yuanqing Bai
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Haiyang Zhao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Xudong Qin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou, 510640, China
| |
Collapse
|
5
|
Chen Y, Lei P, Geng Y, Meng T, Li X, Zeng Q, Guo Q, Tang A, Zhong Y, Zhou E. Selective fluorination on donor and acceptor for management of efficiency and energy loss in non-fullerene organic photovoltaics. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Sun L, Chen Y, Sun M, Zheng Y. Organic Solar Cells: Physical Principle and Recent Advances. Chem Asian J 2023; 18:e202300006. [PMID: 36594570 DOI: 10.1002/asia.202300006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Organic solar cells (OSC) based on organic semiconductor materials that convert solar energy into electric energy have been constantly developing at present, and also an effective way to solve the energy crisis and reduce carbon emissions. In the past several decades, efforts have been made to improve the power conversion efficiency (PCE) of OSCs. During this period, a variety of structural and material forms of OSCs have evolved. Commercializing OSCs, extending their service life and exploring their future development are promising but challenging. In this review, we first briefly introduce the development of OSCs and then summarize and analyze the working principle, performance parameters, and structural features of OSCs. Finally, we highlight some breakthrough related to OSCs in detail.
Collapse
Affiliation(s)
- Lichun Sun
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Yichuan Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R China
| | - Youjin Zheng
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| |
Collapse
|
7
|
Keshtov ML, Khokhlov AR, Shikin DY, Alekseev V, Chayal G, Dahiya H, Singh MK, Chen FC, Sharma GD. Medium Bandgap Nonfullerene Acceptor for Efficient Ternary Polymer Solar Cells with High Open-Circuit Voltage. ACS OMEGA 2023; 8:1989-2000. [PMID: 36687083 PMCID: PMC9850470 DOI: 10.1021/acsomega.2c05141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
We have designed a new medium bandgap non-fullerene small-molecule acceptor consisting of an IDT donor core flanked with 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]-thiophene-4-ylidene) malononitrile (TC) acceptor terminal groups (IDT-TC) and compared its optical and electrochemical properties with the IDT-IC acceptor. IDT-TC showed an absorption profile from 300 to 760 nm, and it has an optical bandgap of 1.65 eV and HOMO and LUMO energy levels of -5.55 and -3.83 eV, respectively. In contrast to IDT-IC, IDT-TC has an upshifted LUMO energy level, which is advantageous for achieving high open-circuit voltage. Moreover, IDT-TC showed higher crystallinity and high electron mobility than IDT-IC. Using a wide bandgap D-A copolymer P as the donor, we compared the photovoltaic performance of IDT-TC, IDT-IC, and IDT-IC-Cl nonfullerene acceptors (NFAs). Polymer solar cells (PSCs) using P: IDT-TC, P: IDT-IC, and P:IDT-IC-Cl active layers achieved a power conversion efficiency (PCE) of 14.26, 11.56, and 13.34%, respectively. As the absorption profiles of IDT-IC-Cl and IDT-TC are complementary to each other, we have incorporated IDT-TC as the guest acceptor in the P: IDT-IC-Cl active layer to fabricate the ternary (P:IDT-TC: IDT-IC-Cl) PSC, demonstrating a PCE of 16.44%, which is significantly higher than that of the binary BHJ devices. The improvement in PCE for ternary PSCs is attributed to the efficient exploitation of excitons via energy transfer from IDT-TC to IDT-IC-Cl, suitable nanoscale phase separation, compact stacking distance, and more evenly distributed charge transport.
Collapse
Affiliation(s)
- Mukhamed L. Keshtov
- A.N.
Nesmeyanov Institute of Organoelement Compounds of the Russian Academy
of Sciences, Vavilova
St., 28, Moscow 119991, Russian Federation
| | - Alexei R. Khokhlov
- A.N.
Nesmeyanov Institute of Organoelement Compounds of the Russian Academy
of Sciences, Vavilova
St., 28, Moscow 119991, Russian Federation
| | - Dimitriy Y. Shikin
- A.N.
Nesmeyanov Institute of Organoelement Compounds of the Russian Academy
of Sciences, Vavilova
St., 28, Moscow 119991, Russian Federation
| | - Vladimir Alekseev
- Inorganic
and Analytical Chemistry Department, Tver
State University, Sadovyi per. 35, Tver 170002, Russian Federation
| | - Giriraj Chayal
- Department
of Physics, Jai Narain Vyas University, New Campus, Jodhpur 342005, Rajasthan, India
| | - Hemraj Dahiya
- Department
of Physics, The LNM Institute of Information
Technology, Jamdoli, Jaipur 302031, Rajasthan, India
| | - Manish Kumar Singh
- Department
of Physics, The LNM Institute of Information
Technology, Jamdoli, Jaipur 302031, Rajasthan, India
| | - Fang Chung Chen
- Department
of Photonics, National Yang Ming Chiao Tung
University, Hsinchu 30010 Taiwan
- Center for
Emergent Functional Matter Science, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ganesh D. Sharma
- Department
of Physics, The LNM Institute of Information
Technology, Jamdoli, Jaipur 302031, Rajasthan, India
- Department
of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur 302031, Rajasthan, India
| |
Collapse
|
8
|
Chowdhury TA, Bin Zafar MA, Sajjad-Ul Islam M, Shahinuzzaman M, Islam MA, Khandaker MU. Stability of perovskite solar cells: issues and prospects. RSC Adv 2023; 13:1787-1810. [PMID: 36712629 PMCID: PMC9828105 DOI: 10.1039/d2ra05903g] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Even though power conversion efficiency has already reached 25.8%, poor stability is one of the major challenges hindering the commercialization of perovskite solar cells (PSCs). Several initiatives, such as structural modification and fabrication techniques by numerous ways, have been employed by researchers around the world to achieve the desired level of stability. The goal of this review is to address the recent improvements in PSCs in terms of structural modification and fabrication procedures. Perovskite films are used to provide a broad range of stability and to lose up to 20% of their initial performance. A thorough comprehension of the effect of the fabrication process on the device's stability is considered to be crucial in order to provide the foundation for future attempts. We summarize several commonly used fabrication techniques - spin coating, doctor blade, sequential deposition, hybrid chemical vapor, and alternating layer-by-layer. The evolution of device structure from regular to inverted, HTL free, and ETL including the changes in material utilization from organic to inorganic, as well as the perovskite material are presented in a systematic manner. We also aimed to gain insight into the functioning stability of PSCs, as well as practical information on how to increase their operational longevity through sensible device fabrication and materials processing, to promote PSC commercialization at the end.
Collapse
Affiliation(s)
- Tanzi Ahmed Chowdhury
- Department of Electrical & Electronic Engineering, Faculty of Engineering, International Islamic University Chittagong Kumira Bangladesh
| | - Md Arafat Bin Zafar
- Department of Electrical & Electronic Engineering, Faculty of Engineering, International Islamic University Chittagong Kumira Bangladesh
| | - Md Sajjad-Ul Islam
- Department of Electrical & Electronic Engineering, Faculty of Engineering, International Islamic University Chittagong Kumira Bangladesh
| | - M Shahinuzzaman
- Institute of Fuel Research and Development, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
- Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University DIU Rd Dhaka 1341 Bangladesh
| |
Collapse
|
9
|
Wang L, Hu M, Zhang Y, Yuan Z, Hu Y, Zhao X, Chen Y. High molecular weight polymeric acceptors based on semi-perfluoroalkylated perylene diimides for pseudo-planar heterojunction all-polymer organic solar cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Thermal and Catalytic Pyrolysis of Urban Plastic Waste: Modified Mordenite and ZSM-5 Zeolites. CHEMISTRY 2022. [DOI: 10.3390/chemistry4020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zeolites have been successfully applied as catalysts in the pyrolysis of plastics to obtain valuable lower molecular weight hydrocarbon compounds. In the present work, mordenite was directly synthesized and chemically modified from commercial mordenite to increase pore volume. For the first time, the performance of these mordenites was compared with that of an alkali-treated ZSM-5 as catalysts for assisting the pyrolysis of simulated urban plastic waste. The investigated zeolites were: (i) as-supplied synthetic ZSM-5 (ZSM-5/AS); (ii) 0.2 M NaOH treated ZSM-5 (ZSM-5/02); (iii) as-supplied mordenite (MOR/AS); (iv) 0.2 M NaOH treated mordenite (MOR/02); and (v) synthetic lab-developed mordenite (MOR/SD). The modified and synthesized zeolites were individually applied as catalysts in the 700 °C pyrolyzes of combined polyethylene, polypropylene, and polystyrene wastes in a mixture simulating most plastics found in Rio de Janeiro (Brazil) city garbage composition. X-ray diffraction revealed crystallite sizes of all zeolites in a nanometric range from 17 to 43 nm. Textural analysis disclosed the alkali-treated ZSM-5/02 with a superior external surface area, 153 m²/g, and mesopore volume equal to 0.253 cm3/g. Lower values were obtained by MOR/02 (39 m²/g and 0.072 cm3/g). The pyrolysis of the plastic mixture with ZSM-5/02 presented a lower initial degradation temperature, 387 °C, followed by MOR/02, with 417 °C. The ZSM-5/02 catalyst obtained the highest conversion in the pyrolysis of the plastic mixture, totaling 49.2%. However, pyrolysis assisted by the MOR/02 catalyst showed the largest fraction (81.5%) of light hydrocarbons.
Collapse
|
11
|
A Sustainable Synthetic Approach to the Indaceno[1,2-b:5,6-b′]dithiophene (IDT) Core through Cascade Cyclization–Deprotection Reactions. CHEMISTRY 2022. [DOI: 10.3390/chemistry4010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bulk heterojunction organic solar cells (BHJs) are competitive within the emerging photovoltaic technologies for solar energy conversion because of their unique advantages. Their development has been boosted recently by the introduction of nonfullerene electron acceptors (NFAs), to be used in combination with a polymeric electron donor in the active layer composition. Many of the recent advances in NFAs are attributable to the class of fused-ring electron acceptors (FREAs), which is now predominant, with one of the most notable examples being formed with a fused five-member-ring indaceno[1,2-b:5,6-b′]dithiophene (IDT) core. Here, we propose a novel and more sustainable synthesis for the IDT core. Our approach bypasses tin derivatives needed in the Stille condensation, whose byproducts are toxic and difficult to dispose of, and it makes use of cascade reactions, effectively reducing the number of synthetic steps.
Collapse
|
12
|
Li Y, Huang W, Zhao D, Wang L, Jiao Z, Huang Q, Wang P, Sun M, Yuan G. Recent Progress in Organic Solar Cells: A Review on Materials from Acceptor to Donor. Molecules 2022; 27:1800. [PMID: 35335164 PMCID: PMC8955087 DOI: 10.3390/molecules27061800] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangcai Yuan
- BOE Technology Group Co., Ltd., Beijing 100176, China; (Y.L.); (W.H.); (D.Z.); (L.W.); (Z.J.); (Q.H.); (P.W.); (M.S.)
| |
Collapse
|
13
|
Meng D, Zheng R, Zhao Y, Zhang E, Dou L, Yang Y. Near-Infrared Materials: The Turning Point of Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107330. [PMID: 34710251 DOI: 10.1002/adma.202107330] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR)-absorbing organic semiconductors have opened up many exciting opportunities for organic photovoltaic (OPV) research. For example, new chemistries and synthetical methodologies have been developed; especially, the breakthrough Y-series acceptors, originally invented by our group, specifically Y1, Y3, and Y6, have contributed immensely to boosting single-junction solar cell efficiency to around 19%; novel device architectures such as tandem and transparent organic photovoltaics have been realized. The concept of NIR donors/acceptors thus becomes a turning point in the OPV field. Here, the development of NIR-absorbing materials for OPVs is reviewed. According to the low-energy absorption window, here, NIR photovoltaic materials (p-type (polymers) and n-type (fullerene and nonfullerene)) are classified into four categories: 700-800 nm, 800-900 nm, 900-1000 nm, and greater than 1000 nm. Each subsection covers the design, synthesis, and utilization of various types of donor (D) and acceptor (A) units. The structure-property relationship between various kinds of D, A units and absorption window are constructed to satisfy requirements for different applications. Subsequently, a variety of applications realized by NIR materials, including transparent OPVs, tandem OPVs, photodetectors, are presented. Finally, challenges and future development of novel NIR materials for the next-generation organic photovoltaics and beyond are discussed.
Collapse
Affiliation(s)
- Dong Meng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ran Zheng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yepin Zhao
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elizabeth Zhang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Letian Dou
- Davidson School of Chemical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
14
|
Yu T, He W, Jafari M, Guner T, Li P, Siaj M, Izquierdo R, Sun B, Welch GC, Yurtsever A, Ma D. 3D Nanoscale Morphology Characterization of Ternary Organic Solar Cells. SMALL METHODS 2022; 6:e2100916. [PMID: 35041289 DOI: 10.1002/smtd.202100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/29/2021] [Indexed: 06/14/2023]
Abstract
It is highly desired to develop advanced characterization techniques to explore the 3D nanoscale morphology of the complicated blend film of ternary organic solar cells (OSCs). Here, ternary OSCs are constructed by incorporating the nonfullerene acceptor perylenediimide (PDI)-diketopyrrolopyrrole (DPP)-PDI and their morphology is characterized in depth to understand the performance variation. In particular, photoinduced force microscopy (PiFM) coupled with infrared laser spectroscopy is conducted to qualitatively study the distribution of donor and acceptors in the blend film by chemical identification and to quantitatively probe the segmentation of domains and the domain size distribution after PDI-DPP-PDI acceptor incorporation by PiFM imaging and data processing. In addition, the energy-filtered transmission electron microscopy with energy loss spectra is utilized to visualize the nanoscale morphology of ultrathin cross-sections in the configuration of the real ternary device for the first time in the field of photovoltaics. These measurements allow to "view" the surface and cross-sectional morphology and provide strong evidence that the PDI-DPP-PDI acceptor can suppress the aggregation of the fullerene molecules and generate the homogenous morphology with a higher-level of the molecularly mixed phase, which can prevent the charge recombination and stabilize the morphology of photoactive layer.
Collapse
Affiliation(s)
- Ting Yu
- Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, Québec, J3X 1S2, Canada
| | - Wanting He
- Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, Québec, J3X 1S2, Canada
| | - Maziar Jafari
- Département de Chimie, Université du Québec à Montréal, Montréal, Québec, H2L 2C4, Canada
| | - Tugrul Guner
- Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, Québec, J3X 1S2, Canada
| | - Pandeng Li
- Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, Québec, J3X 1S2, Canada
| | - Mohamed Siaj
- Département de Chimie, Université du Québec à Montréal, Montréal, Québec, H2L 2C4, Canada
| | - Ricardo Izquierdo
- Département de Génie Électrique, École de Technologie Supérieure, Montréal, Québec, H3C 1K3, Canada
| | - Baoquan Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Gregory C Welch
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Aycan Yurtsever
- Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, Québec, J3X 1S2, Canada
| | - Dongling Ma
- Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique (INRS), Varennes, Québec, J3X 1S2, Canada
| |
Collapse
|
15
|
Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G, Di Carlo A, Kymakis E, Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 2021; 50:11870-11965. [PMID: 34494631 PMCID: PMC8559907 DOI: 10.1039/d1cs00106j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| | - Antonino Bartolotta
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Antonio Agresti
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
| | - Giuseppe Calogero
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Giulia Grancini
- University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia, Italy
| | - Aldo Di Carlo
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
- L.A.S.E. - Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", 119049 Leninskiy Prosect 6, Moscow, Russia
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos 71410 Heraklion, Crete, Greece
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| |
Collapse
|
16
|
Lee W, Kim H, Lee C, Lee S, Kim T, Kim Y. Performance and Stability of Polymer : Nonfullerene Solar Cells with 100 °C-Annealed Electron-Collecting Combination Layers. CHEMSUSCHEM 2021; 14:3488-3493. [PMID: 34169654 DOI: 10.1002/cssc.202100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Inverted-type organic solar cells, fabricated with low-temperature-processed combination layers of hybrid electron-collecting buffer layers (ECBLs) consisting of zinc oxide (ZnO) and poly(2-ethyl-2-oxazoline) (PEOz) and additional PEOz interlayers, showed improved performance and stability. The ZnO : PEOz precursor films with various PEOz compositions (0-12 wt %) were prepared and thermally treated at 100 °C, leading to the ECBLs on which the PEOz interlayers were subsequently deposited before coating of polymer : nonfullerene bulk heterojunction layers. Results showed that the power conversion efficiency of solar cells reached approximately 9.38 and 10.11 % (average) in case of the ZnO/PEOz and ZnO : PEOz(6 wt % PEOz)/PEOz combination layers, respectively, despite the low-temperature thermal annealing process. A continuous irradiation test for 12 h under one sun condition (air mass 1.5G, 100 mW cm-2 ) disclosed that the devices with the ZnO : PEOz(6 wt % PEOz)/PEOz combination layers were more stable than those with the ZnO/PEOz layers.
Collapse
Affiliation(s)
- Woongki Lee
- Organic Nanoelectronics Laboratory, KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hwajeong Kim
- Organic Nanoelectronics Laboratory, KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
- Priority Research Center, Research Institute of Environmental Science & Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chulyeon Lee
- Organic Nanoelectronics Laboratory, KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sooyong Lee
- Organic Nanoelectronics Laboratory, KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Taehoon Kim
- Organic Nanoelectronics Laboratory, KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Youngkyoo Kim
- Organic Nanoelectronics Laboratory, KNU Institute for Nanophotonics Applications (KINPA), Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
17
|
Park H, Park SH, Lee SW, Kang Y, Kim D, Son HJ, Lee HS. Novel Polymer-Based Organic/c-Si Monolithic Tandem Solar Cell: Enhanced Efficiency using Interlayer and Transparent Top Electrode Engineering. Macromol Rapid Commun 2021; 42:e2100305. [PMID: 34347333 DOI: 10.1002/marc.202100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/23/2021] [Indexed: 11/06/2022]
Abstract
Tandem solar cells which are electrically connected with various photoactive materials have the potential to solve the current challenges by exceeding the theoretically limited efficiency of single junction solar cells. Here the first monolithic organic/silicon tandem cell is reported based on a semitransparent polymer on a crystalline silicon (c-Si) substrate. Herein, experimental results are presented for four-terminal (4-T) and monolithic two-terminal (2-T) organic/c-Si tandem cells using organic cells with an inverted n-i-p structure and c-Si cells with an n-type TOPCon structure with detailed analysis. The best 4-T tandem cell efficiency is 15.22%, and 2-T results show that the top (organic) and bottom (c-Si) cells are electrically connected by an open-circuit voltage over 1.4 V. Further, a simulated efficiency of over 20% using the organic/c-Si tandem is achieved, implying the tandem efficiency can be enhanced through further improvement of electric and optical characteristics with the optimization.
Collapse
Affiliation(s)
- HyunJung Park
- Institute for Energy Research, Korea University, Seoul, 02841, Republic of Korea
| | - So Hyun Park
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Sang-Won Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yoonmook Kang
- Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Donghwan Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hae Jung Son
- Advanced Photovoltaics Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.,Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Hae-Seok Lee
- Energy and Environment Policy and Technology, Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
18
|
Ternary organic solar cells: Improved optical and morphological properties allow an enhanced efficiency. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Jia Z, Qin S, Meng L, Ma Q, Angunawela I, Zhang J, Li X, He Y, Lai W, Li N, Ade H, Brabec CJ, Li Y. High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nat Commun 2021; 12:178. [PMID: 33420010 PMCID: PMC7794321 DOI: 10.1038/s41467-020-20431-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022] Open
Abstract
Tandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells. Development of tandem organic solar cells has been limited by the choice of near-infrared absorbing materials for the rear cell. Here, the authors report a simple strategy to extend the conjugation length of acceptor Y6 and broaden its absorption range to near-infrared region. A tandem organic solar cell with efficiency of 16.4% was achieved.
Collapse
Affiliation(s)
- Zhenrong Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shucheng Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China. .,School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Qing Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Indunil Angunawela
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, USA
| | - Jinyuan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaojun Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany.,Erlangen Graduate School in Advanced Optical Technologies (SAOT), Paul-Gordan-Straße 6, 91052, Erlangen, Germany
| | - Wenbin Lai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ning Li
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, USA.
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany.,Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Immerwahrstr. 2, 91058, Erlangen, Germany
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China. .,School of Chemical Science, University of Chinese Academy of Sciences, 100049, Beijing, China. .,Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, China.
| |
Collapse
|
20
|
Zhang B, Yun C, MacManus-Driscoll JL. High Yield Transfer of Clean Large-Area Epitaxial Oxide Thin Films. NANO-MICRO LETTERS 2021; 13:39. [PMID: 34138235 PMCID: PMC8187697 DOI: 10.1007/s40820-020-00573-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
In this work, we have developed a new method for manipulating and transferring up to 5 mm × 10 mm epitaxial oxide thin films. The method involves fixing a PET frame onto a PMMA attachment film, enabling transfer of epitaxial films lifted-off by wet chemical etching of a Sr3Al2O6 sacrificial layer. The crystallinity, surface morphology, continuity, and purity of the films are all preserved in the transfer process. We demonstrate the applicability of our method for three different film compositions and structures of thickness ~ 100 nm. Furthermore, we show that by using epitaxial nanocomposite films, lift-off yield is improved by ~ 50% compared to plain epitaxial films and we ascribe this effect to the higher fracture toughness of the composites. This work shows important steps towards large-scale perovskite thin-film-based electronic device applications.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Chao Yun
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Judith L MacManus-Driscoll
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
| |
Collapse
|
21
|
Yang J, Li QS, Li ZS. Theoretical design of asymmetric A-D 1A'D 2-A type non-fullerene acceptors for organic solar cells. Phys Chem Chem Phys 2021; 23:12321-12328. [PMID: 34019060 DOI: 10.1039/d1cp01155c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The acceptor in organic solar cells (OSCs) is of paramount importance for achieving a high photovoltaic performance. Based on the well-known non-fullerene acceptor Y6, we designed a set of asymmetric A-D1A'D2-A type new acceptors Y6-C, Y6-N, Y6-O, Y6-Se, and Y6-Si by substituting the two S atoms of one thieno[3,2-b]thiophene unit with C, N, O, Se, and Si atoms, respectively. The electronic, optical, and crystal properties of Y6 and the designed acceptors, as well as the interfacial charge-transfer (CT) mechanisms between the donor PM6 and the investigated acceptors have been systematically studied. It is found that the newly designed asymmetric acceptors possess suitable energy levels and strong interactions with the donor PM6. Importantly, the newly designed acceptors exhibit enhanced light harvesting ability and more CT states with larger oscillator strengths in the 40 lowest excited states. Among the multiple CT mechanisms, the direct excitation of CT states is found to be more favored in the case of PM6/newly designed acceptors than that of PM6/Y6. This work not only offers a set of promising acceptors superior to Y6, but also demonstrates that designing acceptors with asymmetric structure could be an effective strategy to improve the performance of OSCs.
Collapse
Affiliation(s)
- Jie Yang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| | - Quan-Song Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| | - Ze-Sheng Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
22
|
Ali A, Rafiq MI, Zhou B, Tang W. Evaluating the nature of the vertical excited states of fused-ring electron acceptors using TD-DFT and density-based charge transfer. Phys Chem Chem Phys 2021; 23:15282-15291. [PMID: 34250997 DOI: 10.1039/d1cp01917a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acceptor-donor-acceptor structured fused-ring electron acceptors (FREAs) are the most efficient electron acceptors used in organic solar cells. We use density functional theory (DFT), its time-dependent version (TD-DFT), and an intra-molecular charge transfer index to evaluate the nature of the excited states of FREAs. Typically, several efficient electronic transitions contribute to the absorption spectra of FREAs. An investigation of every efficient electronic transition of each FREA is performed based on the electronic density variation in the donor and acceptor moieties of the molecules upon absorbing solar photons. Not all these transitions are equivalent for light-to-electricity conversion. The first transition contributes the most to the absorption spectra. This transition is intense and extremely efficient for light-to-electricity conversion, giving a higher value of intra-molecular charge transfer. For certain effective transitions of FREAs, the phenyl rings in the donor unit behave as the electron-donating units, such as IDT-NTI-2EH, BTCN-M, and MeIC. The foremost finding of the present research work is that the furthermost strong electronic transitions are not essentially the most effective ones for the conversion of sunlight into electricity.
Collapse
Affiliation(s)
- Amjad Ali
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Muhammad Imran Rafiq
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Baojing Zhou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| | - Weihua Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China.
| |
Collapse
|
23
|
Forti G, Nitti A, Osw P, Bianchi G, Po R, Pasini D. Recent Advances in Non-Fullerene Acceptors of the IDIC/ITIC Families for Bulk-Heterojunction Organic Solar Cells. Int J Mol Sci 2020; 21:E8085. [PMID: 33138257 PMCID: PMC7662271 DOI: 10.3390/ijms21218085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.
Collapse
Affiliation(s)
- Giacomo Forti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
| | - Andrea Nitti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
| | - Peshawa Osw
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
- Department of Chemistry, College of Science, Salahaddin University, 44001 Erbil, Iraq
| | - Gabriele Bianchi
- Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy; (G.B.); (R.P.)
| | - Riccardo Po
- Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy; (G.B.); (R.P.)
| | - Dario Pasini
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (G.F.); (A.N.); (P.O.)
- INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
24
|
Yang H, Fan H, Wang Z, Yan H, Dong Y, Cui C, Ade H, Li Y. Impact of Isomer Design on Physicochemical Properties and Performance in High-Efficiency All-Polymer Solar Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hang Yang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hongyu Fan
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhen Wang
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yingying Dong
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chaohua Cui
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
25
|
Shi Q, Wu J, Wu X, Peng A, Huang H. Perylene Diimide-Based Conjugated Polymers for All-Polymer Solar Cells. Chemistry 2020; 26:12510-12522. [PMID: 32246541 DOI: 10.1002/chem.202001011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/03/2020] [Indexed: 12/19/2022]
Abstract
In recent decades, non-fullerene acceptors (NFAs) are undergoing rapid development and emerging as a hot area in the field of organic solar cells. Among the high-performance non-fullerene acceptors, aromatic diimide-based electron acceptors remain to be highly promising systems. This review discusses the important progress of perylene diimide (PDI)-based polymers as non-fullerene acceptors in all-polymer solar cells (all-PSCs) since 2014. The relationship between structure and property, matching aspects between donors and acceptors, and device fabrications are unveiled from a synthetic chemist perspective.
Collapse
Affiliation(s)
- Qinqin Shi
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianfei Wu
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoxi Wu
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aidong Peng
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology &, Center of Materials Science and Optoelectronics Engineering &, CAS Center for Excellence in Topological Quantum Computation &, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Amargós-Reyes O, Caballero-Quintana I, Maldonado JL, Nicasio-Collazo J, Romero-Borja D. Single graphene derivative layer as a hole transport in organic solar cells based on PBDB-T:ITIC. APPLIED OPTICS 2020; 59:8285-8292. [PMID: 32976414 DOI: 10.1364/ao.402510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
A layer of fluorinated reduced graphene oxide (FrGO), as an alternative hole transport (HTL) in organic solar cells (OSCs) based on a PBDB-T:ITIC active layer, is reported. OSC configuration is ITO/HTL/PBDB-T:ITIC/PFN/FM; FM is Field's metal, a eutectic alloy deposited at room atmosphere. PEDOT:PSS, FrGO/PEDOT:PSS, and FrGO are tested as HTLs; the average efficiencies of 8.8, 8.2, and 5.3%, respectively, are reached. Inhomogeneity of the FrGO layer is determined as the main factor that affects the photovoltaic behavior and stability. Device stability is very acceptable, sometimes with a superior behavior than data previously reported; FM also could potentially contribute to this enhanced stability.
Collapse
|
27
|
Bilal Ahmed Siddique M, Hussain R, Ali Siddique S, Yasir Mehboob M, Irshad Z, Iqbal J, Adnan M. Designing Triphenylamine‐Configured Donor Materials with Promising Photovoltaic Properties for Highly Efficient Organic Solar Cells. ChemistrySelect 2020. [DOI: 10.1002/slct.202001989] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | | | | | - Zobia Irshad
- Graduate School, Department of Chemistry Chosun University Gwangju 501-759 R. O. Korea
| | - Javed Iqbal
- Department of Chemistry University of Agriculture 38000 Faisalabad Pakistan
| | - Muhammad Adnan
- Graduate School, Department of Chemistry Chosun University Gwangju 501-759 R. O. Korea
| |
Collapse
|
28
|
Yue Q, Liu W, Zhu X. n-Type Molecular Photovoltaic Materials: Design Strategies and Device Applications. J Am Chem Soc 2020; 142:11613-11628. [PMID: 32460485 DOI: 10.1021/jacs.0c04084] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of photovoltaic technologies has been regarded as a promising approach for converting solar energy to electricity and mitigating the energy crisis, and among these, organic photovoltaics (OPVs) have attracted broad interest because of their solution processability, flexibility, light weight, and potential for large-area processing. The development of OPV materials, especially electron acceptors, has been one of the focuses in recent years. Compared with fullerene derivates, n-type non-fullerene molecules have some unique merits, such as synthetic simplicity, high tunability of the absorption and energy levels, and small energy loss. In the last 5 years, organic solar cells based on n-type non-fullerene molecules have achieved a significant breakthrough in the power conversion efficiency from approximately 4% to over 17%, which is superior to those of fullerene-based solar cells; meanwhile, n-type non-fullerene molecules have created brand new opportunities for the application of OPVs in some special situations. This Perspective analyzes the key design strategies of high-performance n-type molecular photovoltaic materials and highlights instructive examples of their various applications, including in ternary and tandem solar cells, high-efficiency semitransparent solar cells for power-generating building facades and windows, and indoor photovoltaics for driving low-power-consumption devices. Moreover, to accelerate the pace toward commercialization of OPVs, the existing challenges and future directions are also reviewed from the perspectives of efficiency, stability, and large-area fabrication.
Collapse
Affiliation(s)
- Qihui Yue
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Shi Y, Yu Z, Li Z, Zhao X, Li X, Xu M, Zhang X, Zhang Q. Efficient polymer solar cells utilizing solution‐processed interlayer based on different conjugated backbones. J Appl Polym Sci 2020. [DOI: 10.1002/app.49527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yueqin Shi
- College of Materials & Environmental EngineeringHangzhou Dianzi University, Xiasha Higher Education Zone Hangzhou P. R. China
| | - Zhanyang Yu
- College of Materials & Environmental EngineeringHangzhou Dianzi University, Xiasha Higher Education Zone Hangzhou P. R. China
| | - Zhengjun Li
- College of Materials & Environmental EngineeringHangzhou Dianzi University, Xiasha Higher Education Zone Hangzhou P. R. China
| | - Xiaodong Zhao
- College of Materials & Environmental EngineeringHangzhou Dianzi University, Xiasha Higher Education Zone Hangzhou P. R. China
| | - Xin Li
- College of Materials & Environmental EngineeringHangzhou Dianzi University, Xiasha Higher Education Zone Hangzhou P. R. China
| | - Minxuan Xu
- College of Materials & Environmental EngineeringHangzhou Dianzi University, Xiasha Higher Education Zone Hangzhou P. R. China
| | - Xuefeng Zhang
- College of Materials & Environmental EngineeringHangzhou Dianzi University, Xiasha Higher Education Zone Hangzhou P. R. China
| | - Qi Zhang
- College of Materials & Environmental EngineeringHangzhou Dianzi University, Xiasha Higher Education Zone Hangzhou P. R. China
| |
Collapse
|
30
|
Wu H, Bian Q, Zhao B, Zhao H, Wang L, Wang W, Cong Z, Liu J, Ma W, Gao C. Effects of the Isomerized Thiophene-Fused Ending Groups on the Performances of Twisted Non-Fullerene Acceptor-Based Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23904-23913. [PMID: 32362118 DOI: 10.1021/acsami.0c03842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recently, benefiting from the merits of small-molecule acceptors (NFAs), polymer solar cells (PSCs) have achieved tremendous advances. From the perspective of the structural characteristics of the π-conjugated acceptor-donor-acceptor (A-D-A) type of organic molecules, the backbone's planarity and the terminal groups and their substituents have strong influences on the performances of the constructed NFAs. Through enlarging the dihedral angle of the conjugated main chain of NFAs, a certain degree of enhancement of photovoltaic parameters has been achieved. To further probe the influences of ending groups on the performances of nonplanar NFAs, we synthesized two new NFAs i-cc23 and i-cc34 with isomerized thiophene-fused ending groups and a twisted π-conjugated main chain. Compared to i-cc23 containing the 2-(6-oxo-5,6-dihydro-4H-cyclopenta[b]thiophen-4-ylidene)malononitrile ending group, the acceptor i-cc34 containing 2-(6-oxo-5,6-dihydro-4H-cyclopenta[c]thiophen-4-ylidene)malononitrile has a relatively higher molar extinction coefficient, bathochromic-shifted absorption spectrum, and deepened energy levels. When mixed with PBDB-T in solar cells, the i-cc23-based device achieved an excellent open-circuit voltage (VOC) of 1.10 V and a moderate power conversion efficiency of 7.34%. Although the VOC of the i-cc34-related device was decreased to 0.96 V, the short-circuit current density and fill factor were improved, giving rise to an enhanced efficiency of 9.51%. Apart from the distinct photovoltaic performances, the two isomer-based devices exhibit a high radiative efficiency of 8 × 10-4, leading to a very small nonradiative loss of 0.19 V. Our results emphasize the importance of the isomerized thiophene-fused ending groups on the performances of nonplanar NFA-based PSCs.
Collapse
Affiliation(s)
- Haimei Wu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Qingzhen Bian
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Baofeng Zhao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28 of West Xianning Road, Xi'an 710049, China
| | - Liuchang Wang
- School of Chemical Engineering, Xi'an University, No. 168 of South Taibai Road, Xi'an 710065, China
| | - Weiping Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Zhiyuan Cong
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Jianqun Liu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28 of West Xianning Road, Xi'an 710049, China
| | - Chao Gao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, No. 168 of East Zhangba Road, Xi'an 710065, China
| |
Collapse
|
31
|
Sabir S, Khera RA, Jabeen S, Shafiq Z, Musawwir A, Iqbal J. Tuning the optoelectronic properties of Benzo Thiophene (BT-CIC) based non-fullerene acceptor organic solar cell. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Organic solar cells have become a center of attention in the field of research and technology due to its remarkable features. In the current research work, we designed Benzo Thiophene (BT-CIC) based non-fullerene acceptor organic solar cell having A-D-A novel structure. The designed structures D1-D4 were derived from BT-CIC (non-fullerene acceptor) by replacing 2-(5,6-dichloro-2-methylene-3-oxo-2,3-dihydro-1H-inden-1-ylidene)acetonitrile of reference molecule R with different electron withdrawing end-capper acceptor moieties. The effect of end acceptor groups on absorption, energy level, charge transport, morphology, and photovoltaic properties of the designed molecules (D1-D4) were investigated by TD-DFT B3LYP/6-31G basic level of theory and compared with reference molecule R. Among all novel structures, D3 exhibited maximum absorption ([Formula: see text]) of 701.7[Formula: see text]nm and 755.2[Formula: see text]nm in gaseous state anfd chloroform, respectively. The red shift in D3 was due to the presence of strong electron withdrawing acceptor moiety and more extended conjugation as compared to other structures. D3 also displayed lowest values of energy bandgap (1.97 eV), [Formula: see text] (0.0063[Formula: see text]eV) and [Formula: see text] (0.0099[Formula: see text]eV) and which signify its ease electron mobility. Lowest value of binding energy 1.20[Formula: see text]eV of D3 suggested that this molecule could be easily dissociated into charge carriers TDM results revealed that easy exciton dissociation occurred in D3. Overall, designed structure D3 was found to be more effective and efficient acceptor molecule for SMOSCs. The findings provide novel information for the development of non-fullerene acceptors for OPVs.
Collapse
Affiliation(s)
- Saba Sabir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Faisalabad, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Faisalabad, Pakistan
| | - Sobia Jabeen
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Faisalabad, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahuddin Zakariya University, Multan 60800, Pakistan
| | - Amtul Musawwir
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Faisalabad, Pakistan
- Punjab Bio-energy Institute, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
32
|
Li G, Xu C, Luo Z, Ning W, Liu X, Gong S, Zou Y, Zhang F, Yang C. Novel Nitrogen-Containing Heterocyclic Non-Fullerene Acceptors for Organic PhotovoltaicCells: Different End-Capping Groups Leading to a Big Difference of Power Conversion Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13068-13076. [PMID: 32106672 DOI: 10.1021/acsami.9b22093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Novel cores for high performance nonfullerene acceptors (NFAs) remain to be developed. In this work, two new n-type nitrogen-containing organic heterocyclic NFAs, namely, BDTN-BF and BDTN-Th, were designed and synthesized based on a new seven fused-ring core (BDTN) with two different end-capping groups. As a result, BDTN-BF possessed similar absorption spectra in solution and solid state to BDTN-Th, but a slightly higher maximum molar extinction coefficient. Manufacturing the polymer solar cells with PM6 as the donor, the photovoltaic performance of BDTN-BF and BDTN-Th was investigated. The PM6:BDTN-BF-based device achieved the highest power conversion efficiency (PCE) of 11.54% with a high Jsc of 20.20 mA cm-2, a fill factor (FF) of 61.46%, and a large Voc of 0.93 V, and the energy loss (Eloss) was calculated to be 0.48 eV. Comparatively, the PM6:BDTN-Th-based device achieved the maximum PCE value of only 3.53% because of inadequate Jsc and FF. The higher Jsc and FF for the PM6:BDTN-BF-based device was mainly due to the effective electron transfer from PM6 to BDTN-BF, more balanced μh/μe, higher electron mobility of the neat film, better charge collection and dissociation efficiency, and more favorable morphology. These results demonstrate that the acceptors with nearly identical absorption spectra could result in a significant difference in photovoltaic performance, which stress the importance of end-capping units. Furthermore, few NFA-based devices achieve large Voc and high Jsc simultaneously as one based on PM6:BDTN-BF, indicating that nitrogen hybridization of NFAs may be an efficient strategy to realize high and balanced Voc and Jsc.
Collapse
Affiliation(s)
- Guanghao Li
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chunyu Xu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Zhenghui Luo
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Weimin Ning
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiaohui Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shaolong Gong
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Fujun Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
| | - Chuluo Yang
- Hubei Key Laboratory on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
33
|
Shi Y, Yu Z, Lu X, Zhang J. Efficient Polymer Solar Cells Employing Solution‐Processed Conjugated Polyelectrolytes with Differently Charged Side Chains. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yueqin Shi
- College of Materials & Environmental EngineeringHangzhou Dianzi University Xiasha Higher Education Zone Zhejiang 310018 P. R. China
| | - Zhanyang Yu
- College of Materials & Environmental EngineeringHangzhou Dianzi University Xiasha Higher Education Zone Zhejiang 310018 P. R. China
| | - Xiaoxiao Lu
- College of Materials & Environmental EngineeringHangzhou Dianzi University Xiasha Higher Education Zone Zhejiang 310018 P. R. China
| | - Jun Zhang
- College of Materials & Environmental EngineeringHangzhou Dianzi University Xiasha Higher Education Zone Zhejiang 310018 P. R. China
| |
Collapse
|
34
|
Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9669-3] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Liu J, Wang Y, Jiang P, Tu G. Functionalized Amphiphilic Diblock Fullerene Derivatives as a Cathode Buffer Layer for Efficient Inverted Organic Solar Cells. ACS OMEGA 2020; 5:1336-1345. [PMID: 32010803 PMCID: PMC6990446 DOI: 10.1021/acsomega.9b01507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The amphipathic interface layer sandwiched between cathode and active layers had always played a role to balance interface compatibility and interfacial energy barriers in inverted organic solar cell (OSC) devices. Two functionalized amphiphilic diblock fullerene derivatives named C60-2DPE and C60-4HTPB were synthesized and applied as an interface layer in modifying zinc oxide (ZnO). Based on their amphipathic characteristics, the solvent treatment was introduced to cause an obvious self-assembly of the two materials on ZnO. The introduced cathode buffer layer could improve the interface compatibility between ZnO and the organic active layer effectively with its amphipathic blocks. Based on the PTB7-Th:PC71BM system, the OSC devices with a functionalized fullerene derivative layer could reach a power conversion efficiency of 9.21 and 8.86% for C60-2DPE and C60-4HTPB , respectively.
Collapse
Affiliation(s)
- Jikang Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Yao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Pengfei Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Guoli Tu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| |
Collapse
|
36
|
Wu H, Zhao B, Zhao H, Wang L, Wang W, Cong Z, Liu J, Ma W, Gao C. Effects of Monofluorinated Positions at the End-Capping Groups on the Performances of Twisted Non-Fullerene Acceptor-Based Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:789-797. [PMID: 31801347 DOI: 10.1021/acsami.9b18301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recently, main-chain twisted small molecules are attractive as electron-acceptors in polymer solar cells (PSCs) for their upshifted molecular energy levels, enhanced extinction coefficients, and better charge extraction properties along with longer carrier lifetimes and lower recombination rates relative to their planar analogues, which are conducive to the power conversion efficiency (PCE) promotion of PSCs. To further probe the "structure-performance" correlation of main-chain twisted acceptors, in particular the monofluorine-substituted sites on the performances of the resultant acceptors, two new main-chain twisted small molecules were synthesized, in which a fluorine atom was introduced at different sites on the end-capping group 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN). Although fine structural modification was adopted, quite different performances were obtained for the two acceptors. Compared to the 3-fluorinated analogue (i-IEICO-F3), a mixture of 4-fluorinated and 5-fluorinated isomers (i-IEICO-2F) exhibited a higher dipole moment, enlarged molar extinction coefficient with a bathochromic-shifted absorption region, suppressed charge recombinations with balanced charge mobilities, and slightly enhanced crystallinity. In combination with a fluorobenzotriazole-based medium-band gap polymer (J52), a high efficiency of 12.86% was resultantly achieved in an i-IEICO-2F-based device, which is superior to the result (7.65%) of the i-IEICO-F3 device, revealing the importance of monofluorinated positions on the performances of main-chain twisted non-fullerene acceptors.
Collapse
Affiliation(s)
- Haimei Wu
- State Key Laboratory of Fluorine & Nitrogen Chemicals , Xi'an Modern Chemistry Research Institute , No. 168 of East Zhangba Road , Xi'an 710065 , China
| | - Baofeng Zhao
- State Key Laboratory of Fluorine & Nitrogen Chemicals , Xi'an Modern Chemistry Research Institute , No. 168 of East Zhangba Road , Xi'an 710065 , China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , No. 28 of West Xianning Road , Xi'an 710049 , China
| | - Liuchang Wang
- School of Chemical Engineering , Xi'an University , No. 168 of South Taibai Road , Xi'an 710065 , China
| | - Weiping Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals , Xi'an Modern Chemistry Research Institute , No. 168 of East Zhangba Road , Xi'an 710065 , China
| | - Zhiyuan Cong
- State Key Laboratory of Fluorine & Nitrogen Chemicals , Xi'an Modern Chemistry Research Institute , No. 168 of East Zhangba Road , Xi'an 710065 , China
| | - Jianqun Liu
- State Key Laboratory of Fluorine & Nitrogen Chemicals , Xi'an Modern Chemistry Research Institute , No. 168 of East Zhangba Road , Xi'an 710065 , China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , No. 28 of West Xianning Road , Xi'an 710049 , China
| | - Chao Gao
- State Key Laboratory of Fluorine & Nitrogen Chemicals , Xi'an Modern Chemistry Research Institute , No. 168 of East Zhangba Road , Xi'an 710065 , China
| |
Collapse
|
37
|
Liu J, Jiang P, Wang Y, Tu G. Synthesis of two A-B-C type conjugated amphiphilic triblock fullerene derivatives and their application in organic solar cells. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Ali A, Rafiq MI, Zhang Z, Cao J, Geng R, Zhou B, Tang W. TD-DFT benchmark for UV-visible spectra of fused-ring electron acceptors using global and range-separated hybrids. Phys Chem Chem Phys 2020; 22:7864-7874. [DOI: 10.1039/d0cp00060d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accuracy of Time-Dependent Density Functional Theory in predicting the vertical absorption wavelength of 50 widely-used fused-ring electron acceptors (FREAs) has been investigated by considering the solvent effects.
Collapse
Affiliation(s)
- Amjad Ali
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Muhammad Imran Rafiq
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Zhuohan Zhang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Jinru Cao
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Renyong Geng
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Baojing Zhou
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Weihua Tang
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| |
Collapse
|
39
|
Luo M, Zhu C, Yuan J, Zhou L, Keshtov M, Godovsky DY, Zou Y. A chlorinated non-fullerene acceptor for efficient polymer solar cells. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Neupane GP, Ma W, Yildirim T, Tang Y, Zhang L, Lu Y. 2D organic semiconductors, the future of green nanotechnology. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Peng R, Wan Z, Song W, Yan T, Qiao Q, Yang S, Ge Z, Wang M. Improving Performance of Nonfullerene Organic Solar Cells over 13% by Employing Silver Nanowires-Doped PEDOT:PSS Composite Interface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42447-42454. [PMID: 31625386 DOI: 10.1021/acsami.9b16404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ag nanowires (NWs)/PEDOT:PSS composite was prepared by a facile solution-processing method and employed as anode interface in nonfullerene organic solar cells (OSCs). In the presence of a Ag NWs (5%, v/v%)/PEDOT:PSS interfacial layer, a high-power conversion efficiency up to 13.53% was achieved based on a PBDB-T-2Cl:IT-4F photoactive layer system, much higher than the efficiency of the controlled counterpart device with pristine PEDOT:PSS as anode modifier. Simultaneous enhancements in short-circuit current and fill factor were observed, in comparison to the case of the pristine PEDOT:PSS interface, due to the improved electrical conductivity of Ag NWs/PEDOT:PSS composites accompanied by the increased work function for a better matching with the indium tin oxide counter electrode, which facilitated increased charge transfer and reduced charge recombination at the anode/photoactive interface for improved device performance. The results clearly revealed that the Ag NWs/PEDOT:PSS composite interface is beneficial to improve the charge extraction and favor the realization of highly efficient nonfullerene OSCs.
Collapse
Affiliation(s)
- Ruixiang Peng
- Institute of Applied Technology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Zhiyang Wan
- Institute of Applied Technology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Wei Song
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Tingting Yan
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Qiquan Qiao
- Center for Advanced Photovoltaics and Sustainable Energy, Department of Electrical Engineering and Computer Sciences , South Dakota State University , Brookings , South Dakota 57007 , United States
| | - Shangfeng Yang
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Mingtai Wang
- Institute of Applied Technology, Hefei Institutes of Physical Science , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| |
Collapse
|
42
|
Ghosh U, Pal A. Graphitic carbon nitride based Z scheme photocatalysts: Design considerations, synthesis, characterization and applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Du Y, Wang L, Plunkett KN. 1,1′-Biaceanthrylene and 2,2′-Biaceanthrylene: Models for Linking Larger Polycyclic Aromatic Hydrocarbons via Five-Membered Rings. J Org Chem 2019; 85:79-84. [DOI: 10.1021/acs.joc.9b02118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yachu Du
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Lichang Wang
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Kyle N. Plunkett
- Department of Chemistry and Biochemistry and the Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
44
|
Kumar K, Das A, Kumawat UK, Dhawan A. Tandem organic solar cells containing plasmonic nanospheres and nanostars for enhancement in short circuit current density. OPTICS EXPRESS 2019; 27:31599-31620. [PMID: 31684391 DOI: 10.1364/oe.27.031599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we propose double junction tandem organic solar cells with PTB7:PC70BM and PDPPSDTPS:PC60BM as the polymeric active materials to cover the wide solar spectrum from 300 nm to 1150 nm. We present novel designs and finite-difference time-domain (FDTD) simulation results of plasmonic double junction tandem OSCs in which Ag nanospheres are present over the top surface of the OSC and Ag nanostars are present in the bottom subcell which substantially enhance the absorption, short circuit current density, and efficiency of the OSC as compared to the reference tandem OSCs that do not contain any nanoparticles. Different geometries of the plasmonic nanoparticles such as nanospheres and nanostars were used in the top subcell and the bottom subcell, respectively, so that the absorption in the different spectral regimes - corresponding to the bandgaps of the active layers in the two subcells (PTB7:PC70BM in the top subcell and LBG:PC60BM in the bottom subcell) - could be enhanced. The thickness of the bottom subcell active layer as well as the geometries of the plasmonic nanoparticles were optimized such that the short circuit current densities in the two subcells could be matched in the tandem OSC. An overall enhancement of 26% in the short circuit current density was achieved in a tandem OSC containing the optimized Ag nanospheres over the top surface and Ag nanostars inside the bottom subcell active layer. The presence of plasmonic nanoparticles along with the wide spectrum absorption band of the active materials in the tandem OSC leads to a typical power conversion efficiency of ∼ 15.4%, which is higher than that of a reference tandem organic solar cell (12.25%) that does not contain any nanoparticles.
Collapse
|
45
|
|
46
|
Lai H, Chen H, Zhou J, Qu J, Chao P, Liu T, Chang X, Zheng N, Xie Z, He F. Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion. iScience 2019; 17:302-314. [PMID: 31323476 PMCID: PMC6639659 DOI: 10.1016/j.isci.2019.06.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/25/2019] [Accepted: 06/22/2019] [Indexed: 12/05/2022] Open
Abstract
The influence caused by the position of the chlorine atom on end groups of two non-fullerene acceptors (ITIC-2Cl-δ and ITIC-2Cl-γ) was intensely investigated. The single-crystal structures show that ITIC-2Cl-γ has a better molecular planarity and closer π-π interaction distance. More importantly, a 3D rectangle-like interpenetrating network is formed in ITIC-2Cl-γ and is beneficial to rapid charge transfer along multiple directions, whereas only a linear stacked structure could be observed in ITIC-2Cl-δ. The two acceptor-based solar cells show power conversion efficiencies (PCEs) over 11%, higher than that of the ITIC-2Cl-m-based device (10.85%). An excellent PCE of 13.03% is obtained by the ITIC-2Cl-γ-based device. In addition, the ITIC-2Cl-γ-based device also shows the best device stability. This study indicates that chlorine positioning has a great impact on the acceptors; more importantly, the 3D network structure may be a promising strategy for non-fullerene acceptors to improve the PCE and stability of organic solar cells.
Collapse
Affiliation(s)
- Hanjian Lai
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hui Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jianfei Qu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengjie Chao
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Nan Zheng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Feng He
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
47
|
Zhu J, Zheng X, Tan H, Tan H, Yang J, Yu J, Zhu W. Small molecule acceptors with indacenodithiophene–benzodithiophene–indacenodithiophene as donating cores for solution-processed non-fullerene solar cells. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Li H, Wu J, Takahashi K, Ren J, Wu R, Cai H, Wang J, Xin HL, Miao Q, Yamada H, Chen H, Li H. Organic Heterojunctions Formed by Interfacing Two Single Crystals from a Mixed Solution. J Am Chem Soc 2019; 141:10007-10015. [PMID: 31244137 DOI: 10.1021/jacs.9b03819] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic heterojunctions are widely used in organic electronics and they are composed of semiconductors interfaced together. Good ordering in the molecular packing inside the heterojunctions is highly desired but it is still challenging to interface organic single crystals to form single-crystalline heterojunctions. Here, we describe how organic heterojunctions are formed by interfacing two single crystals from a droplet of a mixed solution containing two semiconductors. Based on crystallization of six organic semiconductors from a droplet on a substrate, two distinct crystallization mechanisms have been recognized in the sense that crystals form at either the top interface between the air and solution or the bottom interface between the substrate and solution. The preference for one interface rather than the other depends on the semiconductor-substrate pair and, for a given semiconductor, it can be switched by changing the substrate, suggesting that the preference is associated with the semiconductor-substrate molecular interaction. Furthermore, simultaneous crystallization of two semiconductors at two different interfaces to reduce their mutual disturbance results in the formation of bilayer single crystals interfaced together for organic heterojunctions. These single-crystalline heterojunctions exhibit ambipolar charge transport in field-effect transistors, with the highest electron mobility of 1.90 cm2 V-1 s-1 and the highest hole mobility of 1.02 cm2 V-1 s-1. Hence, by elucidating the interfacial crystallization events, this work should greatly harvest the solution-grown organic single-crystalline heterojunctions.
Collapse
Affiliation(s)
- Huanbin Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.,State Key Laboratory of Silicon Materials, Zhejiang University , Hangzhou 310027 , China
| | - Jiake Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.,State Key Laboratory of Silicon Materials, Zhejiang University , Hangzhou 310027 , China
| | - Kohtaro Takahashi
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.,State Key Laboratory of Silicon Materials, Zhejiang University , Hangzhou 310027 , China
| | - Ruihan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.,State Key Laboratory of Silicon Materials, Zhejiang University , Hangzhou 310027 , China
| | - Hongyi Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jieru Wang
- State Key Laboratory of Silicon Materials, Zhejiang University , Hangzhou 310027 , China
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Qian Miao
- Department of Chemistry , The Chinese University of Hong Kong , Shatin, New Territories , Hong Kong , China
| | - Hiroko Yamada
- Division of Materials Science, Graduate School of Science and Technology , Nara Institute of Science and Technology , Ikoma , Nara 630-0192 , Japan
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.,State Key Laboratory of Silicon Materials, Zhejiang University , Hangzhou 310027 , China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China.,State Key Laboratory of Silicon Materials, Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
49
|
Martynov IV, Akkuratov AV, Luchkin SY, Tsarev SA, Babenko SD, Petrov VG, Stevenson KJ, Troshin PA. Impressive Radiation Stability of Organic Solar Cells Based on Fullerene Derivatives and Carbazole-Containing Conjugated Polymers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21741-21748. [PMID: 31091872 DOI: 10.1021/acsami.9b01729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We explored the radiation stability of carbazole-based electron-donor conjugated polymers, acceptor fullerene derivative [60]PCBM, and their blends as active layer components of organic solar cells. An exposure to γ rays induced evident degradation effects in bulk samples of the pristine fullerene acceptor ([60]PCBM) and two investigated electron-donor conjugated polymers: PCDTBT and PCDTTBTBTT. The most severe radiation damage occurred in [60]PCBM as can be concluded from the significant losses in open circuit voltage, fill factor, and efficiency of photovoltaic (PV) devices comprising the exposed fullerene acceptor. Conjugated polymers PCDTBT and PCDTTBTBTT showed substantially different radiation stabilities: the samples of PCDTTBTBTT exposed to 200 Gy lost ∼25% of their nominal photovoltaic efficiency due to a substantial decay of all device parameters, while PCDTBT alone showed just a minor aging under the same conditions. The fullerene-polymer composites were much more resistant with respect to the radiation damage than the bulk samples of pristine materials. In particular, the PCDTBT/[60]PCBM composite films demonstrated an outstanding radiation stability while maintaining more than 80% of the initial photovoltaic efficiency after exposure to γ rays with a maximum absorbed dose of 6500 Gy. Considering an average annual radiation dose of 160 Gy according to the NASA estimations for satellites at geocentric Earth orbits, organic solar cells based on PCDTBT/[60]PCBM blends hold a promise to deliver lifetimes well above 10 years. The revealed impressive radiation stability of PCDTBT/[60]PCBM blends in combination with other advantages of organic solar cells, for example, their mechanical flexibility and lightweight, points to a bright future of this PV technology in space industry applications.
Collapse
Affiliation(s)
- Ilya V Martynov
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences , Semenov Prospect 1 , Chernogolovka 142432 , Russia
| | - Alexander V Akkuratov
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences , Semenov Prospect 1 , Chernogolovka 142432 , Russia
| | - Sergey Yu Luchkin
- Skolkovo Institute of Science and Technology , Nobel St. 3 , Moscow 143026 , Russia
| | - Sergey A Tsarev
- Skolkovo Institute of Science and Technology , Nobel St. 3 , Moscow 143026 , Russia
| | - Sergei D Babenko
- The Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences (Branch) , Semenov Prospect 1/10 , Chernogolovka 142432 , Russia
| | - Vladimir G Petrov
- Lomonosov Moscow State University , GSP-1, Leninskie Gory , Moscow 119991 , Russian Federation
| | - Keith J Stevenson
- Skolkovo Institute of Science and Technology , Nobel St. 3 , Moscow 143026 , Russia
| | - Pavel A Troshin
- The Institute for Problems of Chemical Physics of the Russian Academy of Sciences , Semenov Prospect 1 , Chernogolovka 142432 , Russia
- Skolkovo Institute of Science and Technology , Nobel St. 3 , Moscow 143026 , Russia
| |
Collapse
|
50
|
Mesta M, Chang JH, Shil S, Thygesen KS, Lastra JMG. A Protocol for Fast Prediction of Electronic and Optical Properties of Donor-Acceptor Polymers Using Density Functional Theory and the Tight-Binding Method. J Phys Chem A 2019; 123:4980-4989. [PMID: 31117588 DOI: 10.1021/acs.jpca.9b02391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of donor-acceptor (D-A) type polymers to control the positions of the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbitals makes them a popular choice for organic solar cell applications. The alternating D-A pattern in a monomer leads to a weak electronic coupling between the constituent monomers within the polymer chain. Exploiting the weak electronic coupling characteristics, we developed a method to efficiently calculate (1) the electronic properties and (2) the optical gap of such polymer chains. The electronic properties (HOMO and LUMO energies, ionization potential, electron affinity, and quasiparticle gap of an oligomer of any length up to an infinitely long polymer) of the D-A polymers are predicted by combining density functional theory calculation results and a tight-binding model. The weak electronic coupling implies that the optical gap of the polymer is size-independent, and thus, it can be calculated using a monomer. We validated the methods using a set of 104 polymers by checking the consistency where the electronic gap of a polymer is larger than the optical gap. Furthermore, we establish relationships between the results obtained from more accurate, yet slower methods (i.e., B3LYP functional, singlet-ΔSCF) with those obtained from the faster counterparts (i.e., BLYP functional, triplet-ΔSCF). Leveraging the found relationships, we propose a way in which the electronic and optical properties of the polymers can be calculated efficiently while retaining high accuracy. The use of the tight-binding model combined with the approach to estimate more accurate results based on less expensive simulations is crucial in the applications where a large volume of computations needs to be carried out efficiently with sufficiently high accuracy, such as high-throughput computational screening or training a machine-learning model.
Collapse
Affiliation(s)
- Murat Mesta
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Jin Hyun Chang
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Suranjan Shil
- CAMD, Department of Physics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Kristian S Thygesen
- CAMD, Department of Physics , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Juan Maria Garcia Lastra
- Department of Energy Conversion and Storage , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|