1
|
Wang X, Xu S, Zhang B, Wu H, Liu Y, Zhang X, Wang ZG. Dynamic control of His-hemin coordination and catalysis by reversible host-guest inclusion in peptide assemblies. J Colloid Interface Sci 2025; 678:421-426. [PMID: 39213994 DOI: 10.1016/j.jcis.2024.08.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Dynamic self-assembly has significant implications in the regulation of the enzyme activities. In this study, we present a histidine-based enzyme-mimicking catalyst, formed by the self-assembly of carefully-engineered FH-based short peptides with hemin, showcasing switchable catalytic activity of hemin due to externally induced reversible inclusion of a cucurbit[7]uril-peptide hybrid. 1H NMR, ITC and theoretical simulation are employed to examine the binding affinity between the guest and host components, and UV-vis spectra are used to investigate changes in the hemin coordination environment. The histidine segment of the short peptide can be partially shielded by the cucurbituril and released following addition of the azo compound, leading to a decrease and subsequent restoration of the histidine-hemin coordination affinity and hemin activity. The photoisomeriziable nature of the azo compound enabled the activation of FHH/hemin activity to be switched on and off by exposure to different wavelengths of light. During the operation, the Phe residue remained within the cucurbituril, allowing reversible inclusion and exposure of the histidine residues. The hemin stayed connected to FHH/cucurbit[7]uril hybrid, preventing the severe aggregation of hemin and irreversible deactivation. This work may provide insights into engineering the dynamic behaviors of the cofactor-dependent catalytic assemblies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianxue Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Wang CH, Jhang YY, Yu SS. Catalytic peptide/hemin complex from ester-amide exchange reaction mediated by deep eutectic solvents. RSC Adv 2025; 15:119-123. [PMID: 39758916 PMCID: PMC11694504 DOI: 10.1039/d4ra08607d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
The functions of peptides often emerge upon their self-assembly or binding with other co-factors. However, the synthetic complexity makes these functional peptides intractable. Here, we utilize the ester-amide exchange reaction in deep eutectic solvents to generate peptide libraries from unactivated amino acids. This strategy leads to peptide mixtures that exhibit hemin-binding capability and peroxidase-like activity.
Collapse
Affiliation(s)
- Cheng-Hsi Wang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Yao-Yu Jhang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
- Core Facility Center, National Cheng Kung University Tainan 70101 Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University Tainan 70101 Taiwan
| |
Collapse
|
3
|
Castelletto V, de Mello LR, Seitsonen J, Hamley IW. Micellization of Lipopeptides Containing Toll-like Receptor Agonist and Integrin Binding Sequences. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68713-68723. [PMID: 39651938 DOI: 10.1021/acsami.4c18165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Short bioactive peptide sequences are of great interest in biomaterials development. We investigate the self-assembly of a lipopeptide containing both the highly cationic CSK4 toll-like receptor agonist hexapeptide sequence and RGDS integrin-binding motif, i.e., C16-CSK4RGDS, as well as the control containing a scrambled terminal sequence C16-CSK4GRDS. Both lipopeptides are found to form micelles, as revealed by small-angle X-ray scattering and cryogenic transmission electron microscopy, and modeled using atomistic molecular dynamics simulations. We carefully examined methods to probe the aggregation of the molecules, i.e. to obtain the critical micelle concentration (CMC). Fluorescent probe assays using 1-anilino-8-naphthalenesulfonate (ANS) reveal low CMC values, 1-2 μM, which contrast with consistent values more than 2 orders of magnitude larger obtained from surface tension and electrical conductivity as well as unexpected UV/vis absorption spectra discontinuities and fluoresccence probe assays using Nile red. The anomalous results obtained from an ANS fluorescence probe are ascribed to the effect of ANS binding to the cationic (lysine and arginine) residues in the lipopeptide, which leads to a conformational change, as shown by circular dichroism, even at low concentrations below the actual CMC. Despite the small change in the peptide sequence (swapping of G and R residues), there is surprisingly a significant difference in the aggregation propensity and association number, both of which are greater for C16-CSK4GRDS. Both lipopeptides are cytocompatible (with fibroblasts and myoblasts) at low concentration, although cytotoxicity is noted at higher concentration.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Lucas R de Mello
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
4
|
Hamley IW, Adak A, Castelletto V. Influence of chirality and sequence in lysine-rich lipopeptide biosurfactants and micellar model colloid systems. Nat Commun 2024; 15:6785. [PMID: 39117639 PMCID: PMC11310517 DOI: 10.1038/s41467-024-51234-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Lipopeptides can self-assemble into diverse nanostructures which can be programmed to incorporate peptide sequences to achieve a remarkable range of bioactivities. Here, the influence of peptide sequence and chirality on micelle structure and interactions is investigated in a series of lipopeptides bearing two lysine or D-lysine residues and tyrosine or tryptophan residues, attached to a hexadecyl lipid chain. All molecules self-assemble into micelles above a critical micelle concentration (CMC). Small-angle x-ray scattering (SAXS) is used to probe micelle shape and structure from the form factor and to probe inter-micellar interactions via analysis of structure factor. The CMC is obtained consistently from surface tension and electrical conductivity measurements. We introduce a method to obtain the zeta potential from the SAXS structure factor which is in good agreement with directly measured values. Atomistic molecular dynamics simulations provide insights into molecular packing and conformation within the lipopeptide micelles which constitute model self-assembling colloidal systems and biomaterials.
Collapse
Affiliation(s)
- Ian W Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | - Anindyasundar Adak
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Valeria Castelletto
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
5
|
Dutta C, Lopez V, Preston C, Rudra N, Chavez AMV, Rogers AM, Solomon LA. Controlling heme redox properties in peptide amphiphile fibers with sequence and heme loading ratio. Biophys J 2024; 123:1781-1791. [PMID: 38783603 PMCID: PMC11267424 DOI: 10.1016/j.bpj.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Controlling the reduction midpoint potential of heme B is a key factor in many bioelectrochemical reactions, including long-range electron transport. Currently, there are a number of globular model protein systems to study this biophysical parameter; however, there are none for large polymeric protein model systems (e.g., the OmcS protein from G. sulfurreducens). Peptide amphiphiles, short peptides with a lipid tail that polymerize into fibrous structures, fill this gap. Here, we show a peptide amphiphile model system where one can tune the electrochemical potential of heme B by changing the loading ratio and peptide sequence. Changing the loading ratio resulted in the most significant increase, with values as high as -22 mV down to -224 mV. Circular dichroism spectra of certain sequences show Cotton effects at lower loading ratios that disappear as more heme B is added, indicating an ordered environment that becomes disrupted if heme B is overpacked. These findings can contribute to the design of functional self-assembling biomaterials.
Collapse
Affiliation(s)
- Chiranjit Dutta
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Virginia Lopez
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Conner Preston
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia
| | - Nimesh Rudra
- Thomas Jefferson High School for Science and Technology, Alexandria, Virginia
| | | | - Abigail M Rogers
- Department of Biology, George Mason University, Fairfax, Virginia
| | - Lee A Solomon
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia.
| |
Collapse
|
6
|
Fry HC, Liu Y, Taylor SK. Design and Function of α-Helix-Rich, Heme-Binding Peptide Materials. Biomacromolecules 2024; 25:3398-3408. [PMID: 38752597 DOI: 10.1021/acs.biomac.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Peptide materials often employ short peptides that self-assemble into unique nanoscale architectures and have been employed across many fields relevant to medicine and energy. A majority of peptide materials are high in β-sheet, secondary structure content, including heme-binding peptide materials. To broaden the structural diversity of heme-binding peptide materials, a small series of peptides were synthesized to explore the design criteria required for (1) folding into an α-helix structure, (2) assembling into a nanoscale material, (3) binding heme, and (4) demonstrating functions similar to that of heme proteins. One peptide was identified to meet all four criteria, including the heme protein function of CO binding and its microsecond-to-millisecond recombination rates, as measured by transient absorption spectroscopy. Implications of new design criteria and peptide material function through heme incorporation are discussed.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Sunny K Taylor
- Pritzker School for Molecular Engineering, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
Yang Y, Wang X, Wu X, Guo S, Yang H, Lu J, Dong H. Computation-Driven Rational Design of Self-Assembled Short Peptides for Catalytic Hydrogen Production. J Am Chem Soc 2024; 146:13488-13498. [PMID: 38709095 DOI: 10.1021/jacs.4c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Self-assembling peptides represent a captivating area of study in nanotechnology and biomaterials. This interest is largely driven by their unique properties and the vast application potential across various fields such as catalytic functions. However, design complexities, including high-dimensional sequence space and structural diversity, pose significant challenges in the study of such systems. In this work, we explored the possibility of self-assembled peptides to catalyze the hydrolysis of hydrosilane for hydrogen production using ab initio calculations and carried out wet-lab experiments to confirm the feasibility of these catalytic reactions under ambient conditions. Further, we delved into the nuanced interplay between sequence, structural conformation, and catalytic activity by combining modeling with experimental techniques such as transmission electron microscopy and nuclear magnetic resonance and proposed a dual mode of the microstructure of the catalytic center. Our results reveal that although research in this area is still at an early stage, the development of self-assembled peptide catalysts for hydrogen production has the potential to provide a more sustainable and efficient alternative to conventional hydrogen production methods. In addition, this work also demonstrates that a computation-driven rational design supplemented by experimental validation is an effective protocol for conducting research on functional self-assembled peptides.
Collapse
Affiliation(s)
- Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Xialian Wu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shuyi Guo
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Haokun Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Junxia Lu
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Wang Y, Pan T, Li J, Zou L, Wei X, Zhang Q, Wei T, Xu L, Ulijn RV, Zhang C. Developing Isomeric Peptides for Mimicking the Sequence-Activity Landscapes of Enzyme Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22369-22378. [PMID: 38644563 DOI: 10.1021/acsami.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Enzymes catalyze almost all material conversion processes within living organisms, yet their natural evolution remains unobserved. Short peptides, derived from proteins and featuring active sites, have emerged as promising building blocks for constructing bioactive supramolecular materials that mimic native proteins through self-assembly. Herein, we employ histidine-containing isomeric tetrapeptides KHFF, HKFF, KFHF, HFKF, FKHF, and FHKF to craft supramolecular self-assemblies, aiming to explore the sequence-activity landscapes of enzyme evolution. Our investigations reveal the profound impact of peptide sequence variations on both assembly behavior and catalytic activity as hydrolytic simulation enzymes. During self-assembly, a delicate balance of multiple intermolecular interactions, particularly hydrogen bonding and aromatic-aromatic interactions, influences nanostructure formation, yielding various morphologies (e.g., nanofibers, nanospheres, and nanodiscs). Furthermore, the analysis of the structure-activity relationship demonstrates a strong correlation between the distribution of the His active site on the nanostructures and the formation of the catalytic microenvironment. This investigation of the sequence-structure-activity paradigm reflects how natural enzymes enhance catalytic activity by adjusting the primary structure during evolution, promoting fundamental research related to enzyme evolutionary processes.
Collapse
Affiliation(s)
- Yaling Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tiezheng Pan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lina Zou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xuewen Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tingting Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center, City University of New York (CUNY), New York, New York 10031, United States
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Chunqiu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Marshall LR, Korendovych IV. Screening of oxidative behavior in catalytic amyloid assemblies. Methods Enzymol 2024; 697:15-33. [PMID: 38816121 DOI: 10.1016/bs.mie.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Once considered a thermodynamic minimum of the protein fold or as simply by-products of a misfolding process, amyloids are increasingly showing remarkable potential for promoting enzyme-like catalysis. Recent studies have demonstrated a diverse range of catalytic behaviors that amyloids can promote way beyond the hydrolytic behaviors originally reported. We and others have demonstrated the strong propensity of catalytic amyloids to facilitate redox reactions both in the presence and in the absence of metal cofactors. Here, we present a detailed protocol for measuring the oxidative ability of supramolecular peptide assemblies.
Collapse
Affiliation(s)
- Liam R Marshall
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.
| | - Ivan V Korendovych
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| |
Collapse
|
10
|
Adak A, Castelletto V, de Sousa A, Karatzas KA, Wilkinson C, Khunti N, Seitsonen J, Hamley IW. Self-Assembly and Antimicrobial Activity of Lipopeptides Containing Lysine-Rich Tripeptides. Biomacromolecules 2024; 25:1205-1213. [PMID: 38204421 PMCID: PMC10865344 DOI: 10.1021/acs.biomac.3c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
The conformation and self-assembly of two pairs of model lipidated tripeptides in aqueous solution are probed using a combination of spectroscopic methods along with cryogenic-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). The palmitoylated lipopeptides comprise C16-YKK or C16-WKK (with two l-lysine residues) or their respective derivatives containing d-lysine (k), i.e., C16-Ykk and C16-Wkk. All four molecules self-assemble into spherical micelles which show structure factor effects in SAXS profiles due to intermicellar packing in aqueous solution. Consistent with micellar structures, the tripeptides in the coronas have a largely unordered conformation, as probed using spectroscopic methods. The molecules are found to have good cytocompatibility with fibroblasts at sufficiently low concentrations, although some loss of cell viability is noted at the highest concentrations examined (above the critical aggregation concentration of the lipopeptides, determined from fluorescence dye probe measurements). Preliminary tests also showed antimicrobial activity against both Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Anindyasundar Adak
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Valeria Castelletto
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Ana de Sousa
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Kimon-Andreas Karatzas
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Callum Wilkinson
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| | - Nikul Khunti
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- School
of Chemistry, Pharmacy and Food Biosciences, University of Reading, Whiteknights, Reading RG6 6AH, U.K.
| |
Collapse
|
11
|
Smith DK. Supramolecular gels - a panorama of low-molecular-weight gelators from ancient origins to next-generation technologies. SOFT MATTER 2023; 20:10-70. [PMID: 38073497 DOI: 10.1039/d3sm01301d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Supramolecular gels, self-assembled from low-molecular-weight gelators (LMWGs), have a long history and a bright future. This review provides an overview of these materials, from their use in lubrication and personal care in the ancient world, through to next-generation technologies. In academic terms, colloid scientists in the 19th and early 20th centuries first understood such gels as being physically assembled as a result of weak interactions, combining a solid-like network having a degree of crystalline order with a highly mobile liquid-like phase. During the 20th century, industrial scientists began using these materials in new applications in the polymer, oil and food industries. The advent of supramolecular chemistry in the late 20th century, with its focus on non-covalent interactions and controlled self-assembly, saw the horizons for these materials shifted significantly beyond their historic rheological applications, expanding their potential. The ability to tune the LMWG chemical structure, manipulate hierarchical assembly, develop multi-component systems, and introduce new types of responsive and interactive behaviour, has been transformative. Furthermore, the dynamics of these materials are increasingly understood, creating metastable gels and transiently-fueled systems. New approaches to shaping and patterning gels are providing a unique opportunity for more sophisticated uses. These supramolecular advances are increasingly underpinning and informing next-generation applications - from drug delivery and regenerative medicine to environmental remediation and sustainable energy. In summary, this article presents a panorama over the field of supramolecular gels, emphasising how both academic and industrial scientists are building on the past, and engaging new fundamental insights and innovative concepts to open up exciting horizons for their future use.
Collapse
Affiliation(s)
- David K Smith
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
12
|
Cvjetan N, Schuler LD, Ishikawa T, Walde P. Optimization and Enhancement of the Peroxidase-like Activity of Hemin in Aqueous Solutions of Sodium Dodecylsulfate. ACS OMEGA 2023; 8:42878-42899. [PMID: 38024761 PMCID: PMC10652838 DOI: 10.1021/acsomega.3c05915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Iron porphyrins play several important roles in present-day living systems and probably already existed in very early life forms. Hemin (= ferric protoporphyrin IX = ferric heme b), for example, is the prosthetic group at the active site of heme peroxidases, catalyzing the oxidation of a number of different types of reducing substrates after hemin is first oxidized by hydrogen peroxide as the oxidizing substrate of the enzyme. The active site of heme peroxidases consists of a hydrophobic pocket in which hemin is embedded noncovalently and kept in place through coordination of the iron atom to a proximal histidine side chain of the protein. It is this partially hydrophobic local environment of the enzyme which determines the efficiency with which the sequential reactions of the oxidizing and reducing substrates proceed at the active site. Free hemin, which has been separated from the protein moiety of heme peroxidases, is known to aggregate in an aqueous solution and exhibits low catalytic activity. Based on previous reports on the use of surfactant micelles to solubilize free hemin in a nonaggregated state, the peroxidase-like activity of hemin in the presence of sodium dodecyl sulfate (SDS) at concentrations below and above the critical concentration for SDS micelle formation (critical micellization concentration (cmc)) was systematically investigated. In most experiments, 3,3',5,5'-tetramethylbenzidine (TMB) was applied as a reducing substrate at pH = 7.2. The presence of SDS clearly had a positive effect on the reaction in terms of initial reaction rate and reaction yield, even at concentrations below the cmc. The highest activity correlated with the cmc value, as demonstrated for reactions at three different HEPES concentrations. The 4-(2-hydroxyethyl)-1-piperazineethanesulfonate salt (HEPES) served as a pH buffer substance and also had an accelerating effect on the reaction. At the cmc, the addition of l-histidine (l-His) resulted in a further concentration-dependent increase in the peroxidase-like activity of hemin until a maximal effect was reached at an optimal l-His concentration, probably corresponding to an ideal mono-l-His ligation to hemin. Some of the results obtained can be understood on the basis of molecular dynamics simulations, which indicated the existence of intermolecular interactions between hemin and HEPES and between hemin and SDS. Preliminary experiments with SDS/dodecanol vesicles at pH = 7.2 showed that in the presence of the vesicles, hemin exhibited similar peroxidase-like activity as in the case of SDS micelles. This supports the hypothesis that micelle- or vesicle-associated ferric or ferrous iron porphyrins may have played a role as primitive catalysts in membranous prebiotic compartment systems before cellular life emerged.
Collapse
Affiliation(s)
- Nemanja Cvjetan
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | | | - Takashi Ishikawa
- Department
of Biology and Chemistry, Paul Scherrer Institute and Department of
Biology, ETH-Zürich, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Peter Walde
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
13
|
Xu S, Wu H, Liu S, Du P, Wang H, Yang H, Xu W, Chen S, Song L, Li J, Shi X, Wang ZG. A supramolecular metalloenzyme possessing robust oxidase-mimetic catalytic function. Nat Commun 2023; 14:4040. [PMID: 37419896 PMCID: PMC10328989 DOI: 10.1038/s41467-023-39779-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Enzymes fold into unique three-dimensional structures to distribute their reactive amino acid residues, but environmental changes can disrupt their essential folding and lead to irreversible activity loss. The de novo synthesis of enzyme-like active sites is challenging due to the difficulty of replicating the spatial arrangement of functional groups. Here, we present a supramolecular mimetic enzyme formed by self-assembling nucleotides with fluorenylmethyloxycarbonyl (Fmoc)-modified amino acids and copper. This catalyst exhibits catalytic functions akin those of copper cluster-dependent oxidases, and catalytic performance surpasses to date-reported artificial complexes. Our experimental and theoretical results reveal the crucial role of periodic arrangement of amino acid components, enabled by fluorenyl stacking, in forming oxidase-mimetic copper clusters. Nucleotides provide coordination atoms that enhance copper activity by facilitating the formation of a copper-peroxide intermediate. The catalyst shows thermophilic behavior, remaining active up to 95 °C in an aqueous environment. These findings may aid the design of advanced biomimetic catalysts and offer insights into primordial redox enzymes.
Collapse
Affiliation(s)
- Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Siyuan Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing, 10084, China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Shuangming Chen
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Li Song
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230029, China
| | - Jikun Li
- Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
14
|
Wu H, Xu S, Du P, Liu Y, Li H, Yang H, Wang T, Wang ZG. A nucleotide-copper(II) complex possessing a monooxygenase-like catalytic function. J Mater Chem B 2023. [PMID: 37409588 DOI: 10.1039/d3tb00780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The de novo design of artificial biocatalysts with enzyme-like active sites and catalytic functions has long been an attractive yet challenging goal. In this study, we present a nucleotide-Cu2+ complex, synthesized through a one-pot approach, capable of catalyzing ortho-hydroxylation reactions resembling those of minimalist monooxygenases. Both experimental and theoretical findings demonstrate that the catalyst, in which Cu2+ coordinates with both the nucleobase and phosphate moieties, forms a ternary-complex intermediate with H2O2 and tyramine substrates through multiple weak interactions. The subsequent electron transfer and hydrogen (or proton) transfer steps lead to the ortho-hydroxylation of tyramine, where the single copper center exhibits a similar function to natural dicopper sites. Moreover, Cu2+ bound to nucleotides or oligonucleotides exhibits thermophilic catalytic properties within the temperature range of 25 °C to 75 °C, while native enzymes are fully deactivated above 35 °C. This study may provide insights for the future design of oxidase-mimetic catalysts and serve as a guide for the design of primitive metallocentre-dependent enzymes.
Collapse
Affiliation(s)
- Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Peidong Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ting Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
15
|
Artificial peroxidase of short peptide and hemin co-assemblies with selective chiral catalytic activity in DOPA oxidation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
Liu N, Li SB, Zheng YZ, Xu SY, Shen JS. Minimalistic Artificial Catalysts with Esterase-Like Activity from Multivalent Nanofibers Formed by the Self-Assembly of Dipeptides. ACS OMEGA 2023; 8:2491-2500. [PMID: 36687071 PMCID: PMC9851029 DOI: 10.1021/acsomega.2c06972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Imitating and incorporating the multiple key structural features observed in natural enzymes into a minimalistic molecule to develop an artificial catalyst with outstanding catalytic efficiency is an attractive topic for chemists. Herein, we designed and synthesized one class of minimalistic dipeptide molecules containing a terminal -SH group and a terminal His-Phe dipeptide head linked by a hydrophobic alkyl chain with different lengths, marked as HS-C n+1-His-Phe (n = 4, 7, 11, 15, and 17; n + 1 represents the carbon atom number of the alkyl chain). The His (-imidazole), Phe (-CO2 -) moieties, the terminal -SH group, and a long hydrophobic alkyl chain were found to have important contributions to achieve high binding ability leading to outstanding absolute catalytic efficiency (k cat/K M) toward the hydrolysis reactions of carboxylic ester substrates.
Collapse
Affiliation(s)
- Ning Liu
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Shuai-Bing Li
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yan-Zhen Zheng
- College
of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Su-Ying Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiang-Shan Shen
- Xiamen
Key Laboratory of Optoelectronic Materials and Advanced Manufacturing,
College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
17
|
Jeong S, Lee K, Yoo SH, Lee HS, Kwon S. Crystalline Metal-Peptide Networks: Structures, Applications, and Future Outlook. Chembiochem 2023; 24:e202200448. [PMID: 36161687 DOI: 10.1002/cbic.202200448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Metal-peptide networks (MPNs), which are assembled from short peptides and metal ions, are considered one of the most fascinating metal-organic coordinated architectures because of their unique and complicated structures. Although MPNs have considerable potential for development into versatile materials, they have not been developed for practical applications because of several underlying limitations, such as designability, stability, and modifiability. In this review, we summarise several important milestones in the development of crystalline MPNs and thoroughly analyse their structural features, such as peptide sequence designs, coordination geometries, cross-linking types, and network topologies. In addition, potential applications such as gas adsorption, guest encapsulation, and chiral recognition are introduced. We believe that this review is a useful survey that can provide insights into the development of new MPNs with more sophisticated structures and novel functions.
Collapse
Affiliation(s)
- Seoneun Jeong
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Kwonjung Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| | - Sung Hyun Yoo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Seung Lee
- Center for Multiscale Chiral Architectures, Department of Chemistry, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea
| |
Collapse
|
18
|
Abstract
Ferric heme b (= ferric protoporphyrin IX = hemin) is an important prosthetic group of different types of enzymes, including the intensively investigated and widely applied horseradish peroxidase (HRP). In HRP, hemin is present in monomeric form in a hydrophobic pocket containing among other amino acid side chains the two imidazoyl groups of His170 and His42. Both amino acids are important for the peroxidase activity of HRP as an axial ligand of hemin (proximal His170) and as an acid/base catalyst (distal His42). A key feature of the peroxidase mechanism of HRP is the initial formation of compound I under heterolytic cleavage of added hydrogen peroxide as a terminal oxidant. Investigations of free hemin dispersed in aqueous solution showed that different types of hemin dimers can form, depending on the experimental conditions, possibly resulting in hemin crystallization. Although it has been recognized already in the 1970s that hemin aggregation can be prevented in aqueous solution by using micelle-forming amphiphiles, it remains a challenge to prepare hemin-containing micellar and vesicular systems with peroxidase-like activities. Such systems are of interest as cheap HRP-mimicking catalysts for analytical and synthetic applications. Some of the key concepts on which research in this fascinating and interdisciplinary field is based are summarized, along with major accomplishments and possible directions for further improvement. A systematic analysis of the physico-chemical properties of hemin in aqueous micellar solutions and vesicular dispersions must be combined with a reliable evaluation of its catalytic activity. Future studies should show how well the molecular complexity around hemin in HRP can be mimicked by using micelles or vesicles. Because of the importance of heme b in virtually all biological systems and the fact that porphyrins and hemes can be obtained under potentially prebiotic conditions, ideas exist about the possible role of heme-containing micellar and vesicular systems in prebiotic times.
Collapse
|
19
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
20
|
Catalytic Peptides: the Challenge between Simplicity and Functionality. Isr J Chem 2022. [DOI: 10.1002/ijch.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Teng Q, Wu H, Sun H, Liu Y, Wang H, Wang ZG. Switchable Enzyme-mimicking catalysts Self-Assembled from de novo designed peptides and DNA G-quadruplex/hemin complex. J Colloid Interface Sci 2022; 628:1004-1011. [PMID: 35970126 DOI: 10.1016/j.jcis.2022.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 01/02/2023]
Abstract
Reconstruction of enzymatic active site in an artificial system is key to achieving high catalytic efficiency. Herein, we report the self-assembly of the lysine-containing peptides with guanine-rich DNA and hemin to form peroxidase-mimicking active sites and catalytic nanoparticles. The DNA strand self-folds into a G-quadruplex structure that provides a supramolecular scaffold and a potential axial ligand for hemin. The β-sheet forming capability of the lysine-containing peptides is found to affect the catalytic synergy between the G-quadruplex DNA and the peptide. It is hypothesized that the β-sheet formation of the peptides results in the enrichment of the lysine residues, which distribute on the distal side of hemin to promote the formation of Compound I, like distal arginine residue in natural heme pocket. Incorporation of the histidine residues into the lysine-containing peptides further enhanced the hemin activities, indicating the cooperation between the lysine and histidine. Furthermore, the peptide/DNA/hemin complexes can be switched between active and inactive state by reversible formation and deformation of the DNA G-quadruplex, which was attributed to the peptides-promoted conformational changes of the DNA components. This work opens an avenue to mimic the catalytic residues and their spatial distribution in the natural enzymes, and shed light on the design of the smart biocatalysts that can respond to the environmental stimuli.
Collapse
Affiliation(s)
- Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Christopher Fry H, Divan R, Liu Y. Designing 1D multiheme peptide amphiphile assemblies reminiscent of natural systems. NANOSCALE 2022; 14:10082-10090. [PMID: 35792094 DOI: 10.1039/d2nr00473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Protein assemblies that bind and organize ordered arrays of cofactors yield function structures. Multiheme assemblies found in nature yield electronically conductivity 1D nanoscale fibers and are employed in anaerobic respiration. To understand the fundamental characteristics of these organized arrays, the design of peptide amphiphiles that assemble into 1D nanostructures and yield metalloporphyrin binding sites is presented. One challenge with this class of peptide amphiphiles is identifying the correct sequence composition for high affinity binding with high heme density. Here, the peptide c16-AH(Kx)n-CO2H is explored to identify the impact of sequence length (n) and amino acid identity (x = L, I, or F) on binding affinity and midpoint potential. When n = 2, the peptide assembly yields the greatest affinity. The resulting nanoscale assemblies yield ordered arrays of the redox active molecule heme and have potential utility in the development of supramolecular bioelectronic materials useful in sensing as well as the development of enzymatic materials.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439, USA.
| |
Collapse
|
23
|
Kohn EM, Shirley DJ, Hinds NM, Fry HC, Caputo GA. Peptide‐assisted
supramolecular polymerization of the anionic porphyrin
meso‐tetra
(
4‐sulfonatophenyl
)porphine. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eric M. Kohn
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
- Bantivoglio Honors College Rowan University Glassboro New Jersey USA
- Department of Chemistry University of Wisconsin Madison Wisconsin USA
| | - David J. Shirley
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
- Division of Chemical Biology and Medicinal Chemistry Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Nicole M. Hinds
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| | - H. Christopher Fry
- Argonne National Laboratory Center for Nanoscale Materials Lemont Illinois USA
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry Rowan University Glassboro New Jersey USA
| |
Collapse
|
24
|
Zhou Z, He W, Chao H, Wang H, Su P, Song J, Yang Y. Insertion of Hemin into Metal-Organic Frameworks: Mimicking Natural Peroxidase Microenvironment for the Rapid Ultrasensitive Detection of Uranium. Anal Chem 2022; 94:6833-6841. [PMID: 35482423 DOI: 10.1021/acs.analchem.2c00661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constructing enzyme-like active sites in mimic enzyme systems is critical for achieving catalytic performances comparable to natural enzymes and can shed light on the natural development of enzymes. In this study, we described a specific hemin-based mimetic enzyme, which was facilely synthesized by the assembly of zeolitic imidazolate framework-l (ZIF-l) and hemin. The obtained hemin-based mimetic enzyme (denoted as ZIF-l-hemin) displayed enhanced peroxidase activity compared to free hemin in solution. Such excellent activity originated from the ZIF-l framework mimicking the active site cavity microenvironment of horseradish peroxidase in terms of axially coordinated histidine and distal histidine. Additionally, the constructed peroxidase mimetic was extremely resistant to a variety of severe circumstances that would normally denature natural enzymes. These characteristics made ZIF-l-hemin a potential platform for the colorimetric sensor of uranium (UO22+) with wide linear ranges (0.25-40 μM) and low limits of detection (0.079 μM). Moreover, the detection mechanism demonstrated that the coordination of uranyl ion with imidazole of ZIF-l-hemin reduced the catalytic efficiency of ZIF-l-hemin. The current work not only proposed a novel approach for fabricating artificial peroxidase but also offered facile colorimetric methods for selective radionuclide detection.
Collapse
Affiliation(s)
- Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenting He
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hao Chao
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Han Wang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
25
|
Chatterjee A, Reja A, Pal S, Das D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem Soc Rev 2022; 51:3047-3070. [PMID: 35316323 DOI: 10.1039/d1cs01178b] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the billions of years of the evolutionary journey, primitive polymers, involved in proto metabolic pathways with low catalytic activity, played critical roles in the emergence of modern enzymes with remarkable substrate specificity. The precise positioning of amino acid residues and the complex orchestrated interplay in the binding pockets of evolved enzymes promote covalent and non-covalent interactions to foster a diverse set of complex catalytic transformations. Recent efforts to emulate the structural and functional information of extant enzymes by minimal peptide based assemblies have attempted to provide a holistic approach that could help in discerning the prebiotic origins of catalytically active binding pockets of advanced proteins. In addition to the impressive sets of advanced biochemical transformations, catalytic promiscuity and cascade catalysis by such small molecule based dynamic systems can foreshadow the ancestral catalytic processes required for the onset of protometabolism. Looking beyond minimal systems that work close to equilibrium, catalytic systems and compartments under non-equilibrium conditions utilizing simple prebiotically relevant precursors have attempted to shed light on how bioenergetics played an essential role in chemical emergence of complex behaviour. Herein, we map out these recent works and progress where diverse sets of complex enzymatic transformations were demonstrated by utilizing minimal peptide based self-assembled systems. Further, we have attempted to cover the examples of peptide assemblies that could feature promiscuous activity and promote complex multistep cascade reaction networks. The review also covers a few recent examples of minimal transient catalytic assemblies under non-equilibrium conditions. This review attempts to provide a broad perspective for potentially programming functionality via rational selection of amino acid sequences leading towards minimal catalytic systems that resemble the traits of contemporary enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
26
|
Tian R, Li Y, Xu J, Hou C, Luo Q, Liu J. Recent development in the design of artificial enzymes through molecular imprinting technology. J Mater Chem B 2022; 10:6590-6606. [DOI: 10.1039/d2tb00276k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymes, a class of proteins or RNA with high catalytic efficiency and specificity, have inspired generations of scientists to develop enzyme mimics with similar capabilities. Many enzyme mimics have been...
Collapse
|
27
|
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn RV. Peptide-Based Supramolecular Systems Chemistry. Chem Rev 2021; 121:13869-13914. [PMID: 34519481 DOI: 10.1021/acs.chemrev.1c00089] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.
Collapse
Affiliation(s)
- Fahmeed Sheehan
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Deborah Sementa
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Ankit Jain
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States
| | - Mohit Kumar
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona 08028, Spain
| | - Mona Tayarani-Najjaran
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States
| | - Daniela Kroiss
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| | - Rein V Ulijn
- Advanced Science Research Center (ASRC) at the Graduate Center City University of New York 85 St. Nicholas Terrace New York, New York 10031, United States.,Department of Chemistry, Hunter College City University of New York 695 Park Avenue, New York, New York 10065, United States.,Ph.D. Program in Chemistry The Graduate Center of the City University of New York 365 fifth Avenue, New York, New York 10016, United States.,Ph.D. Program in Biochemistry The Graduate Center of the City University of New York 365 5th Avenue, New York, New York 10016, United States
| |
Collapse
|
28
|
Sandland J, Rimmer SD, Savoie H, Boyle RW. Bio-Orthogonal Conjugation of a Cationic Metalloporphyrin to BSA and HSA via "Click" Chemistry. Chembiochem 2021; 22:2624-2631. [PMID: 34096676 DOI: 10.1002/cbic.202100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Indexed: 11/11/2022]
Abstract
In this study, we present a convenient method for the labelling of tyrosine residues on bovine serum albumin (BSA) and human serum albumin (HSA) and report for the first time their subsequent bio-orthogonal conjugation with porphyrins via "click" chemistry. We demonstrate that these serum proteins can be labelled with an alkyne-diazonium heterobifunctional linker and can then undergo chemo-selective bio-orthogonal conjugation with a water-soluble azido metalloporphyrin via "click" chemistry to yield protein-conjugates that retain their photodynamic properties. In our hands, this method was found to be highly reproducible, scalable, and tuneable which allows for the production of bioconjugates where the porphyrin-protein conjugate not only retains an ability to generate singlet oxygen but possess an enhanced relative singlet oxygen quantum yields relative to the porphyrin alone. Furthermore, we have investigated the photochemical properties of these conjugates through photospectrometric techniques and have determined that the porphyrin macrocycles remain appreciably photostable under light irradiation. Our phototoxic protein-photosensitizer-conjugates show excellent photodynamic activity against a human colorectal adenocarcinoma cancer cell line (HT-29) with cell viabilities of 7.7±0.5 % (IC50 8.76±2.14 μM) and 1.7±1.9 % (IC50 8.48±5.11 μM) for BSA and HAS, respectively, when irradiated with 20 J cm-2 of white-light. Importantly, neither of the conjugates was found to possess any significant "dark" toxicity even at concentrations of 100 μM. Furthermore, the natural fluorescent properties of the bioconjugates allowed for the determination of cellular uptake in vitro via fluorescence microscopy thus highlighting the potential theranostic applications of these unique protein-drug-conjugates.
Collapse
Affiliation(s)
- Jordon Sandland
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, E. Yorkshire, HU6 7RX, UK
| | - Sam D Rimmer
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, E. Yorkshire, HU6 7RX, UK
| | - Huguette Savoie
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, E. Yorkshire, HU6 7RX, UK
| | - Ross W Boyle
- Department of Chemistry and Biochemistry, University of Hull, Cottingham Road, Hull, E. Yorkshire, HU6 7RX, UK
| |
Collapse
|
29
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
30
|
Geng R, Chang R, Zou Q, Shen G, Jiao T, Yan X. Biomimetic Nanozymes Based on Coassembly of Amino Acid and Hemin for Catalytic Oxidation and Sensing of Biomolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008114. [PMID: 33760401 DOI: 10.1002/smll.202008114] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Indexed: 05/20/2023]
Abstract
Nanoassemblies based on self-assembly of biological building blocks are promising in mimicking the nanostructures, properties, and functionalities of natural enzymes. However, it remains a challenge to design of biomimetic nanozymes with tunable nanostructures and enhanced catalytic activities starting from simple biomolecules. Herein, the construction of nanoassemblies through coassembly of an amphiphilic amino acid and hemin is reported. The nanostructures and morphologies of the resulting nanoassemblies are readily controlled by tuning the molar ratio between the amino acid and hemin, thus leading to tailored peroxidase-mimicking activities of the nanoassemblies. Importantly, the optimized nanoassemblies exhibit a remarkable catalytic efficiency that is comparable to the natural counterpart when considering molecular mass along with good robustness in multiple catalytic cycles. The nanoassemblies are effectively integrated as biomimetic nanozymes in a sensing system for catalytic detection of glucose. Therefore, this work demonstrates that nanozymes with advanced catalytic capabilities can be constructed by self-assembly of minimalist biological building blocks and may thus promote the rational design and catalytic applications of biomimetic nanozymes.
Collapse
Affiliation(s)
- Rui Geng
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Guizhi Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, 211135, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
31
|
Zozulia O, Marshall LR, Kim I, Kohn EM, Korendovych IV. Self-Assembling Catalytic Peptide Nanomaterials Capable of Highly Efficient Peroxidase Activity. Chemistry 2021; 27:5388-5392. [PMID: 33460473 PMCID: PMC8208039 DOI: 10.1002/chem.202100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Indexed: 12/13/2022]
Abstract
The self-assembly of short peptides gives rise to versatile nanomaterials capable of promoting efficient catalysis. We have shown that short, seven-residue peptides bind hemin to produce functional catalytic materials which display highly efficient peroxidation activity, reaching a catalytic efficiency of 3×105 m-1 s-1 . Self-assembly is essential for catalysis as non-assembling controls show no activity. We have also observed peroxidase activity even in the absence of hemin, suggesting the potential to alter redox properties of substrates upon association with the assemblies. These results demonstrate the practical utility of self-assembled peptides in various catalytic applications and further support the evolutionary link between amyloids and modern-day enzymes.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Inhye Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Eric M. Kohn
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244 (USA)
| |
Collapse
|
32
|
Makhlynets OV, Caputo GA. Characteristics and therapeutic applications of antimicrobial peptides. BIOPHYSICS REVIEWS 2021; 2:011301. [PMID: 38505398 PMCID: PMC10903410 DOI: 10.1063/5.0035731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
The demand for novel antimicrobial compounds is rapidly growing due to the phenomenon of antibiotic resistance in bacteria. In response, numerous alternative approaches are being taken including use of polymers, metals, combinatorial approaches, and antimicrobial peptides (AMPs). AMPs are a naturally occurring part of the immune system of all higher organisms and display remarkable broad-spectrum activity and high selectivity for bacterial cells over host cells. However, despite good activity and safety profiles, AMPs have struggled to find success in the clinic. In this review, we outline the fundamental properties of AMPs that make them effective antimicrobials and extend this into three main approaches being used to help AMPs become viable clinical options. These three approaches are the incorporation of non-natural amino acids into the AMP sequence to impart better pharmacological properties, the incorporation of AMPs in hydrogels, and the chemical modification of surfaces with AMPs for device applications. These approaches are being developed to enhance the biocompatibility, stability, and/or bioavailability of AMPs as clinical options.
Collapse
Affiliation(s)
- Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, USA
| | | |
Collapse
|
33
|
Fry HC, Peters BL, Ferguson AL. Pushing and Pulling: A Dual pH Trigger Controlled by Varying the Alkyl Tail Length in Heme Coordinating Peptide Amphiphiles. J Phys Chem B 2021; 125:1317-1330. [PMID: 33529038 DOI: 10.1021/acs.jpcb.0c07713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Some organisms in nature that undergo anaerobic respiration utilize 1D nanoscale arrays of densely packed cytochromes containing the molecule heme. The assemblies can be mimicked with 1D nanoscale fibrils composed of peptide amphiphiles designed to coordinate heme in dense arrays. To create such materials and assemblies, it is critical to understand the assembly process and what controls the various aspects of hierarchical assembly. MD simulations suggest that shorter alkyl chains on the peptide lead to more dynamic structures than the peptides with longer chains that yield kinetically trapped states. The hydration parameters manifest themselves experimentally through the observation of a dual pH trigger, which controls the peptide assembly rate, the heme binding affinity, and heme organization kinetics. Great strides in understanding the relative complexity of the self-assembly process in relation to incorporating a functional moiety like heme opens up many possibilities in developing abiotic assemblies for bioelectronic devices and assemblies.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nansocale Materials, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Argonne, Illinois 60712, United States
| | - Brandon L Peters
- Materials Science Division, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, Argonne, Illinois 60712, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
34
|
Abstract
The field of de novo protein design has met with considerable success over the past few decades. Heme, a cofactor, has often been introduced to impart a diverse array of functions to a protein, ranging from electron transport to respiration. In nature, heme is found to occur predominantly in α-helical structures over β-sheets, which has resulted in significant designs of heme proteins utilizing coiled-coil helices. By contrast, there are only a few known β-sheet proteins that bind heme and designs of β-sheets frequently result in amyloid-like aggregates. This review reflects on our success in designing a series of multistranded β-sheet heme binding peptides that are well folded in both aqueous and membrane-like environments. Initially, we designed a β-hairpin peptide that self-assembles to bind heme and performs peroxidase activity in membrane. The β-hairpin was optimized further to accommodate a heme binding pocket within multistranded β-sheets for catalysis and electron transfer in membranes. Furthermore, we de novo designed and characterized β-sheet peptides and miniproteins that are soluble in an aqueous environment capable of binding single and multiple hemes with high affinity and stability. Collectively, these studies highlight the substantial progress made toward the design of functional β-sheets.
Collapse
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
35
|
Lengyel-Zhand Z, Marshall LR, Jung M, Jayachandran M, Kim MC, Kriews A, Makhlynets OV, Fry HC, Geyer A, Korendovych IV. Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids. Chembiochem 2021; 22:585-591. [PMID: 32956537 PMCID: PMC8009494 DOI: 10.1002/cbic.202000645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/14/2022]
Abstract
The self-assembly of short peptides into catalytic amyloid-like nanomaterials has proven to be a powerful tool in both understanding the evolution of early proteins and identifying new catalysts for practically useful chemical reactions. Here we demonstrate that both parallel and antiparallel arrangements of β-sheets can accommodate metal ions in catalytically productive coordination environments. Moreover, synergistic relationships, identified in catalytic amyloid mixtures, can be captured in macrocyclic and sheet-loop-sheet species, that offer faster rates of assembly and provide more complex asymmetric arrangements of functional groups, thus paving the way for future designs of amyloid-like catalytic proteins. Our findings show how initial catalytic activity in amyloid assemblies can be propagated and improved in more-complex molecules, providing another link in a complex evolutionary chain between short, potentially abiotically produced peptides and modern-day enzymes.
Collapse
Affiliation(s)
- Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Liam R Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Maximilian Jung
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Megha Jayachandran
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Min-Chul Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Austin Kriews
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - Olga V Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Armin Geyer
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
36
|
Dognini P, Coxon CR, Alves WA, Giuntini F. Peptide-Tetrapyrrole Supramolecular Self-Assemblies: State of the Art. Molecules 2021; 26:693. [PMID: 33525730 PMCID: PMC7865683 DOI: 10.3390/molecules26030693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
The covalent and noncovalent association of self-assembling peptides and tetrapyrroles was explored as a way to generate systems that mimic Nature's functional supramolecular structures. Different types of peptides spontaneously assemble with porphyrins, phthalocyanines, or corroles to give long-range ordered architectures, whose structure is determined by the features of both components. The regular morphology and ordered molecular arrangement of these systems enhance the photochemical properties of embedded chromophores, allowing applications as photo-catalysts, antennas for dye-sensitized solar cells, biosensors, and agents for light-triggered therapies. Chemical modifications of peptide and tetrapyrrole structures and control over the assembly process can steer the organization and influence the properties of the resulting system. Here we provide a review of the field, focusing on the assemblies obtained from different classes of self-assembling peptides with tetrapyrroles, their morphologies and their applications as innovative functional materials.
Collapse
Affiliation(s)
- Paolo Dognini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Christopher R. Coxon
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh AH14 4AS, UK;
| | - Wendel A. Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-380, Brazil;
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
37
|
Liu S, Du P, Sun H, Yu HY, Wang ZG. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Peidong Du
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao Sun
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| | - Hai-Yin Yu
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Nanlu, Wuhu, Anhui 241002, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic−Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Marshall LR, Jayachandran M, Lengyel-Zhand Z, Rufo CM, Kriews A, Kim MC, Korendovych IV. Synergistic Interactions Are Prevalent in Catalytic Amyloids. Chembiochem 2020; 21:2611-2614. [PMID: 32329215 PMCID: PMC7605102 DOI: 10.1002/cbic.202000205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Indexed: 11/05/2022]
Abstract
Interactions between multiple functional groups are key to catalysis. Previously, we reported synergistic interactions in catalytic amyloids formed by mixtures of heptameric peptides that lead to significant improvements in esterase activity. Herein, we describe the in-depth investigation of synergistic interactions within a family of amyloid fibrils, exploring the results of functional group interactions, the effects of chirality and the use of mixed enantiomers within fibrils. Remarkably, we find that synergistic interactions (either positive or negative) are found in the vast majority of binary mixtures of catalytic amyloid-forming peptides. The productive arrangements of functionalities rapidly identified by mixing different peptides will undoubtedly lead to the development of more active catalysts for a variety of different transformations.
Collapse
Affiliation(s)
- Liam R. Marshall
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Megha Jayachandran
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Zsofia Lengyel-Zhand
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Caroline M. Rufo
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Austin Kriews
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Min-Chul Kim
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Ivan V. Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
39
|
Zozulia O, Korendovych IV. Semi-Rationally Designed Short Peptides Self-Assemble and Bind Hemin to Promote Cyclopropanation. Angew Chem Int Ed Engl 2020; 59:8108-8112. [PMID: 32128962 PMCID: PMC7274867 DOI: 10.1002/anie.201916712] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 11/11/2022]
Abstract
The self-assembly of short peptides gives rise to versatile nanoassemblies capable of promoting efficient catalysis. We have semi-rationally designed a series of seven-residue peptides that form hemin-binding catalytic amyloids to facilitate enantioselective cyclopropanation with efficiencies that rival those of engineered hemin proteins. These results demonstrate that: 1) Catalytic amyloids can bind complex metallocofactors to promote practically important multisubstrate transformations. 2) Even essentially flat surfaces of amyloid assemblies can impart a substantial degree of enantioselectivity without the need for extensive optimization. 3) The ease of peptide preparation allows for straightforward incorporation of unnatural amino acids and the preparation of peptides made from d-amino acids with complete reversal of enantioselectivity.
Collapse
Affiliation(s)
- Oleksii Zozulia
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
40
|
Zozulia O, Korendovych IV. Semi‐Rationally Designed Short Peptides Self‐Assemble and Bind Hemin to Promote Cyclopropanation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Oleksii Zozulia
- Department of ChemistrySyracuse University 111 College Place Syracuse NY 13244 USA
| | - Ivan V. Korendovych
- Department of ChemistrySyracuse University 111 College Place Syracuse NY 13244 USA
| |
Collapse
|
41
|
Fan MF, Wang HM, Nan LJ, Wang AJ, Luo X, Yuan PX, Feng JJ. The mimetic assembly of cobalt prot-porphyrin with cyclodextrin dimer and its application for H2O2 detection. Anal Chim Acta 2020; 1097:78-84. [DOI: 10.1016/j.aca.2019.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 01/19/2023]
|
42
|
Song S, Wang J, Song N, Di H, Liu D, Yu Z. Peptide interdigitation-induced twisted nanoribbons as chiral scaffolds for supramolecular nanozymes. NANOSCALE 2020; 12:2422-2433. [PMID: 31916547 DOI: 10.1039/c9nr09492j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Establishing reliable strategies for rationally manipulating the organization of peptide building blocks and thereby precisely creating chiral nanostructures is challenging, while meaningful toward development of advanced functional materials. Here we report on a peptide-interdigitating mechanism for the reliable self-assembly of lipid-inspired amphiphiles (LIPIAs) into robust twisted nanoribbons by grafting domains to one alkyl tail of lipids as an extended element. Peptide interdigitation promoted the self-assembly of LIPIAs into twisted or flat nanoribbons driven by antiparallel or parallel β-sheet hydrogen bonds, respectively, strongly associated with the connecting direction of the incorporated domains. We found that the LIPIAs containing N-terminus-connected domains with either bulky or small side chain groups formed twisted nanoribbons in a broad pH range, thus implying a sequence- and pH-independent strategy for creation of robust chiral nanostructures. Integrating the resulting twisted nanoribbons with gold nanoparticles led to supramolecular nanozymes exhibiting the excellent catalytic activity and enantioselectivity of asymmetric oxidation of 3,4-dihyroxy-phenylalanine molecules. Our finding demonstrates that the peptide-interdigitating mechanism is a reliable strategy for precise creation of chiral nanostructures serving as chiral matrices for supramolecular nanozymes with improved catalytic performance, thus potentially paving the way towards advanced biomimetic systems resembling natural systems.
Collapse
Affiliation(s)
- Shuxin Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Huixia Di
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
43
|
Chivers PRA, Kelly JA, Hill MJS, Smith DK. First-generation shaped gel reactors based on photo-patterned hybrid hydrogels. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00109k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper reports the development of first-generation photo-patterned ring-shaped gel reactors that catalyse the hydrolysis of para-nitrophenol phosphate using a phosphatase enzyme.
Collapse
|
44
|
Fry HC, Solomon LA, Diroll BT, Liu Y, Gosztola DJ, Cohn HM. Morphological Control of Chromophore Spin State in Zinc Porphyrin–Peptide Assemblies. J Am Chem Soc 2019; 142:233-241. [DOI: 10.1021/jacs.9b09935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- H. Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Lee A. Solomon
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Benjamin T. Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - David J. Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| | - Hannah M. Cohn
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois60439, United States
| |
Collapse
|
45
|
|
46
|
Dolan MA, Basa PN, Zozulia O, Lengyel Z, Lebl R, Kohn EM, Bhattacharya S, Korendovych IV. Catalytic Nanoassemblies Formed by Short Peptides Promote Highly Enantioselective Transfer Hydrogenation. ACS NANO 2019; 13:9292-9297. [PMID: 31314486 PMCID: PMC7235949 DOI: 10.1021/acsnano.9b03880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly enables formation of incredibly diverse supramolecular structures with practically important functions from simple and inexpensive building blocks. Here, we show how a semirational, bottom-up approach to create emerging properties can be extended to a design of highly enantioselective catalytic nanoassemblies. The designed peptides comprising as few as two amino acid residues spontaneously self-assemble in the presence of metal ions to form supramolecular, vesicle-like nanoassemblies that promote transfer hydrogenation of ketones in an aqueous phase with excellent conversion rates and enantioselectivities (>90% ee).
Collapse
Affiliation(s)
- Martin A Dolan
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Prem N Basa
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Oleksii Zozulia
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Zsófia Lengyel
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - René Lebl
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Eric M Kohn
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Sagar Bhattacharya
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| | - Ivan V Korendovych
- Department of Chemistry , Syracuse University , 111 College Place , Syracuse , New York 13244 , United States
| |
Collapse
|
47
|
Lian M, Zhang S, Chen J, Liu X, Chen X, Yang W. Self-Assembling Peptide Artificial Enzyme as an Efficient Detection Prober and Inhibitor for Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:2185-2191. [DOI: 10.1021/acsabm.9b00160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meiling Lian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Shuo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Xuejiao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
48
|
Oliva F, Bucci R, Tamborini L, Pieraccini S, Pinto A, Pellegrino S. Bicyclic Pyrrolidine-Isoxazoline γ Amino Acid: A Constrained Scaffold for Stabilizing α-Turn Conformation in Isolated Peptides. Front Chem 2019; 7:133. [PMID: 30937302 PMCID: PMC6431668 DOI: 10.3389/fchem.2019.00133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/20/2019] [Indexed: 12/22/2022] Open
Abstract
Unnatural amino acids have tremendously expanded the folding possibilities of peptides and peptide mimics. While α,α-disubstituted and β-amino acids are widely studied, γ-derivatives have been less exploited. Here we report the conformational study on the bicyclic unnatural γ amino acid, 4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-3-carboxylic acid 1. In model peptides, the (+)-(3aR6aS)-enantiomer is able to stabilize α-turn conformation when associated to glycine, as showed by 1H-NMR, FT-IR, and circular dichroism experiments, and molecular modeling studies. α-turn is a structural motif occurring in many biologically active protein sites, although its stabilization on isolated peptides is quite uncommon. Our results make the unnatural γ-amino acid 1 of particular interest for the development of bioactive peptidomimetics.
Collapse
Affiliation(s)
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Zhu M, Wang M, Qi W, Su R, He Z. Constructing peptide-based artificial hydrolases with customized selectivity. J Mater Chem B 2019. [DOI: 10.1039/c9tb00408d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substrate selectivity of peptide-based artificial enzymes can be customized by combining molecularly imprinted polymers as binding sites with peptide nanofibers as catalytic moieties.
Collapse
Affiliation(s)
- Mingjie Zhu
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| |
Collapse
|
50
|
Fan X, Tian R, Wang T, Liu S, Wang L, Xu J, Liu J, Ma M, Wu Z. An ultrathin iron-porphyrin based nanocapsule with high peroxidase-like activity for highly sensitive glucose detection. NANOSCALE 2018; 10:22155-22160. [PMID: 30474099 DOI: 10.1039/c8nr07288d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For the first time, an ultrathin iron-porphyrin based polymer nanocapsule with multiple peroxidase-like catalytic centers was constructed by covalently assembling iron-porphyrin monomers; this nanocapsule with a single molecule thickness shell acted as a highly efficient artificial enzyme for mimicking peroxidase. On the basis of the peroxidase-like activity of Fe-TPyP based nanocapsules (Fe-TPyP NCs), a highly sensitive colorimetric sensor for glucose determination was fabricated, the limit of detection was found to be as low as 0.098 μM. This study provided a novel strategy for developing artificial enzymes based on covalently assembled nanostructures. Furthermore, the colorimetric sensor for glucose determination showed potential applications in biomedicine and biology.
Collapse
Affiliation(s)
- Xiaotong Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Road, Changchun 130012, China.
| | | | | | | | | | | | | | | | | |
Collapse
|