1
|
Liu Y, Peng Y, Wang Z, Wei X, Yang K. Light-Driven Installation of Aminooxyhomolysine on Histones and Its Application for Synthesizing Stable and Site-Specific 3'-DNA-Histone Cross-Links. Bioconjug Chem 2024. [PMID: 39547792 DOI: 10.1021/acs.bioconjchem.4c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Histones react with various aldehyde-containing DNA modifications to form reversible but long-lived DNA-histone cross-links. The investigation of their biochemical effects and repair mechanisms has been impeded due to their reversibility and the lack of methods for synthesizing stable and structure-defined DNA-histone cross-links. Herein, we present a visible-light-driven strategy to install an aminooxyhomolysine on a histone at a defined position. Using this method, we synthesized a hydrolytically stable and site-specific 3'-DNA-histone cross-link derived from an abasic DNA lesion. Such an adduct can be efficiently repaired by proteolysis coupled with nuclease excision. This work provides a strategy that can be readily expanded to synthesize DNA-histone cross-links derived from other aldehyde-containing DNA modifications.
Collapse
Affiliation(s)
- Yangxue Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhishuo Wang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Wen T, Zhao S, Stingele J, Ravanat JL, Greenberg MM. Quantification of Intracellular DNA-Protein Cross-Links with N7-Methyl-2'-Deoxyguanosine and Their Contribution to Cytotoxicity. Chem Res Toxicol 2024; 37:814-823. [PMID: 38652696 PMCID: PMC11105979 DOI: 10.1021/acs.chemrestox.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The major product of DNA-methylating agents, N7-methyl-2'-deoxyguanosine (MdG), is a persistent lesion in vivo, but it is not believed to have a large direct physiological impact. However, MdG reacts with histone proteins to form reversible DNA-protein cross-links (DPCMdG), a family of DNA lesions that can significantly threaten cell survival. In this paper, we developed a tandem mass spectrometry method for quantifying the amounts of MdG and DPCMdG in nuclear DNA by taking advantage of their chemical lability and the concurrent release of N7-methylguanine. Using this method, we determined that DPCMdG is formed in less than 1% yield based upon the levels of MdG in methyl methanesulfonate (MMS)-treated HeLa cells. Despite its low chemical yield, DPCMdG contributes to MMS cytotoxicity. Consequently, cells that lack efficient DPC repair by the DPC protease SPRTN are hypersensitive to MMS. This investigation shows that the downstream chemical and biochemical effects of initially formed DNA damage can have significant biological consequences. With respect to MdG formation, the initial DNA lesion is only the beginning.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Shubo Zhao
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Wang J, Takyi NA, Hsiao YC, Tang Q, Chen YT, Liu CW, Ma J, Qi R, Bian K, Peng Z, Essigmann JM, Lu K, Wetmore SD, Li D. Stable Interstrand Cross-Links Generated from the Repair of 1, N6-Ethenoadenine in DNA by α-Ketoglutarate/Fe(II)-Dependent Dioxygenase ALKBH2. J Am Chem Soc 2024; 146:10381-10392. [PMID: 38573229 PMCID: PMC11060877 DOI: 10.1021/jacs.3c12890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.
Collapse
Affiliation(s)
- Jie Wang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Qi Tang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Yi-Tzai Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jian Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Rui Qi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Zhiyuan Peng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - John M Essigmann
- Departments of Biological Engineering, Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
4
|
Bacurio JHT, Yawson P, Thomforde J, Zhang Q, Kumar HV, Den Hartog H, Tretyakova NY, Basu AK. 5-Formylcytosine mediated DNA-peptide cross-link induces predominantly semi-targeted mutations in both Escherichia coli and human cells. J Biol Chem 2024; 300:105786. [PMID: 38401843 PMCID: PMC10966706 DOI: 10.1016/j.jbc.2024.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Histone proteins can become trapped on DNA in the presence of 5-formylcytosine (5fC) to form toxic DNA-protein conjugates. Their repair may involve proteolytic digestion resulting in DNA-peptide cross-links (DpCs). Here, we have investigated replication of a model DpC comprised of an 11-mer peptide (NH2-GGGKGLGK∗GGA) containing an oxy-lysine residue (K∗) conjugated to 5fC in DNA. Both CXG and CXT (where X = 5fC-DpC) sequence contexts were examined. Replication of both constructs gave low viability (<10%) in Escherichia coli, whereas TLS efficiency was high (72%) in HEK 293T cells. In E. coli, the DpC was bypassed largely error-free, inducing only 2 to 3% mutations, which increased to 4 to 5% with SOS. For both sequences, semi-targeted mutations were dominant, and for CXG, the predominant mutations were G→T and G→C at the 3'-base to the 5fC-DpC. In HEK 293T cells, 7 to 9% mutations occurred, and the dominant mutations were the semi-targeted G → T for CXG and T → G for CXT. These mutations were reduced drastically in cells deficient in hPol η, hPol ι or hPol ζ, suggesting a role of these TLS polymerases in mutagenic TLS. Steady-state kinetics studies using hPol η confirmed that this polymerase induces G → T and T → G transversions at the base immediately 3' to the DpC. This study reveals a unique replication pattern of 5fC-conjugated DpCs, which are bypassed largely error-free in both E. coli and human cells and induce mostly semi-targeted mutations at the 3' position to the lesion.
Collapse
Affiliation(s)
| | - Priscilla Yawson
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Jenna Thomforde
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Qi Zhang
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Honnaiah Vijay Kumar
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Holly Den Hartog
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
| |
Collapse
|
5
|
Kriukienė E, Tomkuvienė M, Klimašauskas S. 5-Hydroxymethylcytosine: the many faces of the sixth base of mammalian DNA. Chem Soc Rev 2024; 53:2264-2283. [PMID: 38205583 DOI: 10.1039/d3cs00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Epigenetic phenomena play a central role in cell regulatory processes and are important factors for understanding complex human disease. One of the best understood epigenetic mechanisms is DNA methylation. In the mammalian genome, cytosines (C) in CpG dinucleotides were long known to undergo methylation at the 5-position of the pyrimidine ring (mC). Later it was found that mC can be oxidized to 5-hydroxymethylcytosine (hmC) or even further to 5-formylcytosine (fC) and to 5-carboxylcytosine (caC) by the action of 2-oxoglutarate-dependent dioxygenases of the TET family. These findings unveiled a long elusive mechanism of active DNA demethylation and bolstered a wave of studies in the area of epigenetic regulation in mammals. This review is dedicated to critical assessment of recent data on biochemical and chemical aspects of the formation and conversion of hmC in DNA, analytical techniques used for detection and mapping of this nucleobase in mammalian genomes as well as epigenetic roles of hmC in DNA replication, transcription, cell differentiation and human disease.
Collapse
Affiliation(s)
- Edita Kriukienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
6
|
Šimelis K, Saraç H, Salah E, Nishio K, McAllister TE, Corner TP, Tumber A, Belle R, Schofield CJ, Suga H, Kawamura A. Selective targeting of human TET1 by cyclic peptide inhibitors: Insights from biochemical profiling. Bioorg Med Chem 2024; 99:117597. [PMID: 38262305 DOI: 10.1016/j.bmc.2024.117597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Ten-Eleven Translocation (TET) enzymes are Fe(II)/2OG-dependent oxygenases that play important roles in epigenetic regulation, but selective inhibition of the TETs is an unmet challenge. We describe the profiling of previously identified TET1-binding macrocyclic peptides. TiP1 is established as a potent TET1 inhibitor (IC50 = 0.26 µM) with excellent selectivity over other TETs and 2OG oxygenases. TiP1 alanine scanning reveals the critical roles of Trp10 and Glu11 residues for inhibition of TET isoenzymes. The results highlight the utility of the RaPID method to identify potent enzyme inhibitors with selectivity over closely related paralogues. The structure-activity relationship data generated herein may find utility in the development of chemical probes for the TETs.
Collapse
Affiliation(s)
- Klemensas Šimelis
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Hilal Saraç
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Kosuke Nishio
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tom E McAllister
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Roman Belle
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; Chemistry - School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
7
|
Fischer V, Kretschmer M, Germain PL, Kaur J, Mompart-Barrenechea S, Pelczar P, Schürmann D, Schär P, Gapp K. Sperm chromatin accessibility's involvement in the intergenerational effects of stress hormone receptor activation. Transl Psychiatry 2023; 13:378. [PMID: 38065942 PMCID: PMC10709351 DOI: 10.1038/s41398-023-02684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Dexamethasone is a stress hormone receptor agonist used widely in clinics. We and others previously showed that paternal administration of dexamethasone in mice affects the phenotype of their offspring. The substrate of intergenerational transmission of environmentally induced effects often involves changes in sperm RNA, yet other epigenetic modifications in the germline can be affected and are also plausible candidates. First, we tested the involvement of altered sperm RNAs in the transmission of dexamethasone induced phenotypes across generations. We did this by injecting sperm RNA into naïve fertilized oocytes, before performing metabolic and behavioral phenotyping of the offspring. We observed phenotypic changes in discordance with those found in offspring generated by in vitro fertilization using sperm from dexamethasone exposed males. Second, we investigated the effect of dexamethasone on chromatin accessibility using ATAC sequencing and found significant changes at specific genomic features and gene regulatory loci. Employing q-RT-PCR, we show altered expression of a gene in the tissue of offspring affected by accessibility changes in sperm. Third, we establish a correlation between specific DNA modifications and stress hormone receptor activity as a likely contributing factor influencing sperm accessibility. Finally, we independently investigated this dependency by genetically reducing thymine-DNA glycosylase levels and observing concomitant changes at the level of chromatin accessibility and stress hormone receptor activity.
Collapse
Affiliation(s)
- Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Science and Technology, Zürich, Switzerland
- Laboratory of Statistical Bioinformatics, University of Zürich, Zürich, Switzerland
| | - Jasmine Kaur
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Sergio Mompart-Barrenechea
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - David Schürmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Primo Schär
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| |
Collapse
|
8
|
Wen T, Kermarrec M, Dumont E, Gillet N, Greenberg MM. DNA-Histone Cross-Link Formation via Hole Trapping in Nucleosome Core Particles. J Am Chem Soc 2023; 145:23702-23714. [PMID: 37856159 PMCID: PMC10652223 DOI: 10.1021/jacs.3c08135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical cations (holes) produced in DNA by ionizing radiation and other oxidants yield DNA-protein cross-links (DPCs). Detailed studies of DPC formation in chromatin via this process are lacking. We describe here a comprehensive examination of DPC formation within nucleosome core particles (NCPs), which are the monomeric component of chromatin. DNA holes are introduced at defined sites within NCPs that are constructed from the bottom-up. DPCs form at DNA holes in yields comparable to those of alkali-labile DNA lesions that result from water trapping. DPC-forming efficiency and site preference within the NCP are dependent on translational and rotational positioning. Mass spectrometry and the use of mutant histones reveal that lysine residues in histone N-terminal tails and amino termini are responsible for the DPC formation. These studies are corroborated by computational simulation at the microsecond time scale, showing a wide range of interactions that can precede DPC formation. Three consecutive dGs, which are pervasive in the human genome, including G-quadruplex-forming sequences, are sufficient to produce DPCs that could impact gene expression.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Maxime Kermarrec
- Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, ENS de Lyon, CNRS, F-69342 Lyon, France
| | - Elise Dumont
- Institut de Chimie de Nice UMR 7272, Université Côte d'Azur, CNRS, 06108 Nice, France
- Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| | - Natacha Gillet
- Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, ENS de Lyon, CNRS, F-69342 Lyon, France
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
9
|
Li J, Cui Z, Fan C, Zhou Y, Ren M, Zhou C. Photo-caged 2-butene-1,4-dial as an efficient, target-specific photo-crosslinker for covalent trapping of DNA-binding proteins. Chem Sci 2023; 14:10884-10891. [PMID: 37829010 PMCID: PMC10566456 DOI: 10.1039/d3sc03719c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Covalent trapping of DNA-binding proteins via photo-crosslinking is an advantageous method for studying DNA-protein interactions. However, traditional photo-crosslinkers generate highly reactive intermediates that rapidly and non-selectively react with nearby functional groups, resulting in low target-capture yields and high non-target background capture. Herein, we report that photo-caged 2-butene-1,4-dial (PBDA) is an efficient photo-crosslinker for trapping DNA-binding proteins. Photo-irradiation (360 nm) of PBDA-modified DNA generates 2-butene-1,4-dial (BDA), a small, long-lived intermediate that reacts selectively with Lys residues of DNA-binding proteins, leading in minutes to stable DNA-protein crosslinks in up to 70% yield. In addition, BDA exhibits high specificity for target proteins, leading to low non-target background capture. The high photo-crosslinking yield and target specificity make PBDA a powerful tool for studying DNA-protein interactions.
Collapse
Affiliation(s)
- Jiahui Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zenghui Cui
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Peng Y, Wei X, Yang K. Synthesis and Excision Repair of Site-Specific 3'-End DNA-Histone Cross-Links Derived from Abasic Sites. Bioconjug Chem 2023. [PMID: 37184979 DOI: 10.1021/acs.bioconjchem.3c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Histones catalyze the DNA strand incision at apurinic/apyrimidinic (AP) sites accompanied by formation of reversible but long-lived DNA-protein cross-links (DPCs) at 3'-DNA termini within single-strand breaks. These DPCs need to be removed because 3'-hydroxyl is required for gap-filling DNA repair synthesis but are challenging to study because of their reversible nature. Here we report a chemical approach to synthesize stable and site-specific 3'-histone-DPCs and their repair by three nucleases, human AP endonuclease 1, tyrosyl-DNA phosphodiesterase 1, and three-prime repair exonuclease 1. Our method employs oxime ligation to install an alkyne to 3'-DNA terminus, genetic incorporation of an azidohomoalanine to histone H4 at a defined position, and click reaction to conjugate DNA to H4 site-specifically. Using these model DPC substrates, we demonstrated that the DPC repair efficiency is highly affected by the local protein environment, and prior DPC proteolysis facilitates the repair.
Collapse
Affiliation(s)
- Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|
12
|
Ryan BJ, Weaver TM, Spencer JJ, Freudenthal BD. Generation of Recombinant Nucleosomes Containing Site-Specific DNA Damage. Methods Mol Biol 2023; 2701:55-76. [PMID: 37574475 PMCID: PMC10794041 DOI: 10.1007/978-1-0716-3373-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Eukaryotic DNA exists in chromatin, where the genomic DNA is packaged into a fundamental repeating unit known as the nucleosome. In this chromatin environment, our genomic DNA is constantly under attack by exogenous and endogenous stressors that can lead to DNA damage. Importantly, this DNA damage must be repaired to prevent the accumulation of mutations and ensure normal cellular function. To date, most in-depth biochemical studies of DNA repair proteins have been performed in the context of free duplex DNA. However, chromatin can serve as a barrier that DNA repair enzymes must navigate in order find, access, and process DNA damage in the cell. To facilitate future studies of DNA repair in chromatin, we describe a protocol for generating nucleosome containing site-specific DNA damage that can be utilized for a variety of in vitro applications. This protocol describes several key steps including how to generate damaged DNA oligonucleotides, the expression and purification of recombinant histones, the refolding of histone complexes, and the reconstitution of nucleosomes containing site-specific DNA damage. These methods will enable researchers to generate nucleosomes containing site-specific DNA damage for extensive biochemical and structural studies of DNA repair in the nucleosome.
Collapse
Affiliation(s)
- Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jonah J Spencer
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Wen T, Yang K, Greenberg MM. Local Alteration of Ionic Strength in a Nucleosome Core Particle and Its Effect on N7-Methyl-2'-deoxyguanosine Depurination. Biochemistry 2022; 61:2221-2228. [PMID: 36136907 PMCID: PMC9670023 DOI: 10.1021/acs.biochem.2c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positively charged N-terminal histone tails play important roles in maintaining the nucleosome (and chromatin) structure and function. Charge alteration, including those imposed by post-translational modifications, impacts chromatin dynamics, protein binding, and the fate of DNA damage. There is evidence that N-terminal histone tails affect the local ionic environment within a nucleosome core particle (NCP), but this phenomenon is not well understood. Determining the modulation of the local ionic environment within an NCP by histone tails could help uncover the underlying mechanisms of their functions and effects. Utilizing bottom-up syntheses of NCPs containing wild-type or mutated histones and a fluorescent probe that is sensitive to the local ionic environment, we show that interaction with positively charged N-terminal tails increases the local ionic strength near nucleosomal DNA. The effect is diminished by replacing positively charged residues with neutral ones or deleting a tail in its entirety. Replacing the fluorescent probe with the major DNA methylation product, N7-methyl-2'-deoxyguanosine (MdG), revealed changes in the depurination rate constant varying inversely with local ionic strength. These data indicate that the MdG hydrolysis rates depend on and also inform on local ionic strength in an NCP. Overall, histone tail charge contributes to the complexity of the NCP structure and function by modulating the local ionic strength.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Kun Yang
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
14
|
Leng X, Duxin JP. Targeting DNA-Protein Crosslinks via Post-Translational Modifications. Front Mol Biosci 2022; 9:944775. [PMID: 35860355 PMCID: PMC9289515 DOI: 10.3389/fmolb.2022.944775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Covalent binding of proteins to DNA forms DNA-protein crosslinks (DPCs), which represent cytotoxic DNA lesions that interfere with essential processes such as DNA replication and transcription. Cells possess different enzymatic activities to counteract DPCs. These include enzymes that degrade the adducted proteins, resolve the crosslinks, or incise the DNA to remove the crosslinked proteins. An important question is how DPCs are sensed and targeted for removal via the most suited pathway. Recent advances have shown the inherent role of DNA replication in triggering DPC removal by proteolysis. However, DPCs are also efficiently sensed and removed in the absence of DNA replication. In either scenario, post-translational modifications (PTMs) on DPCs play essential and versatile roles in orchestrating the repair routes. In this review, we summarize the current knowledge of the mechanisms that trigger DPC removal via PTMs, focusing on ubiquitylation, small ubiquitin-related modifier (SUMO) conjugation (SUMOylation), and poly (ADP-ribosyl)ation (PARylation). We also briefly discuss the current knowledge gaps and emerging hypotheses in the field.
Collapse
|
15
|
Yang H, Zhang Y, Yu Z, Liu SY, Xu Y, Dai Z, Zou X. A photo-elutable and template-free isothermal amplification strategy for sensitive fluorescence detection of 5-formylcytosine in genomic DNA. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ren M, Greenberg MM, Zhou C. Participation of Histones in DNA Damage and Repair within Nucleosome Core Particles: Mechanism and Applications. Acc Chem Res 2022; 55:1059-1073. [PMID: 35271268 PMCID: PMC8983524 DOI: 10.1021/acs.accounts.2c00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA is damaged by various endogenous and exogenous sources, leading to a diverse group of reactive intermediates that yield a complex mixture of products. The initially formed products are often metastable and can react to yield lesions that are more biologically deleterious. Mechanistic studies are frequently carried out on free DNA as the substrate. The observations do not necessarily reflect the reaction environment inside human cells where genomic DNA is condensed as chromatin in the nucleus. Chromatin is made up of monomeric structural units called nucleosomes, which are comprised of DNA wrapped around an octameric core of histone proteins (two copies each of histones H2A, H2B, H3, and H4).This account presents a summary of our work in the past decade on the mechanistic studies of DNA damage and repair in reconstituted nucleosome core particles (NCPs). A series of metastable lesions and reactive intermediates, such as abasic sites (AP), N7-methyl-2'-deoxyguanosine (MdG), and 2'-deoxyadenosin-N6-yl radical (dA•), have been independently generated in a site-specific manner in bottom-up-synthesized NCPs. Detailed mechanistic studies on these NCPs revealed that histones actively participate in DNA damage and repair processes in diverse ways. For instance, nucleophilic residues in the flexible histone N-terminal tails, such as Lys and N-terminal α-amine, react with electrophilic DNA damage and reactive intermediates. In some cases, transient intermediates are produced, leading to the promotion or suppression of damage and repair processes. In other examples, reactions with histones yield reversible or stable DNA-protein cross-links (DPCs). Histones also utilize acidic and basic residues, such as histidine and aspartic acid, to catalyze DNA strand cleavage through general acid/base catalysis. Alternatively, a Tyr in histone plays a vital role in nucleosomal DNA damage and repair via radical transfer. Finally, the reactivity discovered during the mechanistic studies has facilitated the development of new reagents and methods with applications in biotechnology.This research has enriched our knowledge of the roles of histone proteins in DNA damage and repair and their contributions to epigenetics and may have significant biological implications. The residues in histone N-terminal tails that react with DNA lesions also play pivotal roles in regulating the structure and function of chromatin, indicating that there may be cross-talk between DNA damage and repair in eukaryotic cells and epigenetic regulation. Also, in view of the biased amino acid composition of histones, these results provide hints about how the proteins have evolved to minimize their deleterious effects but maximize beneficial ones for maintaining genome integrity. Finally, previously unreported DPCs and histone post-translational modifications have been discovered through this research. The effects of these newly identified lesions on the structure and function of chromatin and their fates inside cells remain to be elucidated.
Collapse
Affiliation(s)
- Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Ito Y, Hari Y. Synthesis of Nucleobase-Modified Oligonucleotides by Post-Synthetic Modification in Solution. CHEM REC 2022; 22:e202100325. [PMID: 35119181 DOI: 10.1002/tcr.202100325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Oligonucleotides containing modified nucleobases have applications in various technologies. In general, to synthesize oligonucleotides with different nucleobase structures, each modified phosphoramidite monomer needs to be prepared over multiple steps and then introduced onto the oligonucleotides, which is time-consuming and inefficient. Post-synthetic modification is a powerful strategy for preparing many types of modified oligonucleotides, especially nucleobase-modified ones. Depending on the stage of modification, post-synthetic modification can be divided into two stages: "solid-phase modification," wherein an oligonucleotide attaches to the resin, and "solution-phase modification," wherein an oligonucleotide detaches itself from the resin. In this review, we focus on post-synthetic modification in solution for the synthesis of nucleobase-modified oligonucleotides, except the modifications to linkers for conjugation. Moreover, the reactions are summarized for each modified position of the nucleobases.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
18
|
Liu J, Yang W, Zhang X, Wang Y, Zhou X. Bisulfite-free and quantitative detection of 5-formylcytosine in DNA through qPCR. Chem Commun (Camb) 2021; 57:13796-13798. [PMID: 34877946 DOI: 10.1039/d1cc05987d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An easily operated bisulfite-free method was presented to detect and quantify 5fC through quantitative real-time PCR. Malononitrile can selectively label 5fC under mild reaction conditions causing a C-to-T conversion that affects the nick ligation of the complementary pairing oligos, and then the ligation product is amplified and visualized by qPCR.
Collapse
Affiliation(s)
- Jizhou Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| |
Collapse
|
19
|
Pujari SS, Wu M, Thomforde J, Wang ZA, Chao C, Olson NM, Erber L, Pomerantz WCK, Cole P, Tretyakova NY. Site‐Specific 5‐Formyl Cytosine Mediated DNA‐Histone Cross‐Links: Synthesis and Polymerase Bypass by Human DNA Polymerase η. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Suresh S. Pujari
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| | - Mingxuan Wu
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, MA 02115 USA
- Current address: School of Science Westlake University Institute of Natural Sciences, Westlake Institute for Advanced Study 18 Shilongshan Road, 310024 Hangzhou Zhejiang Province China
| | - Jenna Thomforde
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| | - Zhipeng A. Wang
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, MA 02115 USA
| | - Christopher Chao
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| | - Noelle M. Olson
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Luke Erber
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| | | | - Philip Cole
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, MA 02115 USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry College of Pharmacy, and Masonic Cancer Center University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
20
|
Pujari SS, Wu M, Thomforde J, Wang ZA, Chao C, Olson N, Erber L, Pomerantz WCK, Cole P, Tretyakova NY. Site-Specific 5-Formyl Cytosine Mediated DNA-Histone Cross-Links: Synthesis and Polymerase Bypass by Human DNA Polymerase η. Angew Chem Int Ed Engl 2021; 60:26489-26494. [PMID: 34634172 PMCID: PMC8775767 DOI: 10.1002/anie.202109418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/06/2021] [Indexed: 01/16/2023]
Abstract
DNA-protein cross-links (DPCs) between DNA epigenetic mark 5-formylC and lysine residues of histone proteins spontaneously form in human cells. Such conjugates are likely to influence chromatin structure and mediate DNA replication, transcription, and repair, but are challenging to study due to their reversible nature. Here we report the construction of site specific, hydrolytically stable DPCs between 5fdC in DNA and K4 of histone H3 and an investigation of their effects on DNA replication. Our approach employs oxime ligation, allowing for site-specific conjugation of histones to DNA under physiological conditions. Primer extension experiments revealed that histone H3-DNA crosslinks blocked DNA synthesis by hPol η polymerase, but were bypassed following proteolytic processing.
Collapse
Affiliation(s)
- Suresh S. Pujari
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mingxuan Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA. 02115, USA
| | - Jenna Thomforde
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Zhipeng A. Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA. 02115, USA
| | - Christopher Chao
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Noelle Olson
- Department of Chemistry, University of Minnesota, Minnesota 55455, USA
| | - Luke Erber
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Philip Cole
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA. 02115, USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry, College of Pharmacy, and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
21
|
Wang H, Shan X, Ren M, Shang M, Zhou C. Nucleosomes enter cells by clathrin- and caveolin-dependent endocytosis. Nucleic Acids Res 2021; 49:12306-12319. [PMID: 34865123 PMCID: PMC8643636 DOI: 10.1093/nar/gkab1121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
DNA damage and apoptosis lead to the release of free nucleosomes-the basic structural repeating units of chromatin-into the blood circulation system. We recently reported that free nucleosomes that enter the cytoplasm of mammalian cells trigger immune responses by activating cGMP-AMP synthase (cGAS). In the present study, we designed experiments to reveal the mechanism of nucleosome uptake by human cells. We showed that nucleosomes are first absorbed on the cell membrane through nonspecific electrostatic interactions between positively charged histone N-terminal tails and ligands on the cell surface, followed by internalization via clathrin- or caveolae-dependent endocytosis. After cellular internalization, endosomal escape occurs rapidly, and nucleosomes are released into the cytosol, maintaining structural integrity for an extended period. The efficient endocytosis of extracellular nucleosomes suggests that circulating nucleosomes may lead to cellular disorders as well as immunostimulation, and thus, the biological effects exerted by endocytic nucleosomes should be addressed in the future.
Collapse
Affiliation(s)
- Huawei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiajing Shan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Rozelle AL, Lee S. Genotoxic C8-Arylamino-2'-deoxyadenosines Act as Latent Alkylating Agents to Induce DNA Interstrand Cross-Links. J Am Chem Soc 2021; 143:18960-18976. [PMID: 34726902 DOI: 10.1021/jacs.1c07234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA interstrand cross-links (ICLs) are extremely deleterious and structurally diverse, driving the evolution of ICL repair pathways. Discovering ICL-inducing agents is, thus, crucial for the characterization of ICL repair pathways and Fanconi anemia, a genetic disease caused by mutations in ICL repair genes. Although several studies point to oxidative stress as a cause of ICLs, oxidative stress-induced cross-linking events remain poorly characterized. Also, polycyclic aromatic amines, potent environmental carcinogens, have been implicated in producing ICLs, but their identities and sequences are unknown. To close this knowledge gap, we tested whether ICLs arise by the oxidation of 8-arylamino-2'-deoxyadenosine (ArNHdA) lesions, adducts produced by arylamino carcinogens. Herein, we report that ArNHdA acts as a latent cross-linking agent to generate ICLs under oxidative conditions. The formation of an ICL from 8-aminoadenine, but not from 8-aminoguanine, highlights the specificity of 8-aminopurine-mediated ICL production. Under the influence of the reactive oxygen species (ROS) nitrosoperoxycarbonate, ArNHdA (Ar = biphenyl, fluorenyl) lesions were selectively oxidized to generate ICLs. The cross-linking reaction may occur between the C2-ArNHdA and N2-dG, presumably via oxidation of ArNHdA into a reactive diiminoadenine intermediate followed by the nucleophilic attack of the N2-dG on the diiminoadenine. Overall, ArNHdA-mediated ICLs represent rare examples of ROS-induced ICLs and polycyclic aromatic amine-mediated ICLs. These results reveal novel cross-linking chemistry and the genotoxic effects of arylamino carcinogens and support the hypothesis that C8-modified adenines with low redox potential can cause ICLs in oxidative stress.
Collapse
Affiliation(s)
- Aaron L Rozelle
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States.,McKetta Department of Chemical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Seongmin Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
23
|
Pujari SS, Tretyakova N. Synthesis and polymerase bypass studies of DNA-peptide and DNA-protein conjugates. Methods Enzymol 2021; 661:363-405. [PMID: 34776221 PMCID: PMC10159213 DOI: 10.1016/bs.mie.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
DNA-peptide (DpCs) and DNA-protein cross-links (DPCs) are DNA lesions formed when polypeptides and nuclear proteins become covalently trapped on DNA strands. DNA-protein cross-links are of enormous size and hence pose challenges to cell survival by blocking DNA replication, transcription, and repair. However, DPCs can undergo proteolytic degradation via various pathways to give shorter polypeptide chains (DpCs). The resulting DpC lesions are efficiently bypassed by translesion synthesis (TLS) DNA polymerases like κ, η, δ, etc., although polymerase bypass efficiency as well as correct base insertion depends heavily on size, sequence context, and position of peptides in DpCs. This chapter explores various synthetic methods to generate these lesions including detailed experimental procedures for the construction of DpCs and DPCs via reductive amination and oxime ligation. Further we describe biochemical experiments to investigate the effects of these lesions on DNA polymerase activity and fidelity.
Collapse
Affiliation(s)
- Suresh S Pujari
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
24
|
Leone D, Hubálek M, Pohl R, Sýkorová V, Hocek M. 1,3-Diketone-Modified Nucleotides and DNA for Cross-Linking with Arginine-Containing Peptides and Proteins. Angew Chem Int Ed Engl 2021; 60:17383-17387. [PMID: 34107150 PMCID: PMC8362068 DOI: 10.1002/anie.202105126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Indexed: 12/28/2022]
Abstract
Linear or branched 1,3-diketone-linked thymidine 5'-O-mono- and triphosphate were synthesized through CuAAC click reaction of diketone-alkynes with 5-azidomethyl-dUMP or -dUTP. The triphosphates were good substrates for KOD XL DNA polymerase in primer extension synthesis of modified DNA. The nucleotide bearing linear 3,5-dioxohexyl group (HDO) efficiently reacted with arginine-containing peptides to form stable pyrimidine-linked conjugates, whereas the branched 2-acetyl-3-oxo-butyl (PDO) group was not reactive. Reaction with Lys or a terminal amino group formed enamine adducts that were prone to hydrolysis. This reactive HDO modification in DNA was used for bioconjugations and cross-linking with Arg-containing peptides or proteins (e.g. histones).
Collapse
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nam. 216610Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University in PragueHlavova 812843Prague 2Czech Republic
| |
Collapse
|
25
|
Runtsch LS, Stadlmeier M, Schön A, Müller M, Carell T. Comparative Nucleosomal Reactivity of 5-Formyl-Uridine and 5-Formyl-Cytidine. Chemistry 2021; 27:12747-12752. [PMID: 34152627 PMCID: PMC8518870 DOI: 10.1002/chem.202102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/21/2022]
Abstract
5‐Formyl‐deoxyuridine (fdU) and 5‐formyl‐deoxycytidine (fdC) are formyl‐containing nucleosides that are created by oxidative stress in differentiated cells. While fdU is almost exclusively an oxidative stress lesion formed from deoxythymidine (T), the situation for fdC is more complex. Next to formation as an oxidative lesion, it is particularly abundant in stem cells, where it is more frequently formed in an epigenetically important oxidation reaction performed by α‐ketoglutarate dependent TET enzymes from 5‐methyl‐deoxycytidine (mdC). Recently, it was shown that genomic fdC and fdU can react with the ϵ‐aminogroups of nucleosomal lysines to give Schiff base adducts that covalently link nucleosomes to genomic DNA. Here, we show that fdU features a significantly higher reactivity towards lysine side chains compared with fdC. This result shows that depending on the amounts of fdC and fdU, oxidative stress may have a bigger impact on nucleosome binding than epigenetics.
Collapse
Affiliation(s)
- Leander Simon Runtsch
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Michael Stadlmeier
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Alexander Schön
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Markus Müller
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| |
Collapse
|
26
|
Wang X, Martínez-Fernández L, Zhang Y, Zhang K, Improta R, Kohler B, Xu J, Chen J. Solvent-Dependent Stabilization of a Charge Transfer State is the Key to Ultrafast Triplet State Formation in an Epigenetic DNA Nucleoside. Chemistry 2021; 27:10932-10940. [PMID: 33860588 DOI: 10.1002/chem.202100787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/10/2022]
Abstract
2'-Deoxy-5-formylcytidine (5fdCyd), a naturally occurring nucleoside found in mammalian DNA and mitochondrial RNA, exhibits important epigenetic functionality in biological processes. Because it efficiently generates triplet excited states, it is an endogenous photosensitizer capable of damaging DNA, but the intersystem crossing (ISC) mechanism responsible for ultrafast triplet state generation is poorly understood. In this study, time-resolved mid-IR spectroscopy and quantum mechanical calculations reveal the distinct ultrafast ISC mechanisms of 5fdCyd in water versus acetonitrile. Our experiment indicates that in water, ISC to triplet states occurs within 1 ps after 285 nm excitation. PCM-TD-DFT computations suggest that this ultrafast ISC is mediated by a singlet state with significant cytosine-to-formyl charge-transfer (CT) character. In contrast, ISC in acetonitrile proceeds via a dark 1 nπ* state with a lifetime of ∼3 ps. CT-induced ISC is not favored in acetonitrile because reaching the minimum of the gateway CT state is hampered by intramolecular hydrogen bonding, which enforces planarity between the aldehyde group and the aromatic group. Our study provides a comprehensive picture of the non-radiative decay of 5fdCyd in solution and new insights into the factors governing ISC in biomolecules. We propose that the intramolecular CT state observed here is a key to the excited-state dynamics of epigenetic nucleosides with modified exocyclic functional groups, paving the way to study their effects in DNA strands.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid Campus de Excelencia UAM-CSIC Cantoblanco, 28049, Madrid, Spain
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Kun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China
| | - Roberto Improta
- Istituto di Biostrutture e Bioimmagini CNR, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA
| | - Jianhua Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| |
Collapse
|
27
|
Leone D, Hubálek M, Pohl R, Sýkorová V, Hocek M. 1,3‐Diketone‐Modified Nucleotides and DNA for Cross‐Linking with Arginine‐Containing Peptides and Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Denise‐Liu' Leone
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Veronika Sýkorová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University in Prague Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
28
|
Abstract
The field of epigenetics has exploded over the last two decades, revealing an astonishing level of complexity in the way genetic information is stored and accessed in eukaryotes. This expansion of knowledge, which is very much ongoing, has been made possible by the availability of evermore sensitive and precise molecular tools. This review focuses on the increasingly important role that chemistry plays in this burgeoning field. In an effort to make these contributions more accessible to the nonspecialist, we group available chemical approaches into those that allow the covalent structure of the protein and DNA components of chromatin to be manipulated, those that allow the activity of myriad factors that act on chromatin to be controlled, and those that allow the covalent structure and folding of chromatin to be characterized. The application of these tools is illustrated through a series of case studies that highlight how the molecular precision afforded by chemistry is being used to establish causal biochemical relationships at the heart of epigenetic regulation.
Collapse
Affiliation(s)
- John D Bagert
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Tom W Muir
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
29
|
Thomforde J, Fu I, Rodriguez F, Pujari SS, Broyde S, Tretyakova N. Translesion Synthesis Past 5-Formylcytosine-Mediated DNA-Peptide Cross-Links by hPolη Is Dependent on the Local DNA Sequence. Biochemistry 2021; 60:1797-1807. [PMID: 34080848 DOI: 10.1021/acs.biochem.1c00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA-protein cross-links (DPCs) are unusually bulky DNA lesions that form when cellular proteins become trapped on DNA following exposure to ultraviolet light, free radicals, aldehydes, and transition metals. DPCs can also form endogenously when naturally occurring epigenetic marks [5-formyl cytosine (5fC)] in DNA react with lysine and arginine residues of histones to form Schiff base conjugates. Our previous studies revealed that DPCs inhibit DNA replication and transcription but can undergo proteolytic cleavage to produce smaller DNA-peptide conjugates. We have shown that 5fC-conjugated DNA-peptide cross-links (DpCs) placed within the CXA sequence (X = DpC) can be bypassed by human translesion synthesis (TLS) polymerases η and κ in an error-prone manner. However, the local nucleotide sequence context can have a strong effect on replication bypass of bulky lesions by influencing the geometry of the ternary complex among the DNA template, polymerase, and the incoming dNTP. In this work, we investigated polymerase bypass of 5fC-DNA-11-mer peptide cross-links placed in seven different sequence contexts (CXC, CXG, CXT, CXA, AXA, GXA, and TXA) in the presence of human TLS polymerase η. Primer extension products were analyzed by gel electrophoresis, and steady-state kinetics of the misincorporation of dAMP opposite the DpC lesion in different base sequence contexts was investigated. Our results revealed a strong impact of nearest neighbor base identity on polymerase η activity in the absence and presence of a DpC lesion. Molecular dynamics simulations were used to structurally explain the experimental findings. Our results suggest a possible role of local DNA sequence in promoting TLS-related mutational hot spots in the presence and absence of DpC lesions.
Collapse
Affiliation(s)
- Jenna Thomforde
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Iwen Fu
- Department of Biology, New York University, New York, New York 10003-6688, United States
| | - Freddys Rodriguez
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Suresh S Pujari
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Suse Broyde
- Department of Biology, New York University, New York, New York 10003-6688, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Krömer M, Brunderová M, Ivancová I, Poštová Slavětínská L, Hocek M. 2-Formyl-dATP as Substrate for Polymerase Synthesis of Reactive DNA Bearing an Aldehyde Group in the Minor Groove. Chempluschem 2021; 85:1164-1170. [PMID: 32496002 DOI: 10.1002/cplu.202000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Indexed: 12/16/2022]
Abstract
2-Formyl-2'-deoxyadenosine triphosphate (dCHO ATP) was synthesized and tested as a substrate in enzymatic synthesis of DNA modified in the minor groove with a reactive aldehyde group. The multistep synthesis of dCHO ATP was based on the preparation of protected 2-dihydroxyethyl-2'-deoxyadenosine intemediate, which was triphosphorylated and converted to aldehyde through oxidative cleavage. The dCHO ATP triphosphate was a moderate substrate for KOD XL DNA polymerase, and was used for enzymatic synthesis of some sequences using primer extension (PEX). On the other hand, longer sequences (31-mer) with higher number of modifications, or sequences with modifications at adjacent positions did not give full extension. Single-nucleotide extension followed by PEX was used for site-specific incorporation of one aldehyde-linked adenosine into a longer 49-mer sequence. The reactive formyl group was used for cross-linking with peptides and proteins using reductive amination and for fluorescent labelling through oxime formation with an AlexaFluor647-linked hydroxylamine.
Collapse
Affiliation(s)
- Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo namesti 2, 16610, Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, Prague-2, 12843, Czech Republic
| |
Collapse
|
31
|
Wei X, Peng Y, Bryan C, Yang K. Mechanisms of DNA-protein cross-link formation and repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140669. [PMID: 33957291 DOI: 10.1016/j.bbapap.2021.140669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Covalent binding of DNA to proteins produces DNA-protein cross-links (DPCs). DPCs are formed as intermediates of enzymatic processes, generated from the reactions of protein nucleophiles with DNA electrophiles, and produced by endogenous and exogenous cross-linking agents. DPCs are heterogeneous due to the variations of DNA conjugation sites, flanking DNA structures, protein sizes, and cross-link bonds. Unrepaired DPCs are toxic because their bulky sizes physically block DNA replication and transcription, resulting in impaired genomic integrity. Compared to other types of DNA lesions, DPC repair is less understood. Emerging evidence suggests a general repair model that DPCs are proteolyzed by the proteasome and/or DPC proteases, followed by the peptide removal through canonical repair pathways. Herein, we first describe the recently discovered DPCs. We then review the mechanisms of DPC proteolysis with the focus on recently identified DPC proteases. Finally, distinct pathways that bypass or remove the cross-linked peptides following proteolysis are discussed.
Collapse
Affiliation(s)
- Xiaoying Wei
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States; Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Cameron Bryan
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kun Yang
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
32
|
Prasad R, Yen TJ, Bellacosa A. Active DNA demethylation-The epigenetic gatekeeper of development, immunity, and cancer. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10033. [PMID: 36618446 PMCID: PMC9744510 DOI: 10.1002/ggn2.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/11/2023]
Abstract
DNA methylation is a critical process in the regulation of gene expression with dramatic effects in development and continually expanding roles in oncogenesis. 5-Methylcytosine was once considered to be an inherited and stably repressive epigenetic mark, which can be only removed by passive dilution during multiple rounds of DNA replication. However, in the past two decades, physiologically controlled DNA demethylation and deamination processes have been identified, thereby revealing the function of cytosine methylation as a highly regulated and complex state-not simply a static, inherited signature or binary on-off switch. Alongside these fundamental discoveries, clinical studies over the past decade have revealed the dramatic consequences of aberrant DNA demethylation. In this review we discuss DNA demethylation and deamination in the context of 5-methylcytosine as critical processes for physiological and physiopathological transitions within three states-development, immune maturation, and oncogenic transformation; and we describe the expanding role of DNA demethylating drugs as therapeutic agents in cancer.
Collapse
Affiliation(s)
- Rahul Prasad
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Timothy J. Yen
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| | - Alfonso Bellacosa
- Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
33
|
Ren M, Shang M, Wang H, Xi Z, Zhou C. Histones participate in base excision repair of 8-oxodGuo by transiently cross-linking with active repair intermediates in nucleosome core particles. Nucleic Acids Res 2021; 49:257-268. [PMID: 33290564 PMCID: PMC7797075 DOI: 10.1093/nar/gkaa1153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is a biomarker of oxidative DNA damage and can be repaired by hOGG1 and APE1 via the base excision repair (BER) pathway. In this work, we studied coordinated BER of 8-oxodGuo by hOGG1 and APE1 in nucleosome core particles and found that histones transiently formed DNA-protein cross-links (DPCs) with active repair intermediates such as 3'-phospho-α,β-unsaturated aldehyde (PUA) and 5'-deoxyribosephosphate (dRP). The effects of histone participation could be beneficial or deleterious to the BER process, depending on the circumstances. In the absence of APE1, histones enhanced the AP lyase activity of hOGG1 by cross-linking with 3'-PUA. However, the formed histone-PUA DPCs hampered the subsequent repair process. In the presence of APE1, both the AP lyase activity of hOGG1 and the formation of histone-PUA DPCs were suppressed. In this case, histones could catalyse removal of the 5'-dRP by transiently cross-linking with the active intermediate. That is, histones promoted the repair by acting as 5'-dRP lyases. Our findings demonstrate that histones participate in multiple steps of 8-oxodGuo repair in nucleosome core particles, highlighting the diverse roles that histones may play during DNA repair in eukaryotic cells.
Collapse
Affiliation(s)
- Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huawei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Pachva MC, Kisselev AF, Matkarimov BT, Saparbaev M, Groisman R. DNA-Histone Cross-Links: Formation and Repair. Front Cell Dev Biol 2021; 8:607045. [PMID: 33409281 PMCID: PMC7779557 DOI: 10.3389/fcell.2020.607045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
The nucleosome is a stretch of DNA wrapped around a histone octamer. Electrostatic interactions and hydrogen bonds between histones and DNA are vital for the stable organization of nucleosome core particles, and for the folding of chromatin into more compact structures, which regulate gene expression via controlled access to DNA. As a drawback of tight association, under genotoxic stress, DNA can accidentally cross-link to histone in a covalent manner, generating a highly toxic DNA-histone cross-link (DHC). DHC is a bulky lesion that can impede DNA transcription, replication, and repair, often with lethal consequences. The chemotherapeutic agent cisplatin, as well as ionizing and ultraviolet irradiations and endogenously occurring reactive aldehydes, generate DHCs by forming either stable or transient covalent bonds between DNA and side-chain amino groups of histone lysine residues. The mechanisms of DHC repair start to unravel, and certain common principles of DNA-protein cross-link (DPC) repair mechanisms that participate in the removal of cross-linked histones from DNA have been described. In general, DPC is removed via a two-step repair mechanism. First, cross-linked proteins are degraded by specific DPC proteases or by the proteasome, relieving steric hindrance. Second, the remaining DNA-peptide cross-links are eliminated in various DNA repair pathways. Delineating the molecular mechanisms of DHC repair would help target specific DNA repair proteins for therapeutic intervention to combat tumor resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Manideep C Pachva
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Alexei F Kisselev
- Department Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | | | - Murat Saparbaev
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| | - Regina Groisman
- Groupe "Mechanisms of DNA Repair and Carcinogenesis", Equipe Labellisée LIGUE 2016, CNRS UMR 9019, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
35
|
Abstract
5-Methylcytosine (5mC) is an epigenetic mark known to contribute to the regulation of gene expression in a wide range of biological systems. Ten Eleven Translocation (TET) dioxygenases oxidize 5mC to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in metazoans and fungi. Moreover, two recent reports imply the existence of other species of modified cytosine in unicellular alga Chlamydomonas reinhardtii and malaria parasite Plasmodium falciparum. Here we provide an overview of the spectrum of cytosine modifications and their roles in demethylation of DNA and regulation of gene expression in different eukaryotic organisms.
Collapse
Affiliation(s)
- Maria Eleftheriou
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, UK
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, UK.
| |
Collapse
|
36
|
Stereochemistry of the α-carbon in the benzylic modifying moiety attached at the C-5 end of thymidine affects the potency of a newly identified anti-cancer lead nucleoside. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Wang H, Zang C, Ren M, Shang M, Wang Z, Peng X, Zhang Q, Wen X, Xi Z, Zhou C. Cellular uptake of extracellular nucleosomes induces innate immune responses by binding and activating cGMP-AMP synthase (cGAS). Sci Rep 2020; 10:15385. [PMID: 32958884 PMCID: PMC7505961 DOI: 10.1038/s41598-020-72393-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
The nucleosome is the basic structural repeating unit of chromatin. DNA damage and cell apoptosis release nucleosomes into the blood circulatory system, and increased levels of circulating nucleosomes have been observed to be related to inflammation and autoimmune diseases. However, how circulating nucleosomes trigger immune responses has not been fully elucidated. cGAS (cGMP-AMP synthase) is a recently discovered pattern recognition receptor that senses cytoplasmic double-stranded DNA (dsDNA). In this study, we employed in vitro reconstituted nucleosomes to examine whether extracellular nucleosomes can gain access to the cytoplasm of mammalian cells to induce immune responses by activating cGAS. We showed that nucleosomes can be taken up by various mammalian cells. Additionally, we found that in vitro reconstituted mononucleosomes and oligonucleosomes can be recognized by cGAS. Compared to dsDNA, nucleosomes exhibit higher binding affinities to cGAS but considerably lower potency in cGAS activation. Incubation of monocytic cells with reconstituted nucleosomes leads to limited production of type I interferons and proinflammatory cytokines via a cGAS-dependent mechanism. This proof-of-concept study reveals the cGAS-dependent immunogenicity of nucleosomes and highlights the potential roles of circulating nucleosomes in autoimmune diseases, inflammation, and antitumour immunity.
Collapse
Affiliation(s)
- Huawei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanlong Zang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenghua Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuemei Peng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071, China
| | - Qiangzhe Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071, China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
39
|
Xie Y, Wang Y, He Z, Yang W, Fu B, Zou G, Zhang X, Huang J, Zhou X. Selective Chemical Labeling and Sequencing of 5-Carboxylcytosine in DNA at Single-Base Resolution. Anal Chem 2020; 92:12710-12715. [PMID: 32803958 DOI: 10.1021/acs.analchem.0c03201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Carboxylcytosine (5caC) plays a vital role in the dynamics of DNA demethylation, and sequencing of its sites will help us dig out more biological functions of 5caC. Herein, we present a novel chemical method to efficiently label 5caC distinguished from other bases in DNA. Combined with bisulfite sequencing, 5caC sites can be located at single-base resolution, and the efficiency of 5caC labeling is 92% based on the Sanger sequencing data. Furthermore, dot blot assays have confirmed that 5caC-containing DNA isolated from HeLa cells was successfully labeled using our method. We expect that our strategy can be further applied to selectively tagging other carboxyl-modified bases and mapping their sites in RNA.
Collapse
Affiliation(s)
- Yalun Xie
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhiyong He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Boshi Fu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Jinguo Huang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, the Institute for Advanced Studies, Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
40
|
Analysis of 5-Carboxylcytosine Distribution Using DNA Immunoprecipitation. Methods Mol Biol 2020. [PMID: 32822041 DOI: 10.1007/978-1-0716-0876-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA methylation (5-methylcytosine, 5mC) is involved in regulation of a wide range of biological processes. TET proteins can oxidize 5mC to 5-hydroxymethylcytosine, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although both 5fC and 5caC serve as intermediates in active demethylation pathway, growing body of experimental evidence indicate that these DNA modifications may also interact with specific sets of reader proteins and therefore may represent bona fide epigenetic marks. Despite a number of single-base resolution techniques have recently been proposed for 5fC/5caC mapping, antibody-based approaches still represent a relatively simple and plausible alternative for the analysis of genomic distribution of these DNA modifications. Here, we describe a protocol for 5caC DNA immunoprecipitation (5caC DIP) that can be used for both locus-specific and genome-wide assessment of 5caC distribution. In combination with mass spectrometry-based techniques and single base resolution mapping methods, this approach may contribute to elucidating the role of 5caC in development, differentiation, and tumorigenesis.
Collapse
|
41
|
Bilyard MK, Becker S, Balasubramanian S. Natural, modified DNA bases. Curr Opin Chem Biol 2020; 57:1-7. [PMID: 32145439 DOI: 10.1016/j.cbpa.2020.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
The four canonical bases that make up genomic DNA are subject to a variety of chemical modifications in living systems. Recent years have witnessed the discovery of various new modified bases and of the enzymes responsible for their processing. Here, we review the range of DNA base modifications currently known and recent advances in chemical methodology that have driven progress in this field, in particular regarding their detection and sequencing. Elucidating the cellular functions of modifications remains an ongoing challenge; we discuss recent contributions to this area before exploring their relevance in medicine.
Collapse
Affiliation(s)
- Matthew K Bilyard
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Sidney Becker
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom; School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, United Kingdom.
| |
Collapse
|
42
|
Kose HB, Xie S, Cameron G, Strycharska MS, Yardimci H. Duplex DNA engagement and RPA oppositely regulate the DNA-unwinding rate of CMG helicase. Nat Commun 2020; 11:3713. [PMID: 32709841 PMCID: PMC7382467 DOI: 10.1038/s41467-020-17443-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 07/01/2020] [Indexed: 01/09/2023] Open
Abstract
A ring-shaped helicase unwinds DNA during chromosome replication in all organisms. Replicative helicases generally unwind duplex DNA an order of magnitude slower compared to their in vivo replication fork rates. However, the origin of slow DNA unwinding rates by replicative helicases and the mechanism by which other replication components increase helicase speed are unclear. Here, we demonstrate that engagement of the eukaryotic CMG helicase with template DNA at the replication fork impairs its helicase activity, which is alleviated by binding of the single-stranded DNA binding protein, RPA, to the excluded DNA strand. Intriguingly, we found that, when stalled due to interaction with the parental duplex, DNA rezipping-induced helicase backtracking reestablishes productive helicase-fork engagement, underscoring the significance of plasticity in helicase action. Our work provides a mechanistic basis for relatively slow duplex unwinding by replicative helicases and explains how replisome components that interact with the excluded DNA strand stimulate fork rates.
Collapse
Affiliation(s)
- Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Sherry Xie
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - George Cameron
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Melania S Strycharska
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
43
|
Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Sci Rep 2020; 10:12066. [PMID: 32694513 PMCID: PMC7374584 DOI: 10.1038/s41598-020-68600-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cytosine DNA bases can be methylated by DNA methyltransferases and subsequently oxidized by TET proteins. The resulting 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) are considered demethylation intermediates as well as stable epigenetic marks. To dissect the contributions of these cytosine modifying enzymes, we generated combinations of Tet knockout (KO) embryonic stem cells (ESCs) and systematically measured protein and DNA modification levels at the transition from naive to primed pluripotency. Whereas the increase of genomic 5-methylcytosine (5mC) levels during exit from pluripotency correlated with an upregulation of the de novo DNA methyltransferases DNMT3A and DNMT3B, the subsequent oxidation steps turned out to be far more complex. The strong increase of oxidized cytosine bases (5hmC, 5fC, and 5caC) was accompanied by a drop in TET2 levels, yet the analysis of KO cells suggested that TET2 is responsible for most 5fC formation. The comparison of modified cytosine and enzyme levels in Tet KO cells revealed distinct and differentiation-dependent contributions of TET1 and TET2 to 5hmC and 5fC formation arguing against a processive mechanism of 5mC oxidation. The apparent independent steps of 5hmC and 5fC formation suggest yet to be identified mechanisms regulating TET activity that may constitute another layer of epigenetic regulation.
Collapse
|
44
|
Gao Y, Li L, Yuan P, Zhai F, Ren Y, Yan L, Li R, Lian Y, Zhu X, Wu X, Kee K, Wen L, Qiao J, Tang F. 5-Formylcytosine landscapes of human preimplantation embryos at single-cell resolution. PLoS Biol 2020; 18:e3000799. [PMID: 32730243 PMCID: PMC7419013 DOI: 10.1371/journal.pbio.3000799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/11/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Epigenetic dynamics, such as DNA methylation and chromatin accessibility, have been extensively explored in human preimplantation embryos. However, the active demethylation process during this crucial period remains largely unexplored. In this study, we use single-cell chemical-labeling-enabled C-to-T conversion sequencing (CLEVER-seq) to quantify the DNA 5-formylcytosine (5fC) levels of human preimplantation embryos. We find that 5-formylcytosine phosphate guanine (5fCpG) exhibits genomic element-specific distribution features and is enriched in L1 and endogenous retrovirus-K (ERVK), the subfamilies of repeat elements long interspersed nuclear elements (LINEs) and long terminal repeats (LTRs), respectively. Unlike in mice, paired pronuclei in the same zygote present variable difference of 5fCpG levels, although the male pronuclei experience stronger global demethylation. The nucleosome-occupied regions show a higher 5fCpG level compared with nucleosome-depleted ones, suggesting the role of 5fC in organizing nucleosome position. Collectively, our work offers a valuable resource for ten-eleven translocation protein family (TET)-dependent active demethylation-related study during human early embryonic development.
Collapse
Affiliation(s)
- Yun Gao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovaiton Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Yuan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Fan Zhai
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Yixin Ren
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Rong Li
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Ying Lian
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Xiaohui Zhu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Xinglong Wu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovaiton Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovaiton Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, School of Life Sciences, Third Hospital, Peking University, Beijing, China
- Biomedical Pioneering Innovaiton Center, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
45
|
Jia S, Yang S, Ji H, Peng S, Chen K, He Z, Zhou X. Systematic investigation of bioorthogonal cellular DNA metabolic labeling in a photo-controlled manner. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Complete Profiling of Methyl-CpG-Binding Domains for Combinations of Cytosine Modifications at CpG Dinucleotides Reveals Differential Read-out in Normal and Rett-Associated States. Sci Rep 2020; 10:4053. [PMID: 32132616 PMCID: PMC7055227 DOI: 10.1038/s41598-020-61030-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/03/2020] [Indexed: 11/17/2022] Open
Abstract
5-Methylcytosine (mC) exists in CpG dinucleotides of mammalian DNA and plays key roles in chromatin regulation during development and disease. As a main regulatory pathway, fully methylated CpG are recognized by methyl-CpG-binding domain (MBD) proteins that act in concert with chromatin remodelers, histone deacetylases and methyltransferases to trigger transcriptional downregulation. In turn, MBD mutations can alter CpG binding, and in case of the MBD protein MeCP2 can cause the neurological disorder Rett syndrome (RTT). An additional layer of complexity in CpG recognition is added by ten-eleven-translocation (TET) dioxygenases that oxidize mC to 5-hydroxymethyl-, 5-formyl- and 5-carboxylcytosine, giving rise to fifteen possible combinations of cytosine modifications in the two CpG strands. We report a comprehensive, comparative interaction analysis of the human MBD proteins MeCP2, MBD1, MBD2, MBD3, and MBD4 with all CpG combinations and observe individual preferences of each MBD for distinct combinations. In addition, we profile four MeCP2 RTT mutants and reveal that although interactions to methylated CpGs are similarly affected by the mutations, interactions to oxidized mC combinations are differentially affected. These findings argue for a complex interplay between local TET activity/processivity and CpG recognition by MBDs, with potential consequences for the transcriptional landscape in normal and RTT states.
Collapse
|
47
|
Reinking HK, Hofmann K, Stingele J. Function and evolution of the DNA-protein crosslink proteases Wss1 and SPRTN. DNA Repair (Amst) 2020; 88:102822. [PMID: 32058279 DOI: 10.1016/j.dnarep.2020.102822] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Covalent DNA-protein crosslinks (DPCs) are highly toxic DNA adducts, which interfere with faithful DNA replication. The proteases Wss1 and SPRTN degrade DPCs and have emerged as crucially important DNA repair enzymes. Their protective role has been described in various model systems ranging from yeasts, plants, worms and flies to mice and humans. Loss of DPC proteases results in genome instability, cellular arrest, premature ageing and cancer predisposition. Here we discuss recent insights into the function and molecular mechanism of these enzymes. Furthermore, we present an in-depth phylogenetic analysis of the Wss1/SPRTN protease continuum. Remarkably flexible domain architectures and constantly changing protein-protein interaction motifs indicate ongoing evolutionary dynamics. Finally, we discuss recent data, which suggest that further partially-overlapping proteolytic systems targeting DPCs exist in eukaryotes. These new developments raise interesting questions regarding the division of labour between different DPC proteases and the mechanisms and principles of repair pathway choice.
Collapse
Affiliation(s)
- Hannah K Reinking
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Germany
| | - Julian Stingele
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
48
|
Ji S, Thomforde J, Rogers C, Fu I, Broyde S, Tretyakova NY. Transcriptional Bypass of DNA-Protein and DNA-Peptide Conjugates by T7 RNA Polymerase. ACS Chem Biol 2019; 14:2564-2575. [PMID: 31573793 DOI: 10.1021/acschembio.9b00365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that block the access of proteins to DNA and interfere with gene expression, replication, and repair. We previously described DPC formation at the N7-guanine position of DNA in human cells treated with antitumor nitrogen mustards and platinum compounds and have shown that DPCs can form endogenously at DNA epigenetic mark 5-formyl-dC. However, insufficient information is available about the effects of these structurally distinct DPCs on transcription. In the present work, we employ a combination of in vitro assays, mass spectrometry, and molecular dynamics simulations to examine the ability of phage T7 RNA polymerase to bypass DPCs conjugated to the C7 position of 7-deaza-dG and the C5 position of dC. These model adducts represent endogenous DPCs induced by exposure to antitumor drugs and formed at epigenetics DNA marks, respectively. Our results reveal that DPCs containing full-length proteins significantly inhibit in vitro transcription by T7 RNA polymerase, while short DNA-peptide cross-links (DpCs) are bypassed. DpCs conjugated to the C7 position of 7-deaza-dG are transcribed with high fidelity, while the same polypeptides attached to the C5 position of dC induce transcription errors. Molecular dynamics simulations of DpCs conjugated either to the C5 atom of dC or the C7 position of 7-deaza-dG on the template strand in T7 RNA polymerase explain how the conjugated peptide can be accommodated in the narrow major groove of the DNA-RNA hybrid and how the modified dC can form a stable mismatch with the incoming ATP in the polymerase active site, allowing for transcriptional mutagenesis.
Collapse
Affiliation(s)
| | | | | | - Iwen Fu
- Department of Biology New York University, New York, New York 10003, United States
| | - Suse Broyde
- Department of Biology New York University, New York, New York 10003, United States
| | | |
Collapse
|
49
|
Shang M, Ren M, Zhou C. Nitrogen Mustard Induces Formation of DNA–Histone Cross-Links in Nucleosome Core Particles. Chem Res Toxicol 2019; 32:2517-2525. [PMID: 31726825 DOI: 10.1021/acs.chemrestox.9b00354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
50
|
Ji S, Park D, Kropachev K, Kolbanovskiy M, Fu I, Broyde S, Essawy M, Geacintov NE, Tretyakova NY. 5-Formylcytosine-induced DNA-peptide cross-links reduce transcription efficiency, but do not cause transcription errors in human cells. J Biol Chem 2019; 294:18387-18397. [PMID: 31597704 DOI: 10.1074/jbc.ra119.009834] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/26/2019] [Indexed: 11/06/2022] Open
Abstract
5-Formylcytosine (5fC) is an endogenous epigenetic DNA mark introduced via enzymatic oxidation of 5-methyl-dC in DNA. We and others recently reported that 5fC can form reversible DNA-protein conjugates with histone proteins, likely contributing to regulation of nucleosomal organization and gene expression. The protein component of DNA-protein cross-links can be proteolytically degraded, resulting in smaller DNA-peptide cross-links. Unlike full-size DNA-protein cross-links that completely block replication and transcription, DNA-peptide cross-links can be bypassed by DNA and RNA polymerases and can potentially be repaired via the nucleotide excision repair (NER) pathway. In the present work, we constructed plasmid molecules containing reductively stabilized, site-specific 5fC-polypeptide lesions and employed a quantitative MS-based assay to assess their effects on transcription in cells. Our results revealed that the presence of DNA-peptide cross-link significantly inhibits transcription in human HEK293T cells but does not induce transcription errors. Furthermore, transcription efficiency was similar in WT and NER-deficient human cell lines, suggesting that the 5fC-polypeptide lesion is a weak substrate for NER. This finding was confirmed by in vitro NER assays in cell-free extracts from human HeLa cells, suggesting that another mechanism is required for 5fC-polypeptide lesion removal. In summary, our findings indicate that 5fC-mediated DNA-peptide cross-links dramatically reduce transcription efficiency, are poor NER substrates, and do not cause transcription errors.
Collapse
Affiliation(s)
- Shaofei Ji
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Daeyoon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | | - Iwen Fu
- Department of Biology, New York University, New York, New York 10003
| | - Suse Broyde
- Department of Biology, New York University, New York, New York 10003
| | - Maram Essawy
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455
| | | | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455.
| |
Collapse
|