1
|
Morita I, Ward TR. Recent advances in the design and optimization of artificial metalloenzymes. Curr Opin Chem Biol 2024; 81:102508. [PMID: 39098211 DOI: 10.1016/j.cbpa.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Embedding a catalytically competent transition metal into a protein scaffold affords an artificial metalloenzyme (ArM). Such hybrid catalysts display features that are reminiscent of both homogeneous and enzymatic catalysts. Pioneered by Whitesides and Kaiser in the late 1970s, this field of ArMs has expanded over the past two decades, marked by ever-increasing diversity in reaction types, cofactors, and protein scaffolds. Recent noteworthy developments include i) the use of earth-abundant metal cofactors, ii) concurrent cascade reactions, iii) synergistic catalysis, and iv) in vivo catalysis. Thanks to significant progress in computational protein design, ArMs based on de novo-designed proteins and tailored chimeric proteins promise a bright future for this exciting field.
Collapse
Affiliation(s)
- Iori Morita
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland.
| |
Collapse
|
2
|
Learte-Aymamí S, Martínez-Castro L, González-González C, Condeminas M, Martin-Malpartida P, Tomás-Gamasa M, Baúlde S, Couceiro JR, Maréchal JD, Macias MJ, Mascareñas JL, Vázquez ME. De Novo Engineering of Pd-Metalloproteins and Their Use as Intracellular Catalysts. JACS AU 2024; 4:2630-2639. [PMID: 39055146 PMCID: PMC11267534 DOI: 10.1021/jacsau.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024]
Abstract
The development of transition metal-based catalytic platforms that promote bioorthogonal reactions inside living cells remains a major challenge in chemical biology. This is particularly true for palladium-based catalysts, which are very powerful in organic synthesis but perform poorly in the cellular environment, mainly due to their rapid deactivation. We now demonstrate that grafting Pd(II) complexes into engineered β-sheets of a model WW domain results in cell-compatible palladominiproteins that effectively catalyze depropargylation reactions inside HeLa cells. The concave shape of the WW domain β-sheet proved particularly suitable for accommodating the metal center and protecting it from rapid deactivation in the cellular environment. A thorough NMR and computational study confirmed the formation of the metal-stapled peptides and allowed us to propose a three-dimensional structure for this novel metalloprotein motif.
Collapse
Affiliation(s)
- Soraya Learte-Aymamí
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Laura Martínez-Castro
- Insilichem,
Departament de Química, Universitat
Autónoma de Barcelona, Cerdanyola 08193, Spain
| | - Carmen González-González
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Miriam Condeminas
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, Barcelona 08028, Spain
- Academic
institutional affiliation:Department of Medicine and Life Sciences, Universitat Pompeu Fabra (MELIS-UPF), Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Pau Martin-Malpartida
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, Barcelona 08028, Spain
| | - María Tomás-Gamasa
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Sandra Baúlde
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - José R. Couceiro
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - Jean-Didier Maréchal
- Insilichem,
Departament de Química, Universitat
Autónoma de Barcelona, Cerdanyola 08193, Spain
| | - Maria J. Macias
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, Barcelona 08028, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José L. Mascareñas
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| | - M. Eugenio Vázquez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15705, Spain
| |
Collapse
|
3
|
Nowak-Król A, Dydio P. The 55 th Bürgenstock Conference under the Banner of Sustainability. Angew Chem Int Ed Engl 2022; 61:e202214722. [PMID: 36477955 DOI: 10.1002/anie.202214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Paweł Dydio
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
4
|
Nowak‐Król A, Dydio P. The 55
th
Bürgenstock Conference under the Banner of Sustainability**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Agnieszka Nowak‐Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Paweł Dydio
- University of Strasbourg CNRS ISIS UMR 7006 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
5
|
Seoane A, Mascareñas JL. Exporting Homogeneous Transition Metal Catalysts to Biological Habitats. European J Org Chem 2022; 2022:e202200118. [PMID: 36248016 PMCID: PMC9542366 DOI: 10.1002/ejoc.202200118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Indexed: 01/23/2023]
Abstract
The possibility of performing designed transition-metal catalyzed reactions in biological and living contexts can open unprecedented opportunities to interrogate and interfere with biology. However, the task is far from obvious, in part because of the presumed incompatibly between organometallic chemistry and complex aqueous environments. Nonetheless, in the past decade there has been a steady progress in this research area, and several transition-metal (TM)-catalyzed bioorthogonal and biocompatible reactions have been developed. These reactions encompass a wide range of mechanistic profiles, which are very different from those used by natural metalloenzymes. Herein we present a summary of the latest progress in the field of TM-catalyzed bioorthogonal reactions, with a special focus on those triggered by activation of multiple carbon-carbon bonds.
Collapse
Affiliation(s)
- Andrés Seoane
- Centro Singular de Investigación Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química Orgánica.Universidade de Santiago de Compostela15782Santiago de CompostelaA CoruñaSpain
| | - José Luis Mascareñas
- Centro Singular de Investigación Química Biolóxica e Materiais Moleculares (CIQUS)Departamento de Química Orgánica.Universidade de Santiago de Compostela15782Santiago de CompostelaA CoruñaSpain
| |
Collapse
|
6
|
Learte-Aymamí S, Martin-Malpartida P, Roldán-Martín L, Sciortino G, Couceiro JR, Maréchal JD, Macias MJ, Mascareñas JL, Vázquez ME. Controlling oncogenic KRAS signaling pathways with a Palladium-responsive peptide. Commun Chem 2022; 5:75. [PMID: 36697641 PMCID: PMC9814687 DOI: 10.1038/s42004-022-00691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 01/28/2023] Open
Abstract
RAS oncoproteins are molecular switches associated with critical signaling pathways that regulate cell proliferation and differentiation. Mutations in the RAS family, mainly in the KRAS isoform, are responsible for some of the deadliest cancers, which has made this protein a major target in biomedical research. Here we demonstrate that a designed bis-histidine peptide derived from the αH helix of the cofactor SOS1 binds to KRAS with high affinity upon coordination to Pd(II). NMR spectroscopy and MD studies demonstrate that Pd(II) has a nucleating effect that facilitates the access to the bioactive α-helical conformation. The binding can be suppressed by an external metal chelator and recovered again by the addition of more Pd(II), making this system the first switchable KRAS binder, and demonstrates that folding-upon-binding mechanisms can operate in metal-nucleated peptides. In vitro experiments show that the metallopeptide can efficiently internalize into living cells and inhibit the MAPK kinase cascade.
Collapse
Affiliation(s)
- Soraya Learte-Aymamí
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15705 Spain
| | - Pau Martin-Malpartida
- grid.473715.30000 0004 6475 7299Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028 Spain
| | - Lorena Roldán-Martín
- grid.7080.f0000 0001 2296 0625Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola, 08193 Spain
| | - Giuseppe Sciortino
- grid.7080.f0000 0001 2296 0625Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola, 08193 Spain ,grid.473715.30000 0004 6475 7299Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, 43007 Spain
| | - José R. Couceiro
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15705 Spain
| | - Jean-Didier Maréchal
- grid.7080.f0000 0001 2296 0625Insilichem, Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola, 08193 Spain
| | - Maria J. Macias
- grid.473715.30000 0004 6475 7299Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028 Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010 Spain
| | - José L. Mascareñas
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15705 Spain
| | - M. Eugenio Vázquez
- grid.11794.3a0000000109410645Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15705 Spain
| |
Collapse
|
7
|
Rodríguez J, Pérez-González C, Martínez-Calvo M, Mosquera J, Mascareñas JL. Deactivation of a dimeric DNA-binding peptide through a palladium-mediated self-immolative cleavage. RSC Adv 2022; 12:3500-3504. [PMID: 35425354 PMCID: PMC8979313 DOI: 10.1039/d1ra09180h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
Herein, we describe an approach for the on-demand disassembly of dimeric peptides using a palladium-mediated cleavage of a designed self-immolative linker. The utility of the strategy is demonstrated for the case of dimeric basic regions of bZIP transcription factors. While the dimer binds designed DNA sequences with good affinities, the peptide-DNA complex can be readily dismounted by addition of palladium reagents that trigger the cleavage of the spacer, and the release of unfunctional monomeric peptides.
Collapse
Affiliation(s)
- Jessica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Cibrán Pérez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Miguel Martínez-Calvo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela Rúa Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| |
Collapse
|
8
|
Ditopic Aza-Scorpiand Ligands Interact Selectively with ds-RNA and Modulate the Interaction upon Formation of Zn 2+ Complexes. Molecules 2021; 26:molecules26133957. [PMID: 34203562 PMCID: PMC8272215 DOI: 10.3390/molecules26133957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Nucleic acids are essential biomolecules in living systems and represent one of the main targets of chemists, biophysics, biologists, and nanotechnologists. New small molecules are continuously developed to target the duplex (ds) structure of DNA and, most recently, RNA to be used as therapeutics and/or biological tools. Stimuli-triggered systems can promote and hamper the interaction to biomolecules through external stimuli such as light and metal coordination. In this work, we report on the interaction with ds-DNA and ds-RNA of two aza-macrocycles able to coordinate Zn2+ metal ions and form binuclear complexes. The interaction of the aza-macrocycles and the Zn2+ metal complexes with duplex DNA and RNA was studied using UV thermal and fluorescence indicator displacement assays in combination with theoretical studies. Both ligands show a high affinity for ds-DNA/RNA and selectivity for ds-RNA. The ability to interact with these duplexes is blocked upon Zn2+ coordination, which was confirmed by the low variation in the melting temperature and poor displacement of the fluorescent dye from the ds-DNA/RNA. Cell viability assays show a decrease in the cytotoxicity of the metal complexes in comparison with the free ligands, which can be associated with the observed binding to the nucleic acids.
Collapse
|
9
|
Besenius P, Zengerling L, Kemper B, Hellmich UA. Synthesis and Structural Stability of α-Helical Gold(I)-Metallopeptidesy. Synlett 2021. [DOI: 10.1055/a-1290-8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe synthesis of hexa- and dodecapeptides functionalized with two Au(I)–phosphine complexes is reported. The high stability of the Au(I)–phosphine bond allowed orthogonal peptide-protecting-group chemistry, even when using hard Lewis acids like boron tribromide. This enabled the preparation of an Fmoc-protected lysine derivative carrying the Au(I) complex in a side chain, which was used in standard Fmoc-based solid-phase peptide synthesis protocols. Alanine and leucine repeats in the metallododecapeptide formed α-helical secondary structures in 2,2,2-trifluoroethanol–H2O and 1,1,1,3,3,3-hexafluoroisopropanol–H2O mixtures with high thermal stability, as shown by temperature-dependent CD spectroscopy studies.
Collapse
Affiliation(s)
- Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz
| | | | - Benedict Kemper
- Department of Chemistry, Johannes Gutenberg-University Mainz
| | - Ute A. Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt
| |
Collapse
|
10
|
Destito P, Vidal C, López F, Mascareñas JL. Transition Metal‐Promoted Reactions in Aqueous Media and Biological Settings. Chemistry 2021; 27:4789-4816. [DOI: 10.1002/chem.202003927] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
11
|
Brewster RC, Klemencic E, Jarvis AG. Palladium in biological media: Can the synthetic chemist's most versatile transition metal become a powerful biological tool? J Inorg Biochem 2020; 215:111317. [PMID: 33310459 DOI: 10.1016/j.jinorgbio.2020.111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Palladium catalysed reactions are ubiquitous in synthetic organic chemistry in both organic solvents and aqueous buffers. The broad reactivity of palladium catalysis has drawn interest as a means to conduct orthogonal transformations in biological settings. Successful examples have been shown for protein modification, in vivo drug decaging and as palladium-protein biohybrid catalysts for selective catalysis. Biological media represents a challenging environment for palladium chemistry due to the presence of a multitude of chelators, catalyst poisons and a requirement for milder reaction conditions e.g. lower temperatures. This review looks to identify successful examples of palladium-catalysed reactions in the presence of proteins or cells and analyse solutions to help to overcome the challenges of working in biological systems.
Collapse
Affiliation(s)
- Richard C Brewster
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Eva Klemencic
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Amanda G Jarvis
- EaStCHEM School of Chemistry, Joseph Black Building, David Brewster Rd, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom.
| |
Collapse
|
12
|
Rodriguez J, Mosquera J, Learte-Aymamı́ S, Vázquez ME, Mascareñas JL. Stimuli-Responsive DNA Binding by Synthetic Systems. Acc Chem Res 2020; 53:2286-2298. [PMID: 32997936 DOI: 10.1021/acs.accounts.0c00415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA is the molecule responsible for the storage and transmission of the genetic information in living organisms. The expression of this information is highly regulated. In eukaryotes, it is achieved mainly at the transcription level thanks to specialized proteins called transcription factors (TFs) that recognize specific DNA sequences, thereby promoting or inhibiting the transcription of particular genes. In many cases, TFs are present in the cell in an inactive form but become active in response to an external signal, which might modify their localization and DNA binding properties or modulate their interactions with the rest of the transcriptional machinery. As a result of the crucial role of TFs, the design of synthetic peptides or miniproteins that can emulate their DNA binding properties and eventually respond to external stimuli is of obvious interest. On the other hand, although the B-form double helix is the most common DNA secondary structure, it is not the only one with an essential biological function. Guanine quadruplexes (GQs) have received considerable attention due to their critical role in the regulation of gene expression, which is usually associated with a change in the GQ conformation. Thus, the development of GQ probes whose properties can be controlled using external signals is also of significant relevance.In this Account, we present a summary of the recent efforts toward the development of stimuli-responsive synthetic DNA binders with a particular emphasis on our own contributions. We first introduce the structure of B and GQ DNAs, and some of the main factors underlying their selective recognition. We then discuss some of the different approaches used for the design of stimulus-mediated DNA binders. We have organized our discussion according to whether the interaction takes place with duplex or guanine quadruplex DNAs, and each section is divided according to the nature of the stimulus (i.e., physical or chemical). Regarding physical stimuli, light (through the incorporation of photolabile protecting groups or photoisomerizable agents) is the most common input for the activation/deactivation of DNA binding events. With respect to chemical signals, the use of metals (through the incorporation of metal-coordinating groups in the DNA binding agent) has allowed the development of a wide range of stimuli-responsive DNA binders. More recently, redox-based systems have also been used to control DNA interactions.This Account ends with a "Conclusions and Outlook" section highlighting some of the general lessons that have been learned and future directions toward further advancing the field.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús Mosquera
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Soraya Learte-Aymamı́
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Learte‐Aymamí S, Rodríguez J, Vázquez ME, Mascareñas JL. Assembly of a Ternary Metallopeptide Complex at Specific DNA Sites Mediated by an AT‐Hook Adaptor. Chemistry 2020; 26:8875-8878. [DOI: 10.1002/chem.202001277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Soraya Learte‐Aymamí
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) andDepartamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
15
|
Himiyama T, Okamoto Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020; 25:molecules25132989. [PMID: 32629938 PMCID: PMC7411666 DOI: 10.3390/molecules25132989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: 1) the newly reported ArMs, according to their type of reaction, and 2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Collapse
Affiliation(s)
- Tomoki Himiyama
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan;
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yasunori Okamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-22-795-5264
| |
Collapse
|
16
|
Learte‐Aymamí S, Vidal C, Gutiérrez‐González A, Mascareñas JL. Intracellular Reactions Promoted by Bis(histidine) Miniproteins Stapled Using Palladium(II) Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Soraya Learte‐Aymamí
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Alejandro Gutiérrez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
17
|
Learte-Aymamí S, Vidal C, Gutiérrez-González A, Mascareñas JL. Intracellular Reactions Promoted by Bis(histidine) Miniproteins Stapled Using Palladium(II) Complexes. Angew Chem Int Ed Engl 2020; 59:9149-9154. [PMID: 32162393 DOI: 10.1002/anie.202002032] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Indexed: 12/24/2022]
Abstract
The generation of catalytically active metalloproteins inside living mammalian cells is a major research challenge at the interface between catalysis and cell biology. Herein we demonstrate that basic domains of bZIP transcription factors, mutated to include two histidine residues at i and i+4 positions, react with palladium(II) sources to generate catalytically active, stapled pallado-miniproteins. The resulting constrained peptides are efficiently internalized into living mammalian cells, where they perform palladium-promoted depropargylation reactions without cellular fixation. Control experiments confirm the requirement of the peptide scaffolding and the palladium staple for attaining the intracellular reactivity.
Collapse
Affiliation(s)
- Soraya Learte-Aymamí
- Centro Singular de Investigación en Química, Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química, Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Gutiérrez-González
- Centro Singular de Investigación en Química, Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química, Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
18
|
Calo-Lapido R, Penas C, Jiménez-Balsa A, Vázquez ME, Mascareñas JL. A chemical approach for the synthesis of the DNA-binding domain of the oncoprotein MYC. Org Biomol Chem 2020; 17:6748-6752. [PMID: 31166361 DOI: 10.1039/c9ob01209e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe the first chemical synthesis of a functional mutant of the DNA binding domain of the oncoprotein MYC, using two alternative strategies which involve either one or two Native Chemical Ligations (NCLs). Both routes allowed the efficient synthesis of a miniprotein which is capable of heterodimerizing with MAX, and replicate the DNA binding of the native protein. The versatility of the reported synthetic approach enabled the straightforward preparation of MYC and Omomyc analogues, as well as fluorescently labeled derivatives.
Collapse
Affiliation(s)
- Renata Calo-Lapido
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS). Universidade de Santiago de Compostela. 15782 Santiago de Compostela, Spain.
| | - Cristina Penas
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS). Universidade de Santiago de Compostela. 15782 Santiago de Compostela, Spain.
| | - Adrián Jiménez-Balsa
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS). Universidade de Santiago de Compostela. 15782 Santiago de Compostela, Spain.
| | - M Eugenio Vázquez
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS). Universidade de Santiago de Compostela. 15782 Santiago de Compostela, Spain.
| | - José L Mascareñas
- Departamento de Química Orgánica and Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS). Universidade de Santiago de Compostela. 15782 Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Zhu J, Haynes CJE, Kieffer M, Greenfield JL, Greenhalgh RD, Nitschke JR, Keyser UF. Fe II4L 4 Tetrahedron Binds to Nonpaired DNA Bases. J Am Chem Soc 2019; 141:11358-11362. [PMID: 31283214 PMCID: PMC7007224 DOI: 10.1021/jacs.9b03566] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A water-soluble self-assembled supramolecular FeII4L4 tetrahedron binds to single stranded DNA, mismatched DNA base pairs, and three-way DNA junctions. Binding of the coordination cage quenches fluorescent labels on the DNA strand, which provides an optical means to detect the interaction and allows the position of the binding site to be gauged with respect to the fluorescent label. Utilizing the quenching and binding properties of the coordination cage, we developed a simple and rapid detection method based on fluorescence quenching to detect unpaired bases in double-stranded DNA.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Cally J E Haynes
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Marion Kieffer
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Jake L Greenfield
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Ryan D Greenhalgh
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
20
|
Murawska GM, Poloni C, Simeth NA, Szymanski W, Feringa BL. Comparative Study of Photoswitchable Zinc-Finger Domain and AT-Hook Motif for Light-Controlled Peptide-DNA Binding. Chemistry 2019; 25:4965-4973. [PMID: 30735272 DOI: 10.1002/chem.201900090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/20/2022]
Abstract
DNA-peptide interactions are involved in key life processes, including DNA recognition, replication, transcription, repair, organization, and modification. Development of tools that can influence DNA-peptide binding non-invasively with high spatiotemporal precision could aid in determining its role in cells and tissues. Here, the design, synthesis, and study of photocontrolled tools for sequence-specific small peptide-DNA major and minor groove interactions are reported, shedding light on DNA binding by transcriptionally active peptides. In particular, photoswitchable moieties were implemented in the peptide backbone or turn region. In each case, DNA binding was affected by photochemical isomerization, as determined in fluorescent displacement assays on model DNA strands, which provides promising tools for DNA modulation.
Collapse
Affiliation(s)
- Gosia M Murawska
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Claudia Poloni
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands.,Department of Radiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands
| |
Collapse
|
21
|
Mosquera J, Henriksen-Lacey M, García I, Martínez-Calvo M, Rodríguez J, Mascareñas JL, Liz-Marzán LM. Cellular Uptake of Gold Nanoparticles Triggered by Host–Guest Interactions. J Am Chem Soc 2018; 140:4469-4472. [DOI: 10.1021/jacs.7b12505] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jesús Mosquera
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Malou Henriksen-Lacey
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Isabel García
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Miguel Martínez-Calvo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jéssica Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Luis M. Liz-Marzán
- CIC biomaGUNE and Ciber-BBN, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|