1
|
Miao H, Lu S, Chen H, Shang J, Zheng J, Yang Y. Additive-assisted synthesis of α-Kdo glycosides with peracetylated glycosyl ynenoate as a donor. Org Biomol Chem 2024; 22:2365-2369. [PMID: 38416050 DOI: 10.1039/d4ob00182f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A DMF-modulated glycosylation approach for the stereoselective synthesis of α-Kdo glycosides with readily accessible peracetylated Kdo ynenoate as a donor was described. By utilizing this approach, we completed the synthesis of various linkage types of Kdo-Kdo disaccharides and the α-Kdo-containing protected trisaccharide variant relevant to the lipopolysaccharide of Coxiella burnetii strain Nine Mile.
Collapse
Affiliation(s)
- He Miao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Siqian Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hongyu Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jintao Shang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jibin Zheng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Li L, Yin XC, Jiang YY, Xia YF, Wang X, Li J, Li H, Qin Y, Yang JS. Chemical Synthesis of a Branched Nonasaccharide Fragment from Helicobacter pylori Lipopolysaccharide. Org Lett 2024; 26:2103-2107. [PMID: 38443201 DOI: 10.1021/acs.orglett.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A chemical synthesis of a unique nanosaccharide fragment from Helicobacter pylori lipopolysaccharide was achieved via a convergent glycosylation method. Challenges involved in the synthesis include the highly stereoselective construction of β-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and two 1,2-cis-glycosidic linkages, as well as the formation of a branched 2,7-disubstituted heptose subunit. Hydrogen-bond mediated aglycone delivery strategy and benzoyl-directing remote participation effect were employed, respectively, for the efficient generation of the desired β-Kdo glycoside and 1,2-cis-α-l-fucoside/d-glucoside. Moreover, the key branched framework was successfully established through a [(7 + 1) + 1] assembly approach involving the stepwise glycosylation of the heptasaccharide alcohol with two monosaccharide donors. The synthesized 1 containing a propylamine linker at the reducing end can be covalently bound to a carrier protein for further immunological studies.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Chen Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan-Yuan Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi-Fei Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xia Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiao Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Qin C, Tian G, Hu J, Zou X, Yin J. Recent chemical synthesis and immunological evaluation of glycans related to bacterial lipopolysaccharides. Curr Opin Chem Biol 2024; 78:102424. [PMID: 38168589 DOI: 10.1016/j.cbpa.2023.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
O-Antigens and core oligosaccharides from bacterial lipopolysaccharides (LPS) are often structurally unique and immunologically active, have become attractive targets in the development of antibacterial vaccines. Structurally well-defined and pure oligosaccharides can be used in identifying protective epitopes of the carbohydrate antigens, which is important for the design of an effective vaccine. Here, the recent progress on chemical synthesis and immunological evaluation of glycans related to O-antigens and core oligosaccharides from bacterial LPS are summarized.
Collapse
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
4
|
Sun A, Li Z, Wang Y, Meng S, Zhang X, Meng X, Li S, Li Z, Li Z. Stereocontrolled Synthesis of α-3-Deoxy-d-manno-oct-2-ulosonic Acid (α-Kdo) Glycosides Using C3-p-Tolylthio-Substituted Kdo Donors: Access to Highly Branched Kdo Oligosaccharides. Angew Chem Int Ed Engl 2024; 63:e202313985. [PMID: 38014418 DOI: 10.1002/anie.202313985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an eight-carbon monosaccharide found widely in bacterial lipopolysaccharides (LPSs) and capsule polysaccharides (CPSs). We developed an indirect method for the stereoselective synthesis of α-Kdo glycosides with a C3-p-tolylthio-substituted Kdo phosphite donor. The presence of the p-tolylthio group enhanced the reactivity, suppressed the formation of elimination by-products (2,3-enes), and provided complete α-stereocontrol. A variety of Kdo α-glycosides were synthesized by our method in excellent yields (up to 98 %). After glycosylation, the p-tolylthio group can be efficiently removed by free-radical reduction. Subsequently, the orthogonality of the phosphite donor and thioglycoside donor was demonstrated by the one-pot synthesis of a trisaccharide in Helicobacter pylori and Neisseria meningitidis LPS. Moreover, an efficient total synthesis route to the challenging 4,5-branched Kdo trisaccharide in LPSs from several A. baumannii strains was highlighted. To demonstrate the high reactivity of our approach further, the highly crowded 4,5,7,8-branched Kdo pentasaccharide was synthesized as a model molecule for the first time. Additionally, the reaction mechanism was investigated by DFT calculations.
Collapse
Affiliation(s)
- Ao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zipeng Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuchao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Shuai Meng
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, College of Marine Science, Hainan University, Haikou, 570228, China
| | - Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiangbao Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Shuchun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
5
|
Cai J, Yuan X, Kong Y, Hu Y, Li J, Jiang S, Dong C, Ding K. Chemical approaches for the stereocontrolled synthesis of 1,2-cis-β-D-rhamnosides. Chin J Nat Med 2023; 21:886-901. [PMID: 38143103 DOI: 10.1016/s1875-5364(23)60408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 12/26/2023]
Abstract
In carbohydrate chemistry, the stereoselective synthesis of 1,2-cis-glycosides remains a formidable challenge. This complexity is comparable to the synthesis of 1,2-cis-β-D-mannosides, primarily due to the adverse anomeric and Δ-2 effects. Over the past decades, to attain β-stereoselectivity in D-rhamnosylation, researchers have devised numerous direct and indirect methodologies, including the hydrogen-bond-mediated aglycone delivery (HAD) method, the synthesis of β-D-mannoside paired with C6 deoxygenation, and the combined approach of 1,2-trans-glycosylation and C2 epimerization. This review elaborates on the advancements in β-D-rhamnosylation and its implications for the total synthesis of tiacumicin B and other physiologically relevant glycans.
Collapse
Affiliation(s)
- Juntao Cai
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Xin Yuan
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanfang Kong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yulong Hu
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jieming Li
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shiqing Jiang
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Department of Oncology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Chunhong Dong
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Kan Ding
- Henan Polysaccharide Research Center, Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
6
|
Wu J, Jia P, Kuniyil R, Liu P, Tang W. Dynamic Kinetic Stereoselective Glycosylation via Rh II and Chiral Phosphoric Acid-Cocatalyzed Carbenoid Insertion to the Anomeric OH Bond for the Synthesis of Glycoconjugates. Angew Chem Int Ed Engl 2023; 62:e202307144. [PMID: 37532672 PMCID: PMC10530496 DOI: 10.1002/anie.202307144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Chemical synthesis of glycoconjugates is essential for studying the biological functions of carbohydrates. We herein report an efficient approach for the stereoselective synthesis of challenging α-linked glycoconjugates via a RhII /chiral phosphoric acid (CPA)-cocatalyzed dynamic kinetic anomeric O-alkylation of sugar-derived lactols via carbenoid insertion to the anomeric OH bond. Notably, we observed excellent anomeric selectivity, excellent diastereoselectivity, broad substrate scope, and high efficiency for this glycosylation reaction by exploring various parameters of the cocatalytic system. DFT calculations suggested that the anomeric selectivity was mainly determined by steric interactions between the C2-carbon of the carbohydrate and the phenyl group of the metal carbenoid, while π/π interactions with the C2-OBn substituent on the carbohydrate substrate play a significant role for diastereoselectivity at the newly generated stereogenic center.
Collapse
Affiliation(s)
- Jicheng Wu
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
| | - Peijing Jia
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
| | - Rositha Kuniyil
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Weiping Tang
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, United States
- Department of Chemistry, 1101 University Ave, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
7
|
Pramanik S, Mondal S, Chinarev A, Bovin NV, Saha J. Hydroxamate-directed access to β-Kdo glycosides. Chem Commun (Camb) 2023; 59:10028-10031. [PMID: 37526627 DOI: 10.1039/d3cc02609d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The reaction repertoire for forming transient aziridinone or azaoxyallyl cations from α-halohydroxamate is conceptually extended to design Kdo-glycosyl donors by installing the hydroxamate moiety at an anomeric centre, which is shown to be highly effective for stereoselective access to β-Kdo glycosides. The pivotal roles of hydroxamate over amide are revealed in control experiments.
Collapse
Affiliation(s)
- Sourav Pramanik
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), Lucknow 226014, India
| | - Soumik Mondal
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), Lucknow 226014, India
| | - Alexander Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Jaideep Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India.
| |
Collapse
|
8
|
Lu IC, Cheng KC, Wang YF, Pan CW, Hung JS, Mong KKT. Orthogonal Glycosylation with Phosphate Acceptors for Expeditious Synthesis of Bacterial Inner Core Oligosaccharides. Chem Asian J 2023; 18:e202300424. [PMID: 37339944 DOI: 10.1002/asia.202300424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
We report a practical one-pot glycosylation strategy for synthesis of bacterial inner core oligosaccharides that composed of unavailable L-glycero-D-manno and D-glycero-D-manno-heptopyranose components. The glycosylation method features a new orthogonal glycosylation procedure; whereby a phosphate acceptor is coupled with a thioglycosyl donor producing a disaccharide phosphate, which can be engaged in another orthogonal glycosylation procedure to couple with a thioglycosyl acceptor. The phosphate acceptors used in above one-pot procedure are directly prepared from thioglycosyl acceptors via the in-situ phosphorylation. Such phosphate acceptor preparation protocol eliminates the traditional protection and deprotection procedures. Based on the new one-pot glycosylation strategy, two partial inner core structures of Yersinia pestis lipopolysaccharide and Haemophilus ducreyi lipooligosaccharide were acquired.
Collapse
Affiliation(s)
- I-Chen Lu
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Kuang-Chun Cheng
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Yi-Fang Wang
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Chia-Wei Pan
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Jan-Siang Hung
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| | - Kwok-Kong Tony Mong
- Applied Chemistry Department, National Yang-Ming Chiao Tung University, 1001, University Road, East District, Hsinchu City, 30093, R.O.C., Taiwan
| |
Collapse
|
9
|
Chen D, Srivastava AK, Dubrochowska J, Liu L, Li T, Hoffmann JP, Kolls JK, Boons GJ. A Bioactive Synthetic Outer-Core Oligosaccharide Derived from a Klebsiella pneumonia Lipopolysaccharide for Bacteria Recognition. Chemistry 2023; 29:e202203408. [PMID: 36662447 PMCID: PMC10159924 DOI: 10.1002/chem.202203408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
There is an urgent need for new treatment options for carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae), which is a common cause of life-threatening hospital- and community-acquired infections. Prophylactic or therapeutic vaccination may offer an approach to control these infections, however, none has yet been approved for human use. Here, we report the chemical synthesis of an outer core tetra- and pentasaccharide derived from the lipopolysaccharide of K. pneumoniae. The oligosaccharides were equipped with an aminopentyl linker, which facilitated conjugation to the carrier proteins CRM197 and BSA. Mice immunized with the glycoconjugate vaccine candidates elicited antibodies that recognized isolated LPS as well as various strains of K. pneumoniae. The successful preparation of the oligosaccharides relied on the selection of monosaccharide building blocks equipped with orthogonal hydroxyl and amino protecting groups. It allowed the differentiation of three types of amines of the target compounds and the installation of a crowded 4,5-branched Kdo moiety.
Collapse
Affiliation(s)
- Dushen Chen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Akhilesh K Srivastava
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Justyna Dubrochowska
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Joseph P Hoffmann
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Jay K Kolls
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, LA, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Luo S, Liu Y, Hao T, Ma W, Luo Y, Wang S, Xu Z, Hu C, Wen L, Li T. Chemoenzymatic Total Synthesis of Haemophilus ducreyi Lipooligosaccharide Core Octasaccharides Containing Natural and Unnatural Sialic Acids. Org Lett 2023; 25:2312-2317. [PMID: 36972419 DOI: 10.1021/acs.orglett.3c00657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The first total synthesis of Haemophilus ducreyi lipooligosaccharide core octasaccharides containing natural and unnatural sialic acids has been achieved by an efficient chemoenzymatic approach. A highly convergent [3 + 3] coupling strategy was developed to chemically assemble a unique hexasaccharide bearing multiple rare higher-carbon sugars d-glycero-d-manno-heptose (d,d-Hep), l-glycero-d-manno-heptose (l,d-Hep), and 3-deoxy-α-d-manno-oct-2-ulosonic acid (Kdo). Key features include sequential one-pot glycosylations for oligosaccharide assembly and the construction of the challenging α-(1 → 5)-linked Hep-Kdo glycosidic bond by gold-catalyzed glycosylation with a glycosyl ortho-alkynylbenzoate donor. Furthermore, the sequential enzyme-catalyzed regio- and stereoselective introduction of a galactose residue using β-1,4-galactosyltransferase and different sialic acids using a one-pot multienzyme sialylation system was efficiently accomplished to provide the target octasaccharides.
Collapse
Affiliation(s)
- Shiwei Luo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yating Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Tianhui Hao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Ma
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawen Luo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shasha Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chaoyu Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Chemical synthesis of oligosaccharides and their application in new drug research. Eur J Med Chem 2023; 249:115164. [PMID: 36758451 DOI: 10.1016/j.ejmech.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.
Collapse
|
12
|
Wang J, Gao J, Guo T, Huo X, Zhang W, Liu J, Wang X. Bioinspired Total Synthesis of Complex Nucleoside Antibiotics A201A, A201D and A201E. Angew Chem Int Ed Engl 2023; 62:e202213810. [PMID: 36411245 DOI: 10.1002/anie.202213810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Herein, bioinspired total syntheses of A201A, A201D, and A201E based on a previously reported biosynthetic pathway are presented. The challenging 1,2-cis-furanoside, a core structure of the A201 family, was obtained by remote 2-quinolinecarbonyl-assisted glycosylation. We accomplished the total synthesis of A201A and A201E based on the critical 1,2-cis-furanoside moiety through late-stage glycosylation without any interference from basic dimethyl adenosine. We also confirmed the absolute configuration of A201E by total synthesis. This modular synthesis strategy enables efficient preparation of A201 family antibiotics, allowing the study of their structure-activity relationships and mode of action. This study satisfies the increasing demand for developing novel antibiotics inspired by the A201 family.
Collapse
Affiliation(s)
- Jiaxiang Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiahui Gao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Tianyun Guo
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xing Huo
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenhua Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jian Liu
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry and School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
13
|
Ma Z, Hu Y, Li X, Liu R, Xia E, Xu P, Yang Y. Stereoselective synthesis of α-glucosides with glucosyl (Z)-Ynenoates as donors. Carbohydr Res 2023; 523:108710. [PMID: 36370627 DOI: 10.1016/j.carres.2022.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
A SPhosAuNTf2-promoted DMF-modulated glycosylation approach with glycosyl (Z)-ynenoates as donors was developed for highly α-selective synthesis of various linkage types of α-glucans. The substituent groups were also found to play a significant role in the α-selective glucosylation reactions. The glycosylation approach was effectively applied to the stereospecific synthesis of the α-1,6-linked triglucoside.
Collapse
Affiliation(s)
- Zhi Ma
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi Hu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rongkun Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - E Xia
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
14
|
Hamajima S, Komura N, Tanaka HN, Imamura A, Ishida H, Ichiyanagi T, Ando H. Investigation of the Protection of the C4 Hydroxyl Group in Macrobicyclic Kdo Donors. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010102. [PMID: 36615297 PMCID: PMC9822203 DOI: 10.3390/molecules28010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Chemical synthesis of 3-deoxy-d-manno-2-octulosonic acid (Kdo)-containing glycans, such as bacterial lipopolysaccharides (LPSs) and capsular polysaccharides (CPSs), is in high demand for the development of vaccines against pathogenic bacteria. We have recently achieved the complete α-stereoselective glycosidation of Kdo using a macrobicyclic donor tethered at the C1 and C5 positions. In this study, to expand the scope of Kdo glycosidation, we sought to protect the 4-OH group, thereby shortening the reaction time and ensuring the conversion of the glycosyl acceptor via its selective removal. The protection of the 4-OH group influenced the reactivity of the Kdo donor, and the triisopropylsilyl (TIPS) group acted as a selectively removable booster. The 4-O-TIPS donor allowed the synthesis of the α(2,4)-linked dimeric Kdo sequence, which is widely found in bacterial LPSs.
Collapse
Affiliation(s)
- Shogo Hamajima
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-Core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute for Glyco-Core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Institute for Glyco-Core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Institute for Glyco-Core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tsuyoshi Ichiyanagi
- Department of Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101, Tottori 680-8553, Japan
| | - Hiromune Ando
- Institute for Glyco-Core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Correspondence:
| |
Collapse
|
15
|
Hamajima S, Komura N, Tanaka HN, Imamura A, Ishida H, Noguchi H, Ichiyanagi T, Ando H. Full Stereocontrol in α-Glycosidation of 3-Deoxy- d- manno-2-octulosonic Acid (Kdo) Using Macrobicyclic Glycosyl Donors. Org Lett 2022; 24:8672-8676. [DOI: 10.1021/acs.orglett.2c03542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shogo Hamajima
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Naoko Komura
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department of Applied Bioorganic Chemistry, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Haruka Noguchi
- Department of Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101, Tottori 680-8553, Japan
| | - Tsuyoshi Ichiyanagi
- Department of Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 4-101, Tottori 680-8553, Japan
| | - Hiromune Ando
- Institute for Glyco-core Research, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Agricultural Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
16
|
Liu X, Lin Y, Peng W, Zhang Z, Gao L, Zhou Y, Song Z, Wang Y, Xu P, Yu B, Sun H, Xie W, Li W. Direct Synthesis of 2,6-Dideoxy-β-glycosides and β-Rhamnosides with a Stereodirecting 2-(Diphenylphosphinoyl)acetyl Group. Angew Chem Int Ed Engl 2022; 61:e202206128. [PMID: 35695834 DOI: 10.1002/anie.202206128] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Anomeric stereocontrol is usually one of the major issues in the synthesis of complex carbohydrates, particularly those involving β-configured 2,6-dideoxyglycoside and d/l-rhamnoside moieties. Herein, we report that 2-(diphenylphosphinoyl)acetyl is highly effective as a remote stereodirecting group in the direct synthesis of these challenging β-glycosides under mild conditions. A deoxy-trisaccharide as a mimic of the sugar chain of landomycin E was prepared stereospecifically in high yield. The synthetic potential was also highlighted in the synthesis of Citrobacter freundii O-antigens composed of a [→4)-α-d-Manp-(1→3)-β-d-Rhap(1→4)-β-d-Rhap-(1→] repeating unit, wherein the convergent assembly up to a nonasaccharide was realized with a strongly β-directing trisaccharide donor. Variable-temperature NMR studies indicate the presence of intermolecular H-bonding between the donor and the bulky acceptor as direct spectral evidence in support of the concept of hydrogen-bond-mediated aglycone delivery.
Collapse
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yetong Lin
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wenyi Peng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhaolun Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Longwei Gao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Yueer Zhou
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zhe Song
- Instrumental Analysis Center, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu 210009, China
| | - Yingjie Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Weijia Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
17
|
Zhou XY, Li LX, Zhang Z, Duan SC, Huang YW, Luo YY, Mu XD, Chen ZW, Qin Y, Hu J, Yin J, Yang JS. Chemical Synthesis and Antigenic Evaluation of Inner Core Oligosaccharides from Acinetobacter baumannii Lipopolysaccharide. Angew Chem Int Ed Engl 2022; 61:e202204420. [PMID: 35543248 DOI: 10.1002/anie.202204420] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 02/05/2023]
Abstract
Acinetobacter baumannii is currently posing a serious threat to global health. Lipopolysaccharide (LPS) is a potent virulence factor of pathogenic Gram-negative bacteria. To explore the antigenic properties of A. baumannii LPS, four Kdo-containing inner core glycans from A. baumannii strain ATCC 17904 were synthesized. A flexible and divergent method based on the use of the orthogonally substituted α-Kdo-(2→5)-Kdo disaccharides was developed. Selective removal of different protecting groups in these key precursors and elongation of sugar chain via α-stereocontrolled coupling with 5,7-O-di-tert-butylsilylene or 5-O-benzoyl protected Kdo thioglycosides and 2-azido-2-deoxyglucosyl thioglycoside allowed efficient assembly of the target molecules. Glycan microarray analysis of sera from infected patients revealed that the 4,5-branched Kdo trimer was a potential antigenic epitope, which is attractive for further immunological research to develop carbohydrate vaccines against A. baumannii.
Collapse
Affiliation(s)
- Xian-Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling-Xin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi-Chao Duan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying-Wen Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Yang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Wei Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
18
|
Liu X, Lin Y, Peng W, Zhang Z, Gao L, Zhou Y, Song Z, Wang Y, Xu P, Yu B, Sun H, Xie W, Li W. Direct Synthesis of 2,6‐Dideoxy‐β‐glycosides and β‐Rhamnosides with a Stereodirecting 2‐(Diphenylphosphinoyl)acetyl Group. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xianglai Liu
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yetong Lin
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Wenyi Peng
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Zhaolun Zhang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Longwei Gao
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Yueer Zhou
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Zhe Song
- China Pharmaceutical University Instrumental Analysis Center CHINA
| | - Yingjie Wang
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Peng Xu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Biao Yu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Bioorganic and Natural Products Chemistry CHINA
| | - Haopeng Sun
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Weijia Xie
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry CHINA
| | - Wei Li
- China Pharmaceutical University School of Pharmacy Department of Medicinal Chemistry 639 Longmian Avenue 211198 Nanjing CHINA
| |
Collapse
|
19
|
QIN CJ, DING MR, TIAN GZ, ZOU XP, FU JJ, HU J, YIN J. Chemical approaches towards installation of rare functional groups in bacterial surface glycans. Chin J Nat Med 2022; 20:401-420. [DOI: 10.1016/s1875-5364(22)60177-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Indexed: 11/24/2022]
|
20
|
Zhou X, Li L, Zhang Z, Duan S, Huang Y, Luo Y, Mu X, Chen Z, Qin Y, Hu J, Yin J, Yang J. Chemical Synthesis and Antigenic Evaluation of Inner Core Oligosaccharides from
Acinetobacter baumannii
Lipopolysaccharide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xian‐Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ling‐Xin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Zhen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Shi‐Chao Duan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ying‐Wen Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Yi‐Yang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiao‐Dong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhi‐Wei Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Jin‐Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
21
|
Lei J, Jiang Y, Xia Y, Fang Q, Duan S, Ruan Y, Yang J. Stereoselective Synthesis of a Tetrasaccharide Fragment from Rhamnogalacturonan
II
Side Chain A. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jin‐Cai Lei
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yuan‐Yuan Jiang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yi‐Fei Xia
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Qing Fang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Shi‐Chao Duan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Yu‐Xiong Ruan
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| | - Jin‐Song Yang
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
22
|
Xiong T, Xie R, Huang C, Lan X, Huang N, Yao H. Recent advances in the synthesis of thiosugars using glycal donors. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2027433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tao Xiong
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Rui Xie
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Cai Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Xin Lan
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, P. R. China
| |
Collapse
|
23
|
Liu X, Lin Y, Liu A, Sun Q, Sun H, Xu P, Li G, Song Y, Xie W, Sun H, Yu B, Li W. 2‐Diphenylphosphinonyl
‐acetyl as a Remote Directing Group for the Highly Stereoselective Synthesis of
β‐Glycosides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xianglai Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yetong Lin
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Ao Liu
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Qianhui Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Huiyong Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Guolong Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Yingying Song
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Weijia Xie
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Haopeng Sun
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Wei Li
- Department of Medicinal Chemistry School of Pharmacy China Pharmaceutical University, 639 Longmian Avenue Nanjing Jiangsu 211198 China
| |
Collapse
|
24
|
Ren B, Wang J, Zhang M, Chen Y, Zhao W. A Chiral Copper Catalyzed Site‐Selective O‐Alkylation of Carbohydrates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bo Ren
- College of Pharmacy Xinxiang University Jinsui Avenue 191 Xinxiang Henan 453003 People's Republic of China
| | - Jiaxi Wang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering Sichuan University Chengdu 610041 People's Republic of China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Yue Chen
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| | - Wei Zhao
- College of Chemistry & Chemical Engineering Xinyang Normal University Nanhu Road 237 Xinyang Henan 464000, People's Republic of China
| |
Collapse
|
25
|
Exploiting non-covalent interactions in selective carbohydrate synthesis. Nat Rev Chem 2021; 5:792-815. [PMID: 37117666 DOI: 10.1038/s41570-021-00324-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Non-covalent interactions (NCIs) are a vital component of biological bond-forming events, and have found important applications in multiple branches of chemistry. In recent years, the biomimetic exploitation of NCIs in challenging glycosidic bond formation and glycofunctionalizations has attracted significant interest across diverse communities of organic and carbohydrate chemists. This emerging theme is a major new direction in contemporary carbohydrate chemistry, and is rapidly gaining traction as a robust strategy to tackle long-standing issues such as anomeric and site selectivity. This Review thus seeks to provide a bird's-eye view of wide-ranging advances in harnessing NCIs within the broad field of synthetic carbohydrate chemistry. These include the exploitation of NCIs in non-covalent catalysed glycosylations, in non-covalent catalysed glycofunctionalizations, in aglycone delivery, in stabilization of intermediates and transition states, in the existence of intramolecular hydrogen bonding networks and in aggregation by hydrogen bonds. In addition, recent emerging opportunities in exploiting halogen bonding and other unconventional NCIs, such as CH-π, cation-π and cation-n interactions, in various aspects of carbohydrate chemistry are also examined.
Collapse
|
26
|
Zhang Z, Xu Z, Liu X, Luo S, Li T. Stereoselective Synthesis of β- C-Glycosides of 3-Deoxy-d- manno-oct-2-ulosonic Acid (Kdo) via SmI 2-Mediated Reformatsky Reactions. Org Lett 2021; 23:6090-6093. [PMID: 34296882 DOI: 10.1021/acs.orglett.1c02158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient and simple approach for stereoselective synthesis of β-Kdo C-glycosides was described, which relies on easily available peracetylated anomeric acetate or anomeric 2-pyridyl sulfide to couple with carbonyl compounds via SmI2-mediated Reformatsky reactions. The utility of this methodology is exemplified by the streamlined synthesis of a practical β-Kdo C-glycoside with an anomeric aminopropyl linker to conjugate with other biomolecules for further biological studies.
Collapse
Affiliation(s)
- Zhumin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingbang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiwei Luo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
27
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α‐Glycans up to a 30‐mer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Crystal Materials Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany University of Chinese Academy of Sciences Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|
28
|
Zhang Y, He H, Chen Z, Huang Y, Xiang G, Li P, Yang X, Lu G, Xiao G. Merging Reagent Modulation and Remote Anchimeric Assistance for Glycosylation: Highly Stereoselective Synthesis of α-Glycans up to a 30-mer. Angew Chem Int Ed Engl 2021; 60:12597-12606. [PMID: 33763930 DOI: 10.1002/anie.202103826] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/12/2022]
Abstract
The efficient synthesis of long, branched, and complex carbohydrates containing multiple 1,2-cis glycosidic linkages is a long-standing challenge. Here, we report a merging reagent modulation and 6-O-levulinoyl remote anchimeric assistance glycosylation strategy, which is successfully applied to the first highly stereoselective synthesis of the branched Dendrobium Huoshanense glycans and the linear Longan glycans containing up to 30 contiguous 1,2-cis glucosidic bonds. DFT calculations shed light on the origin of the much higher stereoselectivities of 1,2-cis glucosylation with 6-O-levulinoyl group than 6-O-acetyl or 6-O-benzoyl groups. Orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates and ortho-(1-phenylvinyl)benzoates has been demonstrated in the efficient synthesis of complex glycans, precluding such issues as aglycon transfer inherent to orthogonal one-pot synthesis based on thioglycosides.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Guisheng Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Penghua Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Xingkuan Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
29
|
Liu Y, Jiao Y, Luo H, Huang N, Lai M, Zou K, Yao H. Catalyst-Controlled Regiodivergent Synthesis of 1- and 3-Thiosugars with High Stereoselectivity and Chemoselectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yuexin Liu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Yang Jiao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Huajun Luo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Nianyu Huang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Mengnan Lai
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| | - Hui Yao
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
30
|
Muru K, Gauthier C. Glycosylation and Protecting Group Strategies Towards the Synthesis of Saponins and Bacterial Oligosaccharides: A Personal Account. CHEM REC 2021; 21:2990-3004. [DOI: 10.1002/tcr.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Kevin Muru
- Centre Armand-Frappier Santé Biotechnologie Institut national de la recherche scientifique (INRS) 531, boulevard des Prairies Laval Québec Canada H7V 1B7
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie Institut national de la recherche scientifique (INRS) 531, boulevard des Prairies Laval Québec Canada H7V 1B7
| |
Collapse
|
31
|
Khanam A, Kumar Mandal P. Influence of Remote Picolinyl and Picoloyl Stereodirecting Groups for the Stereoselective Glycosylation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000558] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ariza Khanam
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road Lucknow 226 031 India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram extn., Sitapur Road Lucknow 226 031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
32
|
Li T, Wolfert MA, Wei N, Huizinga R, Jacobs BC, Boons GJ. Chemoenzymatic Synthesis of Campylobacter jejuni Lipo-oligosaccharide Core Domains to Examine Guillain–Barré Syndrome Serum Antibody Specificities. J Am Chem Soc 2020; 142:19611-19621. [DOI: 10.1021/jacs.0c08583] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, United States
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 Utrecht, The Netherlands
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, United States
| | | | | | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602-4712, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, 3584 Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
33
|
Li R, Yu H, Chen X. Recent progress in chemical synthesis of bacterial surface glycans. Curr Opin Chem Biol 2020; 58:121-136. [PMID: 32920523 DOI: 10.1016/j.cbpa.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
With the continuing advancement of carbohydrate chemical synthesis, bacterial glycomes have become increasingly attractive and accessible synthetic targets. Although bacteria also produce carbohydrate-containing secondary metabolites, our review here will cover recent chemical synthetic efforts on bacterial surface glycans. The obtained compounds are excellent candidates for the development of improved structurally defined glycoconjugate vaccines to combat bacterial infections. They are also important probes for investigating glycan-protein interactions. Glycosylation strategies applied for the formation of some challenging glycosidic bonds of various uncommon sugars in a number of recently synthesized bacterial surface glycans are highlighted.
Collapse
Affiliation(s)
- Riyao Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Hai Yu
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA.
| |
Collapse
|
34
|
Hettikankanamalage AA, Lassfolk R, Ekholm FS, Leino R, Crich D. Mechanisms of Stereodirecting Participation and Ester Migration from Near and Far in Glycosylation and Related Reactions. Chem Rev 2020; 120:7104-7151. [PMID: 32627532 PMCID: PMC7429366 DOI: 10.1021/acs.chemrev.0c00243] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review is the counterpart of a 2018 Chemical Reviews article (Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. Chem. Rev. 2018, 118, 8242-8284) that examined the mechanisms of chemical glycosylation in the absence of stereodirecting participation. Attention is now turned to a critical review of the evidence in support of stereodirecting participation in glycosylation reactions by esters from either the vicinal or more remote positions. As participation by esters is often accompanied by ester migration, the mechanism(s) of migration are also reviewed. Esters are central to the entire review, which accordingly opens with an overview of their structure and their influence on the conformations of six-membered rings. Next the structure and relative energetics of dioxacarbeniun ions are covered with emphasis on the influence of ring size. The existing kinetic evidence for participation is then presented followed by an overview of the various intermediates either isolated or characterized spectroscopically. The evidence supporting participation from remote or distal positions is critically examined, and alternative hypotheses for the stereodirecting effect of such esters are presented. The mechanisms of ester migration are first examined from the perspective of glycosylation reactions and then more broadly in the context of partially acylated polyols.
Collapse
Affiliation(s)
- Asiri A. Hettikankanamalage
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - Robert Lassfolk
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - Filip S. Ekholm
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Reko Leino
- Johan Gadolin Process Chemistry Centre, Laboratory of Molecular Science and Technology, Åbo Akademi University, 20500 Åbo, Finland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
35
|
Li BH, Ye XS. Recent advances in glycan synthesis. Curr Opin Chem Biol 2020; 58:20-27. [PMID: 32480314 DOI: 10.1016/j.cbpa.2020.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/13/2020] [Indexed: 12/29/2022]
Abstract
Carbohydrates play important roles in life science, but their synthesis is always hampered by their complicated chemical structures. Scientists have never stopped trying to solve the problem of glycan synthesis from various aspects. Here a brief overview of recent progress in glycan synthesis, including chemical approaches, chemoenzymatic approaches, and automated synthesis, will be discussed, focusing on the efficiency of new glycosylation methods, the stereoselectivity of coupled products, and their applications in the assembly of complex glycan chains.
Collapse
Affiliation(s)
- Bo-Han Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
36
|
Ngoje P, Crich D. Stereocontrolled Synthesis of the Equatorial Glycosides of 3-Deoxy-d-manno-oct-2-ulosonic Acid: Role of Side Chain Conformation. J Am Chem Soc 2020; 142:7760-7764. [PMID: 32275429 PMCID: PMC7213052 DOI: 10.1021/jacs.0c03215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The pseudosymmetric relationship of the bacterial sialic acid, pseudaminic acid, and 3-deoxy-d-manno-oct-2-ulosonic acid (KDO) affords the hypothesis that suitably protected KDO donors will adopt the trans, gauche conformation of their side chain and consequently be highly equatorially selective in their coupling reactions conducted at low temperature. This hypothesis is borne out by the synthesis, conformational analysis, and excellent equatorial selectivity seen on coupling of per-O-acetyl or benzyl-protected KDO donors in dichloromethane at -78 °C. Mechanistic understanding of glycosylation reactions is advancing to a stage at which predictions of selectivity can be made. In this instance, predictions of selectivity provide the first highly selective entry into KDO equatorial glycosides such as are found in the capsular polysaccharides of numerous pathogenic bacteria.
Collapse
Affiliation(s)
- Philemon Ngoje
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
37
|
Wang P, Mo Y, Cui X, Ding X, Zhang X, Li Z. Hydrogen-Bond-Mediated Aglycone Delivery: Synthesis of β-d-Fructofuranosides. Org Lett 2020; 22:2967-2971. [PMID: 32223203 DOI: 10.1021/acs.orglett.0c00702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The construction of β-d-fructofuranosidic linkages is one of the major challenges in carbohydrate chemistry. In this work, we developed an efficient method for the synthesis of β-d-fructofuranosides by using a 6-picoloyl-protected fructofuranosyl thioglycoside as the glycosyl donor. Subsequently, we applied the approach to a wide variety of donors and acceptors. Furthermore, the successful synthesis of levantetrose confirmed its applicability in the multistep synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Pan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Yidian Mo
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xiaoyu Cui
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xuyang Ding
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Xiao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| | - Zhongjun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
38
|
Seifried BM, Qi W, Yang YJ, Mai DJ, Puryear WB, Runstadler JA, Chen G, Olsen BD. Glycoprotein Mimics with Tunable Functionalization through Global Amino Acid Substitution and Copper Click Chemistry. Bioconjug Chem 2020; 31:554-566. [PMID: 32078297 DOI: 10.1021/acs.bioconjchem.9b00601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition. A series of saccharides were conjugated to the recombinant protein backbones through copper(I)-catalyzed alkyne-azide cycloaddition to determine reactivity trends, with 83-100% glycosylation of HPGs. Only an acetyl-protected sialyllactose moiety showed a lower level of 42% HPG glycosylation that is attributed to steric hindrance. The recombinant glycoproteins reproduced the key biofunctional properties of their natural counterparts such as viral inhibition and lectin binding.
Collapse
Affiliation(s)
- Brian M Seifried
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenjing Qi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Yun Jung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wendy B Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Jonathan A Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts 01536, United States
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Macromolecular Science, Fudan University, Shanghai 200000, China
| |
Collapse
|
39
|
Lou Q, Hua Q, Zhang L, Yang Y. Dimethylformamide-Modulated Kdo Glycosylation for Stereoselective Synthesis of α-Kdo Glycosides. Org Lett 2020; 22:981-985. [PMID: 31917587 DOI: 10.1021/acs.orglett.9b04509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple and direct DMF-modulated α-selective Kdo glycosylation approach for the stereoselective synthesis of the α-linked Kdo glycosides is developed. Glycosylation of the readily available peracetylated Kdo ortho-hexynylbenzoate with common acceptor alcohols using SPhosAuNTf2 as a promoter and DMF as a modulating molecule afforded a range of Kdo glycosides with good α-selectivities. Furthermore, the present method is effectively applied in the latent-active synthesis of the α-linked di-Kdo glycoside bearing a linker at the reducing end. Finally, the first observation of a Kdo imidinium ion in the low-temperature NMR provides evidence for the plausible mechanism of the DMF-modulated α-selective Kdo glycosylation.
Collapse
Affiliation(s)
- Qixin Lou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Qingting Hua
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Liangliang Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - You Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
40
|
Zeng Y, Yang J. Stereoselective Synthesis of a Tetrasaccharide Fragment from Cellulosome Produced by
Clostridium thermocellum. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Zeng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of PharmacySichuan University Chengdu 610041 China
| | - Jin‐Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of PharmacySichuan University Chengdu 610041 China
| |
Collapse
|
41
|
Liu DM, Wang HL, Lei JC, Zhou XY, Yang JS. A Highly α-Stereoselective Sialylation Method Using 4-O
-4-Nitropicoloyl Thiosialoside Donor. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dong-Mei Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Hong-Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Jin-Cai Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Xian-Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy; Sichuan University; 610041 Chengdu China
| |
Collapse
|
42
|
Pan XL, Huang L, Zeng Y, Xu CY, Liu DM, Chu Y, Qin Y, Yang JS. Synthesis of an unusual hexasaccharide repeating unit from the cell wall polysaccharide of Eubacterium saburreum strain T19. Org Chem Front 2020. [DOI: 10.1039/d0qo00704h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eubacterium saburreum is one of the human oral pathogens and has been proved to play a significant role in the development of periodontal diseases.
Collapse
Affiliation(s)
- Xing-Ling Pan
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Lei Huang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Yan Zeng
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Chun-Yun Xu
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Dong-Mei Liu
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Yue Chu
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Yong Qin
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| | - Jin-Song Yang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology
- Department of Chemistry of Medicinal Natural Products
- West China School of Pharmacy
- Sichuan University
| |
Collapse
|
43
|
Mong KKT, Pradhan TK, Chiu CH, Hung WC, Chen CJ, Wang YF. (2-Ketulosonyl)onate 2,3-O-thionocarbonate donors for the synthesis of KO and KDO α-glycosides and a one-pot glycosylation method for 2-keto acid donors. Org Chem Front 2020. [DOI: 10.1039/d0qo00630k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bifunctional (2-ketulosonyl)onate thionocarbonates are effective donors for the synthesis of KO and KDO α-glycosides with perfect control in stereoselectivity.
Collapse
Affiliation(s)
- Kwok-Kong Tony Mong
- Applied Chemistry Department
- National Chiao Tung University
- 1001
- University Road
- Hsinchu City
| | - Tapan Kumar Pradhan
- Applied Chemistry Department
- National Chiao Tung University
- 1001
- University Road
- Hsinchu City
| | - Cheng-Hsin Chiu
- Applied Chemistry Department
- National Chiao Tung University
- 1001
- University Road
- Hsinchu City
| | - Wei-Cheng Hung
- Applied Chemistry Department
- National Chiao Tung University
- 1001
- University Road
- Hsinchu City
| | - Chao-Ju Chen
- Applied Chemistry Department
- National Chiao Tung University
- 1001
- University Road
- Hsinchu City
| | - Yi-Fang Wang
- Applied Chemistry Department
- National Chiao Tung University
- 1001
- University Road
- Hsinchu City
| |
Collapse
|
44
|
Lei JC, Ruan YX, Luo S, Yang JS. Stereodirecting Effect of C3-Ester Groups on the Glycosylation Stereochemistry of L-Rhamnopyranose Thioglycoside Donors: Stereoselective Synthesis of α- and β-L-Rhamnopyranosides. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jin-Cai Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Yu-Xiong Ruan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Sheng Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital; Sichuan University; 610041 Chengdu China
| |
Collapse
|
45
|
Ren B, Zhang M, Xu S, Gan L, Zhang L, Tang L. DBN-Catalyzed Regioselective Acylation of Carbohydrates and Diols in Ethyl Acetate. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bo Ren
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Mengyao Zhang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Shijie Xu
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Lu Gan
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Li Zhang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| | - Lin Tang
- College of Chemistry & Chemical Engineering; Xinyang Normal University; Nanhu Road 237, Xinyang, Henan 464000 P. R. China
| |
Collapse
|
46
|
Zhuang L, Chen Y, Lou Q, Yang Y. Synthesis of the β-linked GalNAc-Kdo disaccharide antigen of the capsular polysaccharide of Kingella kingae KK01. Org Biomol Chem 2019; 17:1694-1697. [PMID: 30346002 DOI: 10.1039/c8ob02340a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first construction of the challenging β-(1 → 5)-linked GalNAc-Kdo skeleton is described for the synthesis of the disaccharide antigen of the capsular polysaccharide of Kingella kingae KK01. TfOH-catalyzed glycosylation of N-Troc-protected d-galactosaminyl N-phenyl trifluoroacetimidate with a sterically hindered 5-hydroxyl group of the β-Kdo building block in toluene proceeded smoothly to provide the desired disaccharide in excellent yield with satisfactory β-selectivity. An optimal sequence for the deprotection of the disaccharide skeleton was found to access the disaccharide antigen of Kingella kingae KK01 for further immunological studies.
Collapse
Affiliation(s)
- Liqin Zhuang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China, University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | |
Collapse
|
47
|
Abstract
The translation of biological glycosylation in humans to the clinical applications involves systematic studies using homogeneous samples of oligosaccharides and glycoconjugates, which could be accessed by chemical, enzymatic or other biological methods. However, the structural complexity and wide-range variations of glycans and their conjugates represent a major challenge in the synthesis of this class of biomolecules. To help navigate within many methods of oligosaccharide synthesis, this Perspective offers a critical assessment of the most promising synthetic strategies with an eye on the therapeutically relevant targets.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N. Torrey Pines Road , La Jolla , California 92037 , United States.,Genomics Research Center, Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
48
|
Zhou XY, Yang P, Luo S, Yang JS. Divergent Synthesis of 3-Deoxy-d-manno-oct-2-ulosonic Acid (Kdo) Glycosides Containing α-(2→4)-Linked Kdo-Kdo Unit. Chem Asian J 2019; 14:454-461. [PMID: 30516348 DOI: 10.1002/asia.201801779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 02/05/2023]
Abstract
A convenient and divergent approach was developed to prepare diverse bacterial 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) oligosaccharides containing a Kdo-α-(2→4)-Kdo fragment. The orthogonal protected α-(2→4) linked Kdo-Kdo disaccharide 3, serving as a common precursor, was divergently transformed into the corresponding 8-, 8'-, and 4'-hydroxy disaccharides 5, 7, and 14, respectively. Then, these alcohols were glycosylated, respectively, with the 5,7-O-di-tert-butylsilylene (DTBS) protected Kdo thioglycoside donors 1 or 2 in an α-stereoselective and high-yielding manner to afford a range of Kdo oligosaccharides. Finally, removal of all protecting groups of the newly formed glycosides resulted in the desired free Kdo oligomer.
Collapse
Affiliation(s)
- Xian-Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Pan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Sheng Luo
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
49
|
Zhong YL, Cleator E, Liu Z, Yin J, Morris WJ, Alam M, Bishop B, Dumas AM, Edwards J, Goodyear A, Mullens P, Song ZJ, Shevlin M, Thaisrivongs DA, Li H, Sherer EC, Cohen RD, Yin J, Tan L, Yasuda N, Limanto J, Davies A, Campos KR. Highly Diastereoselective Synthesis of a HCV NS5B Nucleoside Polymerase Inhibitor. J Org Chem 2018; 84:4780-4795. [PMID: 30475616 DOI: 10.1021/acs.joc.8b02500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An asymmetric synthesis of HCV NS5B nucleoside polymerase inhibitor (1) is described. This novel route features several remarkably diastereoselective and high-yielding transformations, including construction of the all-carbon quaternary stereogenic center at C-2 via a thermodynamic aldol reaction. A subsequent glycosylation reaction with activated uracil via C-1 phosphate and installation of the cyclic phosphate group using an achiral phosphorus(III) reagent followed by oxidation provides 1.
Collapse
Affiliation(s)
- Yong-Li Zhong
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Ed Cleator
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Zhijian Liu
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Jianguo Yin
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - William J Morris
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Mahbub Alam
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Brian Bishop
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Aaron M Dumas
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - John Edwards
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Adrian Goodyear
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Peter Mullens
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Zhiguo Jake Song
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Michael Shevlin
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - David A Thaisrivongs
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Hongming Li
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Edward C Sherer
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Ryan D Cohen
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Jingjun Yin
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Lushi Tan
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Nobuyoshi Yasuda
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - John Limanto
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Antony Davies
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Kevin R Campos
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| |
Collapse
|
50
|
Panova MV, Orlova AV, Kononov LO. Stabilization of sialyl cation in axial conformation assisted by remote acyl groups. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2260-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|