1
|
Zheng Z, Sun M, Zhao X, Zhang W, Jiang H, Liu Y, Cui Y. Metal-Organic Framework-Induced Rh Monocoodination on Diphosphine Ligand Enables Catalytic Hydroformylation of Aliphatic Olefins at Room Temperature and Pressure. Angew Chem Int Ed Engl 2024; 63:e202411086. [PMID: 38987894 DOI: 10.1002/anie.202411086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Persistent challenges in hydroformylation of olefins include controlling regioselectivity, particularly for short aliphatic olefins and conducting reactions under ambient conditions. We report here the synthesis of monophosphine-Rh complexes on a typical chelated diphosphine ligand mediated by a Zr-MOF through isolating a pair of phosphorus atoms. We demonstrate that single-crystal X-ray diffraction can elucidate the structural transformation of the Rh catalyst during olefin hydroformylation, providing valuable information on active site reconstruction during catalysis. The Rh-MOF catalyst demonstrates excellent catalytic and recyclable performance in the hydroformylation of short aliphatic olefins with linear to branched ratios of up to 99 : 1. Due to the framework's capacity to adsorb and concentrate gases, the catalytic reactions occur under room temperature and pressure, eliminating the need for the high temperature and pressures typically required in homogeneous systems. This study show that Zr-MOF can be a unique platform for synthesizing unusual catalytic species that cannot exist in solutions for meaningful chemical transformations and elucidate valuable structural information pertaining to metal-based catalysis.
Collapse
Affiliation(s)
- Zehao Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangxiang Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenqiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Zou Y, Bao SJ, Tang H, Zhang HN, Jin GX. Synergizing Steric Hindrance and Stacking Interactions To Facilitate the Controlled Assembly of Multiple 4 1 Metalla-Knots and Pseudo-Solomon Links. Angew Chem Int Ed Engl 2024; 63:e202410722. [PMID: 38965047 DOI: 10.1002/anie.202410722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
In this work, a noncoplanar terphenyl served as a building block to synthesize a novel 3,3'-substituted bipyridyl ligand (L1) which further reacted with binuclear half-sandwich units A/B, giving rise to two aesthetic 41 metalla-knots in high yields via a coordination-driven self-assembly strategy. Furthermore, given the inherent compactness of the 41 metalla-knots, it creates favorable conditions for the emergence of steric repulsion. We focused on progressively introducing nitrogen atoms featuring a lone pair of electrons (LPEs) into ligand L1 to manipulate the balance of H⋅⋅⋅H/LPEs⋅⋅⋅LPEs steric repulsion during the assembly process, ultimately achieving controlled assembly from 41 metalla-knots to the pseudo-Solomon link and then to molecular tweezer-like assembly facilitated by stacking interactions. All the assemblies were well characterized by solution-state NMR techniques, ESI-TOF/MS, and single-crystal X-ray diffraction. The evolutionary process of the topological architectures is equivalent to visualizing the synergistic effect of steric hindrance and stacking interactions on structural assembly, providing a new avenue for achieving the controlled synthesis of different topologies.
Collapse
Affiliation(s)
- Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Shu-Jin Bao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
3
|
Shupletsov L, Topal S, Schieck A, Helten S, Grünker R, Deka A, De A, Werheid M, Bon V, Weidinger I, Pöppl A, Senkovska I, Kaskel S. Linker Conformation Controls Oxidation Potentials and Electrochromism in Highly Stable Zr-Based Metal-Organic Frameworks. J Am Chem Soc 2024; 146:25477-25489. [PMID: 39226465 DOI: 10.1021/jacs.4c04653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The development of tailor-made electrochromic (EC) materials requires a large variety of available substances with properties that precisely match the task. Since the inception of electrochromic metal-organic frameworks (MOFs), the field relies only on a limited set of building blocks, providing the desired electrochromic effect. Herein, we demonstrate for the first time the implementation of a Piccard-type system (N,N,N',N'-benzidinetetrabenzoate) into Zr-MOFs to obtain electrochromic materials. With fast switching rates, high contrast ratio, long-life stability, and exceptional chemical and physical stability, the novel material is on par with inorganic EC material. The new EC system exhibits an ultrahigh contrast from the bleaching state, with transmittance in the visible region >53%, to the colored state with a transmittance of ca. 3%. The 5 μm thick film attained up to 90% of the coloring in 12.5 s and exhibited high electrochemical reversibility. Moreover, the conformational lability of the electrochromic ligand chosen is locked via the topology design of the framework, which is not attainable in the solution. Locked conformations of the redox active linker in distinct polymorphous frameworks (DUT-65 and DUT-66) feature different redox characteristics and opens the door to the overarching control of the oxidation pathway in the Piccard-type systems.
Collapse
Affiliation(s)
- Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sebahat Topal
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Alina Schieck
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stella Helten
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Ronny Grünker
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Antareekshya Deka
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Matthias Werheid
- Chair of Electrochemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Inez Weidinger
- Chair of Electrochemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
4
|
Abe T, Takeuchi K, Higashi M, Sato H, Hiraoka S. Rational design of metal-organic cages to increase the number of components via dihedral angle control. Nat Commun 2024; 15:7630. [PMID: 39251614 PMCID: PMC11383860 DOI: 10.1038/s41467-024-50972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
The general principles of discrete, large self-assemblies composed of numerous components are not unveiled and the artificial formation of such entities is a challenging topic. In metal-organic cages, design strategies for tuning the coordination directions in multitopic ligands by the bend and twist angles were previously developed to solve this problem. In this study, the importance of remote geometric communications between components is emphasized, realizing several types of metal-organic assemblies based on dihedral angle control in multitopic ligands although they have the same coordination directions. Self-assembly of a tritopic ligand with dihedral angles θ = 36.5° and a cis-protected Pd(II) ion affords M9L6 and M12L8 cages as kinetic and thermodynamic products, respectively, whereas an M12L8 sheet is formed when θ = 90°. Geometric analyses of strains in the subcomponent rings reveals that remote geometric communications among neighboring multitopic ligands through coordination bonds are key for large assemblies.
Collapse
Affiliation(s)
- Tsukasa Abe
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Keisuke Takeuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - Masahiro Higashi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, 464-8601, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto, 615-8510, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, 606-8103, Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
| |
Collapse
|
5
|
Han CQ, Wang L, Si J, Zhou K, Liu XY. Reticular Chemistry Directed "One-Pot" Strategy to in situ Construct Organic Linkers and Zirconium-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402263. [PMID: 38716785 DOI: 10.1002/smll.202402263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Indexed: 10/04/2024]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the most studied MOFs due to the unlimited numbers of organic linkers and the varying Zr-oxo clusters. However, the synthesis of carboxylic acids, especially multitopic carboxylic acids, is always a great challenge for the discovery of new Zr-MOFs. As an alternative approach, the in situ "one-pot" strategy can address this limitation, where the generation of organic linkers from the corresponding precursors and the sequential construction of MOFs are integrated into one solvothermal condition. Herein, inspired by benzimidazole-contained compounds synthesized via reaction of aldehyde and o-phenylenediamine, tri-, tetra-, penta- and hexa-topic carboxylic acids and a series of corresponding Zr-MOFs can be prepared via the in situ "one-pot" method under the same solvothermal conditions. This strategy can be utilized not only to prepare reported Zr-MOFs constructed using benzimidazole-contained linkers, but also to rationally design, construct and realize functionalities of zirconium-pentacarboxylate frameworks guided by reticular chemistry. More importantly, in situ "one-pot" method can facilitate the discovery of new Zr-MOFs, such as zirconium-hexacarboxylate frameworks. The present study demonstrates the promising potential of benzimidazole-inspired in situ "one-pot" approach in the crystal engineering of structure- and property-specific Zr-MOFs, especially with the guidance of reticular chemistry.
Collapse
Affiliation(s)
- Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| |
Collapse
|
6
|
Si GR, Kong XJ, He T, Zhang Z, Li JR. Simultaneous capture of trace benzene and SO 2 in a robust Ni(II)-pyrazolate framework. Nat Commun 2024; 15:7220. [PMID: 39174530 PMCID: PMC11341962 DOI: 10.1038/s41467-024-51522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Benzene and SO2, coexisting as hazardous air pollutants in some cases, such as in coke oven emissions, have led to detrimental health and environmental effects. Physisorbents offer promise in capturing benzene and SO2, while their performance compromises at low concentration. Particularly, the simultaneous capture of trace benzene and SO2 under humid conditions is attractive but challenging. Here, we address this issue by constructing a robust pyrazolate metal-organic framework (MOF) sorbent featuring rich accessible Ni(II) sites with low affinity to water and good stability. This material achieves a high benzene uptake of 5.08 mmol g-1 at 10 Pa, surpassing previous benchmarks. More importantly, it exhibits an adsorption capacity of ~0.51 mmol g-1 for 10 ppm benzene and ~1.21 mmol g-1 for 250 ppm SO2 under 30% relative humidity. This work demonstrates that a pioneering MOF enables simultaneous capture of trace benzene and SO2, highlighting the potential of physisorbents for industrial effluent remediation, even in the presence of moisture.
Collapse
Affiliation(s)
- Guang-Rui Si
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, 100124, Beijing, China
| | - Xiang-Jing Kong
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, 100124, Beijing, China
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Tao He
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, 100124, Beijing, China
| | - Zhengqing Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science & Engineering, Beijing University of Technology, 100124, Beijing, China.
| |
Collapse
|
7
|
Wang Z, Wu Y, Zhang Z, Sheng X, Fang S, Liu Y, Gong Y, Wang M, Song N, Huang F. A Pillar[5]arene-Containing Metal-Organic Framework for Rapid and Highly Capable Adsorption of a Mustard Gas Simulant. J Am Chem Soc 2024; 146:23330-23337. [PMID: 39110895 DOI: 10.1021/jacs.4c06061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Mustard gas causes irreversible damage upon inhalation or contact with the human body. Consequently, the development of adsorbents for effective interception of mustard gas at low concentrations and high flow rates is an urgent necessity. Here we report a stable porous pillar[5]arene-containing metal-organic framework (MOF) based on zirconium (EtP5-Zr-scu), demonstrating that embedding pillar[5]arene units in MOFs can provide specific binding sites for efficient adsorption of a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES). EtP5-Zr-scu achieves a higher capacity and more rapid adsorption compared to its counterpart without embedded pillar[5]arene units (H4tcpt-Zr-scu) and perethylated pillar[5]arene (EtP5) alone. Single crystal X-ray diffraction and solid-state nuclear magnetic resonance reveal that the enhanced performance of EtP5-Zr-scu is derived from the host-guest complexation between CEES and pillar[5]arene moieties. Moreover, breakthrough experiments confirmed that the interception performance of EtP5-Zr-scu against CEES (800 ppm, 120 mL/min) was significantly improved (566 min/g) compared with H4tcpt-Zr-scu (353 min/g) and EtP5 (0.873 min/g), attributed to the integration of open channels with specific recognition sites. This work marks a significant advancement in the development of macrocycle-incorporated crystalline framework materials with recognition sites for the efficient capture of guest molecules.
Collapse
Affiliation(s)
- Zeju Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yitao Wu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhenguo Zhang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuai Fang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yide Gong
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Mengbin Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Nan Song
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
8
|
Han Z, Sun T, Liang RR, Guo Y, Yang Y, Wang M, Mao Y, Taylor PR, Shi W, Wang KY, Zhou HC. Chiral Linker Installation in a Metal-Organic Framework for Enantioselective Luminescent Sensing. J Am Chem Soc 2024; 146:15446-15452. [PMID: 38776639 PMCID: PMC11157530 DOI: 10.1021/jacs.4c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Linker installation is a potent strategy for integrating specific properties and functionalities into metal-organic frameworks (MOFs). This method enhances the structural diversity of frameworks and enables the precise construction of robust structures, complementing the conventional postsynthetic modification approaches, by fully leveraging open metal sites and active organic linkers at targeting locations. Herein, we demonstrated an insertion of a d-camphorate linker into a flexible Zr-based MOF, PCN-700, through linker installation. The resultant homochiral MOF not only exhibits remarkable stability but also functions as a highly efficient luminescent material for enantioselective sensing. Competitive absorption and energy/electron transfer processes contribute to the sensing performance, while the difference in binding affinities dominates the enantioselectivity. This work presents a straightforward route to crafting stable homochiral MOFs for enantioselective sensing.
Collapse
Affiliation(s)
- Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tiankai Sun
- Frontiers
Science Center for New Organic Matter, Key Laboratory of Advanced
Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced
Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yifan Guo
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yihao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mengmeng Wang
- Frontiers
Science Center for New Organic Matter, Key Laboratory of Advanced
Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced
Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Mao
- Frontiers
Science Center for New Organic Matter, Key Laboratory of Advanced
Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced
Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peter R. Taylor
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wei Shi
- Frontiers
Science Center for New Organic Matter, Key Laboratory of Advanced
Energy Materials Chemistry (MOE), and State Key Laboratory of Advanced
Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
9
|
Yu L, He M, Yao J, Xia Q, Yang S, Li J, Wang H. A robust aluminum-octacarboxylate framework with scu topology for selective capture of sulfur dioxide. Chem Sci 2024; 15:8530-8535. [PMID: 38846381 PMCID: PMC11151831 DOI: 10.1039/d4sc01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The high structural diversity and porosity of metal-organic frameworks (MOFs) promote their applications in selective gas adsorption. The development of robust MOFs that are stable against corrosive SO2 remains a daunting challenge. Here, we report a highly robust aluminum-based MOF (HIAM-330) built on a 4-connected Al3(OH)2(COO)4 cluster and 8-connected octacarboxylate ligand with a (4,8)-connected scu topology. It exhibits a fully reversible SO2 uptake of 12.1 mmol g-1 at 298 K and 1 bar. It is capable of selective capture of SO2 over other gases (CO2, CH4, and N2) with high adsorption selectivities of 60, 330, and 3537 for equimolar mixtures of SO2/CO2, SO2/CH4, and SO2/N2, respectively, at 298 K and 1 bar. Breakthrough measurements verified the capability of HIAM-330 for selective capture of SO2 (2500 ppm) over CO2 or N2. High-resolution synchrotron X-ray powder diffraction of SO2 loaded HIAM-330 revealed the binding domains of adsorbed SO2 molecules and host-guest interactions.
Collapse
Affiliation(s)
- Liang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
| | - Meng He
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Jinze Yao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Sihai Yang
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road Piscataway NJ 08854 USA
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
| |
Collapse
|
10
|
Su J, Han X, Ke SW, Zhou XC, Yuan S, Ding M, Zuo JL. Construction of a stable radical hydrogen-bonded metal-organic framework with functionalized tetrathiafulvalene linkers. Chem Commun (Camb) 2024; 60:5812-5815. [PMID: 38747473 DOI: 10.1039/d4cc01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A stable two-dimensional radical hydrogen-bonded metal-organic framework, constructed using a modified tetrathiafulvalene-tetrabenzoate ((2-Me)-H4TTFTB) linker and Cd2+ ions, exhibits a high electrical conductivity of 4.1 × 10-4 S m-1 and excellent photothermal conversion with a temperature increase of 137 °C in 15 s under the irradiation of a 0.7 W cm-2 808 nm laser.
Collapse
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Xiao Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiao-Cheng Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Li L, Zhang X, Xu W, Guo M, Liu Q, Li F, Liu T, Xing T, Li Z, Wang M, Wu M. Contracting pore channels of a magnesium-based metal-organic framework by decorating methyl groups for effective Xe/Kr separation. Dalton Trans 2024; 53:5917-5921. [PMID: 38456197 DOI: 10.1039/d3dt04001a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A new magnesium-based metal-organic framework with unprecedented short-chain secondary building units and ultra-micropore channels approaching the kinetic diameters of Xe is fabricated by decorating methyl groups on ligands. Due to the contracted pores, this MOF exhibits very high selectivity values for Xe/Kr, which ranks it among the top porous absorbents.
Collapse
Affiliation(s)
- Liangjun Li
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, China.
| | - Xu Zhang
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, China.
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, China.
| | - Wenli Xu
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, China.
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, China.
| | - Mengwei Guo
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, China.
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, China.
| | - Qingying Liu
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, China.
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, China.
| | - Fangru Li
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, China.
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, China.
| | - Tao Liu
- Research and Innovation Centre of New Energy, Shandong Energy Group., Co. Ltd, 250101, Jinan, China
- National Engineering Research Centre of Coal Gasification and Coal-Based Advanced Materials, China
| | - Tao Xing
- Research and Innovation Centre of New Energy, Shandong Energy Group., Co. Ltd, 250101, Jinan, China
- National Engineering Research Centre of Coal Gasification and Coal-Based Advanced Materials, China
| | - Zhi Li
- Research and Innovation Centre of New Energy, Shandong Energy Group., Co. Ltd, 250101, Jinan, China
- National Engineering Research Centre of Coal Gasification and Coal-Based Advanced Materials, China
| | - Mingqing Wang
- Research and Innovation Centre of New Energy, Shandong Energy Group., Co. Ltd, 250101, Jinan, China
- National Engineering Research Centre of Coal Gasification and Coal-Based Advanced Materials, China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (East China), 266580, Qingdao, China.
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, China.
- National Engineering Research Centre of Coal Gasification and Coal-Based Advanced Materials, China
| |
Collapse
|
12
|
Yang H, Liu JJ, Tang WQ, Meng SS, Gao YX, Li W, Zhang H, Xu M, Gu ZY. Increasing Mass Transfer Resistance of MOFs as a Reverse Tuning Strategy to Achieve High-Resolution Gas Chromatographic Separation. Anal Chem 2023; 95:18760-18766. [PMID: 38078811 DOI: 10.1021/acs.analchem.3c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In separation science, precise control and regulation of the MOF stationary phase are crucial for achieving a high separation performance. We supposed that increasing the mass transfer resistance of MOFs with excessive porosity to achieve a moderate mass transfer resistance of the analytes is the key to conducting the MOF stationary phase with a high resolution. Three-dimensional UiO-67 (UiO-67-3D) and two-dimensional UiO-67 (UiO-67-2D) were chosen to validate this strategy. Compared with UiO-67-3D with overfast mass transfer and low retention, the reduced porosity of UiO-67-2D increased the mass transfer resistance of analytes in reverse, resulting in improved separation performance. Kinetic diffusion experiments were conducted to verify the difference in mass transfer resistance of the analytes between UiO-67-3D and UiO-67-2D. In addition, the optimization of the UiO-67-2D thickness for separation revealed that a moderate diffusion length of the analytes is more advantageous in achieving the equilibrium of absorption and desorption.
Collapse
Affiliation(s)
- Han Yang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jia-Jia Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuan-Xiao Gao
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wang Li
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
13
|
Halder A, Bain DC, Pitt TA, Shi Z, Oktawiec J, Lee JH, Tsangari S, Ng M, Fuentes-Rivera JJ, Forse AC, Runčevski T, Muller DA, Musser AJ, Milner PJ. Kinetic Trapping of Photoluminescent Frameworks During High-Concentration Synthesis of Non-Emissive Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10086-10098. [PMID: 38225948 PMCID: PMC10788154 DOI: 10.1021/acs.chemmater.3c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M2(dobdc) (M = Mg, Mn, Ni; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M2(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H4dobdc and Mg2(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H2dobdc2- linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M2(dobdc) phases by heating in N,N-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.
Collapse
Affiliation(s)
- Arjun Halder
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - David C. Bain
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Zixiao Shi
- Department of Applied Engineering Physics, Cornell University, Ithaca, NY, 14850, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Stavrini Tsangari
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Marcus Ng
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - José J. Fuentes-Rivera
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Alexander C. Forse
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, United States
| | - David A. Muller
- Department of Applied Engineering Physics, Cornell University, Ithaca, NY, 14850, United States
| | - Andrew J. Musser
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
14
|
Xia J, Si J, Zhou K, Xia HL, Zhang J, Xu Y, Wang L, Liu XY. Carboxyl position-directed structure diversity in zirconium-tricarboxylate frameworks. Dalton Trans 2023; 52:17679-17683. [PMID: 37997636 DOI: 10.1039/d3dt03348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Herein, three tritopic carboxylic acids were used to construct three Zr-MOFs, HIAM-4033, HIAM-4034, and HIAM-4035, to investigate the effect of carboxyl position on the MOF structures. The results showed that HIAM-4033 and HIAM-4034 possess (3,9)-c models with different underlying nets, whereas HIAM-4035 exhibits the same underlying net as UiO-68. Nanosized HIAM-4033 exhibits excellent sensitivity and selectivity for detecting aromatic acids, such as benzoic acid and 2-fluorobenzoic acid, compared with aliphatic acids and inorganic acids. This study offers new insights into achieving an organic linker directed structure evolution of Zr-MOFs, which might facilitate the discovery of unprecedented underlying nets.
Collapse
Affiliation(s)
- Jun Xia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Yingqian Xu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China.
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P. R. China.
| |
Collapse
|
15
|
Ortín-Rubio B, Rostoll-Berenguer J, Vila C, Proserpio DM, Guillerm V, Juanhuix J, Imaz I, Maspoch D. Net-clipping as a top-down approach for the prediction of topologies of MOFs built from reduced-symmetry linkers. Chem Sci 2023; 14:12984-12994. [PMID: 38023514 PMCID: PMC10664591 DOI: 10.1039/d3sc04406h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Reticular materials constructed from regular molecular building blocks (MBBs) have been widely explored in the past three decades. Recently, there has been increasing interest in the assembly of novel, intricate materials using less-symmetric ligands; however, current methods for predicting structure are not amenable to this increased complexity. To address this gap, we propose herein a generalised version of the net-clipping approach for anticipating the topology of metal-organic frameworks (MOFs) assembled from organic linkers and different polygonal and polyhedral MBBs. It relies on the generation of less-symmetric nets with less-connected linkers, via the rational deconstruction of more-symmetric and more-connected linkers in edge-transitive nets. We applied our top-down strategy to edge-transitive nets containing 4-c tetrahedral, 6-c hexagonal, 8-c cubic or 12-c hexagonal prism linkers, envisaging the formation of 102 derived and 46 clipped nets. Among these, we report 33 new derived nets (icn7-icn39) and 6 new clipped nets (icn1-icn6). Importantly, the feasibility of using net-clipping to anticipate clipped nets is supported by literature examples and new experimental additions. Finally, we suggest and illustrate that net-clipping can be extended to less-regular, non-edge transitive nets as well as to covalent-organic frameworks (COFs), thus opening new avenues for the rational design of new reticular materials exhibiting unprecedented topologies.
Collapse
Affiliation(s)
- Borja Ortín-Rubio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona 08193 Bellaterra Spain
| | - Jaume Rostoll-Berenguer
- Departament de Química Orgànica, Facultat de Química, Universitat de València 46100 Burjassot València Spain
| | - Carlos Vila
- Departament de Química Orgànica, Facultat de Química, Universitat de València 46100 Burjassot València Spain
| | - Davide M Proserpio
- Dipartamento di Chimica, Università degli Studi di Milano Milano 20133 Italy
| | - Vincent Guillerm
- Division of Physical Sciences and Engineering, Advanced Membranes & Porous Materials Center (AMPM), Functional Materials Design, Discovery & Development Research Group (FMD3), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Judith Juanhuix
- ALBA Synchrotron 08290 Cerdanyola del Vallès Barcelona Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona 08193 Bellaterra Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
16
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
17
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Khalil IE, Fonseca J, Reithofer MR, Eder T, Chin JM. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
19
|
Tran QN, Lee HJ, Tran N. Covalent Organic Frameworks: From Structures to Applications. Polymers (Basel) 2023; 15:polym15051279. [PMID: 36904520 PMCID: PMC10007052 DOI: 10.3390/polym15051279] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Three-dimensional covalent organic frameworks possess hierarchical nanopores, enormous surface areas with high porosity, and open positions. The synthesis of large crystals of three-dimensional covalent organic frameworks is a challenge, since different structures are generated during the synthesis. Presently, their synthesis with new topologies for promising applications has been developed by the use of building units with varied geometries. Covalent organic frameworks have multiple applications: chemical sensing, fabrication of electronic devices, heterogeneous catalysts, etc. We have presented the techniques for the synthesis of three-dimensional covalent organic frameworks, their properties, and their potential applications in this review.
Collapse
Affiliation(s)
- Quang Nhat Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
- Correspondence: (Q.N.T.); (N.T.)
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Ngo Tran
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
- Correspondence: (Q.N.T.); (N.T.)
| |
Collapse
|
20
|
Xi Y, Hu M, Gao L, Sun Q, Ma E, Hu W, Li M, Liu W, Sun J, Zhang C. A pyrazole-functional 3D cobalt-organic framework for fluorescence detection of Cu2+ and Hg2+. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
21
|
Hong AN, Wang Y, Chen Y, Yang H, Kusumoputro E, Bu X, Feng P. Concurrent Enhancement of Acetylene Uptake Capacity and Selectivity by Progressive Core Expansion and Extra-Framework Anions in Pore-Space-Partitioned Metal-Organic Frameworks. Chemistry 2023; 29:e202203547. [PMID: 36464911 DOI: 10.1002/chem.202203547] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022]
Abstract
A multi-stage core-expansion method is proposed here as one component of the integrative binding-site/extender/core-expansion (BEC) strategy. The conceptual deconstruction of the partitioning ligand into three editable parts draws our focus onto progressive core expansion and allows the optimization of both acetylene uptake and selectivity. The effectiveness of this strategy is shown through a family of eight cationic pore-partitioned materials containing three different partitioning ligands and various counter anions. The optimized structure, Co3 -cpt-tph-Cl (Hcpt=4-(p-carboxyphenyl)-1,2,4-triazole, H-tph=(2,5,8-tri-(4-pyridyl)-1,3,4,6,7,9-hexaazaphenalene) with the largest surface area and highest C2 H2 uptake capacity (200 cm3 /g at 298 K), also exhibits (desirably) the lowest CO2 uptake and hence the highest C2 H2 /CO2 selectivity. The successful boost in both C2 H2 capacity and IAST selectivity allows Co3 -cpt-tph-Cl to rank among the best crystalline porous materials, ionic MOFs in particular, for C2 H2 uptake and C2 H2 /CO2 experimental breakthrough separation.
Collapse
Affiliation(s)
- Anh N Hong
- Department of Chemistry, University of California, Riverside, 501 Big Springs Rd, Riverside, CA 92507, USA
| | - Yanxiang Wang
- Department of Chemistry, University of California, Riverside, 501 Big Springs Rd, Riverside, CA 92507, USA
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, 501 Big Springs Rd, Riverside, CA 92507, USA
| | - Huajun Yang
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Emily Kusumoputro
- Department of Chemistry, University of California, Riverside, 501 Big Springs Rd, Riverside, CA 92507, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, 501 Big Springs Rd, Riverside, CA 92507, USA
| |
Collapse
|
22
|
Hao J, Lang F, Hao L, Yang Y, Zhang L, Zhang H, Li QW, Pang J, Bu XH. Enhancing the singlet oxygen capture and release rate of metal−organic frameworks through interpenetration tuning. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
23
|
Li J, Huang JY, Meng YX, Li L, Zhang LL, Jiang HL. Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications. Chem Commun (Camb) 2023; 59:2541-2559. [PMID: 36749364 DOI: 10.1039/d2cc06948b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, Zr- and Ti-based metal-organic frameworks (MOFs) have gathered increasing interest in the field of chemistry and materials science, not only for their ordered porous structure, large surface area, and high thermal and chemical stability, but also for their various potential applications. Particularly, the unique features of Zr- and Ti-based MOFs enable them to be a highly versatile platform for catalysis. Although much effort has been devoted to developing Zr- and Ti-based MOF materials, they still suffer from difficulties in targeted synthesis, especially for Ti-based MOFs. In this Feature Article, we discuss the evolution of Zr- and Ti-based MOFs, giving a brief overview of their synthesis and structures. Furthermore, the catalytic uses of Zr- and Ti-based MOF materials in the previous 3-5 years have been highlighted. Finally, perspectives on the Zr- and Ti-based MOF materials are also proposed. This work provides in-depth insight into the advances in Zr- and Ti-based MOFs and boosts their catalytic applications.
Collapse
Affiliation(s)
- Ji Li
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China
| | - Jin-Yi Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Yu-Xuan Meng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China.
| | - Luyan Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Liang-Liang Zhang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, FutureTechnologies), Fujian Normal University, Fuzhou 350117, Fujian, P. R. China. .,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, ShaanXi, P. R. China.,Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
24
|
Designed Synthesis of Three-Dimensional Covalent Organic Frameworks: A Mini Review. Polymers (Basel) 2023; 15:polym15040887. [PMID: 36850171 PMCID: PMC9959482 DOI: 10.3390/polym15040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Covalent organic frameworks are porous crystals of polymers with two categories based on their covalent linkages: layered structures with two dimensions and networks with three-dimensional structures. Three-dimensional covalent organic frameworks are porous, have large surface areas, and have highly ordered structures. Since covalent bonds are responsible for the formation of three-dimensional covalent organic frameworks, their synthesis has been a challenge and different structures are generated during the synthesis. Moreover, initially, their topologies have been limited to dia, ctn, and bor which are formed by the condensation of triangular or linear units with tetrahedral units. There are very few building units available for their synthesis. Finally, the future perspective of 3D COFs has been designated for the future development of three-dimensional covalent organic frameworks.
Collapse
|
25
|
Yue L, Wang X, Guo R, Lv Y, Zhang T, Li B, Lin S, Liang Y, Chen DL, He Y. Ligand Conformation Fixation Strategy for Expanding the Structural Diversity of Copper-Tricarboxylate Frameworks and C 2H 2 Purification Performance Studies. Inorg Chem 2023; 62:2415-2424. [PMID: 36683338 DOI: 10.1021/acs.inorgchem.2c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Structural and functional expansion of metal-organic frameworks (MOFs) is fundamentally important because it not only enriches the structural chemistry of MOFs but also facilitates the full exploration of their application potentials. In this work, by employing a dual-site functionalization strategy to lock the ligand conformation, we designed and synthesized a pair of biphenyl tricarboxylate ligands bearing dimethyl and dimethoxy groups and fabricated their corresponding framework compounds through coordination with copper(II) ions. Compared to the monofunctionalized version, introduction of two side groups can significantly fix the ligand conformation, and as a result, the dual-methoxy compound exhibited a different network structure from the mono-methoxy counterpart. Although only one almost orthogonal conformation was observed for the two ligands, their coordination framework compounds displayed distinct topological structures probably due to different solvothermal conditions. Significantly, with a hierarchical cage-type structure and good hydrostability, the dimethyl compound exhibited promising practical application value for industrially important C2H2 separation and purification, which was comprehensively demonstrated by equilibrium/dynamic adsorption measurements and the corresponding Clausius-Clapeyron/IAST/DFT theoretical analyses.
Collapse
Affiliation(s)
- Lianglan Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Xinxin Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Rou Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yueli Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Ting Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Bing Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Shengjie Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - Ye Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| | - De-Li Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua321004, China
| | - Yabing He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua321004, China
| |
Collapse
|
26
|
Li X, Liu J, Zhou K, Ullah S, Wang H, Zou J, Thonhauser T, Li J. Tuning Metal–Organic Framework (MOF) Topology by Regulating Ligand and Secondary Building Unit (SBU) Geometry: Structures Built on 8-Connected M 6 (M = Zr, Y) Clusters and a Flexible Tetracarboxylate for Propane-Selective Propane/Propylene Separation. J Am Chem Soc 2022; 144:21702-21709. [DOI: 10.1021/jacs.2c09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Xingyu Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jiaqi Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Saif Ullah
- Department of Physics and Center for functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Jizhao Zou
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Timo Thonhauser
- Department of Physics and Center for functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
27
|
Xia HL, Zhou K, Yu L, Wang H, Liu XY, Li J. A Zirconium-Organic Framework Constructed from Saddle-Shaped Tetratopic Carboxylate for High-Rate and -Efficiency Iodine Capture. Inorg Chem 2022; 61:17109-17114. [PMID: 36254837 DOI: 10.1021/acs.inorgchem.2c02547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) exhibit strong potential for applications in molecular adsorption and separation because of their highly tunable structures and large specific surface areas and have also been used for iodine capture. However, most works on MOF-based iodine capture focus on the adsorption capacity while taking little consideration of the capture rate and efficiency. Herein, we report the design of a saddle-shaped tetratopic carboxylic acid containing four thiophene groups (H4COTTBA) and the synthesis of a 4,8-connected flu-type zirconium MOF (HIAM-4014) using this linker. HIAM-4014 exhibits highly efficient iodine capture. The large cagelike pore structure, OH- groups on the unsaturated Zr6 clusters, electron-rich nature of the thiophene group in the linker, and high surface area are all attributed to the tetrahedral geometry of H4COTTBA, which endows HIAM-4014 with a relatively high iodine adsorption capacity of 2.50 g/g within 2 h and an equilibrium adsorption capacity of 2.68 g/g after 5 h. Coupled with a high elution ratio and great recyclability, HIAM-4014 is a good candidate for the efficient removal of waste iodine.
Collapse
Affiliation(s)
- Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, People's Republic of China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, People's Republic of China.,Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
28
|
Zheng HQ, Zhang L, Lu M, Xiao X, Yang Y, Cui Y, Qian G. Precise Design and Deliberate Tuning of Turn-On Fluorescence in Tetraphenylpyrazine-Based Metal−Organic Frameworks. Research (Wash D C) 2022; 2022:9869510. [PMID: 36340506 PMCID: PMC9609278 DOI: 10.34133/2022/9869510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022] Open
Abstract
The manipulation on turn-on fluorescence in solid state materials attracts increasing interests owing to their widespread applications. Herein we report how the nonradiative pathways of tetraphenylpyrazine (TPP) units in metal−organic frameworks (MOFs) systems could be hindered through a topological design approach. Two MOFs single crystals of different topology were constructed via the solvothermal reaction of a TPP-based 4,4′,4″,4‴-(pyrazine-2,3,5,6-tetrayl) tetrabenzoic acid (H4TCPP) ligand and metal cations, and their mechanisms of formation have been explored. Compared with the innate low-frequency vibrational modes of flu net Tb-TCPP-1, such as phenyl ring torsions and pyrazine twists, Tb-TCPP-2 adopts a shp net, so the dihedral angle of pyrazine ring and phenyl arms is larger, and the center pyrazine ring in TPP unit is coplanar, which hinders the radiationless decay of TPP moieties in Tb-TCPP-2. Thereby Tb-TCPP-2 exhibits a larger blue-shifted fluorescence and a higher fluorescence quantum yield than Tb-TCPP-1, which is consistent with the reduced nonradiative pathways. Furthermore, Density functional theory (DFT) studies also confirmed aforementioned tunable turn-on fluorescence mechanism. Our work constructed TPP-type MOFs based on a deliberately topological design approach, and the precise design of turn-on fluorescence holds promise as a strategy for controlling nonradiative pathways.
Collapse
Affiliation(s)
- He-Qi Zheng
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lin Zhang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengting Lu
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoyan Xiao
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Yang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Meng SS, Han T, Gu YH, Zeng C, Tang WQ, Xu M, Gu ZY. Enhancing Separation Abilities of "Low-Performance" Metal-Organic Framework Stationary Phases through Size Control. Anal Chem 2022; 94:14251-14256. [PMID: 36194134 DOI: 10.1021/acs.analchem.2c02575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peak broadening and peak tailing are common but rebarbative phenomena that always occur when using metal-organic frameworks (MOFs) as stationary phases. These phenomena result in diverse "low-performance" MOF stationary phases. Here, by adjusting the particle size of MOF stationary phases from microscale to nanoscale, we successfully enhance the separation abilities of these "low-performance" MOFs. Three zirconium-based MOFs (NU-1000, PCN-608, and PCN-222) with different organic ligands were synthesized with sizes of tens of micrometers and hundreds of nanometers, respectively. All the nanoscale MOFs exhibited exceedingly higher separation abilities than the respective microscale MOFs. The mechanism investigation proved that reducing the particle size can reduce the mass transfer resistance, thus enhancing the column efficiency by controlling the separation kinetics. Modulating the particle size of MOFs is an efficient way to enhance the separation capability of "low-performance" MOFs and to design high-performance MOF stationary phases.
Collapse
Affiliation(s)
- Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ting Han
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Hao Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chu Zeng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wen-Qi Tang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
30
|
Xu M, Cai P, Meng SS, Yang Y, Zheng DS, Zhang QH, Gu L, Zhou HC, Gu ZY. Linker Scissoring Strategy Enables Precise Shaping of Metal-Organic Frameworks for Chromatographic Separation. Angew Chem Int Ed Engl 2022; 61:e202207786. [PMID: 35723492 DOI: 10.1002/anie.202207786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Precise shaping of metal-organic frameworks (MOFs) is significant in both fundamental coordination chemistry and practical applications, such as catalysis, separation, and biomedicine. Herein, we demonstrated a linker scissoring strategy for precisely shaping MOFs through surface conformational pairing. In this strategy, the bidentate linkers which were designed according to the original tetratopic ligands and the coordination environment of MOF surfaces, were utilized as the covering agents. The shape of these covering agents and the surface conformation of metals onto MOFs restricted them to coordinate on specific MOF facets thus precisely controlling the shape of the MOFs. Different shapes of PCN-608 from nanoplate (PCN-NP) to nanorod (PCN-NR) have been targeted by adding different bidentate linkers. The universality of this strategy was demonstrated by controlling the shapes of the NU-MOFs from nanoplate to nanorod. This strategy provides a new guiding principle to synthesize MOF nanocrystals with controlled shapes.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing-Hua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
31
|
Ma C, Pan W, Zhang J, Zeng X, Gong C, Xu H, Shen R, Zhu DR, Xie J. Metal-organic frameworks derived from chalcone dicarboxylic acid: new topological characters and initial catalytic properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Xu M, Cai P, Meng SS, Yang Y, Zeng DS, Zhang QH, Gu L, Zhou HC, Gu ZY. Linker Scissoring Strategy Enables Precise Shaping of Metal‐Organic Frameworks for Chromatographic Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Xu
- Nanjing Normal University chemistry CHINA
| | - Peiyu Cai
- Texas A&M University chemistry UNITED STATES
| | | | - Yihao Yang
- Texas A&M University chemistry UNITED STATES
| | | | | | - Lin Gu
- Chinese Academy of Sciences physics CHINA
| | - Hong-Cai Zhou
- Texas A&M University College Station: Texas A&M University Department of Chemistry Corner of Ross and Spence StreetsP O Box 30012 77842-3012 College Station UNITED STATES
| | | |
Collapse
|
33
|
Structure Tuning of Hafnium Metal–Organic Frameworks through a Mixed Solvent Approach. CRYSTALS 2022. [DOI: 10.3390/cryst12060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent development of water-stable metal–organic frameworks (MOFs) has significantly broadened the application scope of this emerging type of porous material. Structure tuning of hafnium MOFs is less studied compared with zirconium MOFs. In this work, we report the synthesis of a mesoporous hafnium MOF, csq-MOF-1, through finely tuning the solvent mixture ratio. The successful synthesis of csq-MOF-1 also relies on the linker flexibility as linker bending and a symmetry decrease were observed in this framework as compared to its structural isomer NPF-300 (Hf). The mesoporous feature and permanent porosity were determined by the N2 adsorption at 77 K. Such a hierarchical pore feature is expected to enable a variety of applications through encapsulation of large functional molecules. The synthetic strategy of utilizing a mixed solvent and flexible linker is expected to inspire the development of new hafnium MOFs with diverse topological structures.
Collapse
|
34
|
Xia HL, Zhou K, Yu L, Wang H, Liu XY, Proserpio DM, Li J. Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracarboxylate Frameworks. Inorg Chem 2022; 61:7980-7988. [PMID: 35533367 DOI: 10.1021/acs.inorgchem.2c00660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Metal-organic frameworks (MOFs) demonstrate strong potential for various important applications due to their well tunable structures and compositions through metal and organic linker engineering. As an effective approach, topology evolution by controlling linker conformation has received considerable attention, where solvents and acids have crucial effects on structural formation. However, a systematic study of such effects remains under investigated. Herein, we carried out a methodical study on the topology evolution in Zr-MOFs directed by solvothermal conditions with various combinations of three common solvents and six different acids. As a result, three Zr-MOFs with different topologies, scu (HIAM-4007), scp (HIAM-4008), and csq (HIAM-4009), were obtained using the same Zr6-cluster and tetratopic carboxylate linker, in which structure diversity shows significant influence on their corresponding photoluminescence quantum yields. Further experiments revealed that the acidity of acids and the basicity of solvents strongly influenced the linker conformation in the resultant MOFs, leading to the topology evolution. Such a solvent- and acid-assisted topology evolution represents a general approach that can be used with other tetratopic carboxylate linkers to realize structural diversity. The present work demonstrates an effective structure designing strategy by controlling synthetic conditions, which may prove to be powerful for customized synthesis of MOFs with specific structure and functionality.
Collapse
Affiliation(s)
- Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Liang Yu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Davide M Proserpio
- Dipartimento di Chimica, Università degli Studi di Milano, Milano 20133, Italy
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China.,Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
35
|
Gong X, Gnanasekaran K, Ma K, Forman CJ, Wang X, Su S, Farha OK, Gianneschi NC. Rapid Generation of Metal-Organic Framework Phase Diagrams by High-Throughput Transmission Electron Microscopy. J Am Chem Soc 2022; 144:6674-6680. [PMID: 35385280 DOI: 10.1021/jacs.2c01095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-organic frameworks (MOFs) constructed from Zr6 nodes and tetratopic carboxylate linkers display high structural diversity and complexity in which various crystal topologies can result from identical building units. To determine correlations between MOF topologies and experimental parameters, such as solvent choice or modulator identity and concentration, we demonstrate the rapid generation of phase diagrams for Zr6-MOFs with 1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene linkers under a variety of conditions. We have developed a full set of methods for high-throughput transmission electron microscopy (TEM), including automated sample preparation and data acquisition, to accelerate MOF characterization. The use of acetic acid as a modulator yields amorphous, NU-906, NU-600, and mixed-phase structures depending on the ratio of N,N-dimethylformamide to N,N-diethylformamide solvent and the quantity of the modulator. Notably, the use of formic acid as a modulator enables direct control of crystal growth along the c direction through variation of the modulator quantity, thus realizing aspect ratio control of NU-1008 crystals with different catalytic hydrolysis performance toward a nerve agent simulant.
Collapse
Affiliation(s)
- Xinyi Gong
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Karthikeyan Gnanasekaran
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher J Forman
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shengyi Su
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Departments of Biomedical Engineering, Materials Science & Engineering, and Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, and Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Xu M, Meng SS, Cai P, Gu YH, Yan TA, Yan TH, Zhang QH, Gu L, Liu DH, Zhou HC, Gu ZY. Homogeneously Mixing Different Metal-Organic Framework Structures in Single Nanocrystals through Forming Solid Solutions. ACS CENTRAL SCIENCE 2022; 8:184-191. [PMID: 35233451 PMCID: PMC8874727 DOI: 10.1021/acscentsci.1c01344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 06/01/2023]
Abstract
Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Sha-Sha Meng
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Peiyu Cai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yu-Hao Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Tong-An Yan
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tian-Hao Yan
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Qing-Hua Zhang
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Institute
of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Da-Huan Liu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing Advanced
Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77842, United States
| | - Zhi-Yuan Gu
- Jiangsu
Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation
Center of Biomedical Functional Materials, Jiangsu Key Laboratory
of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
37
|
Lv HJ, Zhang JW, Jiang YC, Li SN, Hu MC, Zhai QG. Micropore Regulation in Ultrastable [Sc 3O]-Organic Frameworks for Acetylene Storage and Purification. Inorg Chem 2022; 61:3553-3562. [PMID: 35148476 DOI: 10.1021/acs.inorgchem.1c03562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High storage capacity, high separation selectivity, and high structure stability are essential for an idea gas adsorbent. However, it is not easy to achieve all three at the same time, even for the promising metal-organic framework (MOF) adsorbents. We demonstrate herein that robust [Sc3O]-organic frameworks could be regulated by a micropore combination strategy for high-performance acetylene adsorption. Under the same solvent system with formic acid as a modulator, similar tritopic ligands extend [Sc3O(COO)6] trigonal-prismatic clusters to generate SNNU-5-Sc and SNNU-150-Sc adsorbents. Notably, the two Sc-MOFs can keep their architectures over 24 h in water at different pH values (2-12) or at 90 °C. Modulated by the linker symmetry, the final stacking metal-organic polyhedral cages produce open window sizes of about 10 Å for SNNU-5-Sc and 5 Å + 7 Å for SNNU-150-Sc. Due to such micropore combinations, SNNU-5-Sc exhibits a top-level C2H2 uptake of 211.2 cm3 g-1 (1 atm and 273 K) and SNNU-150-Sc shows high C2H2/CH4, C2H2/C2H4, and C2H2/CO2 selectivities of 80.65, 4.03, and 8.19, respectively, under ambient conditions. Dynamic breakthrough curves obtained on a fixed-bed column and grand canonical Monte Carlo (GCMC) simulations further support their prominent acetylene storage and purification performance. High framework stability, storage capacity, and separation selectivity make SNNU-5-Sc and SNNU-150-Sc ideal acetylene adsorbents in practical applications.
Collapse
Affiliation(s)
- Hong-Juan Lv
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Jian-Wei Zhang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, People's Republic of China
| | - Yu-Cheng Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Shu-Ni Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Man-Cheng Hu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, People's Republic of China
| |
Collapse
|
38
|
|
39
|
Xia HL, Zhou K, Guo J, Zhang J, Huang X, Luo D, Liu XY, Li J. Amino Group Induced Structural Diversity and Near-Infrared Emission of Yttrium-Tetracarboxylate Frameworks. Chem Sci 2022; 13:9321-9328. [PMID: 36093003 PMCID: PMC9383869 DOI: 10.1039/d2sc02683j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
Near-infrared (NIR)-emitting materials have been extensively studied due to their important applications in biosensing and bioimaging. Luminescent metal–organic frameworks (LMOFs) are a new class of highly emissive materials with strong potential for utilization in biomedical related fields because of their nearly unlimited structural and compositional tunability. However, very little work has been reported on organic linker-based NIR-MOFs and their emission properties. In the present work, a series of yttrium-tetracarboxylate-based LMOFs (HIAM-390X) are prepared via judicious linker design to achieve NIR emission with diverse structures. The introduction of an amino group not only offers the remarkable emission bathochromic shift from 521 nm, 665 nm to 689 nm for the resultant MOFs, but also influences the linker conformations, leading to the topology evolution from (4,12)-c ftw, (4,8)-c scu, which is rarely reported in rare earth element-based MOFs, to an unprecedented topology hlx for HIAM-3901 (without an amino group), HIAM-3905 (with one amino group) and HIAM-3906 (with two amino groups). Among these MOFs, HIAM-3907 shows an emission maximum at ∼790 nm, with the emission tail close to 1000 nm. The NIR emission may be attributed to the combination of the strongly electron-donating amino group and the strongly electron-withdrawing acceptor naphtho[2,3-c][1,2,5]selenadiazole. This work sheds light on the rational design of organic linker-based LMOFs with controlled structures and NIR emission, and inspires future interest in biosensing and bioimaging related applications of NIR-MOFs. Introduction of amino groups into linkers will not only induce a significant emission red-shift to near-infrared, but also increase structural diversity of resultant LMOFs, leading to structural change from ftw, scu to an unprecedented topology hlx.![]()
Collapse
Affiliation(s)
- Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jiandong Guo
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
- School of Materials and Environmental Engineering, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Xiaoxi Huang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Dawei Luo
- School of Materials and Environmental Engineering, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road, Piscataway New Jersey 08854 USA
| |
Collapse
|
40
|
Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Li R, Zhang H, Hong M, Shi J, Liu X, Feng X. Two Co(II)/Ni(II) complexes based on nitrogenous heterocyclic ligand as high-performance electrocatalyst for hydrogen evolution reaction. Dalton Trans 2022; 51:3970-3976. [DOI: 10.1039/d1dt03814a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two transition metal complexes {[Co2(bpda)4(H2O)2]⋅4H2O}n(Co-1) and {[Ni(bpda)2(H2O)2]⋅2H2O}(Ni-2) (H2bpda = 2,2 '- bipyridine -4,4' - dicarboxylic acid) have been synthesized by hydrothermal method and characterized. These two compounds can be explored...
Collapse
|
42
|
Xiong K, Li X, Shi Y, Zhang J, Zhang Y, Zhang K, Wu M, Gai Y. Sodalite Cd 66-Cage-Based Metal-Organic Framework Constructed by Cd 9 and Cd 5 Metal-Organic Clusters. Inorg Chem 2021; 60:17435-17439. [PMID: 34797044 DOI: 10.1021/acs.inorgchem.1c02765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sodalite Cd66-cage-based metal-organic framework (MOF), namely, CPM-9S, has been constructed based on Cd9 and Cd5 metal-organic clusters (MOCs), which, to the best our knowledge, represents the first Cd-cage-based MOF that contains the highest-nuclear Cd-based MOC and the largest number of Cd2+ ions in a cage. The iodine adsorption performances in terms of the iodine adsorption capacity, adsorption isotherm, and adsorption kinetics, as well as the adsorption mechanism, have been further studied.
Collapse
Affiliation(s)
- Kecai Xiong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China.,State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Xin Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yuwen Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Jinli Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Kehao Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Mingyan Wu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yanli Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
43
|
Hurlock MJ, Hao L, Kriegsman KW, Guo X, O'Keeffe M, Zhang Q. Evolution of 14-Connected Zr 6 Secondary Building Units through Postsynthetic Linker Incorporation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51945-51953. [PMID: 34124879 DOI: 10.1021/acsami.1c07701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two new zirconium MOFs, WSU-6 and WSU-7, were synthesized through postsynthetic modifications. In both cases, linker insertion was conducted on a MOF consisting of eight-connected (8-c) Zr6 cluster and four-connected (4-c) ETTC linker, WSU-5, which possesses the uncommon 4, 8-c scu-c topology. The insertion of 1, 4-benzenedicarboxylate into the MOF formed the new 4, 12-c mjh topology, WSU-6. Interestingly, when 2, 6-naphthalenedicarboxylate was inserted, WSU-7 can be formed, which possesses a new 4, 14-c jkz topology. WSU-7 contains very rare 14-c Zr6 secondary building units (SBUs) and is the first MOF to have a Zr6 SBUs with connectivity greater than 12. The three Zr-MOFs were structurally characterized, and the photoluminescence properties of the materials were also studied.
Collapse
Affiliation(s)
| | | | | | | | - Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | | |
Collapse
|
44
|
Chen G, Huang S, Shen Y, Kou X, Ma X, Huang S, Tong Q, Ma K, Chen W, Wang P, Shen J, Zhu F, Ouyang G. Protein-directed, hydrogen-bonded biohybrid framework. Chem 2021. [DOI: 10.1016/j.chempr.2021.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Zhou J, Li Y, Wang L, Xie Z. Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances. J Mater Chem B 2021; 9:7760-7770. [PMID: 34586151 DOI: 10.1039/d1tb01311d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photoactive MOF-based delivery systems are highly attractive for photodynamic therapy (PDT), but the fundamental interplay among structural parameters and photoactivity and biological properties of these MOFs remains unclear. Herein, porphyrinic MOF isomers (TCPP-MOFs), constructing using the same building blocks into distinct topologies, have been selected as ideal models to understand this problem. Both the intramolecular distances and molecular polarization within TCPP-MOFs isomers collectively contribute to the photoactivity of generating reactive oxygen species. Remarkably, the morphology-determined endocytic pathways and cytotoxicity, as well as good biocompatibility have been confirmed for TCPP-MOF isomers without any chemical modification for the first time. Besides the topology-dependent photoactive regulation, this work also provides in-depth insights into the biological effect from the MOF nanoparticles with controllable structural factors, benefiting further in vivo applications and clinical transformation.
Collapse
Affiliation(s)
- Junli Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
46
|
Ma J, Zhang WZ, Liu Y, Yi WT. Synthesis, crystal structure and magnetic properties of poly[[diaqua{μ 6-2-[bis-(carboxyl-atometh-yl)amino]-terephthalato}-dicobalt(II)] 1.6-hydrate]. Acta Crystallogr E Crystallogr Commun 2021; 77:939-943. [PMID: 34584766 PMCID: PMC8423006 DOI: 10.1107/s2056989021008355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
The asymmetric unit of the polymeric title compound {[Co2(C12H7NO8)(H2O)2]·1.6H2O} n comprises two CoII ions, which are coordinated by fully deprotonated 2-aminodi-acetic terephthalic acid (adtp4-) and terminal water mol-ecules in distorted octa-hedral N1O5 and O6 coordination environments. The title compound features tetra-nuclear CoII units bridged by κ 3 O:O:O'- and κ 3 O:O,O'-carboxyl-ate groups, which are joined into ribbons via syn-anti carboxyl-ate bridges. The parallel adtp4- ligands with an alternately reversed arrangement further link adjacent CoII ribbons into (010) layers, which are assembled into a three-dimensional supra-molecular network via inter-molecular hydrogen bonds. The disordered water solvent mol-ecules are situated in channels parallel to [100]. Magnetic measurements and analyses reveal that the title compound displays anti-ferromagnetic behaviour. The purity of the title compound was characterized by X-ray powder diffraction.
Collapse
Affiliation(s)
- Jie Ma
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, 277160, People’s Republic of China
| | - Wen-Zhi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, 277160, People’s Republic of China
| | - Yong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, 277160, People’s Republic of China
| | - Wen-Tao Yi
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang, Shandong, 277160, People’s Republic of China
| |
Collapse
|
47
|
Zou Y, Huang K, Zhang X, Qin D, Zhao B. Tetraphenylpyrazine-Based Manganese Metal-Organic Framework as a Multifunctional Sensor for Cu 2+, Cr 3+, MnO 4-, and 2,4,6-Trinitrophenol and the Construction of a Molecular Logical Gate. Inorg Chem 2021; 60:11222-11230. [PMID: 34259513 DOI: 10.1021/acs.inorgchem.1c01226] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A tetraimidazole-decorating tetraphenylpyrazine has been designed and utilized for the fabrication of a novel metal-organic framework (MOF), denoted as {Mn(Tipp)(A)2}n·2H2O (TippMn, where Tipp = 2,3,5,6-tetrakis[4-[(1H-imidazol-1-yl)methyl]phenyl]pyrazine and A = deprotonation of 1,4-naphthalenedicarboxylic acid), through hydrothermal synthesis. Structural analysis reveals that TippMn possesses a 2-fold-interpenetrated 4,8-connected three-dimensional (3D) network with an unprecedented {416·612}{44·62} topology. Fluorescent spectral investigations indicate that TippMn shows discriminative fluorescence when treated by Cr3+ and Cu2+, giving an INHIBIT logical gate performance. Meanwhile, TippMn can be further used as a sensor for MnO4- and 2,4,6-trinitrophenol (TNP) by fluorescence quenching. Notably, the sensing processes toward Cu2+, Cr3+, MnO4-, and TNP are labeled with high selectivity and sensitivity, quick response, and good recyclability. It is anticipated that this MOF-based versatile sensor could shed light on the exploration of MOFs for fluorescent sensors, optical switches, etc.
Collapse
Affiliation(s)
- Yi Zou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Xiangyu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China
| | - Bin Zhao
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China.,Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
48
|
Hussain I, Jalil AA, Hamid MYS, Hassan NS. Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review. CHEMOSPHERE 2021; 277:130285. [PMID: 33794437 DOI: 10.1016/j.chemosphere.2021.130285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.
Collapse
Affiliation(s)
- I Hussain
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - M Y S Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| |
Collapse
|
49
|
Li Y, Li X, Jia S, Zhang C, Luo Y, Lin Z, Zhao Y, Huang W. Construction of Highly Proton-Conductive Zr(IV)-Based Metal-Organic Frameworks From Pyrrolo-pyrrole-Based Linkers with a Rhombic Shape. Inorg Chem 2021; 60:12129-12135. [PMID: 34310114 DOI: 10.1021/acs.inorgchem.1c01336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To date, numerous zirconium cluster-based metal-organic frameworks (Zr-MOFs) with attractive physical properties have been achieved thanks to tailorable organic linkers and versatile Zr clusters. Nevertheless, in comparison with the most-used high-symmetry organic linkers, low-symmetry linkers have rarely been exploited in the construction of Zr-MOFs. Despite challenges in predicting the structure and topology of the MOF, linker desymmetrization presents opportunities for the design of Zr-MOFs with unusual topologies and unexpected functionalities. Herein, we report for the first time the construction of two robust Zr-MOFs (IAM-7 and IAM-8) from two pyrrolo-pyrrole-based low-symmetry tetracarboxylate linkers with a rare rhombic shape. The low symmetry of the linkers arises from the asymmetric pyrrolo-pyrrole core and the varying branch lengths, which play a critical role in the structural diversity between IAM-7 and IAM-8 seen from the structural analysis and lead to hydrophilic channels that contain uncoordinated carboxylate groups in the structure of IAM-7. Furthermore, the proton conductivity of IAM-7 displays a high temperature and humidity dependence where the proton conductivity increases from 2.84 × 10-8 S cm-1 at 30 °C and 40% relative humidity (RH) to 1.42 × 10-2 S cm-1 at 90 °C and 95% RH, making it among one of the most conductive Zr-MOFs. This work not only enriches the library of Zr-MOFs but also offers a platform for the design of low-symmetry linkers toward the structural diversity or irregularity of MOFs as well as their structure-related properties.
Collapse
Affiliation(s)
- Yiyang Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Xiaoteng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Shuping Jia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Chong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Yuxin Luo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Zhihua Lin
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yonggang Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
50
|
Zhang X, Fan W, Jiang W, Li Y, Wang Y, Fu M, Sun D. Optimizing Fe-Based Metal-Organic Frameworks through Ligand Conformation Regulation for Efficient Dye Adsorption and C 2 H 2 /CO 2 Separation. Chemistry 2021; 27:10693-10699. [PMID: 33886157 DOI: 10.1002/chem.202101053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 11/06/2022]
Abstract
Regulating the structure of metal-organic frameworks (MOFs) by adjusting the ligands reasonably is expected to enhance the interaction of MOFs on special molecules/ions, which has significant application value for the selective adsorption of guest molecules. Herein, two tricarboxylic ligands H3 L-Cl and H3 L-NH2 were designed and synthesized based on the ligand H3 TTCA by replacing part of the benzene rings with C=C bonds and modifying the chlorine and amino groups on the 4-position of the benzene ring. Two 3D Fe-MOFs (UPC-60-Cl and UPC-60-NH2 ) with the new topology types were constructed. As the C=C bonds of the ligands have flexible torsion angles, UPC-60-Cl features three types of irregular 2D channels, while UPC-60-NH2 has a cage with two types of windows on the surface. The synergistic effect of unique channels and modification of functional groups endows UPC-60-Cl and UPC-60-NH2 with high adsorption capacity for organic dyes. Compound UPC-60-Cl shows high adsorption capacity for CV (147.2 mg g-1 ), RHB (100.3 mg g-1 ), and MO (220.9 mg g-1 ), whereas UPC-60-NH2 exhibits selective adsorption of MO (158.7 mg g-1 ). Meanwhile, based on the diverse pore structure and modification of active sites, UPC-60-Cl and UPC-60-NH2 show the selective separation of equimolar C2 H2 /CO2 . Therefore, reasonable regulation of organic ligands plays a significant role in guiding the structure diversification and performance improvement of MOFs.
Collapse
Affiliation(s)
- Xiurong Zhang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), NO. 66, Changjiang Road West, Qingdao, Shandong, 266580, P.R. China
| | - Weidong Fan
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), NO. 66, Changjiang Road West, Qingdao, Shandong, 266580, P.R. China
| | - Weifeng Jiang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), NO. 66, Changjiang Road West, Qingdao, Shandong, 266580, P.R. China
| | - Yue Li
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), NO. 66, Changjiang Road West, Qingdao, Shandong, 266580, P.R. China
| | - Yutong Wang
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), NO. 66, Changjiang Road West, Qingdao, Shandong, 266580, P.R. China
| | - Mingyue Fu
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), NO. 66, Changjiang Road West, Qingdao, Shandong, 266580, P.R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), NO. 66, Changjiang Road West, Qingdao, Shandong, 266580, P.R. China
| |
Collapse
|