1
|
Kim N, Choi M, Suh SE, Chenoweth DM. Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes. Chem Rev 2024; 124:11435-11522. [PMID: 39383091 DOI: 10.1021/acs.chemrev.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.
Collapse
Affiliation(s)
- Nayoung Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Myungsoo Choi
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Denman BN, Plasek EE, Roberts CC. Ligand-Induced Regioselectivity in Metal-Catalyzed Aryne Reactions Using Borylaryl Triflates as Aryne Precursors. Organometallics 2023; 42:859-864. [PMID: 39483989 PMCID: PMC11527396 DOI: 10.1021/acs.organomet.3c00103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The utility of reactions using unsymmetrically substituted aryne intermediates can be negatively impacted by issues with regioselectivity as these reactions are substrate controlled. This leaves no avenues for improving regioselectivity without altering the substrate which has led to numerous reports about how to enhance or reverse this regioselectivity in metal-free aryne reactions by changing the electronics. To the best of our knowledge, no such studies exist for systems with metal-bound aryne intermediates, which often suffer from worse regioselectivities. Herein we report a means of achieving regioselectivity in a metal-catalyzed aryne difunctionalization via catalyst control. Through the use of an unsymmetrical ligand environment, selectivity can be induced (up to 9:91 r.r.). These investigations demonstrate that catalyst design can influence selectivity in metal-catalyzed aryne reactions.
Collapse
Affiliation(s)
| | | | - Courtney C. Roberts
- University of Minnesota, Department of Chemistry, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Witkowski DC, McVeigh MS, Scherer GM, Anthony SM, Garg NK. Catalyst-Controlled Annulations of Strained Cyclic Allenes with π-Allylpalladium Complexes. J Am Chem Soc 2023; 145:10491-10496. [PMID: 37141000 PMCID: PMC10460090 DOI: 10.1021/jacs.3c03102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Strained cyclic allenes are a class of in situ-generated fleeting intermediates that, despite being discovered more than 50 years ago, has received significantly less attention from the synthetic community compared to related strained intermediates. Examples of trapping strained cyclic allenes that involve transition metal catalysis are especially rare. We report the first annulations of highly reactive cyclic allenes with in situ-generated π-allylpalladium species. By varying the ligand employed, either of two isomeric polycyclic scaffolds can be obtained with high selectivity. The products are heterocyclic and sp3-rich and bear two or three new stereocenters. This study should encourage the further development of fragment couplings that rely on transition metal catalysis and strained cyclic allenes for the rapid assembly of complex scaffolds.
Collapse
Affiliation(s)
- Dominick C Witkowski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Matthew S McVeigh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Georgia M Scherer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Sarah M Anthony
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Zhang Z, Jin X, Sun X, Su J, Qu DH. Vibration-induced emission: Dynamic multiple intrinsic luminescence. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Srinivasan S, Hajam TA, Sathish S, Grewal RK. Synthesis, quantum mechanical calculations, molecular docking, Hirshfeld surface analysis and ADMET estimation studies of (E)-3-(anthracene-10-yl)-1-(napthalen-1-yl)prop-2-en-1-one. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Li Z, Shuai B, Ma C, Fang P, Mei T. Nickel‐Catalyzed
Electroreductive Syntheses of Triphenylenes Using
ortho
‐Dihalobenzene‐Derived
Benzynes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhao‐Ming Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Bin Shuai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian‐Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
7
|
Spence KA, Chari JV, Di Niro M, Susick RB, Ukwitegetse N, Djurovich PI, Thompson ME, Garg NK. π-Extension of heterocycles via a Pd-catalyzed heterocyclic aryne annulation: π-extended donors for TADF emitters. Chem Sci 2022; 13:5884-5892. [PMID: 35685807 PMCID: PMC9132060 DOI: 10.1039/d2sc01788a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
We report the annulation of heterocyclic building blocks to access π-extended polycyclic aromatic hydrocarbons (PAHs). The method involves the trapping of short-lived hetarynes with catalytically-generated biaryl palladium intermediates and allows for the concise appendage of three or more fused aromatic rings about a central heterocyclic building block. Our studies focus on annulating the indole and carbazole heterocycles through the use of indolyne and carbazolyne chemistry, respectively, the latter of which required the synthesis of a new carbazolyne precursor. Notably, these represent rare examples of transition metal-catalyzed reactions of N-containing hetarynes. We demonstrate the utility of our methodology in the synthesis of heterocyclic π-extended PAHs, which were then applied as ligands in two-coordinate metal complexes. As a result of these studies, we identified a new thermally-activated delayed fluorescence (TADF) emitter that displays up to 81% photoluminescence efficiency, along with insight into structure-property relationships. These studies underscore the utility of heterocyclic strained intermediates in the synthesis and study of organic materials.
Collapse
Affiliation(s)
- Katie A Spence
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Jason V Chari
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Mattia Di Niro
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Robert B Susick
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Narcisse Ukwitegetse
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Mark E Thompson
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| |
Collapse
|
8
|
Hore S, Singh A, De S, Singh N, Gandon V, Singh RP. Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreemoyee De
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Orsay Cedex 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Ravi P. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Ramirez M, Darzi ER, Donaldson JS, Houk KN, Garg NK. Cycloaddition Cascades of Strained Alkynes and Oxadiazinones. Angew Chem Int Ed Engl 2021; 60:18201-18208. [PMID: 34080279 DOI: 10.1002/anie.202105244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 12/30/2022]
Abstract
We report a computational and experimental study of the reaction of oxadiazinones and strained alkynes to give polycyclic aromatic hydrocarbons (PAHs). The reaction proceeds by way of a pericyclic reaction cascade and leads to the formation of four new carbon-carbon bonds. Using M06-2X DFT calculations, we interrogate several mechanistic aspects of the reaction, such as why the use of non-aromatic strained alkynes can be used to access unsymmetrical PAHs, whereas the use of arynes in the methodology leads to symmetrical PAHs. In addition, experimental studies enable the rapid synthesis of new PAHs, including tetracene and pentacene scaffolds. These studies not only provide fundamental insight regarding the aforementioned cycloaddition cascades and synthetic access to PAH scaffolds, but are also expected to enable the synthesis of new materials.
Collapse
Affiliation(s)
- Melissa Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Evan R Darzi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joyann S Donaldson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Anthony S, Wonilowicz LG, McVeigh MS, Garg NK. Leveraging Fleeting Strained Intermediates to Access Complex Scaffolds. JACS AU 2021; 1:897-912. [PMID: 34337603 PMCID: PMC8317162 DOI: 10.1021/jacsau.1c00214] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 05/07/2023]
Abstract
Arynes, strained cyclic alkynes, and strained cyclic allenes were validated as plausible intermediates in the 1950s and 1960s. Despite initially being considered mere scientific curiosities, these transient and highly reactive species have now become valuable synthetic building blocks. This Perspective highlights recent advances in the field that have allowed access to structural and stereochemical complexity, including recent breakthroughs in asymmetric catalysis.
Collapse
|
11
|
|
12
|
Kelleghan AV, Witkowski DC, McVeigh MS, Garg NK. Palladium-Catalyzed Annulations of Strained Cyclic Allenes. J Am Chem Soc 2021; 143:9338-9342. [PMID: 34143634 PMCID: PMC8290222 DOI: 10.1021/jacs.1c04896] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report Pd-catalyzed annulations of in situ generated strained cyclic allenes. This methodology employs aryl halides and cyclic allene precursors as the reaction partners in order to generate fused heterocyclic products. The annulation proceeds via the formation of two new bonds and an sp3 center. Moreover, both diastereo- and enantioselective variants of this methodology are validated, with the latter ultimately enabling the rapid enantioselective synthesis of a complex hexacyclic product. Studies leveraging transition metal catalysis to intercept cyclic allenes represent a departure from the more common, historical modes of cyclic allene trapping that rely on nucleophiles or cycloaddition partners. As such, this study is expected to fuel the development of reactions that strategically merge transition metal catalysis and transient strained intermediate chemistry for the synthesis of complex scaffolds.
Collapse
Affiliation(s)
- Andrew V Kelleghan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Dominick C Witkowski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Matthew S McVeigh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
14
|
Sarmah M, Sharma A, Gogoi P. Exploration of Kobayashi's aryne precursor: a potent reactive platform for the synthesis of polycyclic aromatic hydrocarbons. Org Biomol Chem 2021; 19:722-737. [PMID: 33432965 DOI: 10.1039/d0ob02063j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arynes due to their transient nature leads to remarkable and versatile applications in the synthetic world. Apparently, researchers have focused on the construction of simple to complex π-conjugated systems using arynes as the reactive platform. In this regard, Kobayashi's aryne precursor has shown a great extent of reactivity and afforded significant advancement in the synthesis of polycyclic aromatic systems with wide practical utility. This review emphasizes the extensive utilization of Kobayashi's aryne intermediates and their derivatives for the synthesis of different classes of polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Manashi Sarmah
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India.
| | - Abhilash Sharma
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Assam, Jorhat 785006, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
15
|
Intercepting fleeting cyclic allenes with asymmetric nickel catalysis. Nature 2020; 586:242-247. [PMID: 32846425 DOI: 10.1038/s41586-020-2701-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022]
Abstract
Strained cyclic organic molecules, such as arynes, cyclic alkynes and cyclic allenes, have intrigued chemists for more than a century with their unusual structures and high chemical reactivity1. The considerable ring strain (30-50 kilocalories per mole)2,3 that characterizes these transient intermediates imparts high reactivity in many reactions, including cycloadditions and nucleophilic trappings, often generating structurally complex products4. Although strategies to control absolute stereochemistry in these reactions have been reported using stoichiometric chiral reagents5,6, catalytic asymmetric variants to generate enantioenriched products have remained difficult to achieve. Here we report the interception of racemic cyclic allene intermediates in a catalytic asymmetric reaction and provide evidence for two distinct mechanisms that control absolute stereochemistry in such transformations: kinetic differentiation of allene enantiomers and desymmetrization of intermediate π-allylnickel complexes. Computational studies implicate a catalytic mechanism involving initial kinetic differentiation of the cyclic allene enantiomers through stereoselective olefin insertion, loss of the resultant stereochemical information, and subsequent introduction of absolute stereochemistry through desymmetrization of an intermediate π-allylnickel complex. These results reveal reactivity that is available to cyclic allenes beyond the traditional cycloadditions and nucleophilic trappings previously reported, thus expanding the types of product accessible from this class of intermediates. Additionally, our computational studies suggest two potential strategies for stereocontrol in reactions of cyclic allenes. Combined, these results lay the foundation for the development of catalytic asymmetric reactions involving these classically avoided strained intermediates.
Collapse
|
16
|
Kelleghan AV, Busacca CA, Sarvestani M, Volchkov I, Medina JM, Garg NK. Safety Assessment of Benzyne Generation from a Silyl Triflate Precursor. Org Lett 2020; 22:1665-1669. [PMID: 32017583 DOI: 10.1021/acs.orglett.0c00267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silyl triflate precursors to benzyne and related intermediates have emerged as valuable synthetic building blocks. However, data addressing the safety of employing these silyl triflate precursors are lacking. We report the calorimetric analysis of a typical Kobayashi procedure for forming and trapping benzyne using a silyl triflate precursor. Our findings suggest that, unlike benzenediazonium carboxylate precursors to benzyne, silyl triflates may be employed under mild conditions without severe concern for runaway reaction.
Collapse
Affiliation(s)
- Andrew V Kelleghan
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , United States
| | - Carl A Busacca
- Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877-0368 , United States
| | - Max Sarvestani
- Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877-0368 , United States
| | - Ivan Volchkov
- Chemical Development , Boehringer Ingelheim Pharmaceuticals, Inc. , 900 Ridgebury Road , Ridgefield , Connecticut 06877-0368 , United States
| | - Jose M Medina
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095-1569 , United States
| |
Collapse
|
17
|
Zhou Y, Lin L, Wang Y, Zhu J, Song Q. Cu-Catalyzed Aromatic Metamorphosis of 3-Aminoindazoles. Org Lett 2019; 21:7630-7634. [PMID: 31503499 DOI: 10.1021/acs.orglett.9b02933] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present a novel Cu-catalyzed aromatic metamorphosis of 3-aminoindazoles via oxidative cleavage of two C-N bonds of 3-aminoindazoles. This unprecedented reactivity of 3-aminoindazoles allows one to forge diverse nitrile-containing triphenylenes in decent yields via generation of the cyano group in situ. The current study reveals that 3-aminoindazoles could be harnessed as radical precursors via oxidative denitrogenation, the reaction mechanism of which was supported by density functional theory calculations.
Collapse
Affiliation(s)
- Yao Zhou
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China
| | - Lu Lin
- College of Chemistry and Chemical Engineering at Xiamen University , Xiamen , Fujian 361005 , People's Republic of China
| | - Ya Wang
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China
| | - Jun Zhu
- College of Chemistry and Chemical Engineering at Xiamen University , Xiamen , Fujian 361005 , People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation , College of Materials Science & Engineering at Huaqiao University , 668 Jimei Blvd. , Xiamen , Fujian 361021 , People's Republic of China.,Key Laboratory of Molecule Synthesis and Function Discovery , College of Chemistry at Fuzhou University , Fuzhou , Fujian 350108 , People's Republic of China
| |
Collapse
|
18
|
Pozo I, Guitián E, Pérez D, Peña D. Synthesis of Nanographenes, Starphenes, and Sterically Congested Polyarenes by Aryne Cyclotrimerization. Acc Chem Res 2019; 52:2472-2481. [PMID: 31411855 DOI: 10.1021/acs.accounts.9b00269] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent years, synthetic transformations based on aryne chemistry have become particularly popular, mostly due to the spread of methods to generate these highly reactive intermediates in a controlled manner under mild reaction conditions. In fact, aryne cycloadditions such as the Diels-Alder reaction are nowadays widely used for the efficient preparation of polycyclic aromatic compounds. In 1998, our group discovered that arynes can undergo transition metal-catalyzed reactions, a finding that opened new perspectives in aryne chemistry. In particular, Pd-catalyzed [2 + 2 + 2] cycloaddition of arynes allowed the straightforward synthesis of triphenylene derivatives such as starphenes or cloverphenes. We found that this reaction is compatible with different substituents and sterically demanding arynes as starting materials. This transformation is especially useful to increase the molecular complexity in one single step, transforming molecules formed by n cycles in structures with 3n + 1 cycles. In fact, we took advantage of this protocol to prepare a large variety of sterically congested polycyclic aromatic hydrocarbons such as helicenes or twisted polyarenes. Soon after the discovery of the reaction, the co-cyclotrimerization of arynes with other reaction partners, such as electron deficient alkynes, significantly expanded the potential of this transformation. Also the use of catalysts based on alternative metals besides Pd (e.g., Ni, Cu, Au) or the use of other strained intermediates such as cycloalkynes or cycloallenes added value to this reaction. In addition, we realized that the Pd-catalyzed aryne cyclotrimerization reaction is particularly useful for the bottom-up preparation of well-defined nanographenes by chemical methods. Although the extreme insolubility of these planar nanographenes hampered their manipulation and characterization by conventional methods, recent advances in single molecule on-surface characterization by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) with functionalized tips under ultrahigh vacuum (UHV) conditions, permitted the impressive visualization of these nanographenes with submolecular resolution, together with the examination of the corresponding molecular orbital densities. Moreover, arynes have been shown to possess a rich on-surface chemistry. In particular, arynes have been generated and studied on-surface, showing that the reactivity is preserved even at cryogenic temperatures. On-surface aryne cyclotrimerization was also demonstrated to obtain large starphene derivatives. Therefore, it is expected that the combination of aryne cycloadditions and on-surface synthesis will provide notable findings in the near future, including the "à la carte" preparation of graphene materials or the synthesis of elusive molecules with unique properties.
Collapse
Affiliation(s)
- Iago Pozo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Enrique Guitián
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Pérez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
19
|
Taniguchi T, Itai Y, Nishii Y, Tohnai N, Miura M. Construction of Nitrogen-containing Polycyclic Aromatic Compounds by Intramolecular Oxidative C-H/C-H Coupling of Bis(9H-carbazol-9-yl)benzenes and Their Properties. CHEM LETT 2019. [DOI: 10.1246/cl.190494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Taisei Taniguchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuhei Itai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Darzi ER, Barber JS, Garg NK. Cyclic Alkyne Approach to Heteroatom-Containing Polycyclic Aromatic Hydrocarbon Scaffolds. Angew Chem Int Ed Engl 2019; 58:9419-9424. [PMID: 31087805 PMCID: PMC6663605 DOI: 10.1002/anie.201903060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 11/12/2022]
Abstract
We report a modular synthetic strategy for accessing heteroatom-containing polycyclic aromatic hydrocarbons (PAHs). Our approach relies on the controlled generation of transient heterocyclic alkynes and arynes. The strained intermediates undergo in situ trapping with readily accessible oxadiazinones. Four sequential pericyclic reactions occur, namely two Diels-Alder/retro-Diels-Alder sequences, which can be performed in a stepwise or one-pot fashion to assemble four new carbon-carbon (C-C) bonds. These studies underscore how the use of heterocyclic strained intermediates can be harnessed for the preparation of new organic materials.
Collapse
Affiliation(s)
- Evan R Darzi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Joyann S Barber
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
21
|
Palladium catalyzed annulation of benzylamines and arynes via C–H activation to construct 5,6-dihydrophenanthridine derivatives. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Darzi ER, Barber JS, Garg NK. Cyclic Alkyne Approach to Heteroatom‐Containing Polycyclic Aromatic Hydrocarbon Scaffolds. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Evan R. Darzi
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Joyann S. Barber
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
23
|
Yamano MM, Knapp RR, Ngamnithiporn A, Ramirez M, Houk KN, Stoltz BM, Garg NK. Cycloadditions of Oxacyclic Allenes and a Catalytic Asymmetric Entryway to Enantioenriched Cyclic Allenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael M. Yamano
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Rachel R. Knapp
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Aurapat Ngamnithiporn
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Melissa Ramirez
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering California Institute of Technology Pasadena CA 91125 USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
24
|
Yamano MM, Knapp RR, Ngamnithiporn A, Ramirez M, Houk KN, Stoltz BM, Garg NK. Cycloadditions of Oxacyclic Allenes and a Catalytic Asymmetric Entryway to Enantioenriched Cyclic Allenes. Angew Chem Int Ed Engl 2019; 58:5653-5657. [PMID: 30811080 PMCID: PMC6456397 DOI: 10.1002/anie.201900503] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 01/19/2023]
Abstract
The chemistry of strained cyclic alkynes has undergone a renaissance over the past two decades. However, a related species, strained cyclic allenes, especially heterocyclic derivatives, have only recently resurfaced and represent another class of valuable intermediates. We report a mild and facile means to generate the parent 3,4-oxacyclic allene from a readily accessible silyl triflate precursor, and then trap it in (4+2), (3+2), and (2+2) reactions to provide a variety of cycloadducts. In addition, we describe a catalytic, decarboxylative asymmetric allylic alkylation performed on an α-silylated substrate, to ultimately permit access to an enantioenriched allene. Generation and trapping of the enantioenriched cyclic allene occurs with complete transfer of stereochemical information in a Diels-Alder cycloaddition through a point-chirality, axial-chirality, point-chirality transfer process.
Collapse
Affiliation(s)
- Michael M Yamano
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rachel R Knapp
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Aurapat Ngamnithiporn
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Melissa Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
25
|
Devaraj K, Ingner FJL, Sollert C, Gates PJ, Orthaber A, Pilarski LT. Arynes and Their Precursors from Arylboronic Acids via Catalytic C-H Silylation. J Org Chem 2019; 84:5863-5871. [PMID: 30835118 DOI: 10.1021/acs.joc.9b00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new, operationally simple approach is presented to access arynes and their fluoride-activated precursors based on Ru-catalyzed C-H silylation of arylboronates. Chromatographic purification may be deferred until after aryne capture, rendering the arylboronates de facto precursors. Access to various new arynes and their derivatives is demonstrated, including, for the first time, those based on a 2,3-carbazolyne and 2,3-fluorenyne core, which pave the way for novel derivatizations of motifs relevant to materials chemistry.
Collapse
Affiliation(s)
- Karthik Devaraj
- Department of Chemistry - BMC , Uppsala University , Box 576, Uppsala 75-123 , Sweden
| | - Fredric J L Ingner
- Department of Chemistry - BMC , Uppsala University , Box 576, Uppsala 75-123 , Sweden
| | - Carina Sollert
- Department of Chemistry - BMC , Uppsala University , Box 576, Uppsala 75-123 , Sweden
| | - Paul J Gates
- School of Chemistry , University of Bristol , Cantock's Close, Clifton, Bristol BS8 1TS , United Kingdom
| | - Andreas Orthaber
- Department of Chemistry, Ångström Laboratories , Uppsala University , Box 523, Uppsala 75-120 , Sweden
| | - Lukasz T Pilarski
- Department of Chemistry - BMC , Uppsala University , Box 576, Uppsala 75-123 , Sweden
| |
Collapse
|
26
|
Chari JV, Ippoliti FM, Garg NK. Concise Approach to Cyclohexyne and 1,2-Cyclohexadiene Precursors. J Org Chem 2019; 84:3652-3655. [PMID: 30840455 DOI: 10.1021/acs.joc.8b03223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Silyl triflate precursors to cyclic alkynes and allenes serve as valuable synthetic building blocks. We report a concise and scalable synthetic approach to prepare the silyl triflate precursors to cyclohexyne and 1,2-cyclohexadiene. The strategy involves a retro-Brook rearrangement of an easily accessible cyclohexanone derivative, followed by triflation protocols. This simple, yet controlled, method should enable the further study of strained alkynes and allenes in chemical synthesis.
Collapse
Affiliation(s)
- Jason V Chari
- Department of Biochemistry and Chemistry , University of California , Los Angeles , California 90095 , United States
| | - Francesca M Ippoliti
- Department of Biochemistry and Chemistry , University of California , Los Angeles , California 90095 , United States
| | - Neil K Garg
- Department of Biochemistry and Chemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
27
|
Uchida K, Yoshida S, Hosoya T. Synthetic Aryne Chemistry toward Multicomponent Coupling. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Suguru Yoshida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Takamitsu Hosoya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
28
|
Guo C, Xia D, Yang Y, Zuo X. Synthesis of π-Conjugated Benzocyclotrimers. CHEM REC 2019; 19:2143-2156. [PMID: 30681252 DOI: 10.1002/tcr.201800160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 11/10/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially three branchphene benzocyclotrimers represent a series of molecules with intriguing physical and chemical properties. Benzocyclotrimers are also important precursors to construct fullerenes and graphenes. In this article, we review the recent progress in the preparation methods of π-conjugated benzocyclotrimers. In particular, cyclotrimerization reactions to construct varying shaped and edged benzocyclotrimers are illustrated. Various typical characterization methods for these materials, such as variable-temperature 1 H-NMR, single crystal X-ray analysis, density functional theory (DFT) calculations and atomic force microscope (AFM) measurements are included for discussion.
Collapse
Affiliation(s)
- Changding Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xia Zuo
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
29
|
Nishiyama Y, Kamada S, Yoshida S, Hosoya T. Generation of Arynes by Selective Cleavage of a Carbon–Phosphorus Bond of o-(Diarylphosphinyl)aryl Triflates Using a Grignard Reagent. CHEM LETT 2018. [DOI: 10.1246/cl.180555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yoshitake Nishiyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shuhei Kamada
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
30
|
Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Synthesis of Diverse Phenothiazines by Direct Thioamination of Arynes with S-(o-Bromoaryl)-S-methylsulfilimines and Subsequent Intramolecular Buchwald–Hartwig Amination. CHEM LETT 2018. [DOI: 10.1246/cl.180304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Keisuke Uchida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
31
|
Zhang Z, Chen CL, Chen YA, Wei YC, Su J, Tian H, Chou PT. Tuning the Conformation and Color of Conjugated Polyheterocyclic Skeletons by Installing ortho-Methyl Groups. Angew Chem Int Ed Engl 2018; 57:9880-9884. [PMID: 29897660 DOI: 10.1002/anie.201806385] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 11/11/2022]
Abstract
ortho-Methyl effects are exploited to tune steric hindrance between side-chain N,N'-diaryls and polycyclic dihydrodibenzo[a,c]phenazine, and in turn control the conformations of N,N'-diphenyl-dihydrodibenzo[a,c]phenazine (DPAC) and its ortho-methyl derivatives Mx-My (x=0, 1 or 2, y=1 or 2, x and y correlate with the number of methyl groups in the ortho-positiond of N,N'-diphenyl). The magnitude of steric hindrance increases as x and y increase, and the V-shaped dihydrodibenzo[a,c]phenazine skeleton is gradually tuned from a bent (DPAC) to planar (M2-M2) structure in the ground state. As a result, the relaxation of the excited-state structure of DPAC and its numerous analogues could be mimicked by model structures Mx-My, demonstrating for the first time the the conformation change from bent-to-planar and hence a large range of energy-gap tuning of polycyclic conjugated structures controlled by the steric hindrance.
Collapse
Affiliation(s)
- Zhiyun Zhang
- Department of Chemistry, National (Taiwan) University, Taipei, 10617, Taiwan R.O.C
| | - Chi-Lin Chen
- Department of Chemistry, National (Taiwan) University, Taipei, 10617, Taiwan R.O.C
| | - Yi-An Chen
- Department of Chemistry, National (Taiwan) University, Taipei, 10617, Taiwan R.O.C
| | - Yu-Chen Wei
- Department of Chemistry, National (Taiwan) University, Taipei, 10617, Taiwan R.O.C
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai, 200237, P. R. China
| | - Pi-Tai Chou
- Department of Chemistry, National (Taiwan) University, Taipei, 10617, Taiwan R.O.C
| |
Collapse
|
32
|
Zhang Z, Chen CL, Chen YA, Wei YC, Su J, Tian H, Chou PT. Tuning the Conformation and Color of Conjugated Polyheterocyclic Skeletons by Installing ortho
-Methyl Groups. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806385] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhiyun Zhang
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan R.O.C
| | - Chi-Lin Chen
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan R.O.C
| | - Yi-An Chen
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan R.O.C
| | - Yu-Chen Wei
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan R.O.C
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science & Technology; Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science & Technology; Shanghai 200237 P. R. China
| | - Pi-Tai Chou
- Department of Chemistry; National (Taiwan) University; Taipei 10617 Taiwan R.O.C
| |
Collapse
|
33
|
Picazo E, Anthony SM, Giroud M, Simon A, Miller MA, Houk KN, Garg NK. Arynes and Cyclic Alkynes as Synthetic Building Blocks for Stereodefined Quaternary Centers. J Am Chem Soc 2018; 140:7605-7610. [PMID: 29716194 PMCID: PMC6467087 DOI: 10.1021/jacs.8b02875] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report a facile method to synthesize stereodefined quaternary centers from reactions of arynes and related strained intermediates using β-ketoester-derived substrates. The conversion of β-ketoesters to chiral enamines is followed by reaction with in situ generated strained arynes or cyclic alkynes. Hydrolytic workup provides the arylated or alkenylated products in enantiomeric excesses as high as 96%. We also describe the one-pot conversion of a β-ketoester substrate to the corresponding enantioenriched α-arylated product. Computations show how chirality is transferred from the N-bound chiral auxiliary to the final products. These are the first theoretical studies of aryne trapping by chiral nucleophiles to set new stereocenters. Our approach provides a solution to the challenging problem of stereoselective β-ketoester arylation/alkenylation, with formation of a quaternary center.
Collapse
Affiliation(s)
| | | | - Maude Giroud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Adam Simon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Margeaux A. Miller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
34
|
Zainuri DA, Razak IA, Arshad S. The effect of the fused-ring substituent on anthracene chalcones: crystal structural and DFT studies of 1-(anthracen-9-yl)-3-(naphthalen-2-yl)prop-2-en-1-one and 1-(anthracen-9-yl)-3-(pyren-1-yl)prop-2-en-1-one. Acta Crystallogr E Crystallogr Commun 2018; 74:650-655. [PMID: 29850084 PMCID: PMC5947480 DOI: 10.1107/s2056989018005467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/09/2018] [Indexed: 11/11/2022]
Abstract
The title chalcone compounds, C27H18O (I) and C33H20O (II), were synthesized using a Claisen-Schmidt condensation. Both compounds display an s-trans configuration of the enone moiety. The crystal structures feature inter-molecular C-H⋯O and C-H⋯π inter-actions. Quantum chemical analysis of density functional theory (DFT) with a B3LYP/6-311++G(d,p) basis set has been employed to study the structural properties of the compound. The effect of the inter-molecular inter-actions in the solid state are responsible for the differences between the experimental and theoretical optimized geometrical parameters. The small HOMO-LUMO energy gap in (I) (exp : 3.18 eV and DFT: 3.15 eV) and (II) (exp : 2.76 eV and DFT: 2.95 eV) indicates the suitability of these compounds for optoelectronic applications. The inter-molecular contacts and weak contributions to the supra-molecular stabilization are analysed using Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Dian Alwani Zainuri
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Ibrahim Abdul Razak
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Suhana Arshad
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
35
|
Kopchuk DS, Nikonov IL, Khasanov AF, Giri K, Santra S, Kovalev IS, Nosova EV, Gundala S, Venkatapuram P, Zyryanov GV, Majee A, Chupakhin ON. Studies on the interactions of 5-R-3-(2-pyridyl)-1,2,4-triazines with arynes: inverse demand aza-Diels–Alder reaction versus aryne-mediated domino process. Org Biomol Chem 2018; 16:5119-5135. [DOI: 10.1039/c8ob00847g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions between substituted 5-R-3-(pyridyl-2)-1,2,4-triazines with in situ generated substituted aryne intermediates have been studied.
Collapse
|
36
|
Yoshida S, Kuribara T, Morita T, Matsuzawa T, Morimoto K, Kobayashi T, Hosoya T. Expanding the synthesizable multisubstituted benzo[b]thiophenes via 6,7-thienobenzynes generated from o-silylaryl triflate-type precursors. RSC Adv 2018; 8:21754-21758. [PMID: 35541723 PMCID: PMC9081209 DOI: 10.1039/c8ra04035d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/06/2018] [Indexed: 01/04/2023] Open
Abstract
Various 2,3-disubstituted 6,7-thienobenzynes have been efficiently generated from the corresponding o-silylaryl triflate-type precursors by activation with fluoride ions. The method has expanded the scope of synthesizable multisubstituted benzothiophenes, including those with various heteroatom substituents, and can be applied to the synthesis of EP4 antagonist analogs. Various multisubstituted benzothiophenes, including those with various heteroatom substituents and EP4 antagonist analogs, have been prepared easily via 6,7-thienobenzynes generated from o-silylaryl triflate-type precursors.![]()
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Takamoto Morita
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| | - Kazushi Morimoto
- Department of Medical Chemistry and Cell Biology
- Graduate School of Medicine
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry and Cell Biology
- Graduate School of Medicine
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- Tokyo 101-0062
- Japan
| |
Collapse
|
37
|
Wu X, Han J, Wang L. Palladium Catalyzed C–I and Vicinal C–H Dual Activation of Diaryliodonium Salts for Diarylations: Synthesis of Triphenylenes. J Org Chem 2017; 83:49-56. [DOI: 10.1021/acs.joc.7b01905] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xunshen Wu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jianwei Han
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai−Hong
Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of
Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Limin Wang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
38
|
Berezhnaia V, Roy M, Vanthuyne N, Villa M, Naubron JV, Rodriguez J, Coquerel Y, Gingras M. Chiral Nanographene Propeller Embedding Six Enantiomerically Stable [5]Helicene Units. J Am Chem Soc 2017; 139:18508-18511. [DOI: 10.1021/jacs.7b07622] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Myriam Roy
- Aix Marseille Université, CNRS, CINAM, 13288 Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Marseille,
ISM2, 13288 Marseille, France
| | - Marco Villa
- Aix Marseille Université, CNRS, CINAM, 13288 Marseille, France
| | - Jean-Valère Naubron
- Aix Marseille Université, CNRS, Centrale Marseille,
FR1739, 13288 Marseille, France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Marseille,
ISM2, 13288 Marseille, France
| | - Yoann Coquerel
- Aix Marseille Université, CNRS, Centrale Marseille,
ISM2, 13288 Marseille, France
| | - Marc Gingras
- Aix Marseille Université, CNRS, CINAM, 13288 Marseille, France
| |
Collapse
|
39
|
Yoshida S, Shimizu K, Uchida K, Hazama Y, Igawa K, Tomooka K, Hosoya T. Construction of Condensed Polycyclic Aromatic Frameworks through Intramolecular Cycloaddition Reactions Involving Arynes Bearing an Internal Alkyne Moiety. Chemistry 2017; 23:15332-15335. [PMID: 28921682 DOI: 10.1002/chem.201704345] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Indexed: 11/11/2022]
Abstract
Facile synthetic methods for condensed polycyclic aromatic compounds via aryne intermediates are reported. The generation of arynes bearing a (3-arylpropargyl)oxy group from the corresponding o-iodoaryl triflate-type precursors efficiently afforded arene-fused oxaacenaphthene derivatives, which were formed through intramolecular [2+4] cycloaddition. Extending the method to the generation of arynes bearing a 1,3-diyne moiety led to a continuous generation of naphthalyne intermediate through the hexadehydro Diels-Alder reaction involving the aryne triple bond. This novel type of aryne-relay chemistry enabled the synthesis of a unique aminoarylated oxaacenaphthene derivative and highly ring-fused anthracene derivatives.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Keita Shimizu
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Keisuke Uchida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
40
|
Matsuzawa T, Uchida K, Yoshida S, Hosoya T. Synthesis of Diverse o-Arylthio-Substituted Diaryl Ethers by Direct Oxythiolation of Arynes with Diaryl Sulfoxides Involving Migratory O-Arylation. Org Lett 2017; 19:5521-5524. [PMID: 28984457 DOI: 10.1021/acs.orglett.7b02599] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A diverse range of o-arylthio-substituted diaryl ethers has been synthesized by direct oxythiolation of arynes with diaryl sulfoxides that involves the formation of the C-O and C-S bonds followed by migratory O-arylation.
Collapse
Affiliation(s)
- Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Keisuke Uchida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|