1
|
Espinoza Cangahuala MK, Krishnaswamy SR, Kuevda AV, Pshenichnikov MS, Jansen TLC. The first step of cyanine dye self-assembly: Dimerization. J Chem Phys 2025; 162:054311. [PMID: 39912499 DOI: 10.1063/5.0237531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Self-assembling amphiphilic cyanine dyes, such as C8S3, are promising candidates for energy storage and optoelectronic applications due to their efficient energy transport properties. C8S3 is known to self-assemble in water into double-walled J-aggregates. Thus far, the molecular self-assembly steps remain shrouded in mystery. Here, we employ a multiscale approach to unravel the first self-assembly step: dimerization. Our multiscale approach combines molecular dynamics simulations with quantum chemistry calculations to obtain a Frenkel exciton Hamiltonian, which we then use in spectral calculations to determine the absorption and two-dimensional electronic spectra of C8S3 monomer and dimer systems. We model these systems solvated in both water and methanol, validating our model with experiments in methanol solution. Our theoretical results predict a measurable anisotropy decay upon dimerization, which is experimentally confirmed. Our approach provides a tool for the experimental probing of dimerization. Moreover, molecular dynamics simulations reveal that the dimer conformation is characterized by the interaction between the hydrophobic aliphatic tails rather than the π-π stacking previously reported for other cyanine dyes. Our results pave the way for future research into the mechanism of molecular self-assembly in similar light-harvesting complexes, offering valuable insights for understanding and optimizing self-assembly processes for various (nano)technological applications.
Collapse
Affiliation(s)
- Mónica K Espinoza Cangahuala
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Sundar Raj Krishnaswamy
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Alexey V Kuevda
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Maxim S Pshenichnikov
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Chen J, He J, Wu X, Li Y. Controlled Self-assembly of Nanographdiynes Mediated by Molecular Dipoles Induced by Rotatory Asymmetric Substituents. Chemistry 2025:e202404275. [PMID: 39868966 DOI: 10.1002/chem.202404275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
The discrete π- stacks of specific lengths and orientation is crucial for understanding the impact of intermolecular interactions on optical or electronic properties of nanographdiynes. We designed and synthesized nanographdiynes modified with bulky rotatable asymmetric substituents. The peripheral substituents with different push-pull electronic properties can induce molecular dipoles perpendicular to nanoGDY π surface with different orientation. Mediated by directional dipole-dipole interactions, o-TBGDY substituted with electron-donating tert-butylphenyl groups cofacially dimerized with a twist angle, involving intermolecular interlocking of ortho-substituted tert-butylphenyl groups. In contrast, OTFGDY substituted with electron-withdrawing trifluorophenyl groups formed dimeric H-aggregates with an in-plane shift along one diyne linkage, in which the ortho-substituted trifluorophenyl groups point toward the outside of the interacting π-plane. o-TBGDY can only exist as isolated H-dimer in the solid state, while OTFGDY can form a hybrid tetramer of H- and J-aggregates. Our researches reveal a new method for preparing discrete π-stacked dye assemblies with well-defined optoelectronic properties.
Collapse
Affiliation(s)
- Jing Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institution Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jingyi He
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institution Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xingzhong Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institution Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongjun Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institution Institute of Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
3
|
Wang X, Zhou J, Wang M, Wang Y, Shen Z, Sun H, Hu Z, Luo X, Yang Y, Chen J. Proximal Oblique-Packing of Heptamethine Cyanines through Spiro-Connection Boosts Triplet State Generation in Near-Infrared. Angew Chem Int Ed Engl 2025:e202425422. [PMID: 39809703 DOI: 10.1002/anie.202425422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Near-infrared (NIR) triplet dyes are the cornerstones of cutting-edge biomedical and material applications. The difficulty in rational development of triplet dyes increases exponentially as the absorption wavelength shifts deeper into the NIR range. Although classical H-/J-typed packing of NIR dyes has the potential to enhance intersystem crossing (ISC) compared with that in single-chromophore dyes, the triplet state quantum yields remain limited in such strategy. Herein, proximal oblique-packed (V-shaped) heptamethine cyanines (SZ780) through spiro-connection were achieved. Multi-channel ultrafast ISC were direct observed in SZ780 and a record high ISC rate constant (up to ~1011 s-1) is registered among all the reported NIR triplet dyes. SZ780 exhibits a triplet state quantum yield of 18.9 % upon excitation at 750 nm, which is almost an order of magnitude higher than that of the monomer (IR780, 2.1 %) and nearly threefold increase compared to that of the H-packed dimer (SC780) (6.7 %). Moreover, SZ780 efficiently generates singlet oxygen under 808 nm light irradiation, inducing cancer cell apoptosis in vivo. These findings demonstrate that constructing V-aggregated dyes system by spiro-connection offers a powerful approach for the design of high-performance NIR triplet sensitizers.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Mingkang Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuze Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhetao Shen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
4
|
Lee S, Song G, Jeong KS. Stimuli-Responsive Molecular Duplexes Displaying Duplex-to-Duplex Switching. Angew Chem Int Ed Engl 2024; 63:e202410884. [PMID: 38937392 DOI: 10.1002/anie.202410884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Synthetic duplexes with high stabilities have promising potential for mimicking biomolecular functions and developing supramolecular smart materials. Herein, we describe the synthesis and stimuli-responsive properties of molecular duplexes derived from indolocarbazole-pyridine (I-P) oligomers. These duplexes adopt nonclassical helical structures, stabilized by I-P hydrogen-bonding pairs in anhydrous chlorinated solvents. Notably, the longest duplex 62 (11-mer)2 displays remarkable stability, forming twenty hydrogen bonds; its exchange energy barrier was determined to be ΔG≠=22.0 kcal ⋅ mol-1 at 75 °C in anhydrous (CDCl2)2. Upon the addition of water, a hydrated duplex 62 (11-mer)2⊃10H2O was formed, with one water molecule inserted between each I-P hydrogen-bonding pair. The Hill coefficient (n) for this process is 6.1, demonstrating extremely positive cooperativity. Conversely, the hydrated duplex 62 (11-mer)2⊃10H2O was completely converted into the original anhydrous duplex 62 (11-mer)2 when the temperature was increased. Interconversion between these two distinct duplexes can be repeatedly carried out by varying the temperature. Furthermore, reversible switching between hetero-duplexes and homo-duplexes was also demonstrated by controlling the temperature, with concomitant changes in the characteristic emission signals.
Collapse
Affiliation(s)
- Seungwon Lee
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Geunmoo Song
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyu-Sung Jeong
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Sohoni S, Ghosh I, Nash GT, Jones CA, Lloyd LT, Li BC, Ji KL, Wang Z, Lin W, Engel GS. Optically accessible long-lived electronic biexcitons at room temperature in strongly coupled H- aggregates. Nat Commun 2024; 15:8280. [PMID: 39333466 PMCID: PMC11437198 DOI: 10.1038/s41467-024-52341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
Photon absorption is the first process in light harvesting. Upon absorption, the photon redistributes electrons in the materials to create a Coulombically bound electron-hole pair called an exciton. The exciton subsequently separates into free charges to conclude light harvesting. When two excitons are in each other's proximity, they can interact and undergo a two-particle process called exciton-exciton annihilation. In this process, one electron-hole pair spontaneously recombines: its energy is lost and cannot be harnessed for applications. In this work, we demonstrate the creation of two long-lived excitons on the same chromophore site (biexcitons) at room temperature in a strongly coupled H-aggregated zinc phthalocyanine material. We show that exciton-exciton annihilation is suppressed in these H- aggregated chromophores at fluences many orders of magnitudes higher than solar light. When we chemically connect the same aggregated chromophores to allow exciton diffusion, we observe that exciton-exciton annihilation is switched on. Our findings demonstrate a chemical strategy, to toggle on and off the exciton-exciton annihilation process that limits the dynamic range of photovoltaic devices.
Collapse
Affiliation(s)
- Siddhartha Sohoni
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Indranil Ghosh
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Claire A Jones
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Lawson T Lloyd
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Beiye C Li
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | - Karen L Ji
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Zitong Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Gregory S Engel
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Pritzker School for Molecular Engineering, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Bressan G, Penty SE, Green D, Heisler IA, Jones GA, Barendt TA, Meech SR. Ultrafast and Coherent Dynamics in a Solvent Switchable "Pink Box" Perylene Diimide Dimer. Angew Chem Int Ed Engl 2024; 63:e202407242. [PMID: 39092492 DOI: 10.1002/anie.202407242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Perylene diimide (PDI) dimers and higher aggregates are key components in organic molecular photonics and photovoltaic devices, supporting singlet fission and symmetry breaking charge separation. Detailed understanding of their excited states is thus important. This has proven challenging because interchromophoric coupling is a strong function of dimer architecture. Recently, a macrocyclic PDI dimer was reported in which excitonic coupling could be turned on and off simply by changing the solvent. This presents a useful case where coupling is modified without synthetic changes to tune supramolecular structure. Here we present a detailed study of solvent dependent excited state dynamics in this dimer by means of coherent multidimensional spectroscopy. Spectral analysis resolves the different coupling strengths, which are consistent with solvent dependent changes in dimer conformation. The strongly coupled conformer forms an excimer within 300 fs. The low-frequency Raman active modes recovered from two-dimensional electronic spectra reveal frequencies characteristic of exciton coupling. These are assigned to modes modulating the coupling from the corresponding DFT calculations. Further analysis reveals a time dependent frequency during excimer formation. Analysis of two-dimensional "beatmaps" reveals features in the coupled dimer which are not predicted by the displaced harmonic oscillator model and are assigned to vibronic coupling.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Samuel E Penty
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, 9500, Brazil
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Timothy A Barendt
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
7
|
He HX, Zhou HY, Wang YH, Qin T, Liu B. Perylene Diimide-Embedded Chiral Carbaporphyrin. Org Lett 2024; 26:7695-7700. [PMID: 39214602 DOI: 10.1021/acs.orglett.4c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Herein, we report the synthesis of a novel carbaporphyrin incorporating perylene diimide (PDI) and dipyrromethane units. The twisted plane of the PDI subunits imbues carbaporphyrin with intriguing conformational chirality and stable chiroptical properties. Both experimental and theoretical studies reveal that the unique properties arise from the rigidly conjugated macrocyclic architecture and the reduced interchromophoric distance. This work successfully integrates PDIs into carbaporphyrins, thereby expanding their structural diversity and functional potential.
Collapse
Affiliation(s)
- Hua-Xi He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - He-Ye Zhou
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Yu-Hua Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Tao Qin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| | - Bin Liu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
8
|
Jha S, Mehra KS, Dey M, S S, Ghosh D, Mondal PK, Polentarutti M, Sankar J. A nine-ring fused terrylene diimide exhibits switching between red TADF and near-IR room temperature phosphorescence. Chem Sci 2024; 15:8974-8981. [PMID: 38873070 PMCID: PMC11168091 DOI: 10.1039/d4sc01040j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
Herein, we report the first example of a terrylene diimide derivative that switches emission between thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) in the red region. By design, the molecule TDI-cDBT boasts a symmetrical, consecutively fused nine-ring motif with a kite-like structure. The rigid core formed by the annulated dibenzothiophene moiety favoured efficient intersystem crossing and yielded a narrow-band emission with a full-width half maxima (FWHM) of 0.09 eV, along with high colour purity. A small ΔE S1-T1 of 0.04 eV facilitated thermally activated delayed fluorescence, enhancing the quantum yield to 88% in the red region. Additionally, it also prefers a direct triplet emission from the aggregated state. The room temperature phosphorescence observed from the aggregates has a longer emission lifetime of 1.8 ms, which is further prolonged to 8 ms at 77 K in the NIR region. Thus, the current strategy is successful in not only reducing ΔE S1-T1 to favour TADF but also serves as a novel platform that can switch emission from TADF to RTP depending upon the concentration.
Collapse
Affiliation(s)
- Shivangee Jha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road Bhopal India 462066
| | - Kundan Singh Mehra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road Bhopal India 462066
| | - Mandira Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences Kolkata India 700032
| | - Sujesh S
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road Bhopal India 462066
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Sciences Kolkata India 700032
| | - Pradip Kumar Mondal
- Elettra-Sincrotrone Trieste Strada Statale 14 km 163.5 in Area Science Park, 34149 Basovizza Trieste Italy
| | - Maurizio Polentarutti
- Elettra-Sincrotrone Trieste Strada Statale 14 km 163.5 in Area Science Park, 34149 Basovizza Trieste Italy
| | - Jeyaraman Sankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal Bhopal Bypass Road Bhopal India 462066
| |
Collapse
|
9
|
Mazumder A, Vinod K, Maret PD, Das PP, Hariharan M. Symmetry-Breaking Charge Separation Mediated Triplet Population in a Perylenediimide Trimer at the Single-Molecule Level. J Phys Chem Lett 2024; 15:5896-5904. [PMID: 38805687 DOI: 10.1021/acs.jpclett.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein, we demonstrate triplet excited-state population in a conformationally rigid perylenediimide trimer (PDI-T) via intramolecular symmetry-breaking charge separation (SB-CS) at the single-molecule level. The single-molecule fluorescence intensity trajectories of PDI-T in nonpolar polystyrene matrix (ε = 2.60) exhibit prolonged fluorescence with infrequent dark states, representing the triplet and/or the charge transfer states. In contrast, in a poly(vinyl alcohol) matrix (ε = 7.80), erratic blinking dynamics resulting in low photon counts were observed, corroborating the feasibility of charge separation in a polar environment. In agreement with the single-molecule measurements, transient absorption spectroscopy of PDI-T reveals ultrafast SB-CS (τCS < 5 ps) in polar tetrahydrofuran (ε = 7.58) and acetone (ε = 20.70), with the population of the triplet excited-state through charge recombination. The current investigation shows the utility of rigid and weakly coupled molecular constructs in controlling triplet generation and SB-CS for potential applications in optoelectronic devices.
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Pallavi Panthakkal Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
10
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
11
|
Liu Z, Xie Y, Liu L, Cai X, Yin HQ, Zuo M, Liu Y, Feng S, Huang W, Wu D. π-Sticked Metal‒Organic Monolayers for Single-Metal-Site Dependent CO 2 Photoreduction and Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309194. [PMID: 38039490 DOI: 10.1002/smll.202309194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Hierarchical self-assembly of 2D metal‒organic layers (MOLs) for the construction of advanced functional materials have witnessed considerable interest, due to the increasing atomic utilizations and well-defined atom‒property relationship. However, the construction of atomically precise MOLs with mono-/few-layered thickness through hierarchical self-assembly process remains a challenge, mostly because the elaborate long-range order is difficult to control via conventional noncovalent interaction. Herein, a quadruple π-sticked metal‒organic layer (πMOL) is reported with checkerboard-like lattice in ≈1.0 nanometre thickness, on which the catalytic selectivity can be manipulated for highly efficient CO2 reduction reaction (CO2RR) and hydrogen evolution reaction (HER) over a single metal site. In saturated CO2 aqueous acetonitrile, Fe-πMOL achieves a highly effective CO2RR with the yield of ≈3.98 mmol g‒1 h‒1 and 91.7% selectivity. In contrast, the isostructural Co-πMOL as well as mixed metallic FeCo-πMOL exhibits a high activity toward HER under similar conditions. DFT calculations reveal that single metal site exhibits the significant difference in CO2 adsorption energy and activation barrier, which triggers highly selective CO2RR for Fe site and HER for Co site, respectively. This work highlights the potential of supramolecular π…π interaction for constructing monolayer MOL materials to uniformly distribute the single metal sites for artificial photosynthesis.
Collapse
Affiliation(s)
- Zhe Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Yangbin Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Xuankun Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Hua-Qing Yin
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Mengkai Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Sheng Feng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| |
Collapse
|
12
|
Kang S, Choi W, Ahn J, Kim T, Oh JH, Kim D. Impact of Packing Geometry on Excimer Characteristics and Mobility in Perylene Bisimide Polycrystalline Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18134-18143. [PMID: 38554079 DOI: 10.1021/acsami.3c19140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Efficient exciton transport is essential for high-performance optoelectronics. Considerable efforts have been focused on improving the exciton mobility in organic materials. While it is feasible to improve mobility in organic systems by forming well-ordered stacks, the formation of trap states, particularly the lower-lying states referred to as excimers, remains a significant challenge to enhancing mobility. The mobility of excimer excitons intricately depends on the strength of excitonic coupling in terms of Förster-type diffusive exciton transfer processes. Given that the formation and mobility of excimer excitons are highly sensitive to molecular arrangements (packing geometries), conducting comprehensive investigations into the structure-property relationship in organic systems is crucial. In this study, we prepared three types of polycrystalline films of perylene bisimide (PBI) by varying substituents at the imide and bay positions, which allowed us to tailor the properties of excimer excitons and their mobility based on packing geometries and excitonic coupling strengths. By utilizing femtosecond transient absorption spectroscopy, we observed ultrafast excimer formation in the higher coupling regime, while in the lower coupling regime, the transition from Frenkel to excimer excitons occurs with a time constant of 500 fs. Under high pump-fluence, exciton-exciton annihilation processes occur, indicating the diffusion of excimer excitons. Intriguingly, employing a three-dimensional diffusion model, we derived a diffusion constant that is 3000 times greater in the high coupling regime than in the low coupling regime. To investigate the optoelectronic properties in the form of a bulk system, we fabricated n-type organic field effect transistors and obtained 8000 times higher mobility in the high coupling regime. Furthermore, photocurrent measurements enable us to investigate the charge carrier transport by mobile excimer excitons, suggesting a 230-fold improvement in external quantum efficiency with tightly packing PBI molecules compared to the low coupling regime. These findings not only offer valuable insights into optimizing organic materials for optoelectronic devices but also unveil the intriguing potential of exciton migration within excimers.
Collapse
Affiliation(s)
- Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Wonbin Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeyong Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeyeon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
14
|
Maret PD, Sasikumar D, Sebastian E, Hariharan M. Symmetry-Breaking Charge Separation in a Chiral Bis(perylenediimide) Probed at Ensemble and Single-Molecule Levels. J Phys Chem Lett 2023; 14:8667-8675. [PMID: 37733055 DOI: 10.1021/acs.jpclett.3c01889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Chiral molecular assemblies exhibiting symmetry-breaking charge separation (SB-CS) are potential candidates for the development of chiral organic semiconductors. Herein, we explore the excited-state dynamics of a helically chiral perylenediimide bichromophore (Cy-PDI2) exhibiting SB-CS at the ensemble and single-molecule levels. Solvent polarity-tunable interchromophoric excitonic coupling in chiral Cy-PDI2 facilitates the interplay of SB-CS and excimer formation in the ensemble domain. Analogous to the excited-state dynamics of Cy-PDI2 at the ensemble level, single-molecule fluorescence lifetime traces of Cy-PDI2 depicted long-lived off-states characteristic of the radical ion pair-mediated dark states. The discrete electron transfer and charge separation dynamics in Cy-PDI2 at the single-molecule level are governed by the distinct influence of the local environment. The present study aims at understanding the fundamental excited-state dynamics in chiral organic bichromophores for designing efficient chiral organic semiconductors and applications toward charge transport materials.
Collapse
Affiliation(s)
- Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Devika Sasikumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
15
|
Garcés-Garcés J, Sánchez-Martos M, Martinez-Navarrete G, Fernández-Jover E, Encheva M, León M, Ortiz J, Sastre-Santos Á, Fernández-Lázaro F. New Highly Fluorescent Water Soluble Imidazolium-Perylenediimides: Synthesis and Cellular Response. Pharmaceutics 2023; 15:1892. [PMID: 37514077 PMCID: PMC10384807 DOI: 10.3390/pharmaceutics15071892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis and characterization of two new water soluble 2,6-bis(imidazolylmethyl)-4-methylphenoxy-containing perylenediimides, PDI-1 and PDI-2, are described. These compounds demonstrate a high fluorescence quantum yield in water and were investigated as potential photosensitizers for generating reactive oxygen species with applications in anticancer activities. The HeLa cell line (VPH18) was used to evaluate their efficacy. Fluorescence microscopy was employed to confirm the successful internalization of PDI-1 and PDI-2, while confocal microscopy revealed the specific locations of both PDIs within the lysosomes and mitochondria. In vitro studies were conducted to evaluate the anticancer activity of PDI-1 and PDI-2. Remarkably, these photosensitizers demonstrated a significant ability to selectively eliminate cancer cells when exposed to a specific light wavelength. The water solubility, high fluorescence quantum yield, and selective cytotoxicity of these PDIs toward cancer cells highlight their potential as effective agents for targeted photodynamic therapy. In conclusion, the findings presented here provide a strong foundation for the future exploration and optimization of PDI-1 and PDI-2 as effective photosensitizers in photodynamic therapy, potentially leading to improved treatment strategies for cancer patients.
Collapse
Affiliation(s)
- José Garcés-Garcés
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Miguel Sánchez-Martos
- Área de Neuroprótesis y Rehabilitación Visual, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Gema Martinez-Navarrete
- Área de Neuroprótesis y Rehabilitación Visual, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Eduardo Fernández-Jover
- Área de Neuroprótesis y Rehabilitación Visual, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Mirela Encheva
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Martín León
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Javier Ortiz
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
16
|
Tang N, Zhou J, Wang L, Stolte M, Xie G, Wen X, Liu L, Würthner F, Gierschner J, Xie Z. Anomalous deep-red luminescence of perylene black analogues with strong π-π interactions. Nat Commun 2023; 14:1922. [PMID: 37024474 PMCID: PMC10079835 DOI: 10.1038/s41467-023-37171-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Perylene bisimide (PBI) dyes are known as red, maroon and black pigments, whose colors depend on the close π-π stacking arrangement. However, contrary to the luminescent monomers, deep-red and black PBI pigments are commonly non- or only weakly fluorescent due to (multiple) quenching pathways. Here, we introduce N-alkoxybenzyl substituted PBIs that contain close π stacking arrangement (exhibiting dπ-π ≈ 3.5 Å, and longitudinal and transversal displacements of 3.1 Å and 1.3 Å); however, they afford deep-red emitters with solid-state fluorescence quantum yields (ΦF) of up to 60%. Systematic photophysical and computational studies in solution and in the solid state reveal a sensitive interconversion of the PBI-centred locally excited state and a charge transfer state, which depends on the dihedral angle (θ) between the benzyl and alkoxy groups. This effectively controls the emission process, and enables high ΦF by circumventing the common quenching pathways commonly observed for perylene black analogues.
Collapse
Affiliation(s)
- Ningning Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China.
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Matthias Stolte
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Guojing Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Xinbo Wen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Frank Würthner
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain.
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, 510640, Guangzhou, P. R. China.
| |
Collapse
|
17
|
Fridman H, Levy HM, Meir A, Casotto A, Malkinson R, Dehnel J, Yochelis S, Lifshitz E, Bar-Gill N, Collini E, Paltiel Y. Ultrafast Coherent Delocalization Revealed in Multilayer QDs under a Chiral Potential. J Phys Chem Lett 2023; 14:2234-2240. [PMID: 36820505 PMCID: PMC11139383 DOI: 10.1021/acs.jpclett.2c03743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In recent years, it was found that current passing through chiral molecules exhibits spin preference, an effect known as Chiral Induced Spin Selectivity (CISS). The effect also enables the reduction of scattering and therefore enhances delocalization. As a result, the delocalization of an exciton generated in the dots is not symmetric and relates to the electronic and hole excited spins. In this work utilizing fast spectroscopy on hybrid multilayered QDs with a chiral polypeptide linker system, we probed the interdot chiral coupling on a short time scale. Surprisingly, we found strong coherent coupling and delocalization despite having long 4-nm chiral linkers. We ascribe the results to asymmetric delocalization that is controlled by the electron spin. The effect is not measured when using shorter nonchiral linkers. As the system mimics light-harvesting antennas, the results may shed light on a mechanism of fast and efficient energy transfer in these systems.
Collapse
Affiliation(s)
- Hanna
T. Fridman
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Hadar Manis Levy
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Amitai Meir
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Andrea Casotto
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Rotem Malkinson
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Joanna Dehnel
- Nancy
and Stephen Grand Technion Energy Program, Russell Berrie Nanotechnology
Institute, Quantum Information Center, Schulich Faculty of Chemistry,
Solid State Institute, Technion Israel Institute
of Technology, Solid Stat, IL-3200003 Haifa, Israel
| | - Shira Yochelis
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
| | - Efrat Lifshitz
- Nancy
and Stephen Grand Technion Energy Program, Russell Berrie Nanotechnology
Institute, Quantum Information Center, Schulich Faculty of Chemistry,
Solid State Institute, Technion Israel Institute
of Technology, Solid Stat, IL-3200003 Haifa, Israel
| | - Nir Bar-Gill
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
- The Racah
Institute of Physics, The Hebrew University
of Jerusalem, Jerusalem 91904, Israel
- The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Yossi Paltiel
- Applied
Physics Department, Jerusalem, The Hebrew
University of Jerusalem, Jerusalem 91904, Israel
- The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
18
|
Chen S, Feng S, Markvoort AJ, Zhang C, Zhou E, Liang W, Zhang HJ, Jiang YB, Lin J. Unequal Perylene Diimide Twins in a Quadruple Assembly. Angew Chem Int Ed Engl 2023; 62:e202300786. [PMID: 36792541 DOI: 10.1002/anie.202300786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Natural light-harvesting (LH) systems can divide identical dyes into unequal aggregate states, thereby achieving intelligent "allocation of labor". From a synthetic point of view, the construction of such kinds of unequal and integrated systems without the help of proteinaceous scaffolding is challenging. Here, we show that four octatetrayne-bridged ortho-perylene diimide (PDI) dyads (POPs) self-assemble into a quadruple assembly (POP)4 both in solution and in the solid state. The two identical PDI units in each POP are compartmentalized into weakly coupled PDIs (P520) and closely stacked PDIs (P550) in (POP)4 . The two extreme pools of PDI chromophores were unambiguously confirmed by single-crystal X-ray crystallography and NMR spectroscopy. To interpret the formation of the discrete quadruple assembly, we also developed a two-step cooperative model. Quantum-chemical calculations indicate the existence of multiple couplings within and across P520 and P550, which can satisfactorily describe the photophysical properties of the unequal quadruple assembly. This finding is expected to help advance the rational design of dye stacks to emulate functions of natural LH systems.
Collapse
Affiliation(s)
- Shuqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Albert J Markvoort
- Computational Biology Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (The, Netherlands
| | - Cankun Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Enyang Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, 361005, P. R. China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
19
|
Ochi J, Tanaka K, Chujo Y. Alternately π-Stacked Systems Assisted by o-Carborane: Dual Excimer Emission and Color Modulation by B cage -Methylation. Angew Chem Int Ed Engl 2023; 62:e202214397. [PMID: 36328979 DOI: 10.1002/anie.202214397] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Herein, we report the unique solid-state excimer emission of three types of acridine-tethered o-carboranes with variable degrees of methylation at the o-carborane unit. They all showed columnar packing structures based on dimer formation, and two types of π-overlapping motifs were alternately stacked. From the photoluminescence (PL) measurements on the crystalline samples, it was found that three types of luminescence bands can simultaneously appear: monomer emission, excimer emission from the moderately π-stacked intra-dimer unit, and excimer emission from the widely π-stacked inter-dimer unit. Consequently, the PL colors were drastically changed by the steric effect of the methyl groups, with a strong correlation found between the π-overlapping and excimer character. In addition, variable-temperature PL measurements revealed that these PL species should be in thermal equilibrium at room temperature, with the intensity ratios sensitive toward temperature changes.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
20
|
Dai Y, Calzolari A, Zubiria-Ulacia M, Casanova D, Negri F. Intermolecular Interactions and Charge Resonance Contributions to Triplet and Singlet Exciton States of Oligoacene Aggregates. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010119. [PMID: 36615311 PMCID: PMC9822017 DOI: 10.3390/molecules28010119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Intermolecular interactions modulate the electro-optical properties of molecular materials and the nature of low-lying exciton states. Molecular materials composed by oligoacenes are extensively investigated for their semiconducting and optoelectronic properties. Here, we analyze the exciton states derived from time-dependent density functional theory (TDDFT) calculations for two oligoacene model aggregates: naphthalene and anthracene dimers. To unravel the role of inter-molecular interactions, a set of diabatic states is selected, chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space including two occupied and two unoccupied orbitals for each molecular monomer. We study energy profiles and disentangle inter-state couplings to disclose the (CT) character of singlet and triplet exciton states and assess the influence of inter-molecular orientation by displacing one molecule with respect to the other along the longitudinal translation coordinate. The analysis shows that (CT) contributions are relevant, although comparably less effective for triplet excitons, and induce a non-negligible mixed character to the low-lying exciton states for eclipsed monomers and for small translational displacements. Such (CT) contributions govern the La/Lb state inversion occurring for the low-lying singlet exciton states of naphthalene dimer and contribute to the switch from H- to J-aggregate type of the strongly allowed Bb transition of both oligoacene aggregates.
Collapse
Affiliation(s)
- Yasi Dai
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Alessandro Calzolari
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Maria Zubiria-Ulacia
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Manuel Lardizabal 3, 20018 Donostia-San Sebastian, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| | - Fabrizia Negri
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
- INSTM UdR Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
21
|
Lee HS, Na YJ, Kim CH, Shin JY. Multifaceted Excited State Dynamics of Coumarin Dyes Anchored on Al 2O 3 Film. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010111. [PMID: 36615303 PMCID: PMC9821847 DOI: 10.3390/molecules28010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The co-facially stacked dyes on semiconductor films serve as an alternative model to elucidate the photo-driven exciton dynamics occurring in a molecular assembly. In this study, we report the unique emission properties of coumarin dye adsorbed on the surface of the semiconductor film, measured by ultrafast time-resolved fluorescence. When a rigid coumarin derivative, 7-hydroxycoumarin-3-carboxylic acid (OHCCA), is anchored on the Al2O3 film, the dye manifests dual emissions from the two lowest excited states. Various anchoring modes of a carboxylic acid group on the Al2O3 surface are invoked to account for the unusual emission process. Additionally, we identified characteristic transition dipole interactions in the well-stacked dye aggregates, which leads to discernible excitonic splitting in the electronic transitions. Femtosecond time-resolved fluorescence reveals that the excimer formation in the aggregate occurs with the time constant of 550 fs. Picosecond time-resolved emission spectra confirm the subsequent structural relaxations of the nascent excimer. The enhanced transition dipole via the electronic coupling between OHCCA and metal oxide can be responsible for the dual emission and the ultrafast excimer formation.
Collapse
|
22
|
Hart SM, Banal JL, Castellanos MA, Markova L, Vyborna Y, Gorman J, Häner R, Willard AP, Bathe M, Schlau-Cohen GS. Activating charge-transfer state formation in strongly-coupled dimers using DNA scaffolds. Chem Sci 2022; 13:13020-13031. [PMID: 36425503 PMCID: PMC9667922 DOI: 10.1039/d2sc02759c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/04/2022] [Indexed: 09/16/2023] Open
Abstract
Strongly-coupled multichromophoric assemblies orchestrate the absorption, transport, and conversion of photonic energy in natural and synthetic systems. Programming these functionalities involves the production of materials in which chromophore placement is precisely controlled. DNA nanomaterials have emerged as a programmable scaffold that introduces the control necessary to select desired excitonic properties. While the ability to control photophysical processes, such as energy transport, has been established, similar control over photochemical processes, such as interchromophore charge transfer, has not been demonstrated in DNA. In particular, charge transfer requires the presence of close-range interchromophoric interactions, which have a particularly steep distance dependence, but are required for eventual energy conversion. Here, we report a DNA-chromophore platform in which long-range excitonic couplings and short-range charge-transfer couplings can be tailored. Using combinatorial screening, we discovered chromophore geometries that enhance or suppress photochemistry. We combined spectroscopic and computational results to establish the presence of symmetry-breaking charge transfer in DNA-scaffolded squaraines, which had not been previously achieved in these chromophores. Our results demonstrate that the geometric control introduced through the DNA can access otherwise inaccessible processes and program the evolution of excitonic states of molecular chromophores, opening up opportunities for designer photoactive materials for light harvesting and computation.
Collapse
Affiliation(s)
- Stephanie M Hart
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - James L Banal
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Maria A Castellanos
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Larysa Markova
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Yuliia Vyborna
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3, CH-3012 Bern Switzerland
| | - Adam P Willard
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | | |
Collapse
|
23
|
Parallel triplet formation pathways in a singlet fission material. Nat Commun 2022; 13:5244. [PMID: 36068233 PMCID: PMC9448805 DOI: 10.1038/s41467-022-32844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Harvesting long-lived free triplets in high yields by utilizing organic singlet fission materials can be the cornerstone for increasing photovoltaic efficiencies potentially. However, except for polyacenes, which are the most studied systems in the singlet fission field, spin-entangled correlated triplet pairs and free triplets born through singlet fission are relatively poorly characterized. By utilizing transient absorption and photoluminescence spectroscopy in supramolecular aggregate thin films consisting of Hamilton-receptor-substituted diketopyrrolopyrrole derivatives, we show that photoexcitation gives rise to the formation of spin-0 correlated triplet pair 1(TT) from the lower Frenkel exciton state. The existence of 1(TT) is proved through faint Herzberg-Teller emission that is enabled by vibronic coupling and correlated with an artifact-free triplet-state photoinduced absorption in the near-infrared. Surprisingly, transient electron paramagnetic resonance reveals that long-lived triplets are produced through classical intersystem crossing instead of 1(TT) dissociation, with the two pathways in competition. Moreover, comparison of the triplet-formation dynamics in J-like and H-like thin films with the same energetics reveals that spin-orbit coupling mediated intersystem crossing persists in both. However, 1(TT) only forms in the J-like film, pinpointing the huge impact of intermolecular coupling geometry on singlet fission dynamics.
Collapse
|
24
|
One Fluorophore‐Two Sensing Films: Hydrogen‐Bond Directed Formation of a Quadruple Perylene Bisimide Stack. Chemistry 2022; 28:e202201974. [DOI: 10.1002/chem.202201974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/07/2022]
|
25
|
Cainelli M, Borrelli R, Tanimura Y. Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach. J Chem Phys 2022; 157:084103. [DOI: 10.1063/5.0102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically investigated the effect of mixed Frenkel (F) and charge transfer (CT) states on the spectral properties of perylene bisimide (PBI) derivatives, focusing on the role of strong electron-phonon interactions. The model consists of a four-level system described by the Holstein Hamiltonian coupled to independent local heat-baths on each site, described by Brownian spectral distribution functions. We employ the reduced hierarchical equations of motion (HEOM) approach to calculate the time evolution of the system and compare it to the pure F exciton cases. We compute the absorption and time-gated fluorescence (TGF) spectra for different exciton transfer integrals and F-CT band gap conditions. The coherence length of excitons ($N_{coh}$) is evaluated employing two different definitions. We observe the presence of an excited hot state peak whose intensity is associated with the delocalization of the excited species and ultrafast dynamics that are solely dependent on the frequency of the local bath. The results indicate that the inclusion of CT states promotes localization of the excitons which is manifested in a decrease in the intensity of the hot state peak and the 0--1 peak, and an increase in the intensity of the 0--0 emission peak in TGF spectrum, leading to a decrease of $N_{coh}$.
Collapse
Affiliation(s)
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | | |
Collapse
|
26
|
Kim T, Lin C, Schultz JD, Young RM, Wasielewski MR. π-Stacking-Dependent Vibronic Couplings Drive Excited-State Dynamics in Perylenediimide Assemblies. J Am Chem Soc 2022; 144:11386-11396. [PMID: 35699940 DOI: 10.1021/jacs.2c03993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibronic coupling, the interplay of electronic and nuclear vibrational motion, is considered a critical mechanism in photoinduced reactions such as energy transfer, charge transfer, and singlet fission. However, our understanding of how particular vibronic couplings impact excited-state dynamics is lacking due to the limited number of experimental studies of model molecular systems. Herein, we use two-dimensional electronic spectroscopy (2DES) to launch and interrogate a range of vibronic coherences in two distinct types of perylenediimide slip stacks─along the short and long molecular axes, which form either an excimer or a mixed state between the Frenkel exciton (FE) and charge transfer states. We explore the functionality of these vibronic coherences using quantum beatmaps, which display the Fourier amplitude signal oscillations as a function of pump and probe frequencies, along with knowledge of the characteristic signatures of the FE, ionic, and excimer species. We find that a low-frequency vibrational mode of the short-axis slip stack appears concomitantly with the formation of the excimer state, survives 2-fold longer than in the FE state in the reference monomer, and shows a phase shift compared to other modes. For the long-axis slip stacks, a pair of low-frequency modes coupled to a high-frequency coordinate of the FE state were found to play a critical role in mixed-state generation. Our findings thus experimentally reveal the complex and varying roles of vibronic couplings in tightly packed multimers undergoing a range of photoinduced processes.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
27
|
Eder T, Kraus D, Höger S, Vogelsang J, Lupton JM. Vibrations Responsible for Luminescence from HJ-Aggregates of Conjugated Polymers Identified by Cryogenic Spectroscopy of Single Nanoparticles. ACS NANO 2022; 16:6382-6393. [PMID: 35394735 DOI: 10.1021/acsnano.2c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A single polymer chain can be thought of as a covalently bound J-aggregate, where the microscopic transition-dipole moments line up to emit in phase. Packing polymer chains into a bulk film can result in the opposite effect, inducing H-type coupling between chains. Cofacial transition-dipole moments oscillate out of phase, canceling each other out, so that the lowest-energy excited state turns dark. H-aggregates of conjugated polymers can, in principle, be coaxed into emitting light by mixing purely electronic and vibronic transitions. However, it is challenging to characterize this electron-phonon coupling experimentally. In a bulk film, many different conformations exist with varying degrees of intrachain J-type and interchain H-type coupling strengths, giving rise to broad and featureless aggregate absorption and emission spectra. Even if single nanoparticles consisting of only a few single chains are grown in a controlled fashion, the luminescence spectra remain broad, owing to the underlying molecular dynamics and structural heterogeneity at room temperature. At cryogenic temperatures, emission from H-type aggregates should be suppressed because, in the absence of thermal energy, internal conversion drives the aggregate to the lowest-energy dark state. At the same time, electronic and vibronic transitions narrow substantially, facilitating the attribution of spectral signatures to distinct vibrational modes. We demonstrate how to distinguish signatures of interchain H-type aggregate species from those of intramolecular J-type coupling. Whereas all dominant vibronic modes revealed in the photoluminescence (PL) and surface-enhanced resonance Raman scattering spectra of a single chromophore within a single polymer chain are identified in the J-type aggregate luminescence spectra, they are not all present at once in the H-type spectra. Universal spectral features are found for the luminescence from strongly HJ-coupled chains, clearly resolving the vibrations responsible for the nonadiabatic excited-state molecular dynamics that enable light emission. We discuss the possible combinations of vibrational modes responsible for H-type aggregate PL and demonstrate that only one, mainly the lowest energy one, of the three dominant vibrational modes contributes to the 0-1 transition, whereas combinations of all three are found in the 0-2 transition. From this analysis, we can distinguish between energy shifts due to either J-type intrachain coupling or H-type interchain interactions, offering a means to directly discriminate between structural and energetic disorder.
Collapse
Affiliation(s)
- Theresa Eder
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | - Daniel Kraus
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| |
Collapse
|
28
|
Accelerating symmetry-breaking charge separation in a perylenediimide trimer through a vibronically coherent dimer intermediate. Nat Chem 2022; 14:786-793. [PMID: 35469005 DOI: 10.1038/s41557-022-00927-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Understanding the photophysics and photochemistry of molecular π-stacked chromophores is important for utilizing them as functional photonic materials. However, these investigations have been mostly limited to covalent molecular dimers, which can only approximate the electronic and vibronic interactions present in the higher oligomers typical of functional organic materials. Here we show that a comparison of the excited-state dynamics of a covalent slip-stacked perylenediimide dimer (2) and trimer (3) provides fundamental insights into electronic state mixing and symmetry-breaking charge separation (SB-CS) beyond the dimer limit. We find that coherent vibronic coupling to high-frequency modes facilitates ultrafast state mixing between the Frenkel exciton (FE) and charge-transfer (CT) states. Subsequently, solvent fluctuations and interchromophore low-frequency vibrations promote CT character in the coherent FE/CT mixed state. The coherent FE/CT mixed state persists in 2, but, in 3, low-frequency vibronic coupling collapses the coherence, resulting in ultrafast SB-CS between the distal perylenediimide units.
Collapse
|
29
|
Hong Y, Kim W, Kim T, Kaufmann C, Kim H, Würthner F, Kim D. Real-time Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Folda-dimer by Ultrafast Time-Domain Raman Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202114474. [PMID: 35075813 PMCID: PMC9306572 DOI: 10.1002/anie.202114474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 01/31/2023]
Abstract
In π-conjugated organic photovoltaic materials, an excimer state has been generally regarded as a trap state which hinders efficient excitation energy transport. But despite wide investigations of the excimer for overcoming the undesirable energy loss, the understanding of the relationship between the structure of the excimer in stacked organic compounds and its properties remains elusive. Here, we present the landscape of structural dynamics from the excimer formation to its relaxation in a co-facially stacked archetypical perylene bisimide folda-dimer using ultrafast time-domain Raman spectroscopy. We directly captured vibrational snapshots illustrating the ultrafast structural evolution triggering the excimer formation along the interchromophore coordinate on the complex excited-state potential surfaces and following evolution into a relaxed excimer state. Not only does this work showcase the ultrafast structural dynamics necessary for the excimer formation and control of excimer characteristics but also provides important criteria for designing the π-conjugated organic molecules.
Collapse
Affiliation(s)
- Yongseok Hong
- Department of ChemistrySpectroscopy Laboratory for Functional π-Electronic SystemsYonsei University03722SeoulRepublic of Korea
| | - Woojae Kim
- Department of ChemistrySpectroscopy Laboratory for Functional π-Electronic SystemsYonsei University03722SeoulRepublic of Korea
- Department of Chemistry and Chemical BiologyCornell UniversityIthaca14853New YorkUSA
| | - Taeyeon Kim
- Department of ChemistrySpectroscopy Laboratory for Functional π-Electronic SystemsYonsei University03722SeoulRepublic of Korea
- The Institute for Sustainability and Energy at NorthwesternNorthwestern UniversityEvanston60208IllinoisUSA
| | - Christina Kaufmann
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversitat WürzburgAm Hubland97074WürzburgGermany
| | - Hyungjun Kim
- Department of ChemistryIncheon National University119 Academy-ro, Yeonsu-gu22012IncheonRepublic of Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversitat WürzburgAm Hubland97074WürzburgGermany
| | - Dongho Kim
- Department of ChemistrySpectroscopy Laboratory for Functional π-Electronic SystemsYonsei University03722SeoulRepublic of Korea
| |
Collapse
|
30
|
Dimitriev OP. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chem Rev 2022; 122:8487-8593. [PMID: 35298145 DOI: 10.1021/acs.chemrev.1c00648] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The exciton, an excited electron-hole pair bound by Coulomb attraction, plays a key role in photophysics of organic molecules and drives practically important phenomena such as photoinduced mechanical motions of a molecule, photochemical conversions, energy transfer, generation of free charge carriers, etc. Its behavior in extended π-conjugated molecules and disordered organic films is very different and very rich compared with exciton behavior in inorganic semiconductor crystals. Due to the high degree of variability of organic systems themselves, the exciton not only exerts changes on molecules that carry it but undergoes its own changes during all phases of its lifetime, that is, birth, conversion and transport, and decay. The goal of this review is to give a systematic and comprehensive view on exciton behavior in π-conjugated molecules and molecular assemblies at all phases of exciton evolution with emphasis on rates typical for this dynamic picture and various consequences of the above dynamics. To uncover the rich variety of exciton behavior, details of exciton formation, exciton transport, exciton energy conversion, direct and reverse intersystem crossing, and radiative and nonradiative decay are considered in different systems, where these processes lead to or are influenced by static and dynamic disorder, charge distribution symmetry breaking, photoinduced reactions, electron and proton transfer, structural rearrangements, exciton coupling with vibrations and intermediate particles, and exciton dissociation and annihilation as well.
Collapse
Affiliation(s)
- Oleg P Dimitriev
- V. Lashkaryov Institute of Semiconductor Physics NAS of Ukraine, pr. Nauki 41, Kyiv 03028, Ukraine
| |
Collapse
|
31
|
Waly SM, Karlsson JKG, Waddell PG, Benniston AC, Harriman A. Light-Harvesting Crystals Formed from BODIPY-Proline Biohybrid Conjugates: Antenna Effects and Excitonic Coupling. J Phys Chem A 2022; 126:1530-1541. [PMID: 35230124 PMCID: PMC9097531 DOI: 10.1021/acs.jpca.2c00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A boron dipyrromethene (BODIPY) derivative
bearing a cis-proline residue at the meso-position crystallizes
in the form of platelets with strong (i.e., ΦF =
0.34) red fluorescence, but the absorption and emission spectra differ
markedly from those for dilute solutions. A key building block for
the crystal is a pseudo-dimer where hydrogen bonding
aligns the proline groups and separates the terminal chromophores
by ca. 25 Å. Comparison with a covalently linked bichromophore
suggests that one-dimensional (1D) excitonic coupling between the
terminals is too small to perturb the optical properties. However,
accretion of the pseudo-dimer forms narrow channels
possessing a high density of chromophores. The resultant absorption
spectrum exhibits strong excitonic splitting, which can be explained
quantitatively using the extended dipole approach and allowing for
coupling between ca. 30 BODIPY units. Fluorescence, which decays with
a lifetime of 2.2 ns, is assigned to a delocalized and (slightly)
super-radiant BODIPY dimer situated at the interface and populated
via electronic energy transfer from the interior.
Collapse
|
32
|
Associated dimeric structures of molecular tweezers bearing naphthalimide and adamantane units in the solid state. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Hong Y, Kim W, Kim T, Kaufmann C, Kim H, Würthner F, Kim D. Real‐time Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Folda‐dimer by Ultrafast Time‐Domain Raman Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongseok Hong
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Republic of Korea
| | - Woojae Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Republic of Korea
- Department of Chemistry and Chemical Biology Cornell University Ithaca 14853 New York USA
| | - Taeyeon Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Republic of Korea
- The Institute for Sustainability and Energy at Northwestern Northwestern University Evanston 60208 Illinois USA
| | - Christina Kaufmann
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universitat Würzburg Am Hubland 97074 Würzburg Germany
| | - Hyungjun Kim
- Department of Chemistry Incheon National University 119 Academy-ro, Yeonsu-gu 22012 Incheon Republic of Korea
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universitat Würzburg Am Hubland 97074 Würzburg Germany
| | - Dongho Kim
- Department of Chemistry Spectroscopy Laboratory for Functional π-Electronic Systems Yonsei University 03722 Seoul Republic of Korea
| |
Collapse
|
34
|
Kawaura M, Aizawa T, Takahashi S, Miyasaka H, Sotome H, Yagai S. Fluorescent supramolecular polymers of barbiturate dyes with thiophene-cored twisted π-systems. Chem Sci 2022; 13:1281-1287. [PMID: 35222911 PMCID: PMC8809409 DOI: 10.1039/d1sc06246h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Because supramolecular polymerization of emissive π-conjugated molecules depends strongly on π-π stacking interaction, the formation of well-defined one-dimensional nanostructures often results in a decrease or only a small increase of emission efficiency. This is also true for our barbiturate-based supramolecular polymers wherein hydrogen-bonded rosettes of barbiturates stack quasi-one-dimensionally through π-π stacking interaction. Herein we report supramolecular polymerization-induced emission of two regioisomeric 2,3-diphenylthiophene derivatives functionalized with barbituric acid and tri(dodecyloxy)benzyl wedge units. In CHCl3, both compounds are molecularly dissolved and accordingly poorly emissive due to a torsion-induced non-radiative decay. In methylcyclohexane-rich conditions, these barbiturates self-assemble to form crystalline nanofibers and exhibit strongly enhanced emission through supramolecular polymerization driven by hydrogen-bonding. Our structural analysis suggests that the barbiturates form a tape-like hydrogen-bonding motif, which is rationalized by considering that the twisted geometries of 2,3-diphenylthiophene cores prevend the competing rosettes from stacking into columnar supramolecular polymers. We also found that a small difference in the molecular polarity originating from the substitutional position of the thiophene core influences interchain association of the supramolecular polymers, affording different luminescent soft materials, gel and nanosheet.
Collapse
Affiliation(s)
- Maika Kawaura
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Sho Takahashi
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka Osaka 560-8531 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka Osaka 560-8531 Japan
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Institute for Global Prominent Research (IGPR), Chiba University 1-33 Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
35
|
Drummer MC, Singh V, Gupta N, Gesiorski JL, Weerasooriya RB, Glusac KD. Photophysics of nanographenes: from polycyclic aromatic hydrocarbons to graphene nanoribbons. PHOTOSYNTHESIS RESEARCH 2022; 151:163-184. [PMID: 33963981 DOI: 10.1007/s11120-021-00838-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Graphene quantum dots (GQDs) and nanoribbons (GNRs) are classes of nanographene molecules that exhibit highly tunable photophysical properties. There have been great strides in recent years to advance our understanding of nanographene photophysics and develop their use in light-harvesting systems, such as artificial photosynthesis. Here, we review the latest studies of GQDs and GNRs which have shed new light onto their photophysical underpinnings through computational and advanced spectroscopic techniques. We discuss how the size, symmetry, and shape of nanographenes influence their molecular orbital structures and, consequentially, their spectroscopic signatures. The scope of this review is to comprehensively lay out the general photophysics of nanographenes starting with benzene and building up to larger polycyclic aromatic hydrocarbons, GQDs, and GNRs. We also explore a collection of publications from recent years that build upon the current understanding of nanographene photophysics and their potential application in light-driven processes from display, lasing, and sensing technology to photocatalytic water splitting.
Collapse
Affiliation(s)
- Matthew C Drummer
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA
| | - Varun Singh
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA
| | - Nikita Gupta
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA
| | - Jonathan L Gesiorski
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA
| | - Ravindra B Weerasooriya
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA
| | - Ksenija D Glusac
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL, 60607, USA.
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA.
| |
Collapse
|
36
|
Impact of Charge-Resonance Excitations on CT-Mediated J-Type Aggregation in Singlet and Triplet Exciton States of Perylene Di-Imide Aggregates: A TDDFT Investigation. COMPUTATION 2022. [DOI: 10.3390/computation10020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The modulation of intermolecular interactions upon aggregation induces changes in excited state properties of organic molecules that can be detrimental for some optoelectronic applications but can be exploited for others. The time-dependent density functional theory (TDDFT) is a cost-effective approach to determining the exciton states of molecular aggregates, and it has been shown to provide reliable results when coupled with the appropriate choice of the functional. Here we apply a general procedure to analyze the aggregates’ exciton states derived from TDDFT calculations in terms of diabatic states chosen to coincide with local (LE) and charge-transfer (CT) excitations within a restricted orbital space. We apply the approach to study energy profiles, interstate couplings, and the charge-transfer character of singlet and triplet exciton states of perylene di-imide aggregates (PDI). We focus on the intermolecular displacement along the longitudinal translation coordinate, which mimics different amounts of slip-stacking observed in PDI crystals. The analysis, in terms of symmetry-adapted Frenkel excitations (FE) and charge-resonance (CR) states and their interactions, discloses how the interchange of the H/J character for small longitudinal shifts, previously reported for singlet exciton states, also occurs for triplet excitons.
Collapse
|
37
|
Zhang S, Zeng YP, Wan XJ, Xu DH, Liu XY, Cui G, Li L. Ultrafast Exciton Delocalization and Localization Dynamics of a Perylene Bisimide Quadruple π-Stack: A Nonadiabatic Dynamics Simulation. Phys Chem Chem Phys 2022; 24:7293-7302. [DOI: 10.1039/d2cp00018k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unraveling the photogenerated exciton dynamics of πstacked molecular aggregates is of great importance for both fundamental studies and industrial applications. Among various πstacked molecular aggregates, perylene tetracarboxylic acid bisimides (PBI)...
Collapse
|
38
|
Krueger TD, Fang C. Elucidating Inner Workings of Naturally Sourced Organic Optoelectronic Materials with Ultrafast Spectroscopy. Chemistry 2021; 27:17736-17750. [PMID: 34545971 DOI: 10.1002/chem.202102766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 01/18/2023]
Abstract
Recent advances in sustainable optoelectronics including photovoltaics, light-emitting diodes, transistors, and semiconductors have been enabled by π-conjugated organic molecules. A fundamental understanding of light-matter interactions involving these materials can be realized by time-resolved electronic and vibrational spectroscopies. In this Minireview, the photoinduced mechanisms including charge/energy transfer, electronic (de)localization, and excited-state proton transfer are correlated with functional properties encompassing optical absorption, fluorescence quantum yield, conductivity, and photostability. Four naturally derived molecules (xylindein, dimethylxylindein, alizarin, indigo) with ultrafast spectral insights showcase efficient energy dissipation involving H-bonding networks and proton motions, which yield high photostability. Rational design principles derived from such investigations could increase the efficiency for light harvesting, triplet formation, and photosensitivity for improved and versatile optoelectronic performance.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
39
|
Chang X, Wang Z, Wang G, Liu T, Lin S, Fang Y. Perylene Bisimide-Cored Supramolecular Coordination Complexes: Interplay between Ensembles, Excited State Processes, and Aggregation Behaviors. Chemistry 2021; 27:14876-14885. [PMID: 34462989 DOI: 10.1002/chem.202101970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Manipulating the optical properties of fluorescent species is challenging owing to complicated and tedious synthetic works. Herein, the photophysical properties of perylene bisimide (PBI) were effectively tuned by varying the geometrical arrangement of PBI moieties within supramolecular coordination complexes (SCCs), where a PBI-based dicycle (2) and a trigonal prism (3) were generated via using a typical 90° Pt(II) reagent, cis-(PEt3 )2 Pt(OTf)2 -based coordination-driven self-assembly approach. The ligand, an ortho-tetrapyridiyl-PBI (1), exhibits a moderate fluorescence quantum yield (∼13 %) and efficient inter-system crossing (ISC). 2, however, is much more emissive with a fluorescence quantum yield of ∼41 %, and the relevant ISC process is significantly hindered. The fluorescence quantum yield of 3 is merely ∼6 % due to the observed symmetry-breaking charge separation (SB-CS), which turns to triplet state upon charge recombination. Interestingly, 3 could be fully transformed into 2 by simply adding a suitable amount of a 90° Pt(II)-based neutral triangle. Moreover, 2 tends to form discrete dimers both in crystal and solution states, but 3 does not show the property. Therefore, controlling geometrical arrangement of fluorophores through coordination-driven self-assembly could be taken as another effective way to tune their excited state relaxation pathways and construct high-performance optical molecular materials, which generally have to be prepared via organic synthesis.
Collapse
Affiliation(s)
- Xingmao Chang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Simin Lin
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface andColloid Chemistry, Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
40
|
Wang Y, Zhao XJ, Wei RJ, Liang GJ, Wang K, Tan YZ, Yang Y. Dynamic variation of excitonic coupling in excited bilayer graphene quantum dots. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2109169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin-jing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rong-Jing Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-jie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Kang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuan-zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
41
|
Accessing the spatiotemporal heterogeneities of single nanocatalysts by optically imaging gas nanobubbles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Vonhausen Y, Lohr A, Stolte M, Würthner F. Two-step anti-cooperative self-assembly process into defined π-stacked dye oligomers: insights into aggregation-induced enhanced emission. Chem Sci 2021; 12:12302-12314. [PMID: 34603660 PMCID: PMC8480337 DOI: 10.1039/d1sc03813c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Aggregation-induced emission enhancement (AIEE) phenomena received great popularity during the last decade but in most cases insights into the packing structure – fluorescence properties remained scarce. Here, an almost non-fluorescent merocyanine dye was equipped with large solubilizing substituents, which allowed the investigation of it's aggregation behaviour in unpolar solvents over a large concentration range (10−2 to 10−7 M). In depth analysis of the self-assembly process by concentration-dependent UV/Vis spectroscopy at different temperatures revealed a two-step anti-cooperative aggregation mechanism. In the first step a co-facially stacked dimer is formed driven by dipole–dipole interactions. In a second step these dimers self-assemble to give an oligomer stack consisting of about ten dyes. Concentration- and temperature-dependent UV/Vis spectroscopy provided insight into the thermodynamic parameters and allowed to identify conditions where either the monomer, the dimer or the decamer prevails. The centrosymmetric dimer structure could be proven by 2D NMR spectroscopy. For the larger decamer atomic force microscopy (AFM), diffusion ordered spectroscopy (DOSY) and vapour pressure osmometric (VPO) measurements consistently indicated that it is of small and defined size. Fluorescence, circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy provided insights into the photofunctional properties of the dye aggregates. Starting from an essentially non-fluorescent monomer (ΦFl = 0.23%) a strong AIEE effect with excimer-type fluorescence (large Stokes shift, increased fluorescence lifetime) is observed upon formation of the dimer (ΦFl = 2.3%) and decamer (ΦFl = 4.5%) stack. This increase in fluorescence is accompanied for both aggregates by an aggregation-induced CPL enhancement with a strong increase of the glum from ∼0.001 for the dimer up to ∼0.011 for the higher aggregate. Analysis of the radiative and non-radiative decay rates corroborates the interpretation that the AIEE effect originates from a pronounced decrease of the non-radiative rate due to π–π-stacking induced rigidification that outmatches the effect of the reduced radiative rate that originates from the H-type exciton coupling in the co-facially stacked dyes. The self-assembly of a dipolar merocyanine into preferred dimers and small-sized chiral aggregates leads to enhanced emission due to a reduced non-radiative rate as well as amplified circular polarized luminescence.![]()
Collapse
Affiliation(s)
- Yvonne Vonhausen
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Lohr
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
43
|
Hoche J, Flock M, Miao X, Philipp LN, Wenzel M, Fischer I, Mitric R. Excimer formation dynamics in the isolated tetracene dimer. Chem Sci 2021; 12:11965-11975. [PMID: 34667562 PMCID: PMC8457379 DOI: 10.1039/d1sc03214c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
The understanding of excimer formation and its interplay with the singlet-correlated triplet pair state 1(TT) is of high significance for the development of efficient organic electronics. Here, we study the photoinduced dynamics of the tetracene dimer in the gas phase by time-resolved photoionisation and photoion imaging experiments as well as nonadiabatic dynamics simulations in order to obtain mechanistic insight into the excimer formation dynamics. The experiments are performed using a picosecond laser system for excitation into the S2 state and reveal a biexponential time dependence. The time constants, obtained as a function of excess energy, lie in the range between ≈10 ps and 100 ps and are assigned to the relaxation of the excimer on the S1 surface and to its deactivation to the ground state. Simulations of the quantum-classical photodynamics are carried out in the frame of the semi-empirical CISD and TD-lc-DFTB methods. Both theoretical approaches reveal a dominating relaxation pathway that is characterised by the formation of a perfectly stacked excimer. TD-lc-DFTB simulations have also uncovered a second relaxation channel into a less stable dimer conformation in the S1 state. Both methods have consistently shown that the electronic and geometric relaxation to the excimer state is completed in less than 10 ps. The inclusion of doubly excited states in the CISD dynamics and their diabatisation further allowed to observe a transient population of the 1(TT) state, which, however, gets depopulated on a timescale of 8 ps, leading finally to the trapping in the excimer minimum. The understanding of excimer formation and its interplay with the singlet-correlated triplet pair state 1(TT) is of high significance for the development of efficient organic electronics.![]()
Collapse
Affiliation(s)
- Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Flock
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xincheng Miao
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Luca Nils Philipp
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Michael Wenzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ingo Fischer
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Roland Mitric
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
44
|
Li GL, Zhuo Z, Wang B, Cao XL, Su HF, Wang W, Huang YG, Hong M. Constructing π-Stacked Supramolecular Cage Based Hierarchical Self-Assemblies via π···π Stacking and Hydrogen Bonding. J Am Chem Soc 2021; 143:10920-10929. [PMID: 34270238 DOI: 10.1021/jacs.1c01161] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Constructing supramolecular cages with multiple subunits via weak intermolecular interactions is a long-standing challenge in chemistry. So far, π-stacked supramolecular cages still remain unexplored. Here, we report a series of π-stacked cage based hierarchical self-assemblies. The π-stacked cage (π-MX-cage) is assembled from 16 [MXL]+ ions (M = Mn2+, Co2+; X = Br-, SCN-, Cl-; and L = tris(2-benzimidazolylmethyl)amine) via 18 intermolecular π-stacking interactions. The tetrahedral cage, consisting of four [MXL]+ ions as the vertexes and six pairs of [MXL]+ ions as the edges, features 48 exterior N-H hydrogen bond donors for hydrogen bond formation with guest molecules. By variation of the M2+/X- pair, the π-MX-cage demonstrates unique versatility for incorporating a wide variety of species via different hydrogen-bonding modes during the assembly of hierarchical superstructures. In specific, the π-MnBr-cages encapsulate acetonitrile (CH3CN) or cis-1,3,5-cyclohexanetricarbonitrile (cis-HTN) molecules in the central voids, while a core-shell tetrahedral inorganic cluster [Mn(H2O)6]@([Mn(H2O)4]4[Br42-]6) (Mn@Mn4-cage) is captured within the interstitial regions between cages. The π-CoSCN-cages are capable of stabilizing reactive sulfur-containing species, such as S2O42-, S2O62-, and HSO3- ions, in the hierarchical superstructure. Finally, H2PO4- ions are incorporated between π-CoCl-cages, resulting in an inorganic mesoporous framework. These results provide insights into further exploring the chemistry and hierarchical assembly of supramolecular cages based on π-π stacking intermolecular interactions.
Collapse
Affiliation(s)
- Guo-Ling Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Zhu Zhuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Bin Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xue-Li Cao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Hai-Feng Su
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - You-Gui Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.,Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
45
|
Kang S, Kim T, Hong Y, Würthner F, Kim D. Charge-Delocalized State and Coherent Vibrational Dynamics in Rigid PBI H-Aggregates. J Am Chem Soc 2021; 143:9825-9833. [PMID: 34165972 DOI: 10.1021/jacs.1c03276] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, the ultrafast photoinduced dynamics and vibrational coherences for two perylenebisimide (PBI) H-aggregates showcase the formation of the excimer state and the delocalized radical anion state in the excited state, respectively. Using femtosecond transient absorption (fs-TA) and time-resolved impulsive stimulated Raman scattering (TR-ISRS) measurements, we unveiled excited-state dynamics of PBI H-aggregates in two aspects: (1) the intermolecular interactions between PBI units in H-aggregates induce the formation of new excited states, excimer and delocalized radical anion states, and (2) the intermolecular out-of-plane along the aggregate axis and the PBI core C═C stretch Raman modes can be a crucial indicator to understand the coherent exciton dynamics in H-aggregates. Notably, those excited-state Raman modes showed stationary peak positions during the excited-state dynamics. TR-ISRS analysis provides insights into the excited-state vibrational coherences concerning the formation of the excimer and charge-delocalized state in each aggregate system.
Collapse
Affiliation(s)
- Seongsoo Kang
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Taeyeon Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Yongseok Hong
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| | - Frank Würthner
- Institut for Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dongho Kim
- Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
46
|
Nematiaram T, Padula D, Troisi A. Bright Frenkel Excitons in Molecular Crystals: A Survey. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:3368-3378. [PMID: 34526736 PMCID: PMC8432684 DOI: 10.1021/acs.chemmater.1c00645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Indexed: 05/12/2023]
Abstract
We computed the optical properties of a large set of molecular crystals (∼2200 structures) composed of molecules whose lowest excited states are strongly coupled and generate wide excitonic bands. Such bands are classified in terms of their dimensionality (1-, 2-, and 3-dimensional), the position of the optically allowed state in relation with the excitonic density of states, and the presence of Davydov splitting. The survey confirms that one-dimensional aggregates are rare in molecular crystals highlighting the need to go beyond the simple low-dimensional models. Furthermore, this large set of data is used to search for technologically interesting and less common properties. For instance, we considered the largest excitonic bandwidth that is achievable within known molecular crystals and identified materials with strong super-radiant states. Finally, we explored the possibility that strong excitonic coupling can be used to generate emissive states in the near-infrared region in materials formed by molecules with bright visible absorption and we could identify the maximum allowable red shift in this material class. These insights with the associated searchable database provide practical guidelines for designing materials with interesting optical properties.
Collapse
Affiliation(s)
- Tahereh Nematiaram
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Daniele Padula
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università
di Siena, via A. Moro 2, Siena 53100, Italy
| | - Alessandro Troisi
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
47
|
Roy P, Bressan G, Gretton J, Cammidge AN, Meech SR. Ultrafast Excimer Formation and Solvent Controlled Symmetry Breaking Charge Separation in the Excitonically Coupled Subphthalocyanine Dimer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Palas Roy
- School of Chemistry University of East Anglia Nowich NR4 7TJ UK
| | - Giovanni Bressan
- Department of Life Sciences Imperial College London London SW7 2BX UK
| | - Jacob Gretton
- School of Chemistry University of East Anglia Nowich NR4 7TJ UK
| | | | | |
Collapse
|
48
|
Roy P, Bressan G, Gretton J, Cammidge AN, Meech SR. Ultrafast Excimer Formation and Solvent Controlled Symmetry Breaking Charge Separation in the Excitonically Coupled Subphthalocyanine Dimer. Angew Chem Int Ed Engl 2021; 60:10568-10572. [PMID: 33606913 PMCID: PMC8251754 DOI: 10.1002/anie.202101572] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 11/18/2022]
Abstract
Knowledge of the factors controlling excited state dynamics in excitonically coupled dimers and higher aggregates is critical for understanding natural and artificial solar energy conversion. In this work, we report ultrafast solvent polarity dependent excited state dynamics of the structurally well‐defined subphthalocyanine dimer, μ‐OSubPc2. Stationary electronic spectra demonstrate strong exciton coupling in μ‐OSubPc2. Femtosecond transient absorption measurements reveal ultrafast excimer formation from the initially excited exciton, mediated by intramolecular structural evolution. In polar solvents the excimer state decays directly through symmetry breaking charge transfer to form a charge separated state. Charge separation occurs under control of solvent orientational relaxation.
Collapse
Affiliation(s)
- Palas Roy
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| | - Giovanni Bressan
- Department of Life Sciences, Imperial College London, London, SW7 2BX, UK
| | - Jacob Gretton
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| | | | - Stephen R Meech
- School of Chemistry, University of East Anglia, Nowich, NR4 7TJ, UK
| |
Collapse
|
49
|
Canola S, Bagnara G, Dai Y, Ricci G, Calzolari A, Negri F. Addressing the Frenkel and charge transfer character of exciton states with a model Hamiltonian based on dimer calculations: Application to large aggregates of perylene bisimide. J Chem Phys 2021; 154:124101. [PMID: 33810656 DOI: 10.1063/5.0045913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To understand the influence of interchromophoric arrangements on photo-induced processes and optical properties of aggregates, it is fundamental to assess the contribution of local excitations [charge transfer (CT) and Frenkel (FE)] to exciton states. Here, we apply a general procedure to analyze the adiabatic exciton states derived from time-dependent density functional theory calculations, in terms of diabatic states chosen to coincide with local excitations within a restricted orbital space. In parallel, motivated by the need of cost-effective approaches to afford the study of larger aggregates, we propose to build a model Hamiltonian based on calculations carried out on dimers composing the aggregate. Both approaches are applied to study excitation energy profiles and CT character modulation induced by interchromophore rearrangements in perylene bisimide aggregates up to a tetramer. The dimer-based approach closely reproduces the results of full-aggregate calculations, and an analysis in terms of symmetry-adapted diabatic states discloses the effects of CT/FE interactions on the interchange of the H-/J-character for small longitudinal shifts of the chromophores.
Collapse
Affiliation(s)
- Sofia Canola
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Giuseppe Bagnara
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Yasi Dai
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Gaetano Ricci
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Alessandro Calzolari
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| | - Fabrizia Negri
- Università di Bologna, Dipartimento di Chimica 'Giacomo Ciamician', Via F. Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
50
|
Bialas D, Kirchner E, Röhr MIS, Würthner F. Perspectives in Dye Chemistry: A Rational Approach toward Functional Materials by Understanding the Aggregate State. J Am Chem Soc 2021; 143:4500-4518. [DOI: 10.1021/jacs.0c13245] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- David Bialas
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eva Kirchner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle I. S. Röhr
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|