1
|
Cai T, Lei X, Shang HB, Li X, Guo Y, Wu LX, Liu H, Li D. Precise Light-Driven Polarity of Stationary Phase for Regulating Gradient Separation of Liquid Chromatography. Anal Chem 2024. [PMID: 39721992 DOI: 10.1021/acs.analchem.4c05545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, trans-azobenzene ratio, and chromatographic retention factor (k) (R2 > 0.9586). In this system, the plausible control mechanism of stationary phase's polarity is the synergistic effect of the self-molecular polarity difference and the occupation (or release) of polar groups on the stationary phase surface by cis-trans isomerism. Furthermore, a "light control-time ratio cycle" strategy was first reported to maintain an arbitrary ratio of trans-azobenzene corresponding to the polarity gradient of the stationary phase during the whole chromatographic separation process, which is verified by a close correlation of the retention time of the targets and the ratio of light-controlled time (R2 > 0.9977). The "gradient elution" of the targets was also surprisingly realized due to the gradient regulation of stationary phase's polarity by the programmatic control of alternate light induction and time ratio. This work further advances the practical significance of photosensitive chromatography in "one column for multiple columns", even "one column for multidimensional chromatography", and truly provides research foundation for its development in the separation and analysis of complex biological samples.
Collapse
Affiliation(s)
- Tianpei Cai
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China
| | - Xinyue Lei
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China
| | - Hai-Bo Shang
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China
- Interdisciplinary Program of Biological Functional Molecules, MOE Key Laboratory of Natural Medicines of the Changbai Mountain, Yanbian University, Yanji City 133002, Jilin Province, China
| | - Xia Li
- Interdisciplinary Program of Biological Functional Molecules, MOE Key Laboratory of Natural Medicines of the Changbai Mountain, Yanbian University, Yanji City 133002, Jilin Province, China
| | - Yetong Guo
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China
| | - Li-Xin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Huwei Liu
- College of Life Sciences, Wuchang University of Technology, Wuhan 430204, China
| | - Donghao Li
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China
- Interdisciplinary Program of Biological Functional Molecules, MOE Key Laboratory of Natural Medicines of the Changbai Mountain, Yanbian University, Yanji City 133002, Jilin Province, China
| |
Collapse
|
2
|
Chen Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules 2024; 29:4523. [PMID: 39407453 PMCID: PMC11477607 DOI: 10.3390/molecules29194523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Photoregulation of biomolecules has become crucial tools in chemical biology, because light enables access under mild conditions and with delicate spatiotemporal control. The control of enzyme activity in a reversible way is a challenge. To achieve it, a facile approach is to use photoswitchable inhibitors. This review highlights recent progress in photoswitchable inhibitors based on azobenzenes units. The progress suggests that the incorporation of an azobenzene unit to a known inhibitor is an effective method for preparing a photoswitchable inhibitor, and with these photoswitchable inhibitors, the activity of enzymes can be regulated by optical control, which is valuable in both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Zhao CC, Peng S, Wang JR, Hou X, Zhao Y, Huang F. Azobenzene-based liposomes with nanomechanical action for cytosolic chemotherapeutic drug delivery. Colloids Surf B Biointerfaces 2024; 245:114198. [PMID: 39236362 DOI: 10.1016/j.colsurfb.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
The stimuli-responsive nano-carriers are at the forefront of research in nanotechnology and materials science. These advanced systems are designed to alter their physicochemical properties upon exposure to specific stimuli, enabling controllable and targeted delivery of therapeutic agents. Nevertheless, limited endosomal escape reduces the drug bioavailability in clinical use. We herein report azobenzene (Azo)-based liposomes, prepared by co-assembling the photoisomerizable cationic Azo lipids and helper lipids, which achieve controllable doxorubicin (Dox) release and enhanced cytosolic transport upon light irradiation. Azo lipids undergo reversible isomerization between cis-isomers and trans-isomer when received UV and visible (Vis) light irradiation, causing liposomal membrane permeability changes for controlled drug release. Moreover, the nanomechanical action created by the isomerization of Azo lipids promotes the endosomal escape of the liposomes. DSPC-Azo liposomes, with minimal Dox leakage, showed significant tumor cell killing upon irradiation. For in vivo study, we co-encapsulated the upconverting nanoparticles (UCNPs), which can convert the near-infrared (NIR) light into UV/Vis emissions, facilitating Azo units activation. UCNP/Dox-loaded DSPC-Azo liposomes inhibited tumor growth under NIR irradiation in a 4T1 tumor-bearing mouse model.
Collapse
Affiliation(s)
- Cui-Cui Zhao
- Department of VIP Ward, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy (Tianjin), Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300060, China
| | - Shiyu Peng
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jialiang Rachel Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yu Zhao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States.
| | - Fan Huang
- State Key Laboratory of Advanced Medicals and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
4
|
Zhao Y, Huang Q, Li Q, Chen Z, Liu Y. Bidirectional Regulation of Intracellular Enzyme Activity Using Light-Driven Nano-Inhibitors. Angew Chem Int Ed Engl 2024; 63:e202318533. [PMID: 38196066 DOI: 10.1002/anie.202318533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Photochemical regulation provides precise control over enzyme activities with high spatiotemporal resolution. A promising approach involves anchoring "photoswitches" at enzyme active sites to modulate substrate recognition. However, current methods often require genetic mutations and irreversible enzyme modifications for the site-specific anchoring of "photoswitches", potentially compromising the enzyme activities. Herein, we present a pioneering reversible nano-inhibitor based on molecular imprinting technique for bidirectional regulation of intracellular enzyme activity. The nano-inhibitor employs a molecularly imprinted polymer nanoparticle as its body and azobenzene-modified inhibitors ("photoswitches") as the arms. By using a target enzyme as the molecular template, the nano-inhibitor acquires oriented binding sites on its surface, resulting in a high affinity for the target enzyme and non-covalently firm anchoring of the azobenzene-modified inhibitor to the enzyme active site. Harnessing the reversible isomerization of azobenzene units upon exposure to ultraviolet and visible light, the nano-inhibitor achieves bidirectional enzyme activity regulation by precisely docking and undocking inhibitor at the active site. Notably, this innovative approach enables the facile in situ regulation of intracellular endogenous enzymes, such as carbonic anhydrase. Our results represent a practical and versatile tool for precise enzyme activity regulation in complex intracellular environments.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qingqing Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zihan Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
5
|
Thongchai IA, Knepp ZJ, Fertal DR, Flynn H, Young ER, Fredin LA. Acid Violet 3: A Base-Activated Water-Soluble Photoswitch. J Phys Chem A 2024; 128:785-791. [PMID: 38236752 PMCID: PMC10839829 DOI: 10.1021/acs.jpca.3c07128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Acidic azo dyes are widely used for their vibrant colors. However, if their photophysics were better understood and controllable, they could be integrated into many more applications such as photosensing, photomedicine, and nonlinear optics. Here, the proton-controlled photophysics of a widely used acid, hydrazo dye, acid violet 3 (AV3) is explored. Density functional theory is used to predict the ground- and excited-state potential energy surfaces, and the proposed photoisomerization mechanism is confirmed with spectroscopic experiments. The ground-state and first two excited-state surfaces of the three readily accessible protonation states, AV3-H, AV3, and AV3+H, are investigated along both the dihedral rotation and inversion coordinates. The deprotonated AV3-H undergoes photoisomerization with blue light (λex = 453 nm) through a dihedral rotation mechanism. Upon the formation of the cis-isomer, the reversion of AV3-H is predicted to occur through a mixed rotational and inversion mechanism. In contrast, AV3 and its protonated form, AV3+H, do not undergo photoisomerization because there is no driving force for either the rotation or inversion of the azo bond in the excited state. In addition, when the azo bond is acidic, the ground-state dihedral rotation reversion mechanism barrier is lower. The mechanistic insights gained here through the combination of theory and experiment provide a roadmap to control the reactivity of AV3 across 11 orders of magnitude of proton concentration, making them interesting candidates for a range of pharmaceuticals.
Collapse
Affiliation(s)
- Ing-Angsara Thongchai
- Department of Chemistry, Lehigh
University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Zachary J. Knepp
- Department of Chemistry, Lehigh
University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Domenica R. Fertal
- Department of Chemistry, Lehigh
University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Helen Flynn
- Department of Chemistry, Lehigh
University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Elizabeth R. Young
- Department of Chemistry, Lehigh
University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Lisa A. Fredin
- Department of Chemistry, Lehigh
University, 6 E. Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
6
|
Zhang K, Zhou Y, Zhang J, Liu Q, Hanenberg C, Mourran A, Wang X, Gao X, Cao Y, Herrmann A, Zheng L. Shape morphing of hydrogels by harnessing enzyme enabled mechanoresponse. Nat Commun 2024; 15:249. [PMID: 38172560 PMCID: PMC10764310 DOI: 10.1038/s41467-023-44607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Hydrogels have been designed to react to many different stimuli which find broad applications in tissue engineering and soft robotics. However, polymer networks bearing mechano-responsiveness, especially those displaying on-demand self-stiffening and self-softening behavior, are rarely reported. Here, we design a mechano-controlled biocatalytic system at the molecular level that is incorporated into hydrogels to regulate their mechanical properties at the material scale. The biocatalytic system consists of the protease thrombin and its inhibitor, hirudin, which are genetically engineered and covalently coupled to the hydrogel networks. The catalytic activity of thrombin is reversibly switched on by stretching of the hydrogels, which disrupts the noncovalent inhibitory interaction between both entities. Under cyclic tensile-loading, hydrogels exhibit self-stiffening or self-softening properties when substrates are present that can self-assemble to form new networks after being activated by thrombin or when cleavable peptide crosslinkers are constitutional components of the original network, respectively. Additionally, we demonstrate the programming of bilayer hydrogels to exhibit tailored shape-morphing behavior under mechanical stimulation. Our developed system provides proof of concept for mechanically controlled reversible biocatalytic processes, showcasing their potential for regulating hydrogels and proposing a biomacromolecular strategy for mechano-regulated soft functional materials.
Collapse
Affiliation(s)
- Kuan Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute for Technical and Macromolecular Chemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52074, Germany
| | - Yu Zhou
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
| | - Junsheng Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Qing Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Christina Hanenberg
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute for Technical and Macromolecular Chemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52074, Germany
| | - Ahmed Mourran
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
| | - Xin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiang Gao
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute for Technical and Macromolecular Chemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52074, Germany
| | - Yi Cao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Andreas Herrmann
- DWI - Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany.
- Institute for Technical and Macromolecular Chemistry, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, 52074, Germany.
| | - Lifei Zheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China.
| |
Collapse
|
7
|
Li J, Jia X. Photo-Controlled Self-Assembly of Nanoparticles: A Promising Strategy for Development of Novel Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2562. [PMID: 37764591 PMCID: PMC10535597 DOI: 10.3390/nano13182562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Photo-controlled self-assembly of nanoparticles (NPs) is an advanced and promising approach to address a series of material issues from the molecular level to the nano/micro scale, owing to the fact that light stimulus is typically precise and rapid, and can provide contactless spatial and temporal control. The traditional photo-controlled assembly of NPs is based on photochemical processes through NPs modified by photo-responsive molecules, which are realized through the change in chemical structure under irradiation. Moreover, photoexcitation-induced assembly of NPs is another promising physical strategy, and such a strategy aims to employ molecular conformational change in the excited state (rather than the chemical structure) to drive molecular motion and assembly. The exploration and control of NP assembly through such a photo-controlled strategy can open a new paradigm for scientists to deal with "bottom-up" behaviors and develop unprecedented optoelectronic functional materials.
Collapse
Affiliation(s)
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, College of Future Technical, Henan University, Kaifeng 475004, China;
| |
Collapse
|
8
|
Gaur AK, Gupta D, Mahadevan A, Kumar P, Kumar H, Nampoothiry DN, Kaur N, Thakur SK, Singh S, Slanina T, Venkataramani S. Bistable Aryl Azopyrazolium Ionic Photoswitches in Water. J Am Chem Soc 2023; 145:10584-10594. [PMID: 37133353 DOI: 10.1021/jacs.2c13733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a new class of arylazopyrazolium-based ionic photoswitches (AAPIPs). These AAPIPs with different counter ions have been accessed through a modular synthetic approach in high yields. More importantly, the AAPIPs exhibit excellent reversible photoswitching and exceptional thermal stability in water. The effects of solvents, counter ions, substitutions, concentration, pH, and glutathione (GSH) have been evaluated using spectroscopic investigations. The results revealed that the bistability of studied AAPIPs is robust and near quantitative. The thermal half-life of Z isomers is extremely high in water (up to years), and it can be lowered electronically by the electron-withdrawing groups or highly basic pH.
Collapse
Affiliation(s)
- Ankit Kumar Gaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Debapriya Gupta
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Anjali Mahadevan
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Himanshu Kumar
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Dhanyaj Narayanan Nampoothiry
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Navneet Kaur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sandeep Kumar Thakur
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Sanjay Singh
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542, Prague 6, Prague 160 00, Czech Republic
| | - Sugumar Venkataramani
- Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Knowledge City, Manauli, Punjab 140 306, India
| |
Collapse
|
9
|
Liu R, Li L, Chen S, Yang Z, Kochovski Z, Mei S, Lu Y, Zhang L, Chen G. Evolution of Protein Assemblies Driven by the Switching of Interplay Mode. ACS NANO 2023; 17:2245-2256. [PMID: 36648413 DOI: 10.1021/acsnano.2c08583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A protein assembly with the ability to switch interplay modes of multiple driving forces has been achieved. Although biomolecular systems driven by multiple driving forces have been exploited, work on such a protein assembly capable of switching the interplay modes at nanoscale has been rarely reported so far as a result of their great fabrication challenge. In this work, two sets of driving forces such as ligand-ligand interaction and protein-protein interaction were leveraged to antagonistically underpin the multilayered stackings and trigger the hollow evolution to afford the well-defined hollow rectangular frame of proteins. While these protein frames further collapsed into aggregates, the ligand-ligand interactions were weakened, and the interplay of two sets of driving forces thereby tended to switch into synergistic mode, converting the protein packing mode from porously loose packing to axially dense packing and thus giving rise to a morphological evolution toward a nanosized protein tube. This strategy not only provides a nanoscale understanding on the mechanism underlying the switch of interplay modes in the context of biomacromolecules but also may provide access for diverse sophisticated biomacromolecular nanostructures that are historically inaccessible for conventional self-assembly strategies.
Collapse
Affiliation(s)
- Rongying Liu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shuyu Chen
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Shilin Mei
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, 14467 Potsdam, Germany
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Zhao Y, Gao S, Song D, Ye Z, Xu R, Luo Y, Xu Q. Lipidoid Artificial Compartments for Bidirectional Regulation of Enzyme Activity through Nanomechanical Action. J Am Chem Soc 2023; 145:551-559. [PMID: 36537880 DOI: 10.1021/jacs.2c11004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photoresponsive inhibitor and noninhibitor systems have been developed to achieve on-demand enzyme activity control. However, inhibitors are only effective for a specific and narrow range of enzymes. Noninhibitor systems usually require mutation and modification of the enzymes, leading to irreversible loss of enzymatic activities. Inspired by biological membranes, we herein report a lipidoid-based artificial compartment composed of azobenzene (Azo) lipidoids and helper lipids, which can bidirectionally regulate the activity of the encapsulated enzymes by light. In this system, the reversible photoisomerization of Azo lipidoids triggered by UV/vis light creates a continuous rotation-inversion movement, thereby enhancing the permeability of the compartment membrane and allowing substrates to pass through. Moreover, the membrane can revert to its impermeable state when light is removed. Thus, enzyme activity can be switched on and off when encapsulating enzymes in the compartments. Importantly, since neither mutation nor modification is required, negligible loss of activity is observed for the encapsulated enzymes after repeated activation and inhibition. Furthermore, this approach provides a generic strategy for controlling multiple enzymes by forgoing the use of inhibitors and may broaden the applications of enzymes in biological mechanism research and precision medicine.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ruijie Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ying Luo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Chen Z, Zhao Y, Liu Y. Advanced Strategies in Enzyme Activity Regulation for Biomedical Applications. Chembiochem 2022; 23:e202200358. [PMID: 35896516 DOI: 10.1002/cbic.202200358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Indexed: 11/06/2022]
Abstract
Enzymes are important macromolecular biocatalysts that accelerate chemical and biochemical reactions in living organisms. Most human diseases are related to alterations in enzyme activity. Moreover, enzymes are potential therapeutic tools for treating different diseases, such as cancer, infections, and cardiovascular and cerebrovascular diseases. Precise remote enzyme activity regulation provides new opportunities to combat diseases. This review summarizes recent advances in the field of enzyme activity regulation, including reversible and irreversible regulation. It also discusses the mechanisms and approaches for on-demand control of these activities. Furthermore, a range of stimulus-responsive inhibitors, polymers, and nanoparticles for regulating enzyme activity and their prospective biomedical applications are summarized. Finally, the current challenges and future perspectives on enzyme activity regulation are discussed.
Collapse
Affiliation(s)
- Zihan Chen
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yu Zhao
- Nankai University, College of Chemistry, Tianjin, CHINA
| | - Yang Liu
- Nankai University, College of Chemistry, 94 Weijin Rd., Mengminwei Bldg 412, 300071, Tianjin, CHINA
| |
Collapse
|
12
|
Chai J, Zhao Y, Xu L, Li Q, Hu X, Guo D, Liu Y. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angew Chem Int Ed Engl 2022; 61:e202116073. [DOI: 10.1002/anie.202116073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Jingshan Chai
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Lina Xu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Chai J, Zhao Y, Xu L, Li Q, Hu X, Guo D, Liu Y. A Noncovalent Photoswitch for Photochemical Regulation of Enzymatic Activity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jingshan Chai
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Lina Xu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Qiushi Li
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| | - Xin‐Yue Hu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Dong‐Sheng Guo
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials (Ministry of Education) State Key Laboratory of Medicinal Chemical Biology College of Chemistry Frontiers Science Center for New Organic Matter Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Hnid I, Guan L, Chatir E, Cobo S, Lafolet F, Maurel F, Lacroix JC, Sun X. Visualization and Comprehension of Electronic and Topographic Contrasts on Cooperatively Switched Diarylethene-Bridged Ditopic Ligand. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1318. [PMID: 35458026 PMCID: PMC9029802 DOI: 10.3390/nano12081318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022]
Abstract
Diarylethene is a prototypical molecular switch that can be reversibly photoisomerized between its open and closed forms. Ligands bpy-DAE-bpy, consisting of a phenyl-diarylethene-phenyl (DAE) central core and bipyridine (bpy) terminal substituents, are able to self-organize. They are investigated by scanning tunneling microscopy at the solid-liquid interface. Upon light irradiation, cooperative photochromic switching of the ligands is recognized down to the submolecular level. The closed isomers show different electron density of states (DOS) contrasts, attributed to the HOMO or LUMO molecular orbitals observed. More importantly, the LUMO images show remarkable differences between the open and closed isomers, attributed to combined topographic and electronic contrasts mainly on the DAE moieties. The electronic contrasts from multiple HOMO or LUMO distributions, combined with topographic distortion of the open or closed DAE, are interpreted by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Imen Hnid
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Lihao Guan
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Elarbi Chatir
- Department of Chemistry, Université Grenoble Alpes, DCM-UMR 5250, F-38000 Grenoble, France; (E.C.); (S.C.)
| | - Saioa Cobo
- Department of Chemistry, Université Grenoble Alpes, DCM-UMR 5250, F-38000 Grenoble, France; (E.C.); (S.C.)
| | - Frédéric Lafolet
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - François Maurel
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Jean-Christophe Lacroix
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| | - Xiaonan Sun
- Department of Chemistry, Université de Paris, ITODYS, CNRS, F-75006 Paris, France; (I.H.); (L.G.); (F.L.); (F.M.)
| |
Collapse
|
15
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
16
|
Kohata A, Ueki R, Okuro K, Hashim PK, Sando S, Aida T. Photoreactive Molecular Glue for Enhancing the Efficacy of DNA Aptamers by Temporary-to-Permanent Conjugation with Target Proteins. J Am Chem Soc 2021; 143:13937-13943. [PMID: 34424707 DOI: 10.1021/jacs.1c06816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a photoreactive molecular glue, BPGlue-N3, which can provide a universal strategy to enhance the efficacy of DNA aptamers by temporary-to-permanent stepwise stabilization of their conjugates with target proteins. As a proof-of-concept study, we applied BPGlue-N3 to the SL1 (DNA aptamer)/c-Met (target protein) conjugate system. BPGlue-N3 can adhere to and temporarily stabilize this aptamer/protein conjugate multivalently using its guanidinium ion (Gu+) pendants that form a salt bridge with oxyanionic moieties (e.g., carboxylate and phosphate) and benzophenone (BP) group that is highly affinitive to DNA duplexes. BPGlue-N3 is designed to carry a dual-mode photoreactivity; upon exposure to UV light, the temporarily stabilized aptamer/protein conjugate reacts with the photoexcited BP unit of adhering BPGlue-N3 and also a nitrene species, possibly generated by the BP-to-N3 energy transfer in BPGlue-N3. We confirmed that SL1, covalently conjugated with c-Met, hampered the binding of hepatocyte growth factor (HGF) onto c-Met, even when the SL1/c-Met conjugate was rinsed prior to the treatment with HGF, and suppressed cell migration caused by HGF-induced c-Met phosphorylation.
Collapse
Affiliation(s)
- Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - P K Hashim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Wang T, Ulrich H, Semyanov A, Illes P, Tang Y. Optical control of purinergic signaling. Purinergic Signal 2021; 17:385-392. [PMID: 34156578 PMCID: PMC8410941 DOI: 10.1007/s11302-021-09799-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
Purinergic signaling plays a pivotal role in physiological processes and pathological conditions. Over the past decades, conventional pharmacological, biochemical, and molecular biology techniques have been utilized to investigate purinergic signaling cascades. However, none of them is capable of spatially and temporally manipulating purinergic signaling cascades. Currently, optical approaches, including optopharmacology and optogenetic, enable controlling purinergic signaling with low invasiveness and high spatiotemporal precision. In this mini-review, we discuss optical approaches for controlling purinergic signaling and their applications in basic and translational science.
Collapse
Affiliation(s)
- Tao Wang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Henning Ulrich
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter Illes
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| | - Yong Tang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
18
|
Liu X, Liang X, Hu Y, Han L, Qu Q, Liu D, Guo J, Zeng Z, Bai H, Kwok RTK, Qin A, Lam JWY, Tang BZ. Catalyst-Free Spontaneous Polymerization with 100% Atom Economy: Facile Synthesis of Photoresponsive Polysulfonates with Multifunctionalities. JACS AU 2021; 1:344-353. [PMID: 34467298 PMCID: PMC8395608 DOI: 10.1021/jacsau.0c00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 05/14/2023]
Abstract
Photoresponsive polymers have attracted extensive attention due to their tunable functionalities and advanced applications; thus, it is significant to develop facile in situ synthesis strategies, extend polymers family, and establish various applications for photoresponsive polymers. Herein, we develop a catalyst-free spontaneous polymerization of dihaloalkynes and disulfonic acids without photosensitive monomers for the in situ synthesis of photoresponsive polysulfonates at room temperature in air with 100% atom economy in high yields. The resulting polysulfonates could undergo visible photodegradation with strong photoacid generation, leading to various applications including dual-emissive or 3D photopatterning, and practical broad-spectrum antibacterial activity. The halogen-rich polysulfonates also exhibit a high and photoswitched refractive index and could undergo efficient postfunctionalizations to further expand the variety and functionality of photoresponsive heteroatom-containing polyesters.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xin Liang
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109 China
| | - Yubing Hu
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lei Han
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- College
of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109 China
| | - Qing Qu
- Nano
Science and Technology Program and William Mong Institute of Nano
Science and Technology, The Hong Kong University
of Science and Technology, Clear
Water Bay, Hong Kong China
| | - Dongming Liu
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jing Guo
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zebing Zeng
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haotian Bai
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Anjun Qin
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Institute for
Advanced Study, The Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen
Research Institute, No.
9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
19
|
Saha M, Hossain MS, Bandyopadhyay S. A Photoregulated Racemase Mimic. Angew Chem Int Ed Engl 2021; 60:5220-5224. [PMID: 33180335 DOI: 10.1002/anie.202012124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/11/2020] [Indexed: 01/03/2023]
Abstract
The racemase enzymes convert L-amino acids to their D-isomer. The reaction proceeds through a stepwise deprotonation-reprotonation mechanism that is assisted by a pyridoxal phosphate (PLP) coenzyme. This work reports a PLP-photoswitch-imidazole triad where the racemization reaction can be controlled by light by tweaking the distance between the basic residue and the reaction centre.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| |
Collapse
|
20
|
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur, Nadia West Bengal 741246 India
| |
Collapse
|
21
|
Dwyer BG, Wang C, Abegg D, Racioppo B, Qiu N, Zhao Z, Pechalrieu D, Shuster A, Hoch DG, Adibekian A. Chemoproteomics-Enabled De Novo Discovery of Photoswitchable Carboxylesterase Inhibitors for Optically Controlled Drug Metabolism. Angew Chem Int Ed Engl 2021; 60:3071-3079. [PMID: 33035395 DOI: 10.1002/anie.202011163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Herein, we report arylazopyrazole ureas and sulfones as a novel class of photoswitchable serine hydrolase inhibitors and present a chemoproteomic platform for rapid discovery of optically controlled serine hydrolase targets in complex proteomes. Specifically, we identify highly potent and selective photoswitchable inhibitors of the drug-metabolizing enzymes carboxylesterases 1 and 2 and demonstrate their pharmacological application by optically controlling the metabolism of the immunosuppressant drug mycophenolate mofetil. Collectively, this proof-of-concept study provides a first example of photopharmacological tools to optically control drug metabolism by modulating the activity of a metabolizing enzyme. Our arylazopyrazole ureas and sulfones offer synthetically accessible scaffolds that can be expanded to identify specific photoswitchable inhibitors for other serine hydrolases, including lipases, peptidases, and proteases. Our chemoproteomic platform can be applied to other photoswitches and scaffolds to achieve optical control over diverse protein classes.
Collapse
Affiliation(s)
- Brendan G Dwyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Chao Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA.,Current address: Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Brittney Racioppo
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Zhensheng Zhao
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Dany Pechalrieu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Anton Shuster
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Dominic G Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA.,Current address: Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
22
|
Dwyer BG, Wang C, Abegg D, Racioppo B, Qiu N, Zhao Z, Pechalrieu D, Shuster A, Hoch DG, Adibekian A. Chemoproteomics‐Enabled De Novo Discovery of Photoswitchable Carboxylesterase Inhibitors for Optically Controlled Drug Metabolism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Brendan G. Dwyer
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Chao Wang
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
- Current address: Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Daniel Abegg
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Brittney Racioppo
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Nan Qiu
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Zhensheng Zhao
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Dany Pechalrieu
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Anton Shuster
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Dominic G. Hoch
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
- Current address: Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Alexander Adibekian
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| |
Collapse
|
23
|
Ghosh S, Hossain MS, Chatterjee S, Rahaman SA, Bandyopadhyay S. Light-Gated Modulation of Electronic Mobility of a Dihydropyrene-Based Photochromic Coordination Polymer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52983-52991. [PMID: 33185437 DOI: 10.1021/acsami.0c17513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photo-induced modulation of electronic conductance has been achieved by employing an AgI-based two-dimensional coordination polymer (CP) having pyridine-functionalized photochromic dimethyldihydropyrene-cyclophanediene (DHP-CPD) π-switch. Both the coordination polymer and the organic photochromic core were characterized by single-crystal X-ray diffraction studies. The coordination polymer displayed an excellent conductance in the ON state of the switch in the closed form of DHP. Upon exposure to visible light, the π-switch in the CPD form loses its planarity, turning the switch OFF, which is reflected in the drastic reduction of the conductance. Exposure to UV light turns the switch back ON wherein the high electronic conductance of the polymer can be restored.
Collapse
Affiliation(s)
- Sanjib Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Sheelbhadra Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Sk Atiur Rahaman
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia 741246, India
| |
Collapse
|
24
|
Aggarwal K, Kuka TP, Banik M, Medellin BP, Ngo CQ, Xie D, Fernandes Y, Dangerfield TL, Ye E, Bouley B, Johnson KA, Zhang YJ, Eberhart JK, Que EL. Visible Light Mediated Bidirectional Control over Carbonic Anhydrase Activity in Cells and in Vivo Using Azobenzenesulfonamides. J Am Chem Soc 2020; 142:14522-14531. [PMID: 32623882 PMCID: PMC8063266 DOI: 10.1021/jacs.0c05383] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two azobenzenesulfonamide molecules with thermally stable cis configurations resulting from fluorination of positions ortho to the azo group are reported that can differentially regulate the activity of carbonic anhydrase in the trans and cis configurations. These fluorinated probes each use two distinct visible wavelengths (520 and 410 or 460 nm) for isomerization with high photoconversion efficiency. Correspondingly, the cis isomer of these systems is highly stable and persistent (as evidenced by structural studies in solid and solution state), permitting regulation of metalloenzyme activity without continuous irradiation. Herein, we use these probes to demonstrate the visible light mediated bidirectional control over the activity of zinc-dependent carbonic anhydrase in solution as an isolated protein, in intact live cells and in vivo in zebrafish during embryo development.
Collapse
Affiliation(s)
- Kanchan Aggarwal
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Timothy P Kuka
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Mandira Banik
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Brenda P Medellin
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Chinh Q Ngo
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Da Xie
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Yohaan Fernandes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, Texas 78712, United States
| | - Tyler L Dangerfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Elva Ye
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Bailey Bouley
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Kenneth A Johnson
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
| | - Johann K Eberhart
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, 100 E. 24th Street Stop A5000, Austin, Texas 78712, United States
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, Texas 78712, United States
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin, 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
25
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
26
|
Hentzen NB, Mogaki R, Otake S, Okuro K, Aida T. Intracellular Photoactivation of Caspase-3 by Molecular Glues for Spatiotemporal Apoptosis Induction. J Am Chem Soc 2020; 142:8080-8084. [DOI: 10.1021/jacs.0c01823] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nina B. Hentzen
- Laboratorium für Organische Chemie, ETH Zürich, D-CHAB, Vladimir-Prelog-Weg 3, 8093, Zürich, Switzerland
| | - Rina Mogaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Saya Otake
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Jin YH, Lu MC, Wang Y, Shan WX, Wang XY, You QD, Jiang ZY. Azo-PROTAC: Novel Light-Controlled Small-Molecule Tool for Protein Knockdown. J Med Chem 2020; 63:4644-4654. [DOI: 10.1021/acs.jmedchem.9b02058] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu-Hui Jin
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meng-Chen Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Xin Shan
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan-Yu Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
28
|
Li J, Wang L, Tian J, Zhou Z, Li J, Yang H. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem Soc Rev 2020; 49:1545-1568. [DOI: 10.1039/c9cs00473d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nongenetic strategies for regulating receptor oligomerization in living cells based on DNA, protein, small molecules and physical stimuli.
Collapse
Affiliation(s)
- Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Jinmiao Tian
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Zhilan Zhou
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| |
Collapse
|
29
|
Larsen D, Bjerre PM, Beeren SR. Light-controlled out-of-equilibrium assembly of cyclodextrins in an enzyme-mediated dynamic system. Chem Commun (Camb) 2019; 55:15037-15040. [PMID: 31782430 DOI: 10.1039/c9cc08452e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We show that the selective enzymatic synthesis of specific cyclodextrins can be modulated using light. We use enzyme-mediated dynamic combinatorial chemistry to generate a mixture of interconverting linear and cyclic α-1,4-glucans, and employ an azobenzene photoswitch as a template. Using UV or blue light to switch between photostationary states with different azobenzene cis/trans isomeric ratios, we can promote the out-of-equilibrium assembly of either α-cyclodextrin or β-cyclodextrin.
Collapse
Affiliation(s)
- Dennis Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark.
| | - Philip M Bjerre
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark.
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
30
|
Saha M, Chatterjee S, Hossain MS, Ghude A, Bandyopadhyay S. Modulation of Electronic Mobility of a One-Dimensional Coordination Polymeric Molecular Wire with Light. Chem Asian J 2019; 14:4659-4664. [PMID: 31392843 DOI: 10.1002/asia.201900956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/04/2019] [Indexed: 11/09/2022]
Abstract
Metal ions often influence the photoswitching efficiency of a photochromic system. This article reports a one-dimensional polymer having cyclic azobenzenes coordinated to silver ions that are bridged by nitrates. The coordination polymer (CP-2) displays a photoresponsive behavior. The switching ability in the polymer form was faster compared to the parent azobenzene ligand without the metal ions. Azobenzenes are reported to be poorly conducting. Here, although the azobenzene ligand does not show significant electronic mobility, the coordination polymer (CP-2) displays a modest conductivity. The conductance in the cis form of the polymer is significantly higher compared to the trans form. Upon exposure to visible light, the cis form undergoes photoisomerization to the trans form with a drastic drop in the electronic mobility. The trans form can be reverted to the cis form thermally or by using UV light. Thus, this system offers a reversible control of the conductivity using light.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Sheelbhadra Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Munshi Sahid Hossain
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Arijeet Ghude
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India
| |
Collapse
|
31
|
Han T, Yao Z, Qiu Z, Zhao Z, Wu K, Wang J, Poon AW, Lam JWY, Tang BZ. Photoresponsive spiro-polymers generated in situ by C-H-activated polyspiroannulation. Nat Commun 2019; 10:5483. [PMID: 31792223 PMCID: PMC6889291 DOI: 10.1038/s41467-019-13308-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/31/2019] [Indexed: 01/30/2023] Open
Abstract
The development of facile and efficient polymerizations toward functional polymers with unique structures and attractive properties is of great academic and industrial significance. Here we develop a straightforward C-H-activated polyspiroannulation route to in situ generate photoresponsive spiro-polymers with complex structures. The palladium(II)-catalyzed stepwise polyspiroannulations of free naphthols and internal diynes proceed efficiently in dimethylsulfoxide at 120 °C without the constraint of apparent stoichiometric balance in monomers. A series of functional polymers with multisubstituted spiro-segments and absolute molecular weights of up to 39,000 are produced in high yields (up to 99%). The obtained spiro-polymers can be readily fabricated into different well-resolved fluorescent photopatterns with both turn-off and turn-on modes based on their photoinduced fluorescence change. Taking advantage of their photoresponsive refractive index, we successfully apply the polymer thin films in integrated silicon photonics techniques and achieve the permanent modification of resonance wavelengths of microring resonators by UV irradiation.
Collapse
Affiliation(s)
- Ting Han
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanshi Yao
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zijie Qiu
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zhao
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kaiyi Wu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianguo Wang
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Andrew W Poon
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China. .,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Ben Zhong Tang
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China. .,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
32
|
Gole B, Kauffmann B, Maurizot V, Huc I, Ferrand Y. Light‐Controlled Conformational Switch of an Aromatic Oligoamide Foldamer. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bappaditya Gole
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Université de Bordeaux CNRS INSERM, UMS3033 Institut Européen de Chimie et Biologie (IECB) 2 rue Robert Escarpit 33600 Pessac France
| | - Victor Maurizot
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Yann Ferrand
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| |
Collapse
|
33
|
Gole B, Kauffmann B, Maurizot V, Huc I, Ferrand Y. Light‐Controlled Conformational Switch of an Aromatic Oligoamide Foldamer. Angew Chem Int Ed Engl 2019; 58:8063-8067. [DOI: 10.1002/anie.201902378] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Bappaditya Gole
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| | - Brice Kauffmann
- Université de Bordeaux CNRS INSERM, UMS3033 Institut Européen de Chimie et Biologie (IECB) 2 rue Robert Escarpit 33600 Pessac France
| | - Victor Maurizot
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Yann Ferrand
- CBMN (UMR5248) Univ. Bordeaux – CNRS – IPB Institut Européen de Chimie et Biologie 2 rue Escarpit 33600 Pessac France
| |
Collapse
|
34
|
Mogaki R, Okuro K, Ueki R, Sando S, Aida T. Molecular Glue that Spatiotemporally Turns on Protein–Protein Interactions. J Am Chem Soc 2019; 141:8035-8040. [DOI: 10.1021/jacs.9b02427] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rina Mogaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
35
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
36
|
Saha M, Bandyopadhyay S. Reversible photoresponsive activity of a carbonic anhydrase mimic. Chem Commun (Camb) 2019; 55:3294-3297. [PMID: 30810568 DOI: 10.1039/c9cc00018f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The carbonic anhydrase (CA) enzyme reversibly transforms carbon dioxide and water to a carbonate ion and a proton. Photoresponsive enzyme mimics, where the CA-activity can be turned on and off reversibly with light, have not been reported so far. We have designed an active site mimic that offers reversible control of the catalytic activity using light. Moreover, in the presence of a cationic polymer, we have demonstrated that the CA-activity was further enhanced by stabilizing the transition state with the cis-form of the enzyme mimic which can catalyze the hydration of gaseous CO2.
Collapse
Affiliation(s)
- Monochura Saha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, Nadia, 741246, India.
| | | |
Collapse
|
37
|
Strauss MA, Wegner HA. Influence of an Ammonium Tag on the Switching Dynamics of Azobenzenes in Polar Solvents. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marcel A. Strauss
- Institute of Organic ChemistryJustus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research (LaMa)Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| | - Hermann A. Wegner
- Institute of Organic ChemistryJustus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
- Center for Materials Research (LaMa)Justus Liebig University Giessen Heinrich-Buff-Ring 16 35392 Giessen Germany
| |
Collapse
|
38
|
Kohata A, Hashim PK, Okuro K, Aida T. Transferrin-Appended Nanocaplet for Transcellular siRNA Delivery into Deep Tissues. J Am Chem Soc 2019; 141:2862-2866. [DOI: 10.1021/jacs.8b12501] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ai Kohata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - P. K. Hashim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Dudek M, Deiana M, Pokladek Z, Pawlik K, Matczyszyn K. Reversible Photocontrol of DNA Melting by Visible-Light-Responsive F4-Coordinated Azobenzene Compounds. Chemistry 2018; 24:18963-18970. [PMID: 30198626 DOI: 10.1002/chem.201803529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Spatiotemporal control over the regulation of intra- and intermolecular motions in naturally occurring systems is systematically studied to expand the toolbox of mechanical operations in multicomponent nanoarchitectures. DNA is ideally suited for programming light-powered processes that are based on a minimalist molecular design. Here, the noncovalent incorporation of bistable photoswitches into B-like DNA moieties is shown to trigger the thermal transition midpoint of the duplexes by converting visible light into directed mechanical work by orchestrating the collective actions of the photoresponsive chromophores and the host DNA nanostructures. Besides its practical applications, the resulting hybrid nanosystem bears unique features of modulability, biocompatibility, reversibility, and addressability, which are key components for developing molecular photon-controlled programmed materials.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Ziemowit Pokladek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Krzysztof Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
40
|
Aggarwal K, Banik M, Medellin B, Que EL. In Situ Photoregulation of Carbonic Anhydrase Activity Using Azobenzenesulfonamides. Biochemistry 2018; 58:48-53. [PMID: 30358990 DOI: 10.1021/acs.biochem.8b00947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report two small molecule azobenzenesulfonamide probes, CAP1 and CAP2, capable of photomodulating the activity of carbonic anhydrase (CA) on demand. In the trans form, CAP azobenzene probes adopt a linear shape, making them suitable for occupying the CA active site and interacting with Zn2+, thereby inhibiting enzyme activity. Following irradiation with either 365 or 410 nm light, the CAP probes isomerize to their cis form. Because of the change in steric profile, the probe exits the active site, and the activity of the enzyme is restored. The cis isomer can revert back to the trans isomer through thermal relaxation or via photoirradiation with 460 nm light and thereby inhibit protein activity again. This process can be repeated multiple times without any photodegradation and thus can be used to inhibit or activate the protein reversibly. Importantly, we demonstrate our ability to apply CAP azobenzene probes to regulate CA activity both in an isolated protein solution and in live cells, where the two isomers of CAP1 differentially regulate the intracellular cytosolic pH.
Collapse
Affiliation(s)
- Kanchan Aggarwal
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712 , United States
| | - Mandira Banik
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712 , United States
| | - Brenda Medellin
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology , The University of Texas at Austin , 100 East 24th Street, Stop A5000 , Austin , Texas 78712 , United States
| | - Emily L Que
- Department of Chemistry , The University of Texas at Austin , 105 East 24th Street, Stop A5300 , Austin , Texas 78712 , United States
| |
Collapse
|
41
|
Shao B, Baroncini M, Qian H, Bussotti L, Di Donato M, Credi A, Aprahamian I. Solution and Solid-State Emission Toggling of a Photochromic Hydrazone. J Am Chem Soc 2018; 140:12323-12327. [PMID: 30251843 PMCID: PMC6693799 DOI: 10.1021/jacs.8b07108] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/19/2022]
Abstract
The proliferation of light-activated switches in recent years has enabled their use in a broad range of applications encompassing an array of research fields and disciplines. All current systems, however, have limitations (e.g., from complicated synthesis to incompatibility in biologically relevant media and lack of switching in the solid-state) that can stifle their real-life application. Here we report on a system that packs most, if not all, the desired, targeted and sought-after traits from photochromic compounds (bistability, switching in various media ranging from serum to solid-state, while exhibiting ON/OFF fluorescence emission switching, and two-photon assisted near-infrared light toggling) in an easily accessible structure.
Collapse
Affiliation(s)
- Baihao Shao
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Massimo Baroncini
- Center
for Light Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 50, 40127 Bologna, Italy
| | - Hai Qian
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Laura Bussotti
- LENS
− European Laboratory for Non-linear Spectroscopy, via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- INO
− Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze, Italy
| | - Mariangela Di Donato
- LENS
− European Laboratory for Non-linear Spectroscopy, via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy
- INO
− Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze, Italy
| | - Alberto Credi
- Center
for Light Activated Nanostructures (CLAN), Università di Bologna and Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 50, 40127 Bologna, Italy
| | - Ivan Aprahamian
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
42
|
|
43
|
Okuro K, Nemoto H, Mogaki R, Aida T. Dendritic Molecular Glues with Reductively Cleavable Guanidinium Ion Pendants: Highly Efficient Intracellular siRNA Delivery via Direct Translocation. CHEM LETT 2018. [DOI: 10.1246/cl.180551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Harei Nemoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rina Mogaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
44
|
Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 2018; 47:1044-1097. [PMID: 29251304 DOI: 10.1039/c7cs00630f] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to manipulate the structure and function of promising nanosystems via energy input and external stimuli is emerging as an attractive paradigm for developing reconfigurable and programmable nanomaterials and multifunctional devices. Light stimulus manifestly represents a preferred external physical and chemical tool for in situ remote command of the functional attributes of nanomaterials and nanosystems due to its unique advantages of high spatial and temporal resolution and digital controllability. Photochromic moieties are known to undergo reversible photochemical transformations between different states with distinct properties, which have been extensively introduced into various functional nanosystems such as nanomachines, nanoparticles, nanoelectronics, supramolecular nanoassemblies, and biological nanosystems. The integration of photochromism into these nanosystems has endowed the resultant nanostructures or advanced materials with intriguing photoresponsive behaviors and more sophisticated functions. In this Review, we provide an account of the recent advancements in reversible photocontrol of the structures and functions of photochromic nanosystems and their applications. The important design concepts of such truly advanced materials are discussed, their fabrication methods are emphasized, and their applications are highlighted. The Review is concluded by briefly outlining the challenges that need to be addressed and the opportunities that can be tapped into. We hope that the review of the flourishing and vibrant topic with myriad possibilities would shine light on exploring the future nanoworld by encouraging and opening the windows to meaningful multidisciplinary cooperation of engineers from different backgrounds and scientists from the fields such as chemistry, physics, engineering, biology, nanotechnology and materials science.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA.
| | | |
Collapse
|
45
|
Arisaka A, Mogaki R, Okuro K, Aida T. Caged Molecular Glues as Photoactivatable Tags for Nuclear Translocation of Guests in Living Cells. J Am Chem Soc 2018; 140:2687-2692. [DOI: 10.1021/jacs.7b13614] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Akio Arisaka
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rina Mogaki
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Riken Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
46
|
Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 2018; 6:4274-4292. [PMID: 32254504 DOI: 10.1039/c8tb01245h] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their development over 70 years, antibiotics are still the most effective strategy to treat bacterial biofilms and infections.
Collapse
Affiliation(s)
- Xi Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Biao Wu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Lin Sun
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| |
Collapse
|
47
|
Abstract
Complexation of metal ion controls the photoswitching of a push–pull azobenzene derivative.
Collapse
Affiliation(s)
- Yu Ouyang
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Ziyong Yuan
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Jiaobing Wang
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
48
|
Sotokawa S, Kitamura T, Takahashi D, Toshima K. An anthraquinone–enzyme–peptide hybrid as a photo-switchable enzyme. Chem Commun (Camb) 2018; 54:10614-10617. [DOI: 10.1039/c8cc06130k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose-designed anthraquinone–horseradish peroxidase–cell penetrating peptide hybrid1exhibited cell permeability and enzymatic activity without photo-irradiation whereas significant self-degradation and loss of enzymatic activity occurred upon photo-irradiation in living cells.
Collapse
Affiliation(s)
- Shota Sotokawa
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Takashi Kitamura
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry
- Faculty of Science and Technology
- Keio University
- Yokohama 223-8522
- Japan
| |
Collapse
|
49
|
Qian A, Shi H, Zhu R, Yan J, Li W, Liu K, Zhang A. Thermoresponsive cyclodextrins with benzenesulfonamide showing tunable inhibition for carbonic anhydrase. Org Biomol Chem 2017; 15:8028-8031. [PMID: 28933488 DOI: 10.1039/c7ob02171b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monodisperse thermoresponsive cyclodextrins appended with benzenesulfonamides were demonstrated to reversibly regulate the enzymatic activity of carbonic anhydrase, which was found to be dependent on both scaffold effect and thermoresponsiveness.
Collapse
Affiliation(s)
- Apan Qian
- Laboratory of Polymer Chemistry, Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China.
| | | | | | | | | | | | | |
Collapse
|