1
|
Qiu G. Exceptions, Paradoxes, and Their Resolutions in Chemical Reactivity. J Org Chem 2024; 89:16307-16316. [PMID: 39506459 DOI: 10.1021/acs.joc.4c02246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Progress in chemistry has primarily been framed through inductive processes, leading to the frequent emergence of exceptions and unexpected reactivities. These anomalies─ranging from surprising reactivity trends and paradoxical understandings to unanticipated parameter influences and unexpected successes or failures in synthetic methods─offer valuable insights that can drive scientific discovery. While it is commonly accepted that such exceptions can drive progress, many have been passively accepted without being explored for opportunities. Although numerous chemists have addressed exceptions and refined chemical models and theories, employing a systematic framework for actively exploring and understanding the underlying causes of exceptions could resolve paradoxes in broader contexts and create a greater impact than treating anomalies as isolated occurrences. This perspective demonstrates a proactive epistemic approach to uncovering the opportunities presented by exceptions and promotes deliberate, thoughtful engagement with paradoxes and anomalies. While the examples primarily focus on physical organic chemistry, the concepts are broadly applicable across various fields in chemical science. The thinking framework presented here is neither exhaustive nor prescriptive, but it outlines one of many potentially possible ways to inspire further development in how these anomalies could be harnessed for advancement.
Collapse
Affiliation(s)
- Guanqi Qiu
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Okafor SU, Pinto G, Brdecka M, Smith W, Lewis TWR, Gutierrez M, Bellert DJ. Hydrogen tunneling with an atypically small KIE measured in the mediated decomposition of the Co(CH 3COOH) + complex. Phys Chem Chem Phys 2024; 26:27741-27750. [PMID: 39470007 DOI: 10.1039/d4cp02722a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Quantum mechanical tunneling (QMT) is a well-documented phenomenon in the C-H bond activation mechanism and is commonly identified by large KIE values. Herein we present surprising findings in the kinetic study of hydrogen tunneling in the Co+ mediated decomposition of acetic acid and its perdeuterated isotopologue, conducted with the energy resolved single photon initiated dissociative rearrangement reaction (SPIDRR) technique. Following laser activation, the reaction proceeds along parallel product channels Co(CH4O)+ + CO and Co(C2H2O)+ + H2O. An energetic threshold is observed in the energy dependence of the unimolecular microcanonical rate constants, k(E). This is interpreted as the reacting population surmounting a rate-limiting Eyring barrier in the reaction's potential energy surface. Measurements of the heavier isotopologue's reaction kinetics supports this interpretation. Kinetic signatures measured at energies below the Eyring barrier are attributed to H/D QMT. The below-the-barrier tunneling kinetics presents an unusually linear energy dependence and a staggeringly small tunneling KIE of ∼1.4 over a wide energy range. We explain this surprising observation in terms of a narrow tunneling barrier, wherein the electronic structure of the Co+ metal plays a pivotal role in enhanced reactivity by promoting efficient tunneling. These results suggest that hydrogen tunneling could play important functions in transition metal chemistry, such as that found in enzymatic mechanisms, even if small KIE values are measured.
Collapse
Affiliation(s)
| | | | | | - William Smith
- Baylor University, 1311 S 5th St, Waco, TX 76706, USA.
| | | | | | | |
Collapse
|
3
|
Ben-Eliyahu Y, Kozuch S. Quantum tunnelling effect in the cis- trans isomerization of uranyl tetrahydroxide. Dalton Trans 2024; 53:16271-16279. [PMID: 39308316 DOI: 10.1039/d4dt02071e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The role of quantum tunnelling (QT) in the proton transfer kinetics of the uranyl tetrahydroxide (UTH, [UO2(OH)4]2-) cis to trans isomerization was computationally studied under three possible reaction pathways. The first pathway involved a direct proton transfer from the hydroxide ligand to the oxo atom. In the other two pathways, one or two water molecules were added to the second sphere. The first H2O, bound by hydrogen bonds to the ligands, acts as a bridge enabling a proton shuttling, a concerted hopping of a proton from the hydroxide to the oxo atom similar to the Grotthuss mechanism. In the third pathway, the second water molecule does not participate in the H-transfer chain, but works as an anchor for the first water molecule, limiting its movement and therefore enhancing the QT. Since experimentally the reaction occurs in water, the first two pathways (no water or one H2O) serve only as models of the gas phase behaviour, while the third pathway will always be thermodynamically and kinetically preferred. The effects were investigated in the gas phase as well as in a continuum aqueous model, including the H/D Kinetic Isotope Effect (KIE). The results indicate that at very low temperatures, QT is the only mechanism that permits the reaction kinetics, consistent with the large computed KIE. At higher temperatures, thermally activated tunnelling competes with the classical crossing over the potential barrier.
Collapse
Affiliation(s)
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel.
| |
Collapse
|
4
|
Jiang J, Huang L, Zhu B, Fan W, Wang L, Zhang IY, Fang W, Trabelsi T, Francisco JS, Zeng X. Hydrogen-Bonded Complexes of HPN⋅ and HNP⋅ Radicals with Carbon Monoxide. Angew Chem Int Ed Engl 2024:e202414456. [PMID: 39365837 DOI: 10.1002/anie.202414456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Phosphorus mononitride (PN) is a carrier of phosphorus in the interstellar medium. As the simplest derivatives of PN, the radical species HPN⋅ and HNP⋅ have remained elusive. Herein, we report the generation, characterization, and photochemistry of HPN⋅ and HNP⋅ in N2-matrix at 3 K. Specifically, HPN⋅ was formed as a weakly bonded complex with CO in the matrix by 254 nm photolysis of the novel phosphinyl radical HPNCO⋅. The ⋅NPH-CO complex is extremely unstable, as it undergoes spontaneous isomerization to the lower-energy isomer ⋅PNH-CO through fast quantum mechanical tunneling (QMT) with a half-life of 6.1 min at 3 K. Upon further irradiation at 254 nm, the reverse conversion of ⋅PNH-CO to ⋅NPH-CO along with dehydrogenation to yield PN was observed. The characterization ⋅NPH-CO and ⋅PNH-CO with matrix-isolation IR spectroscopy is supported by D, 15N, and 13C isotope labeling and quantum chemical calculations at the XYGJ-OS/AVTZ level of theory, and the mechanism by hydrogen atom tunneling is consistent with multidimensional instanton theory calculations.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Longtian Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Bifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Wenbin Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Igor Ying Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Wei Fang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Tarek Trabelsi
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6243, USA
| | - Joseph S Francisco
- Department of Earth and Environment Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6243, USA
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Zhou Y, Fan W, Tang J, Fang W, Zhou M. Heavy-Atom Tunneling in Ring-Closure Reactions of Beryllium Ozonide Complexes. J Am Chem Soc 2024; 146:26719-26725. [PMID: 39290183 DOI: 10.1021/jacs.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Quantum mechanical tunneling (QMT) has long been recognized as crucial for understanding chemical reaction mechanisms, particularly in reactions involving light atoms like hydrogen. However, recent findings have expanded this understanding to include heavy-atom tunneling reactions. In this report, we present the observation of two heavy-atom tunneling reactions involving the spontaneous conversions from end-on bonded beryllium ozonide complexes, OBeOOO (A) and BeOBeOOO (C), to their corresponding side-on bonded ozonide isomers, OBe(η2-O3) (B) and BeOBe(η2-O3) (D), respectively, in a cryogenic neon matrix. This discovery is supported by the weak temperature dependence of the rate constants and unusually large 16O/18O kinetic isotope effects. Quantum chemistry calculations reveal extremely low barriers (<1 kcal/mol) for both ring-closure reactions. Additionally, instanton theory calculations on both reactions unveil that the tunneling processes involve the concerted motion of all four oxygen atoms.
Collapse
Affiliation(s)
- Yangyu Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Wenbin Fan
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jingjing Tang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Wei Fang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Mingfei Zhou
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Bhagat V, Meisner J, Wagner JP. Phenyl Radical Activates Molecular Hydrogen Through Protium and Deuterium Tunneling. Angew Chem Int Ed Engl 2024:e202414573. [PMID: 39344422 DOI: 10.1002/anie.202414573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Activating dihydrogen, H2, is a challenging endeavor typically achieved using transition metal centers. Pure main-group compounds capable of this are rare and have emerged in recent decades. These systems rely on synergistic donor-acceptor interactions with H2's antibonding σ* and bonding σ orbital. An alternative (hydrocarbon) radical-mediated activation is problematic because the H-H bond is stronger (104.2 kcal mol-1) than most C-H bonds. Here, we explore using the phenyl radical to tackle this, forming benzene with a C-H bond energy (112.9 kcal mol-1) that provides a thermodynamic driving force. We mainly observe a benzene-HI complex upon photolysis of iodobenzene in an H2-doped neon matrix at 4.4 K despite a barrier of 7.6 kcal mol-1, while phenyl radical forms in case of the heavier D2 isotopologue. When D2 molecules are allowed to diffuse, mono-deuterated benzene accumulates within hours. Computations using path integral-based instanton theory highlight that primarily the transferred hydrogen atom is moving during the reaction which greatly increases the tunneling probability. In excellent agreement with the experimental results, we predict significant tunneling rate constants for both isotopologues, H2 and D2, featuring a strong kinetic isotope effect of up to four orders of magnitude at the lowest temperatures.
Collapse
Affiliation(s)
- Virinder Bhagat
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Jan Meisner
- Institute for Physical Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Jan Philipp Wagner
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
7
|
Bracher CE, Allen CJ, Singleton DA. Nuclear Quantum Effects on the Nature of Hydroboration Selectivity: Experimental Effects of First-Collision Tunneling. J Am Chem Soc 2024; 146:25907-25911. [PMID: 39284010 PMCID: PMC11440546 DOI: 10.1021/jacs.4c09306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The understanding of selectivity in reactions exhibiting nonstatistical dynamics is impeded by the limitations of trajectory studies with regard to nuclear quantum effects, especially tunneling. We described here the use of ring-polymer molecular dynamics (RPMD) to account for an unusual regiochemical isotope effect on the regioselectivity of hydroborations of alkenes with BH3/BD3. RPMD is able to account for the experimental observation, while statistical approaches and classical trajectories fail. The combination of experiment and RPMD trajectories suggests that tunneling in the initial collision of reactants is the major source of the nonstatistical selectivity.
Collapse
Affiliation(s)
- Christoph E Bracher
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Connor J Allen
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| | - Daniel A Singleton
- Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842, United States
| |
Collapse
|
8
|
Rostkowska H, Lapinski L, Nowak MJ. Intramolecular hydrogen-atom tunneling in matrix-isolated heterocyclic compounds: 2-thiouracil and its analogues. Phys Chem Chem Phys 2024; 26:23944-23950. [PMID: 39235301 DOI: 10.1039/d4cp02799j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Hydrogen-atom tunneling leading to spontaneous tautomeric conversion in monomeric heterocyclic molecules without intramolecular hydrogen bonds has been experimentally detected for the first time. For monomers of 2-thiouracil, 6-aza-2-thiouracil and 1-methyl-2-thiouracil isolated in low-temperature matrices, higher-energy thiol forms were generated upon UV (λ = 305 nm) excitation of the most stable thione tautomers. When the matrices were subsequently kept in the dark and at low temperature, hydrogen-atom tunneling occurred, leading to the thiol → thione conversion. During this process, the photoproduced thiol form spontaneously converted into the lowest energy thione tautomer.
Collapse
Affiliation(s)
- Hanna Rostkowska
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.
| | - Leszek Lapinski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.
| | - Maciej J Nowak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.
| |
Collapse
|
9
|
Rodríguez SJ, Kozuch S. Heavy-atom tunnelling in benzene isomers: how many tricyclic species are truly stable? Chem Sci 2024:d4sc05109b. [PMID: 39345775 PMCID: PMC11428002 DOI: 10.1039/d4sc05109b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
The variety of possible benzene isomers may provide a fundamental basis for understanding structural and reactivity patterns in organic chemistry. However, the vast majority of these isomers remain unsynthesized, while most of the experimentally known species are only moderately stable. Consequently, there is a high probability that the theoretically proposed isomers would also be barely metastable, a factor that must be taken into account if their creation in the laboratory is sought. In this work, we studied the kinetic stability of all 73 hypothetical tricyclic benzene isomers, especially focusing on their nuclear quantum effects. With this in mind, we evaluated which species are theoretically possible to synthesize, detect, and isolate. Our computations predict that 26% of the previously deemed stable molecules are completely unsynthesizable due to their intrinsic quantum tunnelling instability pushing for their unimolecular decomposition even close to the absolute zero. Five more systems would be detectable, but they will slowly and inevitably degrade, while seven more supposedly stable systems will break apart in barrierless mechanisms.
Collapse
Affiliation(s)
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 841051 Israel
| |
Collapse
|
10
|
Roque JPL, Nunes CM, Schreiner PR, Fausto R. Hydrogen Tunneling Exhibiting Unexpectedly Small Primary Kinetic Isotope Effects. Chemistry 2024; 30:e202401323. [PMID: 38709063 DOI: 10.1002/chem.202401323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Probing quantum mechanical tunneling (QMT) in chemical reactions is crucial to understanding and developing new transformations. Primary H/D kinetic isotopic effects (KIEs) beyond the semiclassical maximum values of 7-10 (room temperature) are commonly used to assess substantial QMT contributions in one-step hydrogen transfer reactions, because of the much greater QMT probability of protium vs. deuterium. Nevertheless, we report here the discovery of a reaction model occurring exclusively by H-atom QMT with residual primary H/D KIEs. 2-Hydroxyphenylnitrene, generated in N2 matrix, was found to isomerize to an imino-ketone via sequential (domino) QMT involving anti to syn OH-rotamerization (rate determining step) and [1,4]-H shift reactions. These sequential QMT transformations were also observed in the OD-deuterated sample, and unexpected primary H/D KIEs between 3 and 4 were measured at 3 to 20 K. Analogous residual primary H/D KIEs were found in the anti to syn OH-rotamerization QMT of 2-cyanophenol in a N2 matrix. Evidence strongly indicates that these intriguing isotope-insensitive QMT reactivities arise due to the solvation effects of the N2 matrix medium, putatively through coupling with the moving H/D tunneling particle. Should a similar scenario be extrapolated to conventional solution conditions, then QMT may have been overlooked in many chemical reactions.
Collapse
Affiliation(s)
- José P L Roque
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Cláudio M Nunes
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Rui Fausto
- University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535, Coimbra, Portugal
- Faculty Sciences and Letters, Department of Physics, Istanbul Kultur University, Bakirkoy, Istanbul, 34158, Turkey
| |
Collapse
|
11
|
García de la Concepción J, Corchado JC, Cintas P, Babiano R. Norcaradiene-Cycloheptatriene Equilibrium: A Heavy-Atom Quantum Tunneling Case. J Org Chem 2024; 89:9336-9343. [PMID: 38888485 PMCID: PMC11232008 DOI: 10.1021/acs.joc.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The equilibrium between norcaradiene and cycloheptatriene, which has captivated chemists for more than half a century, is revisited by state-of-the-art quantum chemical calculations. Our theoretical data significantly deviate from the experimental results (J. Am. Chem. Soc., 1981, 26, 7791-7792), especially at low temperatures, where isomerization is dominated by heavy-atom tunneling. This effect results in an extremely short half-life for norcaradiene, rendering it undetectable. This work sheds light on this equilibrium, updating the kinetic and thermodynamic data while also expanding the repertoire of organic reactions controlled by this exotic quantum effect.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| | - José C Corchado
- Departamento de Ingeniería Química y Química Física, Facultad de Ciencias, and ICCAEx, Universidad Extremadura, 06006 Badajoz, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Reyes Babiano
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, and IACYS-Green Chemistry and Sustainable Development Unit, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
12
|
Frenklach A, Amlani H, Kozuch S. Quantum Tunneling Instability in Pericyclic Reactions: The Cheletropic, Coarctate, and Ene Cases. Org Lett 2024; 26:5157-5161. [PMID: 38847371 DOI: 10.1021/acs.orglett.4c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Some retro-pericyclic reactions, as a result of their high exothermicity and short trajectories, are the perfect ground for heavy atom tunneling molecular decompositions, also known as "quantum tunneling instability" (QTI). Considering this effect, in our first installment [Frenklach, A.; Amlani, H.; Kozuch, S. Quantum Tunneling Instability in Pericyclic Reactions. J. Am. Chem. Soc. 2024, 146 (17), 11823-11834, DOI: 10.1021/jacs.4c00608], we computed several retro-Diels-Alder reactions, predicting that many studied reactants cannot be isolated. Herein, we will explore the QTI of retro-cheletropic, coarctate, and ene exemplars, where again we hypothesize the impossibility to detect their reactants.
Collapse
Affiliation(s)
- Alexander Frenklach
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Hila Amlani
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| |
Collapse
|
13
|
Frenklach A, Amlani H, Kozuch S. Quantum Tunneling Instability in Pericyclic Reactions. J Am Chem Soc 2024; 146:11823-11834. [PMID: 38634836 DOI: 10.1021/jacs.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Several cycloreversion reactions of the retro-Diels-Alder type were computationally assessed to understand their quantum tunneling (QT) reactivity. N2, CO, and other leaving groups were considered based on their strong exothermicity, as it reduces their thermodynamic and kinetic stabilities. Our results indicate that for many of these reactions, it is essential to take into account their QT decomposition rate, which can massively weaken their molecular stability and shorten their half-lives even at deep cryogenic temperatures. In practical terms, this indicates that many supposedly stable molecules will actually be unsynthesizable or unisolable, and therefore trying to prepare or detect them would be a futile attempt. In addition, we discuss the importance of tunneling to correctly understand the enthalpy of activation and the collective atomic effect on the tunneling kinetic isotope effects to test if third-row atoms can tunnel in a chemical reaction. This project raises the question of the importance of in silico chemistry to guide in vitro chemistry, especially in cases where the latter cannot solve its own uncertainties.
Collapse
Affiliation(s)
- Alexander Frenklach
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Hila Amlani
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| | - Sebastian Kozuch
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 841051, Israel
| |
Collapse
|
14
|
Hasecke L, Mata RA. Optimization of Quantum Nuclei Positions with the Adaptive Nuclear-Electronic Orbital Approach. J Phys Chem A 2024; 128:3205-3211. [PMID: 38619054 PMCID: PMC11056972 DOI: 10.1021/acs.jpca.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
The use of multicomponent methods has become increasingly popular over the last years. Under this framework, nuclei (commonly protons) are treated quantum mechanically on the same footing as the electronic structure problem. Under the use of atomic-centered orbitals, this can lead to some complications as the ideal location of the nuclear basis centers must be optimized. In this contribution, we propose a straightforward approach to determine the position of such centers within the self-consistent cycle of a multicomponent calculation, making use of individual proton charge centroids. We test the method on model systems including the water dimer, a protonated water tetramer, and a porphine system. Comparing to numerical gradient calculations, the adaptive nuclear-electronic orbital (NEO) procedure is able to converge the basis centers to within a few cents of an Ångström and with less than 0.1 kcal/mol differences in absolute energies. This is achieved in one single calculation and with a small added computational effort of up to 80% compared to a regular NEO- self-consistent field run. An example application for the human transketolase proton wire is also provided.
Collapse
Affiliation(s)
- Lukas Hasecke
- Institute of Physical Chemistry, University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| | - Ricardo A. Mata
- Institute of Physical Chemistry, University
of Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Tian Y, Liu K, Wang Y, Zhou Y, Lu P. Proton tunneling in the dissociation of H2+ and its asymmetric isotopologues driven by circularly polarized THz laser pulses. J Chem Phys 2024; 160:114311. [PMID: 38501475 DOI: 10.1063/5.0195867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Light-induced deprotonation of molecules is an important process in photochemical reactions. Here, we theoretically investigate the tunneling deprotonation of H2+ and its asymmetric isotopologues driven by circularly polarized THz laser pulses. The quasi-static picture shows that the field-dressed potential barrier is significantly lowered for the deprotonation channel when the mass asymmetry of the diatomic molecule increases. Our numerical simulations demonstrate that when the mass symmetry breaks, the tunneling deprotonation is significantly enhanced and the proton tunneling becomes the dominant dissociation channel in the THz driving fields. In addition, the simulated nuclear momentum distributions show that the emission of the proton is directed by the effective vector potential for the deprotonation channel and, meanwhile, the angular distribution of the emitting proton is affected by the alignment and rotation of the molecule induced by the rotating field.
Collapse
Affiliation(s)
- Yidian Tian
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kunlong Liu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuchen Wang
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peixiang Lu
- School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
16
|
Zasimov PV, Volosatova AD, Góbi S, Keresztes B, Tyurin DA, Feldman VI, Tarczay G. Infrared spectroscopy of the α-hydroxyethyl radical isolated in cryogenic solid media. J Chem Phys 2024; 160:024308. [PMID: 38205854 DOI: 10.1063/5.0177189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The α-hydroxyethyl radical (CH3·CHOH, 2A) is a key intermediate in ethanol biochemistry, combustion, atmospheric chemistry, radiation chemistry, and astrochemistry. Experimental data on the vibrational spectrum of this radical are crucially important for reliable detection and understanding of the chemical dynamics of this species. This study represents the first detailed experimental report on the infrared absorption bands of the α-hydroxyethyl radical complemented by ab initio computations. The radical was generated in solid para-H2 and Xe matrices via the reactions of hydrogen atoms with matrix-isolated ethanol molecules and radiolysis of isolated ethanol molecules with x rays. The absorption bands with maxima at 3654.6, 3052.1, 1425.7, 1247.9, 1195.6 (1177.4), and 1048.4 cm-1, observed in para-H2 matrices appearing upon the H· atom reaction, were attributed to the OHstr, α-CHstr, CCstr, COstr + CCObend, COstr, and CCstr + CCObend vibrational modes of the CH3·CHOH radical, respectively. The absorption bands with the positions slightly red-shifted from those observed in para-H2 were detected in both the irradiated and post-irradiation annealed Xe matrices containing C2H5OH. The results of the experiments with the isotopically substituted ethanol molecules (CH3CD2OH and CD3CD2OH) and the quantum-chemical computations at the UCCSD(T)/L2a_3 level support the assignment. The photolysis with ultraviolet light (240-300 nm) results in the decay of the α-hydroxyethyl radical, yielding acetaldehyde and its isomer, vinyl alcohol. A comparison of the experimental and theoretical results suggests that the radical adopts the thermodynamically more stable anti-conformation in both matrices.
Collapse
Affiliation(s)
- Pavel V Zasimov
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia D Volosatova
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sándor Góbi
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Barbara Keresztes
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Daniil A Tyurin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I Feldman
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - György Tarczay
- MTA-ELTE Lendület Laboratory Astrochemistry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Laboratory of Molecular Spectroscopy, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- Centre for Astrophysics and Space Science, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
17
|
Panda S, Phan H, Karlin KD. Heme-copper and Heme O 2-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry. J Inorg Biochem 2023; 249:112367. [PMID: 37742491 PMCID: PMC10615892 DOI: 10.1016/j.jinorgbio.2023.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Cytochrome c oxidase (CcO), also widely known as mitochondrial electron-transport-chain complex IV, is a multi-subunit transmembrane protein responsible for catalyzing the last step of the electron transport chain, dioxygen reduction to water, which is essential to the establishment and maintenance of the membrane proton gradient that drives ATP synthesis. Although many intermediates in the CcO catalytic cycle have been spectroscopically and/or computationally authenticated, the specifics regarding the IP intermediate, hypothesized to be a heme-Cu (hydro)peroxo species whose O-O bond homolysis is supported by a hydrogen-bonding network of water molecules, are largely obscured by the fast kinetics of the A (FeIII-O2•-/CuI/Tyr) → PM (FeIV=O/CuII-OH/Tyr•) step. In this review, we have focused on the recent advancements in the design, development, and characterization of synthetic heme-peroxo‑copper model complexes, which can circumvent the abovementioned limitation, for the investigation of the formation of IP and its O-O cleavage chemistry. Novel findings regarding (a) proton and electron transfer (PT/ET) processes, together with their contributions to exogenous phenol induced O-O cleavage, (b) the stereo-electronic tunability of the secondary coordination sphere (especially hydrogen-bonding) on the geometric and spin state alteration of the heme-peroxo‑copper unit, and (c) a plausible mechanism for the Tyr-His cofactor biogenesis, are discussed in great detail. Additionally, since the ferric-superoxide and the ferryl-oxo (Compound II) species are critically involved in the CcO catalytic cycle, this review also highlights a few fundamental aspects of these heme-only (i.e., without copper) species, including the structural and reactivity influences of electron-donating trans-axial ligands and Lewis acid-promoted H-bonding.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Yang X, Zhang D, Liu R, Wang L, Liu JY, Wang Z. Rapid Thalidomide Racemization Is Related to Proton Tunneling Reactions via Water Bridges. J Phys Chem Lett 2023; 14:10592-10598. [PMID: 37976462 DOI: 10.1021/acs.jpclett.3c02757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Quantum mechanical tunneling (QMT) can play an important role in light element-related chemical reactions; however, its influence on racemization is not fully understood. Herein, we demonstrate that the role of QMT is decisive for rapid racemization of the well-known thalidomide molecule in aqueous environments, increasing the reaction rate constants of the most likely racemization pathways by 87-149 times at approximately body temperature and achieving good agreement between theoretical calculations and experimental observations. In addition, the kinetic isotope effect values fit well with those of previous experiments. These results are attributed to enhanced tunneling probability due to the alteration of potential barriers for proton transfer reactions via water bridges. This work highlights the significance of the QMT effect in racemization and its potential impact on drug safety, providing a fundamental perspective for understanding chirality-related issues in biological systems.
Collapse
Affiliation(s)
- Xinrui Yang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Depeng Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Normal School, Shenyang University, Shenyang 110044, China
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Rui Liu
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Lu Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jing-Yao Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhigang Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Qiu G, Schreiner PR. The Intrinsic Barrier Width and Its Role in Chemical Reactivity. ACS CENTRAL SCIENCE 2023; 9:2129-2137. [PMID: 38033803 PMCID: PMC10683502 DOI: 10.1021/acscentsci.3c00926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023]
Abstract
Chemical reactions are in virtually all cases understood and explained on the basis of depicting the molecular potential energy landscape, i.e., the change in atomic positions vs the free-energy change. With such landscapes, the features of the reaction barriers solely determine chemical reactivities. The Marcus dissection of the barrier height (activation energy) on such a potential into the thermodynamically independent (intrinsic) and the thermodynamically dependent (Bell-Evans-Polanyi) contributions successfully models the interplay of reaction rate and driving force. This has led to the well-known and ubiquitously used reactivity paradigm of "kinetic versus thermodynamic control". However, an analogous dissection concept regarding the barrier width is absent. Here we define and outline the concept of intrinsic barrier width and the driving force effect on the barrier width and report experimental as well as theoretical studies to demonstrate their distinct roles. We present the idea of changing the barrier widths of conformational isomerizations of some simple aromatic carboxylic acids as models and use quantum mechanical tunneling (QMT) half-lives as a read-out for these changes because QMT is particularly sensitive to barrier widths. We demonstrate the distinct roles of the intrinsic and the thermodynamic contributions of the barrier width on QMT half-lives. This sheds light on resolving conflicting trends in chemical reactivities where barrier widths are relevant and allows us to draw some important conclusions about the general relevance of barrier widths, their qualitative definition, and the consequences for more complete descriptions of chemical reactions.
Collapse
Affiliation(s)
- Guanqi Qiu
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
20
|
Danho A, Mardyukov A, Schreiner PR. The enol of propionic acid. Chem Commun (Camb) 2023; 59:11524-11527. [PMID: 37672001 DOI: 10.1039/d3cc03711h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
We demonstrate the gas-phase synthesis of prop-1-ene-1,1-diol, the hitherto unreported higher energy tautomer of propionic acid. The enol was trapped in an argon matrix and characterized by IR and UV/Vis spectroscopy in combination with density functional theory computations. Upon photolysis, the enol rearranges to propionic acid and methylketene.
Collapse
Affiliation(s)
- Akkad Danho
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| | - Artur Mardyukov
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, Giessen 35392, Germany.
| |
Collapse
|
21
|
Xie F, Sun W, Hartwig B, Obenchain DA, Schnell M. Hydrogen-Atom Tunneling in a Homochiral Environment. Angew Chem Int Ed Engl 2023; 62:e202308273. [PMID: 37467465 DOI: 10.1002/anie.202308273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The role-exchanging concerted torsional motion of two hydrogen atoms in the homochiral dimer of trans-1,2-cyclohexanediol was characterized through a combination of broadband rotational spectroscopy and theoretical modeling. The results reveal that the concerted tunneling motion of the hydrogen atoms leads to the inversion of the sign of the dipole moment components along the a and b principal axes, due to the interchange motion that cooperatively breaks and reforms one intermolecular hydrogen bond. This motion is also coupled with two acceptor switching motions. The energy difference between the two ground vibrational states arising from this tunneling motion was determined to be 29.003(2) MHz. The corresponding wavefunctions suggest that the two hydrogen atoms are evenly delocalized on two equivalent potential wells, which differs from the heterochiral case where the hydrogen atoms are confined in separate wells, as the permutation-inversion symmetry breaks down. This intriguing contrast in hydrogen-atom behavior between homochiral and heterochiral environments could further illuminate our understanding of the role of chirality in intermolecular interactions and dynamics.
Collapse
Affiliation(s)
- Fan Xie
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Wenhao Sun
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Beppo Hartwig
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Daniel A Obenchain
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany
| |
Collapse
|
22
|
Laconsay CJ, Tantillo DJ. Modulating Escape Channels of Cycloheptatrienyl Rhodium Carbenes To Form Semibullvalene. J Org Chem 2023. [PMID: 37335974 DOI: 10.1021/acs.joc.3c00735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
We describe the various escape channels available to dirhodium carbene intermediates from cycloheptatrienyl diazo compounds located with density functional theory. An intramolecular cyclopropanation would, in principle, provide a new route to semibullvalenes (SBVs). A detailed exploration of the potential energy surface reveals that methylating carbon-7 suppresses a competing β-hydride migration pathway to heptafulvene products, giving SBV formation a reasonable chance. During our explorations, we additionally discovered unusual spirononatriene, spironorcaradiene, and metal-stabilized 9-barbaralyl cation structures as local minima.
Collapse
Affiliation(s)
- Croix J Laconsay
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California─Davis, Davis, California 95616, United States
| |
Collapse
|
23
|
Paul M, Thomulka T, Harnying W, Neudörfl JM, Adams CR, Martens J, Berden G, Oomens J, Meijer AJHM, Berkessel A, Schäfer M. Hydrogen Bonding Shuts Down Tunneling in Hydroxycarbenes: A Gas-Phase Study by Tandem-Mass Spectrometry, Infrared Ion Spectroscopy, and Theory. J Am Chem Soc 2023. [PMID: 37235775 DOI: 10.1021/jacs.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.
Collapse
Affiliation(s)
- Mathias Paul
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Thomas Thomulka
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Wacharee Harnying
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Charlie R Adams
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Jonathan Martens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Giel Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Jos Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | | | - Albrecht Berkessel
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| | - Mathias Schäfer
- Department of Chemistry, Organic Chemistry, University of Cologne, Greinstraße 4, Cologne 50939, Germany
| |
Collapse
|
24
|
Wang HD, Fu YL, Fu B, Fang W, Zhang DH. A highly accurate full-dimensional ab initio potential surface for the rearrangement of methylhydroxycarbene (H 3C-C-OH). Phys Chem Chem Phys 2023; 25:8117-8127. [PMID: 36876923 DOI: 10.1039/d3cp00312d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We report here a full-dimensional machine learning global potential surface (PES) for the rearrangement of methylhydroxycarbene (H3C-C-OH, 1t). The PES is trained with the fundamental invariant neural network (FI-NN) method on 91 564 ab initio energies calculated at the UCCSD(T)-F12a/cc-pVTZ level of theory, covering three possible product channels. FI-NN PES has the correct symmetry properties with respect to permutation of four identical hydrogen atoms and is suitable for dynamics studies of the 1t rearrangement. The averaged root mean square error (RMSE) is 11.4 meV. Six important reaction pathways, as well as the energies and vibrational frequencies at the stationary geometries on these pathways are accurately preproduced by our FI-NN PES. To demonstrate the capacity of the PES, we calculated the rate coefficient of hydrogen migration in -CH3 (path A) and hydrogen migration of -OH (path B) with instanton theory on this PES. Our calculations predicted the half-life of 1t to be 95 min, which is excellent in agreement with experimental observations.
Collapse
Affiliation(s)
- Heng-Ding Wang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yan-Lin Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Wei Fang
- Fudan University, Shanghai, 200032, China.
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
25
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
26
|
Shalaev E, Ohtake S, Moussa EM, Searles J, Nail S, Roberts CJ. Accelerated Storage for Shelf-Life Prediction of Lyophiles: Temperature Dependence of Degradation of Amorphous Small Molecular Weight Drugs and Proteins. J Pharm Sci 2023; 112:1509-1522. [PMID: 36796635 DOI: 10.1016/j.xphs.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Prediction of lyophilized product shelf-life using accelerated stability data requires understanding the temperature dependence of the degradation rate. Despite the abundance of published studies on stability of freeze-dried formulations and other amorphous materials, there are no definitive conclusions on the type of pattern one can expect for the temperature dependence of degradation. This lack of consensus represents a significant gap which may impact development and regulatory acceptance of freeze-dried pharmaceuticals and biopharmaceuticals. Review of the literature demonstrates that the temperature dependence of degradation rate constants in lyophiles can be represented by the Arrhenius equation in most cases. In some instances there is a break in the Arrhenius plot around the glass transition temperature or a related characteristic temperature. The majority of the activation energies (Ea), which are reported for various degradation pathways in lyophiles, falls in the range of 8 to 25 kcal/mol. The degradation Ea values for lyophiles are compared with the Ea for relaxation processes and diffusion in glasses, as wells as solution chemical reactions. Collectively, analysis of the literature demonstrates that the Arrhenius equation represents a reasonable empirical tool for analysis, presentation, and extrapolation of stability data for lyophiles, provided that specific conditions are met.
Collapse
Affiliation(s)
| | - Satoshi Ohtake
- Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017 USA
| | - Ehab M Moussa
- Biologics Drug Product Development, AbbVie, North Chicago, IL, USA
| | - Jim Searles
- Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63017 USA
| | | | - Christopher J Roberts
- University of Delaware, Department of Chemical & Biomolecular Engineering, Newark DE 19713 USA
| |
Collapse
|
27
|
Kee CW. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis-Challenges and Opportunities. Molecules 2023; 28:1715. [PMID: 36838703 PMCID: PMC9966076 DOI: 10.3390/molecules28041715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023] Open
Abstract
Through the lens of organocatalysis and phase transfer catalysis, we will examine the key components to calculate or predict catalysis-performance metrics, such as turnover frequency and measurement of stereoselectivity, via computational chemistry. The state-of-the-art tools available to calculate potential energy and, consequently, free energy, together with their caveats, will be discussed via examples from the literature. Through various examples from organocatalysis and phase transfer catalysis, we will highlight the challenges related to the mechanism, transition state theory, and solvation involved in translating calculated barriers to the turnover frequency or a metric of stereoselectivity. Examples in the literature that validated their theoretical models will be showcased. Lastly, the relevance and opportunity afforded by machine learning will be discussed.
Collapse
Affiliation(s)
- Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
28
|
Ma Z, Yan Z, Li X, Chung LW. Quantum Tunneling in Reactions Modulated by External Electric Fields: Reactivity and Selectivity. J Phys Chem Lett 2023; 14:1124-1132. [PMID: 36705472 DOI: 10.1021/acs.jpclett.2c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quantum tunneling and external electric fields (EEFs) can promote some reactions. However, the synergetic effect of an EEF on a tunneling-involving reaction and its temperature-dependence is not very clear. In this study, we extensively investigated how EEFs affect three reactions that involve hydrogen- or (ground- and excited-state) carbon-tunneling using reliable DFT, DLPNO-CCSD(T1), and variational transition-state theory methods. Our study revealed that oriented EEFs can significantly reduce the barrier and corresponding barrier width (and vice versa) through more electrostatic stabilization in transition states. These EEF effects enhance the nontunneling and tunneling-involving rates. Such EEF effects also decrease the crossover temperatures and quantum tunneling contribution, albeit with lower and thinner barriers. Moreover, EEFs can modulate and switch on/off the tunneling-driven 1,2-H migration of hydroxycarbenes under cryogenic conditions. Furthermore, our study predicts for the first time that EEF/tunneling synergy can control the chemo- or site-selectivity of one molecule bearing two similar/same reactive sites.
Collapse
Affiliation(s)
- Zhifeng Ma
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Zeyin Yan
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, P. R. China
| |
Collapse
|
29
|
Carpenter BK. Prediction of Kinetic Product Ratios: Investigation of a Dynamically Controlled Case. J Phys Chem A 2023; 127:224-239. [PMID: 36594780 PMCID: PMC9841574 DOI: 10.1021/acs.jpca.2c08301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Of the various factors influencing kinetically controlled product ratios, the role of nonstatistical dynamics is arguably the least well understood. In this paper, reactions were chosen in which dynamics played a dominant role in product selection, by design. Specifically, the reactions studied were the ring openings of cyclopropylidene to allene and tetramethylcyclopropylidene to tetramethylallene (2,4-dimethylpenta-2,3-diene). Both reactions have intrinsic reaction coordinates that bifurcate symmetrically, leading to products that are enantiomeric once the atoms are uniquely labeled. The question addressed in the study was whether the outcomes─that is, which product well on the potential energy surface was selected─could be predicted from their initial conditions for individual trajectories in quasiclassical dynamics simulations. Hybrid potentials were developed based on cooperative interaction between molecular mechanics and artificial neural networks, trained against data from electronic structure calculations. These potentials allowed simulations of both gas-phase and condensed-phase reactions. The outcome was that, for both reactions, prediction of initial selection of product wells could be made with >95% success from initial conditions of the trajectories in the gas phase. However, when trajectories were run for longer, looking for "final" products for each trajectory, the predictability dropped off dramatically. In the gas-phase simulations, this drop off was caused by trajectories hopping between product wells on the potential energy surface. That behavior could be suppressed in condensed phases, but then new uncertainty was introduced because the intermolecular interactions between solute and bath, necessary to permit intermolecular energy transfer and cooling of the hot initial products, often led to perturbations of the initial directions of trajectories on the potential energy surface. It would consequently appear that a general ability to predict outcomes for reactions in which nonstatistical dynamics dominate remains a challenge even in the age of sophisticated machine-learning capabilities.
Collapse
|
30
|
Bernhardt B, Schauermann M, Solel E, Eckhardt AK, Schreiner PR. Equilibrating parent aminomercaptocarbene and CO 2 with 2-amino-2-thioxoacetic acid via heavy-atom quantum tunneling. Chem Sci 2022; 14:130-135. [PMID: 36605744 PMCID: PMC9769125 DOI: 10.1039/d2sc05388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
The search for methods to bind CO2 and use it synthetically as a C1-building block under mild conditions is an ongoing endeavor of great urgency. The formation of heterocyclic carbene-carbon dioxide adducts occurs rapidly when the carbene is generated in solution in the presence of CO2. Here we demonstrate the reversible formation of a complex of the hitherto unreported aminomercaptocarbene (H2N-C̈-SH) with CO2 isolated in solid argon by photolysis of 2-amino-2-thioxoacetic acid. Remarkably, the complex disappears in the dark as deduced by time-dependent matrix infrared measurements, and equilibrates back to the covalently bound starting material. This kinetically excluded process below ca. 8 K is made possible through heavy-atom quantum mechanical tunneling, as also evident from density functional theory and ab initio computations at the CCSD(T)/cc-pVTZ level of theory. Our results provide insight into CO2 activation using a carbene and emphasize the role of quantum mechanical tunneling in organic processes, even involving heavy atoms.
Collapse
Affiliation(s)
- Bastian Bernhardt
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Markus Schauermann
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Ephrath Solel
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - André K Eckhardt
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
31
|
Amić A, Cagardová DM. Mactanamide and lariciresinol as radical scavengers and Fe 2+ ion chelators - A DFT study. PHYTOCHEMISTRY 2022; 204:113442. [PMID: 36150528 DOI: 10.1016/j.phytochem.2022.113442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
A DFT based kinetic study of OOH radical scavenging potency of mactanamide (MA) and lariciresinol (LA), two natural polyphenols, indicates their nearly equal potential via the proton coupled electron transfer (PCET) mechanism in lipid media. Contribution of C-H bond breaking to this potency is negligible compared to O-H bond breaking, contrary to recent claims. The predicted potency of both compounds is not sufficient to protect biological molecules from oxidative damage in lipid media. In aqueous media, the scavenging potency of MA and LA phenoxide anions via the single electron transfer (SET) mechanism is much higher and may contribute to the protection of lipids, proteins, and DNA from OOH radical damage. Also, MA and LA have the potential to chelate catalytic Fe2+ ions, thus suppressing the formation of dangerous OH radicals via Fenton-type reactions. The monoanionic species of MA and LA show stronger monodentate chelating ability with Fe2+ ion compared to its neutral form. The dianionic specie LA2- exhibited the highest chelation ability with Fe2+ ion via bidentate 1:2 coordination. However, direct radical scavenging and metal chelation could be rarely operative in vivo because MA and LA presumably achieve very low concentrations in systemic circulation.
Collapse
Affiliation(s)
- Ana Amić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8A, Osijek, 31000, Croatia.
| | - Denisa Mastiľák Cagardová
- Institute of Physical Chemistry and Chemical Physics, Department of Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, SK-812 37, Slovak Republic
| |
Collapse
|
32
|
Lopes Jesus AJ, de Lucena Júnior JR, Fausto R, Reva I. Infrared Spectra and Phototransformations of meta-Fluorophenol Isolated in Argon and Nitrogen Matrices. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238248. [PMID: 36500356 PMCID: PMC9735537 DOI: 10.3390/molecules27238248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Monomers of meta-fluorophenol (mFP) were trapped from the gas phase into cryogenic argon and nitrogen matrices. The estimated relative energies of the two conformers are very close, and in the gas phase they have nearly equal populations. Due to the similarity of their structures (they only differ in the orientation of the OH group), the two conformers have also similar predicted vibrational signatures, which makes the vibrational characterization of the individual rotamers challenging. In the present work, it has been established that in an argon matrix only the most stable trans conformer of mFP exists (the OH group pointing away from the fluorine atom). On the other hand, the IR spectrum of mFP in a nitrogen matrix testifies to the simultaneous presence in this matrix of both the trans conformer and of the higher-energy cis conformer (the OH group pointing toward the fluorine atom), which is stabilized by interaction with the matrix gas host. We found that the exposition of the cryogenic N2 matrix to the Globar source of the infrared spectrometer affects the conformational populations. By collecting experimental spectra, either in the full mid-infrared range or only in the range below 2200 cm-1, we were able to reliably distinguish two sets of experimental bands originating from individual conformers. A comparison of the two sets of experimental bands with computed infrared spectra of the conformers allowed, for the first time, the unequivocal vibrational identification of each of them. The joint implementation of computational vibrational spectroscopy and matrix-isolation infrared spectroscopy proved to be a very accurate method of structural analysis. Some mechanistic insights into conformational isomerism (the quantum tunneling of hydrogen atom and vibrationally-induced conformational transformations) have been addressed. Finally, we also subjected matrix-isolated mFP to irradiations with UV light, and the phototransformations observed in these experiments are also described.
Collapse
Affiliation(s)
- A. J. Lopes Jesus
- CQC-IMS, Faculty of Pharmacy, University of Coimbra, 3004-295 Coimbra, Portugal
- Correspondence: (A.J.L.J.); (I.R.)
| | | | - Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Igor Reva
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence: (A.J.L.J.); (I.R.)
| |
Collapse
|
33
|
Unraveling sulfur chemistry in interstellar carbon oxide ices. Nat Commun 2022; 13:7150. [DOI: 10.1038/s41467-022-34949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractFormyl radical (HCO•) and hydroxycarbonyl radical (HOCO•) are versatile building blocks in the formation of biorelevant complex organic molecules (COMs) in interstellar medium. Understanding the chemical pathways for the formation of HCO• and HOCO• starting with primordial substances (e.g., CO and CO2) is of vital importance in building the complex network of prebiotic chemistry. Here, we report the efficient formation of HCO• and HOCO• in the photochemistry of hydroxidooxidosulfur radical (HOSO•)–a key intermediate in SO2 photochemistry–in interstellar analogous ices of CO and CO2 at 16 K through hydrogen atom transfer (HAT) reactions. Specifically, 266 nm laser photolysis of HOSO• embedded in solid CO ice yields the elusive hydrogen‑bonded complexes HCO•···SO2 and HOCO•···SO, and the latter undergoes subsequent HAT to furnish CO2···HOS• under the irradiation conditions. Similar photo-induced HAT of HOSO• in solid CO2 ice leads to the formation of HOCO•···SO2. The HAT reactions of HOSO• in astronomical CO and CO2 ices by forming reactive acyl radicals may contribute to understanding the interplay between the sulfur and carbon ice-grain chemistry in cold molecular clouds and also in the planetary atmospheric chemistry.
Collapse
|
34
|
Nunes CM, Roque JP, Doddipatla S, Wood SA, McMahon RJ, Fausto R. Simultaneous Tunneling Control in Conformer-Specific Reactions. J Am Chem Soc 2022; 144:20866-20874. [PMID: 36321916 PMCID: PMC9776521 DOI: 10.1021/jacs.2c09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present here a new example of chemical reactivity governed by quantum tunneling, which also highlights the limitations of the classical theories. The syn and anti conformers of a triplet 2-formylphenylnitrene, generated in a nitrogen matrix, were found to spontaneously rearrange to the corresponding 2,1-benzisoxazole and imino-ketene, respectively. The kinetics of both transformations were measured at 10 and 20 K and found to be temperature-independent, providing clear evidence of concomitant tunneling reactions (heavy-atom and H-atom). Computations confirm the existence of these tunneling reaction pathways. Although the energy barrier between the nitrene conformers is lower than any of the observed reactions, no conformational interconversion was observed. These results demonstrate an unprecedented case of simultaneous tunneling control in conformer-specific reactions of the same chemical species. The product outcome is impossible to be rationalized by the conventional kinetic or thermodynamic control.
Collapse
Affiliation(s)
- Cláudio M. Nunes
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal,
| | - José P.
L. Roque
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Srinivas Doddipatla
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Samuel A. Wood
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706-1322, United States
| | - Robert J. McMahon
- Department
of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706-1322, United States
| | - Rui Fausto
- University
of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
35
|
Xiao X, Yao YP, Chen B, Tan CXA, Chen FE. Quantum hydrogen tunneling promoting halogen-atom and group transfer chemistry. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Schleif T. Transformations of Strained Three-Membered Rings a Common, Yet Overlooked, Motif in Heavy-Atom Tunneling Reactions. Chemistry 2022; 28:e202201775. [PMID: 35762788 PMCID: PMC9804509 DOI: 10.1002/chem.202201775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/05/2023]
Abstract
Quantum mechanical tunneling has long been recognized as an important phenomenon when considering transformations dominated by a lightweight hydrogen atom. Tunneling of heavier atoms like carbon, initially dismissed as negligible, has seen a quickly increasing number of computationally predicted and/or experimentally confirmed examples over the last decade, thus highlighting its importance for a wide variety of reactions. However, no common structural motif has been pointed out within these seemingly unconnected examples, strongly limiting the predictability of the impact of heavy-atom tunneling on a given reaction. This Concept article will provide this perspective and showcase how the recognition of the formation and cleavage of three-membered rings as common motif can inform the prediction of and research into heavy-atom tunneling reactions.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie IIRuhr-Universität Bochum44780BochumGermany
- Present address: Sterling Chemistry LaboratoryYale UniversityNew HavenCT 06520USA
| |
Collapse
|
37
|
Paranjothy M. Theoretical Investigation of Dissociation versus Intramolecular Rearrangements in Aminohydroxymethylene. J Phys Chem A 2022; 126:6927-6933. [PMID: 36130264 DOI: 10.1021/acs.jpca.2c04950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aminohydroxymethylene (H2N-C̈-OH) is the simplest aminooxycarbene which is a heteroatom stabilized carbene. This highly reactive molecule was prepared in an Ar matrix in a recent experimental work. Unimolecular reactivity of this astrochemically important molecule was investigated and only fragmentations were identified contrary to the observations of both fragmentations and intramolecular rearrangements in other hydroxycarbenes. These rearrangement reactions form the corresponding imine and carbonyl compounds. In the present work, direct chemical dynamics simulations of unimolecular chemistry of aminohydroxymethylene were performed in the gas phase to study atomic level dissociation mechanisms. Classical trajectories were generated on-the-fly using potentials and gradients computed at the density functional B3LYP/6-31+G* level of electronic structure theory. Simulation results showed that intramolecular rearrangements accompany fragmentations during the unimolecular decay process of aminohydroxymethylene. However, the average lifetime of the intermediate isomers were found to be only few picoseconds which might not have been long enough for detection in the experiments.
Collapse
Affiliation(s)
- Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
38
|
Constantin T, Górski B, Tilby MJ, Chelli S, Juliá F, Llaveria J, Gillen KJ, Zipse H, Lakhdar S, Leonori D. Halogen-atom and group transfer reactivity enabled by hydrogen tunneling. Science 2022; 377:1323-1328. [DOI: 10.1126/science.abq8663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The generation of carbon radicals by halogen-atom and group transfer reactions is generally achieved using tin and silicon reagents that maximize the interplay of enthalpic (thermodynamic) and polar (kinetic) effects. In this work, we demonstrate a distinct reactivity mode enabled by quantum mechanical tunneling that uses the cyclohexadiene derivative γ-terpinene as the abstractor under mild photochemical conditions. This protocol activates alkyl and aryl halides as well as several alcohol and thiol derivatives. Experimental and computational studies unveiled a noncanonical pathway whereby a cyclohexadienyl radical undergoes concerted aromatization and halogen-atom or group abstraction through the reactivity of an effective H atom. This activation mechanism is seemingly thermodynamically and kinetically unfavorable but is rendered feasible through quantum tunneling.
Collapse
Affiliation(s)
| | - Bartosz Górski
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Michael J. Tilby
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Saloua Chelli
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Fabio Juliá
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Josep Llaveria
- Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, Janssen-Cilag S.A., 45007 Toledo, Spain
| | - Kevin J. Gillen
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Hendrik Zipse
- Department Chemie, LMU München, D-81377 München, Germany
| | - Sami Lakhdar
- CNRS/Université Toulouse III—Paul Sabatier, Laboratoire Hétérochimie Fondamentale et Appliquée, LHFA UMR 5069, 31062 Toulouse Cedex 09, France
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
39
|
Purushothaman A, Babu SS, Naroth S, Janardanan D. Antioxidant activity of caffeic acid: thermodynamic and kinetic aspects on the oxidative degradation pathway. Free Radic Res 2022; 56:617-630. [PMID: 36576261 DOI: 10.1080/10715762.2022.2161379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Caffeic acid is a phenolic secondary metabolite from plants, which is known for its antioxidant properties. The effective mitigation of methanol-induced oxidative stress by caffeic acid depends on the direct radical scavenging as well as the formation of new metabolites via oxidative degradation. Herein, thermodynamic and kinetic aspects of the oxidative degradation pathway of caffeic acid in the presence of radical CH3O• and its isomer, •CH2OH are discussed for the first time, employing density functional theory (DFT). The direct radical scavenging activity of caffeic acid against these radicals is verified via hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. HAT is predicted to be more feasible than RAF mechanism as per the computed data. Additionally, energetic details of the proposed oxidative degradation pathway of radical adduct intermediates toward the formation of a cyclic metabolite is analyzed. Kinetic studies indicated a significant tunneling contribution to the H abstraction pathways having high activation barriers. Further, our results imply that the newly formed metabolites exhibit comparable antioxidant activity with that of caffeic acid.
Collapse
Affiliation(s)
- Aiswarya Purushothaman
- Computational Chemistry Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, India
| | - Smrithi S Babu
- Computational Chemistry Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, India
| | - Surya Naroth
- Computational Chemistry Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, India
| | - Deepa Janardanan
- Computational Chemistry Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, India
| |
Collapse
|
40
|
Rao T, Ma X, Yang Q, Cheng S, Ren G, Wu Z, Sirés I. Upgrading the peroxi-coagulation treatment of complex water matrices using a magnetically assembled mZVI/DSA anode: Insights into the importance of ClO radical. CHEMOSPHERE 2022; 303:134948. [PMID: 35577130 DOI: 10.1016/j.chemosphere.2022.134948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical technologies for water treatment have flourished over the last decades. However, it is still challenging to treat the actual complex water effluents by a single electrochemical process, often requiring coupling of technologies. In this study, an upgraded peroxi-coagulation (PC) process with a magnetically assembled mZVI/DSA anode has been devised for the first time. COD, NH3-N and total phosphorous were simultaneously and effectively removed from livestock wastewater. The advantages, influence of key parameters and evolution of electrogenerated species were systematically investigated to fully understand this novel PC process. The fluorescent substances in livestock wastewater could also be almost removed under optimal conditions (300 mA, 0.2 g ZVI particles and pH 6.8). The interaction between OH and active chlorine yielded ClO with a high steady-state concentration of 6.85 × 10-13 M, which did not cause COD removal but accelerated the oxidation of NH3-N. The Mulliken population suggested that OH and NH3-N had similar electron-donor behavior, whereas ClO acted as an electron-withdrawing species. Besides, although the energy barrier for the reaction between OH and NH3-N (17.0 kcal/mol) was lower than that with ClO (18.8 kcal/mol), considering the tunneling in the H abstraction reaction, the Skodje-Truhlar method adopted for calculations evidenced a 17-fold faster NH3-N oxidation rate with ClO. In summary, this work describes an advantageous single electrochemical process for the effective treatment of a complex water matrix.
Collapse
Affiliation(s)
- Tiantong Rao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Qiusheng Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Siyu Cheng
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Gengbo Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí I Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
41
|
Schleif T, Prado Merini M, Henkel S, Sander W. Solvation Effects on Quantum Tunneling Reactions. Acc Chem Res 2022; 55:2180-2190. [PMID: 35730754 DOI: 10.1021/acs.accounts.2c00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A decisive factor for obtaining high yields and selectivities in organic synthesis is the choice of the proper solvent. Solvent selection is often guided by the intuitive understanding of transition state-solvent interactions. However, quantum-mechanical tunneling can significantly contribute to chemical reactions, circumventing the transition state and thus depriving chemists of their intuitive handle on the reaction kinetics. In this Account, we aim to provide rationales for the effects of solvation on tunneling reactions derived from experiments performed in cryogenic matrices.The tunneling reactions analyzed here cover a broad range of prototypical organic transformations that are subject to strong solvation effects. Examples are the hydrogen tunneling probability for the cis-trans isomerization of formic acid which is strongly reduced upon formation of hydrogen-bonded complexes and the [1,2]H-shift in methylhydroxycarbene where a change in product selectivity is predicted upon interaction with hydrogen bond acceptors.Not only hydrogen but also heavy atom tunneling can exhibit strong solvent effects. The direction of the nearly degenerate valence tautomerization between benzene oxide and oxepin was found to reverse upon formation of a halogen or hydrogen bond with ICF3 or H2O. But even in the absence of strong noncovalent interactions such as hydrogen or halogen bonding, solvation can have a decisive effect on tunneling as evidenced by the Cope rearrangement of semibullvalenes via heavy-atom tunneling. Can quantum tunneling be catalyzed? The acceleration of the ring expansion of 1H-bicyclo[3.1.0.]-hexa-3,5-dien-2-one by complexation with Lewis acids provides a proof-of-concept for tunneling catalysis.Two concepts are central for the explanation and prediction of solvation effects on tunneling phenomena: a simple approach expands the Born-Oppenheimer approximation by separating nuclear degrees of freedom into intra- and intermolecular degrees. Intermolecular movements represent the slowest motions within molecular aggregates, thus effectively freezing the position of the solvent in relation to the reactant during the tunneling process. Another useful approach is to treat reactants and products by separate single-well potentials, where the intersection represents the transition state. Thus, stabilization of the reactants via solvation should result in an increase in barrier heights and widths which in turn lowers tunneling probabilities. These simple models can predict trends in tunneling kinetics and provide a rational basis for controlling tunneling reactions via solvation.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
42
|
Heller ER, Richardson JO. Heavy-Atom Quantum Tunnelling in Spin Crossovers of Nitrenes. Angew Chem Int Ed Engl 2022; 61:e202206314. [PMID: 35698730 PMCID: PMC9540336 DOI: 10.1002/anie.202206314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 01/01/2023]
Abstract
We simulate two recent matrix-isolation experiments at cryogenic temperatures, in which a nitrene undergoes spin crossover from its triplet state to a singlet state via quantum tunnelling. We detail the failure of the commonly applied weak-coupling method (based on a linear approximation of the potentials) in describing these deep-tunnelling reactions. The more rigorous approach of semiclassical golden-rule instanton theory in conjunction with double-hybrid density-functional theory and multireference perturbation theory does, however, provide rate constants and kinetic isotope effects in good agreement with experiment. In addition, these calculations locate the optimal tunnelling pathways, which provide a molecular picture of the reaction mechanism. The reactions involve substantial heavy-atom quantum tunnelling of carbon, nitrogen and oxygen atoms, which unexpectedly even continues to play a role at room temperature.
Collapse
Affiliation(s)
- Eric R. Heller
- Laboratory of Physical ChemistryETH Zürich8093ZürichSwitzerland
| | | |
Collapse
|
43
|
Lu B, Jiang X, Zeng X. Photolytic insertion of carbon monoxide into nitrosyl chloride: formation of nitrosoformyl chloride. Phys Chem Chem Phys 2022; 24:17673-17678. [PMID: 35837884 DOI: 10.1039/d2cp02913h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrosocarbonyls are exotic intermediates that remain scarcely characterized. By UV photolysis (365 nm) of nitrosyl chloride (ClNO) embedded in solid CO ice at 20 K, the elusive nitrosoformyl chloride (ClC(O)NO) has been synthesized via CO-insertion into the Cl-N bond in ClNO. The characterization of ClC(O)NO with matrix-isolation IR spectroscopy is supported by 13C and 15N isotope labeling and quantum chemical calculations at the B3LYP/6-311+G(3df) level of theory. Upon subsequent laser irradiation at 266 nm, CO-elimination in ClC(O)NO occurs by reformation of ClNO. In line with the calculated potential energy surface for ClC(O)NO at the CCSD(T)-F12a/aug-cc-pVTZ//B3LYP/6-311+G(3df) level, the observed IR frequencies and the corresponding isotopic shifts coincide with the calculated values for the lowest-energy planar conformer, in which the CO and NO moities adopt trans configuration with respect to the C-N bond. Furthermore, the CO-insertion in ClNO involves a stepwise pathway by first homolytic cleavage of the Cl-N bond in ClNO (→ Cl˙ + ˙NO), followed by successive CO-trapping (CO + Cl˙ → ClCO˙) and radical combination (ClCO˙ + ˙NO → ClC(O)NO) inside the solid CO-matrix cages.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
44
|
Roque JPL, Nunes CM, Fausto R. Matrix Isolation in Heterocyclic Chemistry. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Heller ER, Richardson JO. Heavy‐Atom Quantum Tunnelling in Spin Crossovers of Nitrenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Eric R Heller
- Eidgenossische Technische Hochschule Zurich Lab. Physical Chemistry SWITZERLAND
| | - Jeremy O Richardson
- Eidgenössische Technische Hochschule Zürich Lab. Physical Chemistry Vladimir-Prelog-Weg 2 8093 Zurich SWITZERLAND
| |
Collapse
|
46
|
Liu KM, Wang PY, Guo ZY, Xiong DC, Qin XJ, Liu M, Liu M, Xue WY, Ye XS. Iterative Synthesis of 2-Deoxyoligosaccharides Enabled by Stereoselective Visible-Light-Promoted Glycosylation. Angew Chem Int Ed Engl 2022; 61:e202114726. [PMID: 35133053 DOI: 10.1002/anie.202114726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 01/02/2023]
Abstract
The photoinitiated intramolecular hydroetherification of alkenols has been used to form C-O bonds, but the intermolecular hydroetherification of alkenes with alcohols remains an unsolved challenge. We herein report the visible-light-promoted 2-deoxyglycosylation of alcohols with glycals. The glycosylation reaction was completed within 2 min in a high quantum yield (ϕ=28.6). This method was suitable for a wide array of substrates and displayed good reaction yields and excellent stereoselectivity. The value of this protocol was further demonstrated by the iterative synthesis of 2-deoxyglycans with α-2-deoxyglycosidic linkages up to a 20-mer in length and digoxin with β-2-deoxyglycosidic linkages. Mechanistic studies indicated that this reaction involved a glycosyl radical cation intermediate and a photoinitiated chain process.
Collapse
Affiliation(s)
- Kai-Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Zhen-Yan Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xian-Jin Qin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Meng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Wan-Ying Xue
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
47
|
Greer EM, Siev V, Segal A, Greer A, Doubleday C. Computational Evidence for Tunneling and a Hidden Intermediate in the Biosynthesis of Tetrahydrocannabinol. J Am Chem Soc 2022; 144:7646-7656. [PMID: 35451301 DOI: 10.1021/jacs.1c11981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum tunneling is computed for a reaction sequence that models the conversion of the ortho-quinone methide of cannabigerolic acid 1 to the decarboxylated product (-)-trans-Δ9-tetrahydrocannabinol (THC, 3). This calculation is the first to evaluate multidimensional tunneling in this sequence. Computations were carried out with POLYRATE and GAUSSRATE using B3LYP/6-31G(d,p) to examine the mechanism of THC 3 formation. The pentyl chain on THC 3 and its precursors were replaced with a methyl group to compute tunneling contributions to the rates of four separate steps: (i) initial Diels-Alder reaction of the quinone methide with the trisubstituted alkene end-group of the geranyl 1Z-CH3 to give 2Z-CH3, (ii) acid-catalyzed keto-enol tautomerization, which converts 2rZ-CH3 to 4rZ-CH3, (iii) carboxyl rotamerization converting 4rZ-CH3 to 4E-CH3, and (iv) decarboxylation that converts 4E-CH3 to 3-CH3. Tunneling contributions to the rate constants of steps (i)-(iv) are between 19 and 76% at 293 K. In step (ii), nonuniform changes in the zero-point vibrational energy along the reaction path created a shallow minimum in the 0 K free energy. It is a hidden intermediate because it is not a minimum on the potential energy surface and is detectable only when zero-point energy is taken into account along the reaction path. Predicted kinetic isotope effects would be experimentally observable at temperatures that are convenient to use. This is particularly relevant in the decarboxylation stage of the reaction sequence and has important implications because of its role in THC 3 formation.
Collapse
Affiliation(s)
- Edyta M Greer
- Department of Natural Sciences, Baruch College of the City University of New York, 17 Lexington Avenue, New York, New York 10010, United States
| | - Victor Siev
- Department of Natural Sciences, Baruch College of the City University of New York, 17 Lexington Avenue, New York, New York 10010, United States
| | - Ayelet Segal
- Department of Natural Sciences, Baruch College of the City University of New York, 17 Lexington Avenue, New York, New York 10010, United States
| | - Alexander Greer
- Department of Chemistry and Graduate Center, Brooklyn College of the City University of New York, 2900 Bedford Avenue, Brooklyn, New York 11210, United States.,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Charles Doubleday
- Department of Chemistry, Columbia University, 3000 Broadway, MC 3142, New York, New York 10027, United States
| |
Collapse
|
48
|
Lan J, Li X, Yang Y, Zhang X, Chung LW. New Insights and Predictions into Complex Homogeneous Reactions Enabled by Computational Chemistry in Synergy with Experiments: Isotopes and Mechanisms. Acc Chem Res 2022; 55:1109-1123. [PMID: 35385649 DOI: 10.1021/acs.accounts.1c00774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Homogeneous catalysis and biocatalysis have been widely applied in synthetic, medicinal, and energy chemistry as well as synthetic biology. Driven by developments of new computational chemistry methods and better computer hardware, computational chemistry has become an essentially indispensable mechanistic "instrument" to help understand structures and decipher reaction mechanisms in catalysis. In addition, synergy between computational and experimental chemistry deepens our mechanistic understanding, which further promotes the rational design of new catalysts. In this Account, we summarize new or deeper mechanistic insights (including isotope, dispersion, and dynamical effects) into several complex homogeneous reactions from our systematic computational studies along with subsequent experimental studies by different groups. Apart from uncovering new mechanisms in some reactions, a few computational predictions (such as excited-state heavy-atom tunneling, steric-controlled enantioswitching, and a new geminal addition mechanism) based on our mechanistic insights were further verified by ensuing experiments.The Zimmerman group developed a photoinduced triplet di-π-methane rearrangement to form cyclopropane derivatives. Recently, our computational study predicted the first excited-state heavy-atom (carbon) quantum tunneling in one triplet di-π-methane rearrangement, in which the reaction rates and 12C/13C kinetic isotope effects (KIEs) can be enhanced by quantum tunneling at low temperatures. This unprecedented excited-state heavy-atom tunneling in a photoinduced reaction has recently been verified by an experimental 12C/13C KIE study by the Singleton group. Such combined computational and experimental studies should open up opportunities to discover more rare excited-state heavy-atom tunneling in other photoinduced reactions. In addition, we found unexpectedly large secondary KIE values in the five-coordinate Fe(III)-catalyzed hetero-Diels-Alder pathway, even with substantial C-C bond formation, due to the non-negligible equilibrium isotope effect (EIE) derived from altered metal coordination. Therefore, these KIE values cannot reliably reflect transition-state structures for the five-coordinate metal pathway. Furthermore, our density functional theory (DFT) quasi-classical molecular dynamics (MD) simulations demonstrated that the coordination mode and/or spin state of the iron metal as well as an electric field can affect the dynamics of this reaction (e.g., the dynamically stepwise process, the entrance/exit reaction channels).Moreover, we unveiled a new reaction mechanism to account for the uncommon Ru(II)-catalyzed geminal-addition semihydrogenation and hydroboration of silyl alkynes. Our proposed key gem-Ru(II)-carbene intermediates derived from double migrations on the same alkyne carbon were verified by crossover experiments. Additionally, our DFT MD simulations suggested that the first hydrogen migration transition-state structures may directly and quickly form the key gem-Ru-carbene structures, thereby "bypassing" the second migration step. Furthermore, our extensive study revealed the origin of the enantioselectivity of the Cu(I)-catalyzed 1,3-dipolar cycloaddition of azomethine ylides with β-substituted alkenyl bicyclic heteroarenes enabled by dual coordination of both substrates. Such mechanistic insights promoted our computational predictions of the enantioselectivity reversal for the corresponding monocyclic heteroarene substrates and the regiospecific addition to the less reactive internal C═C bond of one diene substrate. These predictions were proven by our experimental collaborators. Finally, our mechanistic insights into a few other reactions are also presented. Overall, we hope that these interactive computational and experimental studies enrich our mechanistic understanding and aid in reaction development.
Collapse
Affiliation(s)
- Jialing Lan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Li
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuhong Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xiaoyong Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
49
|
Abstract
We report the isolation of hydroxy mercapto methylene (HO-C̈-SH) under cryogenic conditions via pyrolysis of 2-ethoxy-2-thioxo-acetic acid. The two most stable carbene rotamers form via extrusion of ethylene and CO2 from this precursor. This donor-stabilized carbene represents a hitherto uncharacterized CH2SO species and the first spectroscopically characterized free mercapto carbene. CCSD(T)/cc-pVTZ computations support our findings.
Collapse
Affiliation(s)
- Markus Schauermann
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
50
|
Fausto R, Ildiz GO, Nunes CM. IR-induced and tunneling reactions in cryogenic matrices: the (incomplete) story of a successful endeavor. Chem Soc Rev 2022; 51:2853-2872. [PMID: 35302145 DOI: 10.1039/d1cs01026c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this article, IR-induced and tunneling-driven reactions observed in cryogenic matrices are described in a historical perspective, the entangling of the two types of processes being highlighted. The story of this still ongoing fascinating scientific endeavor is presented here following closely our own involvement in the field for more than 30 years, and thus focuses mostly on our work. It is, because of this reason, also an incomplete story. Nevertheless, it considers a large range of examples, from very selective IR-induced conformational isomerizations to IR-induced bond-breaking/bond-forming reactions and successful observations of rare heavy atom tunneling processes. As a whole, this article provides a rather general overview of the major progress achieved in the field.
Collapse
Affiliation(s)
- Rui Fausto
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Gulce O Ildiz
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal. .,Department of Physics, Faculty of Sciences and Letters, Istanbul Kultur University, 34158 Bakirkoy, Istanbul, Turkey
| | - Cláudio M Nunes
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|