1
|
Liang ZQ, Song DD, Li ZC, Xu SH, Dai GL, Ye CQ, Wang XM, Tao XT. Bright photoactivatable probes based on triphenylethylene for Cu 2+ detection in tap water and tea samples. Food Chem 2024; 434:137439. [PMID: 37729781 DOI: 10.1016/j.foodchem.2023.137439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Photoactivatable probes can switch fluorescence on from a weak or nonemission state to improve the sensitivity of the sensing system. In this work, we successfully constructed three highly emissive photoactivatable probes, 2-DP, 1-2-DP and 2-2-DP, for Cu2+ detection. Under UV irradiation, the photoluminescence quantum yields of 2-DP, 1-2-DP and 2-2-DP display approximately 52.4-, 11.5- and 49.2-fold enhancement, respectively. Cu2+ selectively quenches the bright photoactivated fluorescence, resulting in an approximately 38-fold fluorescence reduction. The highly selective fluorescence response to Cu2+ yields an excellent low detection limit of 5.8 nM. Moreover, the photoactivatable probes were successfully applied for Cu2+ determination in tap water and tea samples with recovery ranges of 95%-105% and 97%-106%, respectively. This work provides a more sensitive and efficient methodology for Cu2+ detection in heavy metal pollution and food safety.
Collapse
Affiliation(s)
- Zuo-Qin Liang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dong-Dong Song
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhuo-Cheng Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Su-Hang Xu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guo-Liang Dai
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chang-Qing Ye
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao-Mei Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xu-Tang Tao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
2
|
Luo X, Zhang C, Yue C, Jiang Y, Yang F, Xian Y. A near-infrared light-activated nanoprobe for simultaneous detection of hydrogen polysulfide and sulfur dioxide in myocardial ischemia-reperfusion injury. Chem Sci 2023; 14:14290-14301. [PMID: 38098706 PMCID: PMC10718178 DOI: 10.1039/d3sc04937j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Ischemia-reperfusion-induced cardiomyocyte mortality constitutes a prominent contributor to global morbidity and mortality. However, early diagnosis and preventive treatment of cardiac I/R injury remains a challenge. Given the close relationship between ferroptosis and I/R injury, monitoring their pathological processes holds promise for advancing early diagnosis and treatment of the disease. Herein, we report a near-infrared (NIR) light-activated dual-responsive nanoprobe (UCNP@mSiO2@SP-NP-NAP) for controllable detection of hydrogen polysulfide (H2Sn) and sulfur dioxide (SO2) during ferroptosis-related myocardial I/R injury. The nanoprobe's responsive sites could be activated by NIR and Vis light modulation, reversibly alternating for at least 5 cycles. We employed the nanoprobe to monitor the fluctuation levels of H2Sn and SO2 in H9C2 cardiomyocytes and mice, revealing that H2Sn and SO2 levels were up-regulated during I/R. The NIR light-activated dual-responsive nanoprobe could be a powerful tool for myocardial I/R injury diagnosis. Moreover, we also found that inhibiting the initiation of the ferroptosis process contributed to attenuating cardiac I/R injury, which indicated great potential for treating I/R injury.
Collapse
Affiliation(s)
- Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Chenyang Yue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuelin Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| |
Collapse
|
3
|
Xiong M, Wu Y, Kong G, Lewis W, Yang Z, Zhang H, Xu L, Liu Y, Liu Q, Zhao X, Zhang XB, Lu Y. A Semisynthetic Bioluminescence Sensor for Ratiometric Imaging of Metal Ions In Vivo Using DNAzymes Conjugated to An Engineered Nano-Luciferase. Angew Chem Int Ed Engl 2023; 62:e202308086. [PMID: 37548922 PMCID: PMC10527972 DOI: 10.1002/anie.202308086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 08/08/2023]
Abstract
DNA-based probes have gained significant attention as versatile tools for biochemical analysis, benefiting from their programmability and biocompatibility. However, most existing DNA-based probes rely on fluorescence as the signal output, which can be problematic due to issues like autofluorescence and scattering when applied in complex biological materials such as living cells or tissues. Herein, we report the development of bioluminescent nucleic acid (bioLUNA) sensors that offer laser excitation-independent and ratiometric imaging of the target in vivo. The system is based on computational modelling and mutagenesis investigations of a genetic fusion between circular permutated Nano-luciferase (NLuc) and HaloTag, enabling the conjugation of the protein with a DNAzyme. In the presence of Zn2+ , the DNAzyme sensor releases the fluorophore-labelled strand, leading to a reduction in bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. Consequently, this process induces ratiometric changes in the bioluminescent signal. We demonstrated that this bioLUNA sensor enabled imaging of both exogenous Zn2+ in vivo and endogenous Zn2+ efflux in normal epithelial prostate and prostate tumors. This work expands the DNAzyme sensors to using bioluminescence and thus has enriched the toolbox of nucleic acid sensors for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, 78712, Austin, TX, USA
| | - Gezhi Kong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Whitney Lewis
- Department of Chemistry, University of Texas at Austin, 78712, Austin, TX, USA
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, 78712, Austin, TX, USA
| | - Hanxiao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 030001, Taiyuan, Shanxi, P. R. China
| | - Li Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Ying Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Qin Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Xuhua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 030001, Taiyuan, Shanxi, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 78712, Austin, TX, USA
| |
Collapse
|
4
|
Li J, Huang H, Zhang C, Chen X, Hu Y, Huang X. Dual-key-and-lock AIE probe for thiosulfate and Ag + detection in mitochondria. Talanta 2023; 255:124222. [PMID: 36586391 DOI: 10.1016/j.talanta.2022.124222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Ag+ ion detection has attracted much attention due to its important role in chemical and biological processes, as well as its potential threat to the environment and human health. Herein, we firstly constructed a dual-key-and-lock sensing strategy for Ag+ detection based on three-component co-assembly. An aggregation-induced emission luminogen (AIEgen), namely triphenylamine-thiophene-pyridinium (abbreviated to TPA-T-Py), showed unique co-assembly capability with Ag+ and S2O32- in PBS buffer (pH 7.4, 0.01 M). Cell imaging further proved that mitochondria can be lit up by TPA-T-Py under the dual key stimulation, which was successfully used for Ag+ and S2O32- detection in vitro. In brief, we provide a promising strategy for the construction of dual-lock imaging agents with organelle-targeting ability.
Collapse
Affiliation(s)
- Junrong Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Chuang Zhang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xulang Chen
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yanjun Hu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xiaohuan Huang
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
5
|
Blixhavn CH, Haug FMŠ, Kleven H, Puchades MA, Bjaalie JG, Leergaard TB. A Timm-Nissl multiplane microscopic atlas of rat brain zincergic terminal fields and metal-containing glia. Sci Data 2023; 10:150. [PMID: 36944675 PMCID: PMC10030855 DOI: 10.1038/s41597-023-02012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
The ability of Timm's sulphide silver method to stain zincergic terminal fields has made it a useful neuromorphological marker. Beyond its roles in zinc-signalling and neuromodulation, zinc is involved in the pathophysiology of ischemic stroke, epilepsy, degenerative diseases and neuropsychiatric conditions. In addition to visualising zincergic terminal fields, the method also labels transition metals in neuronal perikarya and glial cells. To provide a benchmark reference for planning and interpretation of experimental investigations of zinc-related phenomena in rat brains, we have established a comprehensive repository of serial microscopic images from a historical collection of coronally, horizontally and sagittally oriented rat brain sections stained with Timm's method. Adjacent Nissl-stained sections showing cytoarchitecture, and customised atlas overlays from a three-dimensional rat brain reference atlas registered to each section image are included for spatial reference and guiding identification of anatomical boundaries. The Timm-Nissl atlas, available from EBRAINS, enables experimental researchers to navigate normal rat brain material in three planes and investigate the spatial distribution and density of zincergic terminal fields across the entire brain.
Collapse
Affiliation(s)
- Camilla H Blixhavn
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Finn-Mogens Š Haug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Goldberg JM, Lippard SJ. Mobile zinc as a modulator of sensory perception. FEBS Lett 2023; 597:151-165. [PMID: 36416529 PMCID: PMC10108044 DOI: 10.1002/1873-3468.14544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Mobile zinc is an abundant transition metal ion in the central nervous system, with pools of divalent zinc accumulating in regions of the brain engaged in sensory perception and memory formation. Here, we present essential tools that we developed to interrogate the role(s) of mobile zinc in these processes. Most important are (a) fluorescent sensors that report the presence of mobile zinc and (b) fast, Zn-selective chelating agents for measuring zinc flux in animal tissue and live animals. The results of our studies, conducted in collaboration with neuroscientist experts, are presented for sensory organs involved in hearing, smell, vision, and learning and memory. A general principle emerging from these studies is that the function of mobile zinc in all cases appears to be downregulation of the amplitude of the response following overstimulation of the respective sensory organs. Possible consequences affecting human behavior are presented for future investigations in collaboration with interested behavioral scientists.
Collapse
Affiliation(s)
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Han Q, Wang Q, Gao A, Ge X, Wan R, Cao X. Fluorescent Quinoline-Based Supramolecular Gel for Selective and Ratiometric Sensing Zinc Ion with Multi-Modes. Gels 2022; 8:605. [PMID: 36286106 PMCID: PMC9601706 DOI: 10.3390/gels8100605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 06/01/2024] Open
Abstract
A gelator 1 containing functional quinoline and Schiff base groups that could form organogels in DMF, DMSO, acetone, ethanol and 1,4-dioxane was designed and synthesized. The self-assembly process of geator 1 was characterized by field emission scanning electron microscopy (FESEM), UV-vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform infrared spectroscopy(FTIR), X-ray powder diffraction (XRD) and water contact angle. Under non-covalent interactions, gelator 1 self-assembled into microbelts and nanofiber structures with different surface wettability. Weak fluorescence was emitted from the solution and gel state of 1. Interestingly, gelator 1 exhibited good selectivity and sensitivity towards Zn2+ in solution and gel states along with its emission enhancement and change. The emission intensity at 423 nm of solution 1 in 1,4-dioxane was slightly enhanced, and a new emission peak appeared at 545 nm along with its intensity sequentially strengthened in the titration process. The obvious ratiometric detection process was presented with a limit of detection (LOD) of 5.51 μM. The detection mechanism was revealed by a theoretical calculation and NMR titration experiment, which was that Zn2+ induced the transition from trans- to cis- of molecule 1 and further coordinated with 1. This study will introduce a new method for the construction of functional self-assembly gel sensors for the detection of Zn2+.
Collapse
Affiliation(s)
- Qingqing Han
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qingqing Wang
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Aiping Gao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xuefei Ge
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Rong Wan
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xinhua Cao
- Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan Green Catalysis, Synthesis Key Laboratory of Xinyang City, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Das S, Das M, Laha S, Rajak K, Choudhuri I, Bhattacharyya N, Samanta BC, Maity T. Development of moderately fluorescence active salen type chemosensor for judicious recognition and quantification of Zn(II), Al(III) and SO4=: Demonstration of molecular logic gate formation and live cell images studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Dong H, Zhao L, Chen Y, Li M, Chen W, Wang Y, Wei X, Zhang Y, Zhou Y, Xu M. Dual-Ligand Near-Infrared Luminescent Lanthanide-Based Metal-Organic Framework Coupled with In Vivo Microdialysis for Highly Sensitive Ratiometric Detection of Zn 2+ in a Mouse Model of Alzheimer's Disease. Anal Chem 2022; 94:11940-11948. [PMID: 35981232 DOI: 10.1021/acs.analchem.2c02898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zinc, which is the second most abundant trace element in the human central nervous system, is closely associated with Alzheimer's disease (AD). However, attempts to develop highly sensitive and selective sensing systems for Zn2+ in the brain have not been successful. Here, we used a one-step solvothermal method to design and prepare a metal-organic framework (MOF) containing the dual ligands, terephthalic acid (H2BDC) and 2,2':6',2″-terpyridine (TPY), with Eu3+ as a metal node. This MOF is denoted as Eu-MOF/BDC-TPY. Adjustment of the size and morphology of Eu-MOF/BDC-TPY allowed the dual ligands to produce multiple luminescence peaks, which could be interpreted via ratiometric fluorescence to detect Zn2+ using the ratio of Eu3+-based emission, as the internal reference, and ligand-based emission, as the indicator. Thus, Eu-MOF/BDC-TPY not only displayed higher selectivity than other metal cations but also offered a highly accurate, sensitive, wide linear, color change-based technique for detecting Zn2+ at concentrations ranging from 1 nM to 2 μM, with a low limit of detection (0.08 nM). Moreover, Eu-MOF/BDC-TPY maintained structural stability and displayed a fluorescence intensity of at least 95.4% following storage in water for 6 months. More importantly, Eu-MOF/BDC-TPY sensed the presence of Zn2+ markedly rapidly (within 5 s), which was very useful in practical application. Furthermore, the results of our ratiometric luminescent method-based analysis of Zn2+ in AD mouse brains were consistent with those obtained using inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Le Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Ya Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Miaomiao Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113000, P. R. China
| | - Weitian Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yixin Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, P. R. China
| |
Collapse
|
10
|
Xie X, Liu Y, Liu G, Zhao Y, Bian J, Li Y, Zhang J, Wang X, Tang B. Photocontrollable Fluorescence Imaging of Mitochondrial Peroxynitrite during Ferroptosis with High Fidelity. Anal Chem 2022; 94:10213-10220. [PMID: 35793135 DOI: 10.1021/acs.analchem.2c01758] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferroptosis, a new regulatory cell death modality, underlies the pathogenesis of a broad range of disorders. Although much efforts have been made to uncover the molecular mechanisms, some mechanistic details of ferroptosis still remain poorly understood. Particularly, the functional relevance of mitochondrial reactive oxygen species (ROS) in ferroptosis is still highly controversial, which is partially due to the fact that it still remains puzzled how the mitochondrial ROS level varies during ferroptosis. The conventional mitochondria-targeted probes may react with cytosolic ROS and show fluorescence variation before entering mitochondria, thus probably giving a false result on the mitochondrial ROS level and leading to the misjudgment on its biofunction. To circumvent this issue, we rationally designed a photocontrollable and mitochondria-targeted fluorescent probe to in situ visualize the mitochondrial peroxynitrite (ONOO-), which is the ROS member and mediator of ferroptosis. The photoactivated probe was endowed with a highly specific and sensitive fluorescence response to ONOO-. Notably, the response activity could be artificially regulated with light irradiation, which ensured that all the probe molecules passed through the cytosol in the locked status and were then photoactivated after reaching mitochondria. This photocontrolled fluorescence imaging strategy eliminated the interference of ONOO- outside the mitochondria, thus potentially afforded improved fidelity for mitochondrial ONOO- bioimaging in live cells and animal models. With this probe, for the first time, we revealed the mitochondrial ONOO- flux and its probable biological source during erastin-induced ferroptosis. These results suggest a tight correlation between mitochondrial ONOO-/ROS and ferroptotic progression, which will further facilitate the comprehensive exploration and manipulation of ferroptosis.
Collapse
Affiliation(s)
- Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Yawen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Guangzhao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuying Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Jie Bian
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
11
|
Chen M, Wang C, Ding Z, Wang H, Wang Y, Liu Z. A Molecular Logic Gate for Developing "AND" Logic Probes and the Application in Hepatopathy Differentiation. ACS CENTRAL SCIENCE 2022; 8:837-844. [PMID: 35756368 PMCID: PMC9228555 DOI: 10.1021/acscentsci.2c00387] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Accurate diagnosis and therapy are challenging because most diseases lack a single biomarker that distinguishes them from other disorders. A solution would enhance targeting accuracy by using AND-gated combinations of two disease-associated stimuli. Here, we report a novel "AND" molecular logic gate, enabling a double-controlled release of intact functional molecules. Benefiting from a significant difference in intramolecular cyclization rate, cargo release occurs notably faster with the presence of both stimuli. According to this finding, several AND logic probes have been developed that respond to a broad scope of stimuli and show remarkably improved signal-to-background contrast compared to those of monoresponsive probes. In addition, an AND logic probe that is responsive to monoamine oxidase (MAO) and leucine aminopeptidase (LAP) has been constructed for hepatopathy diagnosis. It works efficiently in living cells and mouse models. Of note, this probe can successfully differentiate cirrhotic from hepatitis B by testing the blood samples from patients.
Collapse
Affiliation(s)
- Mengqi Chen
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zexuan Ding
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Wang
- Department
of Radiation Oncology, Peking University
Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Yu Wang
- Department
of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100730, China
| | - Zhibo Liu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking
University−Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Han Z, Xiong J, Ren TB, Zhang XB. Recent advances in dual-target-activated fluorescent probes for biosensing and bioimaging. Chem Asian J 2022; 17:e202200387. [PMID: 35579099 DOI: 10.1002/asia.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Fluorescent probes have been powerful tools for visualizing and quantifying multiple dynamic processes in living cells. However, the currently developed probes are often constructed by conjugation a fluorophore with a recognition moiety and given signal-output after triggering with one singly target interest. Compared with the single-target-activated fluorescent probes mentioned above, the dual-target-activated ones, triggering with one target under stimulus (such as photoirradiation, microenvironment) or another targets, have the advantages of advoiding nonspecific activation and "false positive" results in complicated environments. In recent years, many dual-target-activated fluorescent probes have been developed to detect various biologically relevant species. In view of the importance of a comprehensive understanding of dual-target- activated fluorescent probes, a thorough summary of this topic is urgently needed. However, no comprehensive and critical review on dual target activated fluorescent probes has been published recently. In this review, we focus on the dual-target-activated fluorescent probes and briefly outline their types and current state of development. In each type, the chemical structure, proposed responsive mechanism and application of probes are highlighted. At last, the challenges and prospective opportunities of every type were proposed.
Collapse
Affiliation(s)
- Zhixiang Han
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Jie Xiong
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Tian-Bing Ren
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| | - Xiao-Bing Zhang
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| |
Collapse
|
13
|
Ghorai P, Ghosh Chowdhury S, Pal K, Mandal J, Karmakar P, Franconetti A, Frontera A, Blasco S, García-España E, Parui PP, Saha A. Aza-Crown-Based Macrocyclic Probe Design for "PET-off" Multi-Cu 2+ Responsive and "CHEF-on" Multi-Zn 2+ Sensor: Application in Biological Cell Imaging and Theoretical Studies. Inorg Chem 2022; 61:1982-1996. [PMID: 35034445 DOI: 10.1021/acs.inorgchem.1c03141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The work represents a rare example of an aza-crown-based macrocyclic chemosensor, H2DTC (H2DTC = 1,16-dihydroxy-tetraaza-30-crown-8) for the selective detection of both Zn2+ and Cu2+ in HEPES buffer medium (pH 7.4). H2DTC exhibits a fluorescence response for both Zn2+ and Cu2+ ions. The reversibility of the chemosensor in its binding with Zn2+ and Cu2+ ions is also examined using a Na2EDTA solution. H2DTC exhibits a chelation-enhanced fluorescence (CHEF) effect in the presence of Zn2+ ions and a quenching effect (CHEQ) in the presence of paramagnetic Cu2+ ions. Furthermore, the geometry and spectral properties of H2DTC and the chemosensor bound to Zn2+ have been studied by DFT and TDDFT calculations. The limit of detection (LOD) values are 0.11 × 10-9 and 0.27 × 10-9 M for Cu2+ and Zn2+, respectively. The formation constants for the Zn2+ and Cu2+ complexes have been measured by pH-potentiometry in 0.15 M NaCl in 70:30 (v:v) water:ethanol at 298.1 K. UV-vis absorption and fluorometric spectral data and pH-potentiometric titrations indicate 1:1 and 2:1 metal:chemosensor species. In the solid state H2DTC is able to accommodate up to four metal ions, as proved by the crystal structures of the complexes [Zn4(DTC)(OH)2(NO3)4] (1) and {[Cu4(DTC)(OCH3)2(NO3)4]·H2O}n (2). H2DTC can be used as a potential chemosensor for monitoring Zn2+ and Cu2+ ions in biological and environmental media with outstanding accuracy and precision. The propensity of H2DTC to detect intracellular Cu2+ and Zn2+ ions in the triple negative human breast cancer cell line MDA-MB-468 and in HeLa cells has been determined by fluorescence cell imaging.
Collapse
Affiliation(s)
- Pravat Ghorai
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | - Kunal Pal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Jayanta Mandal
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Antonio Franconetti
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | - Salvador Blasco
- Institute of Molecular Sciences, Universitat de València, C/Catedrático José Beltrán Martínez, 2, 46980 Paterna, Valencia, Spain
| | - Enrique García-España
- Institute of Molecular Sciences, Universitat de València, C/Catedrático José Beltrán Martínez, 2, 46980 Paterna, Valencia, Spain
| | | | - Amrita Saha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
14
|
Hong C, Wang Q, Chen Y, Gao Y, Shang J, Weng X, Liu X, Wang F. Intelligent demethylase-driven DNAzyme sensor for highly reliable metal-ion imaging in living cells. Chem Sci 2021; 12:15339-15346. [PMID: 34976354 PMCID: PMC8635203 DOI: 10.1039/d1sc05370a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
The accurate intracellular imaging of metal ions requires an exquisite site-specific activation of metal-ion sensors, for which the pervasive epigenetic regulation strategy can serve as an ideal alternative thanks to its orthogonal control feature and endogenous cell/tissue-specific expression pattern. Herein, a simple yet versatile demethylation strategy was proposed for on-site repairing-to-activating the metal-ion-targeting DNAzyme and for achieving the accurate site-specific imaging of metal ions in live cells. This endogenous epigenetic demethylation-regulating DNAzyme system was prepared by modifying the DNAzyme with an m6A methylation group that incapacitates the DNAzyme probe, thus eliminating possible off-site signal leakage, while the cell-specific demethylase-mediated removal of methylation modification could efficiently restore the initial catalytic DNAzyme for sensing metal ions, thus allowing a high-contrast bioimaging in live cells. This epigenetic repair-to-activate DNAzyme strategy may facilitate the robust visualization of disease-specific biomarkers for in-depth exploration of their biological functions.
Collapse
Affiliation(s)
- Chen Hong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Qing Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yingying Chen
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Yuhui Gao
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China .,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 P. R. China .,Research Institute of Shenzhen, Wuhan University Shenzhen 518057 P. R. China
| |
Collapse
|
15
|
Schröder N, Schmidtmann M, Christoffers J. Diaminoterephthalate‐EDTA and ‐EGTA Conjugates – “Turn on” Fluorescence Sensors for Zinc Ions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nils Schröder
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Marc Schmidtmann
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Jens Christoffers
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| |
Collapse
|
16
|
Novel Prostate Cancer Biomarkers: Aetiology, Clinical Performance and Sensing Applications. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The review initially provides a short introduction to prostate cancer (PCa) incidence, mortality, and diagnostics. Next, the need for novel biomarkers for PCa diagnostics is briefly discussed. The core of the review provides details about PCa aetiology, alternative biomarkers available for PCa diagnostics besides prostate specific antigen and their biosensing. In particular, low molecular mass biomolecules (ions and metabolites) and high molecular mass biomolecules (proteins, RNA, DNA, glycoproteins, enzymes) are discussed, along with clinical performance parameters.
Collapse
|
17
|
Extended sawhorse waveform for stable zinc detection with fast-scan cyclic voltammetry. Anal Bioanal Chem 2021; 413:6727-6735. [PMID: 34268588 DOI: 10.1007/s00216-021-03529-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Zinc (Zn(II)) is a divalent cation involved in regulating intracellular signal transduction and gene expression through transcription factor activity, and can act as a metal neurotransmitter by modulating synaptic activity and neuronal plasticity. Previous research has demonstrated spatial heterogeneity of Zn(II) in the brain, has estimated extracellular concentrations of Zn(II) across various brain regions, and has measured rapid intracellular changes in Zn(II) concentration during glutamate flux. Despite this work, quantification of rapid extracellular Zn(II) release from neurons, on a millisecond time scale, in real time has remained difficult with existing technologies. Here, we have developed an electrochemical waveform, called the "extended sawhorse waveform (ESW)," for fast-scan cyclic voltammetry detection at carbon-fiber microelectrodes which enabled rapid and stable Zn(II) monitoring over time. This waveform was developed to overcome existing challenges in monitoring metallotransmitters stably over time electrochemically by introducing a brief cleaning step to facilitate rapid cleaning of the electrode surface in between scans. The ESW scans from 0.5 V down to -1.0 V, up to 1.45 V for 3 ms (cleaning step), and back to 0.5 V at a scan rate of 400 V/s. Repeated introductions of Zn(II) at the electrode using a traditional waveform cause plating which ultimately deteriorates the sensitivity over time; however, using the ESW, significant improvements in stability were observed. Overall, we provide a unique approach to monitor and quantitate rapid Zn(II) signaling in the brain at carbon electrodes which will impact our ability to advance fundamental knowledge of Zn(II) involvement in extracellular signaling pathways in the brain.
Collapse
|
18
|
Ghosh P, Pramanik K, Paul S, Dey D, Kumar Chandra S, Kanti Mukhopadhyay S, Chandra Murmu N, Banerjee P. Zn
2+
Recognition for Pathogenesis of
Pick's Disease
via a Luminescent Test Kit. ChemistrySelect 2021. [DOI: 10.1002/slct.202100908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pritam Ghosh
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
| | - Koushik Pramanik
- Department of Chemistry Visva-Bharati University Santiniketan 731235 India
| | - Suparna Paul
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Debanjan Dey
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | | | | | - Naresh Chandra Murmu
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|
19
|
Abstract
Optical imaging probes allow us to detect and uncover the physiological and pathological functions of an analyte of interest at the molecular level in a non-invasive, longitudinal manner. By virtue of simplicity, low cost, high sensitivity, adaptation to automated analysis, capacity for spatially resolved imaging and diverse signal output modes, optical imaging probes have been widely applied in biology, physiology, pharmacology and medicine. To build a reliable and practically/clinically relevant probe, the design process often encompasses multidisciplinary themes, including chemistry, biology and medicine. Within the repertoire of probes, dual-locked systems are particularly interesting as a result of their ability to offer enhanced specificity and multiplex detection. In addition, chemiluminescence is a low-background, excitation-free optical modality and, thus, can be integrated into dual-locked systems, permitting crosstalk-free fluorescent and chemiluminescent detection of two distinct biomarkers. For many researchers, these dual-locked systems remain a 'black box'. Therefore, this Review aims to offer a 'beginner's guide' to such dual-locked systems, providing simple explanations on how they work, what they can do and where they have been applied, in order to help readers develop a deeper understanding of this rich area of research.
Collapse
|
20
|
Bhattacharyya A, Jameei A, Karande AA, Chakravarty AR. BODIPY-attached zinc(II) complexes of curcumin drug for visible light assisted photo-sensitization, cellular imaging and targeted PDT. Eur J Med Chem 2021; 220:113438. [PMID: 33915370 DOI: 10.1016/j.ejmech.2021.113438] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Boron-dipyrromethene (BODIPY) based photosensitizers as porphyrinoids and curcumin as natural product possess exciting photophysical features suitable for theranostic applications, namely, imaging and photodynamic therapy (PDT). Limited aqueous solubility and insufficient physiological stability, however, reduce their efficacy significantly. We have designed a novel strategy to deliver these two unusable cytotoxins simultaneously in cancer cells and herein, report the synthesis, characterization and imaging-assisted photocytotoxicity of three zinc(II) complexes containing N3-donor dipicolylamine (dpa) ligands (L1-3) and O,O-donor curcumin (Hcur) viz. [Zn(L1)(cur)]Cl (1), [Zn(L2)(cur)]Cl (2) and [Zn(L3)(cur)]Cl (3), where L2 and L3 have pendant fluorescent BODIPY and non-emissive di-iodo-BODIPY moieties. Metal chelation imparted remarkable biological stability (pH ∼7.4) to the respective ligands and induces significant aqueous solubility. These ternary complexes could act as replacements of the existing metalloporphyrin-based PDT photosensitizers as their visible-light photosensitizing ability is reinforced by the dual presence of blue light absorbing curcumin and green light harvesting BODIPY units. Complex 2 having emissive BODIPY unit L2 and curcumin, showed mitochondria selective localization in HeLa, MCF-7 cancer cells and complex 3, the di-iodinated analogue of complex 2, exhibited type-I/II PDT activity via inducing apoptosis through mitochondrial membrane disruption in cancer cells while being significantly nontoxic in dark and to the healthy cells.
Collapse
Affiliation(s)
- Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India
| | - Aida Jameei
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Sir C.V. Raman Avenue, Bangalore, 560012, India.
| |
Collapse
|
21
|
Gao R, Li D, Zheng S, Gu H, Deng W. Colorimetric/fluorescent/Raman trimodal sensing of zinc ions with complexation-mediated Au nanorod. Talanta 2021; 225:121975. [PMID: 33592723 DOI: 10.1016/j.talanta.2020.121975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022]
Abstract
Accurate and selective in-field detection of metal ions in complex media has gained wide interests due to the complexed matrices and weak affinity towards sensing surface. Herein, we develop a first trimodal method for sensing of Zn2+ in complex matrices by stimuli-responsive N-[6-piperazinyl-2-pyridinyl]-N-(2-pyridinylmethyl)-2-Pyridinemethanamine dithiocarbamates (DPY) modified gold nanorods (GNRs-DPY). The presence of Zn2+ triggers the aggregation of GNRs-DPY, leading to increment of color and fluorescence intensity of the sensing system, which could be visually discerned with bare eye. Moreover, the intensive electromagnetic enhancement among "hot spots" of GNRs, generated during self-aggregation of the GNRs-DPY caused by Zn2+, lowers the detection limit of SERS assay to 6 × 10-3 pM. It is noteworthy that GNRs-DPY based sensing platform not only enables distinguishing Zn2+ from Cd2+, with simplicity and rapidity, but also demonstrates as trimodal nanoprobe for sensitive and selective quantitative determination of Zn2+ in different matrices. Therefore, the GNRs-DPY provides a new strategy for accurate and credible on-spot determination of Zn2+ in complicated specimens, as well as offering multiple applications in point-of-care monitoring.
Collapse
Affiliation(s)
- Rui Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China.
| | - Siqing Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Haixin Gu
- Shanghai Fire Research Institute of MEM, 918 Minjing Road, Shanghai, 200438, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| |
Collapse
|
22
|
Wang JT, Pei YY, Yan MY, Li YG, Yang GG, Qu CH, Luo W, Wang J, Li QF. A fast-response turn-on quinoline-based fluorescent probe for selective and sensitive detection of zinc (II) and its application. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Golian KP, Akari AS, Hodgson GK, Impellizzeri S. Fluorescence activation, patterning and enhancement with photogenerated radicals, a prefluorescent probe and silver nanostructures. RSC Adv 2021. [DOI: 10.1039/d0ra09565f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We designed a switchable fluorophore activated by UVA light and a radical initiator, for optical lithography with concomitant metal-enhanced fluorescence by silver nanoparticles.
Collapse
Affiliation(s)
- Karol P. Golian
- Laboratory for Nanomaterials and Molecular Plasmonics
- Department of Chemistry and Biology
- Ryerson University
- Toronto
- Canada
| | - Aviya S. Akari
- Laboratory for Nanomaterials and Molecular Plasmonics
- Department of Chemistry and Biology
- Ryerson University
- Toronto
- Canada
| | - Gregory K. Hodgson
- Laboratory for Nanomaterials and Molecular Plasmonics
- Department of Chemistry and Biology
- Ryerson University
- Toronto
- Canada
| | - Stefania Impellizzeri
- Laboratory for Nanomaterials and Molecular Plasmonics
- Department of Chemistry and Biology
- Ryerson University
- Toronto
- Canada
| |
Collapse
|
24
|
Hussain A, Mariappan K, Cork DC, Lewandowski LD, Shrestha PK, Giri S, Wang X, Sykes AG. A highly selective pyridoxal-based chemosensor for the detection of Zn( ii) and application in live-cell imaging; X-ray crystallography of pyridoxal-TRIS Schiff-base Zn( ii) and Cu( ii) complexes. RSC Adv 2021; 11:34181-34192. [PMID: 35497295 PMCID: PMC9042327 DOI: 10.1039/d1ra05763d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
In a simple, one-step reaction, we have synthesized a pyridoxal-based chemosensor by reacting tris(hydroxymethyl)aminomethane (TRIS) together with pyridoxal hydrochloride to yield a Schiff-base ligand that is highly selective for the detection of Zn(ii) ion. Both the ligand and the Zn(ii) complex have been characterized by 1H & 13C NMR, ESI-MS, CHN analyses, and X-ray crystallography. The optical properties of the synthesized ligand were investigated in an aqueous buffer solution and found to be highly selective and sensitive toward Zn(ii) ion through a fluorescence turn-on response. The competition studies reveal the response for zinc ion is unaffected by all alkali and alkaline earth metals; and suppressed by Cu(ii) ion. The ligand itself shows a weak fluorescence intensity (quantum yield, Φ = 0.04), and the addition of zinc ion enhanced the fluorescence intensity 12-fold (quantum yield, Φ = 0.48). The detection limit for zinc ion was 2.77 × 10−8 M, which is significantly lower than the WHO's guideline (76.5 μM). Addition of EDTA to a solution containing the ligand–Zn(ii) complex quenched the fluorescence, indicating the reversibility of Zn(ii) binding. Stoichiometric studies indicated the formation of a 2 : 1 L2Zn complex with a binding constant of 1.2 × 109 M−2 (±25%). The crystal structure of the zinc complex shows the same hydrated L2Zn complex, with Zn(ii) ion binding with an octahedral coordination geometry. We also synthesized the copper(ii) complex of the ligand, and the crystal structure showed the formation of a 1 : 1 adduct, revealing 1-dimensional polymeric networks with octahedral coordinated Cu(ii). The ligand was employed as a sensor to detect zinc ion in HEK293 cell lines derived from human embryonic kidney cells grown in tissue culture which showed strong luminescence in the presence of Zn(ii). We believe that the outstanding turn-on response, sensitivity, selectivity, lower detection limit, and reversibility toward zinc ion will find further application in chemical and biological science. The synthesis, characterization, X-ray crystallography, and live-cell imaging of pyridoxal-TRIS Schiff-base ligand which is selective as a luminescence sensor to detect Zn(ii) ion, and the corresponding Zn(ii) and Cu(ii) complexes are described.![]()
Collapse
Affiliation(s)
- Anwar Hussain
- Contribution from the Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
| | - Kadarkaraisamy Mariappan
- Contribution from the Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
| | - Dawson C. Cork
- Contribution from the Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
| | - Luke D. Lewandowski
- Contribution from the Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
| | - Prem K. Shrestha
- Contribution from the Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
| | - Samiksha Giri
- Basic Biomedical Science, University of South Dakota, School of Medicine, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Basic Biomedical Science, University of South Dakota, School of Medicine, Vermillion, SD 57069, USA
| | - Andrew G. Sykes
- Contribution from the Department of Chemistry, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
25
|
Kumar N, Roopa, Bhalla V, Kumar M. Beyond zinc coordination: Bioimaging applications of Zn(II)-complexes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
|
27
|
Sandhu N, Singh AP, Saxena A, Pandey SK, Kumar K, Singh AP, Yadav RK. X-ray crystallographic, electrochemical, quantum chemical and anti-microbial analysis of fluorescein based Schiff base. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Musib D, Raza MK, Devi SS, Roy M. A reversible, benzothiazole-based “Turn-on” fluorescence sensor for selective detection of Zn2+ ions in vitro. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-1745-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Xu H, Zhu C, Chen Y, Bai Y, Han Z, Yao S, Jiao Y, Yuan H, He W, Guo Z. A FRET-based fluorescent Zn 2+ sensor: 3D ratiometric imaging, flow cytometric tracking and cisplatin-induced Zn 2+ fluctuation monitoring. Chem Sci 2020; 11:11037-11041. [PMID: 34123194 PMCID: PMC8162301 DOI: 10.1039/d0sc03037f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Monitoring labile Zn2+ homeostasis is of great importance for the study of physiological functions of Zn2+ in biological systems. Here we report a novel ratiometric fluorescent Zn2+ sensor, CPBT, which was constructed based on chelation-induced alteration of FRET efficiency. CPBT was readily cell membrane permeable and showed a slight preferential localization in the endoplasmic reticulum. With this sensor, 3D ratiometric Zn2+ imaging was first realized in the head of zebra fish larvae via Z-stack mode. CPBT could track labile Zn2+ in a large number of cells through ratiometric flow cytometric assay. More interestingly, both ratiometric fluorescence imaging and flow cytometric assay demonstrated that the labile Zn2+ level in MCF-7 cells (cisplatin-sensitive) decreased while that in SKOV3 cells (cisplatin-insensitive) increased after cisplatin treatment, indicating that Zn2+ may play an important role in cisplatin induced signaling pathways in these cancer cells. A Zn2+ sensor exhibiting 3D ratiometric imaging and flow cytometric ability was constructed based on the FRET mechanism, and cisplatin-induced endogenous labile Zn2+ fluctuations were monitored in real time.![]()
Collapse
Affiliation(s)
- Hongxia Xu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Chengcheng Zhu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shankun Yao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yang Jiao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China .,Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
30
|
A cyanobiphenyl-based ratiometric fluorescent sensor for highly selective and sensitive detection of Zn2+. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Shen Z, Haragopal H, Li YV. Zinc modulates synaptic transmission by differentially regulating synaptic glutamate homeostasis in hippocampus. Eur J Neurosci 2020; 52:3710-3722. [PMID: 32302450 DOI: 10.1111/ejn.14749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/29/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
A subset of presynaptic glutamatergic vesicles in the brain co-releases zinc (Zn2+ ) with glutamate into the synapse. However, the role of synaptically released Zn2+ is still under investigation. Here, we studied the effect of Zn2+ on glutamate homeostasis by measuring the evoked extracellular glutamate level (EGL) and the probability of evoked action potential (PEAP ) at the Zn2+ -containing or zincergic mossy fiber-CA3 synapses of the rat hippocampus. We found that the application of Zn2+ (ZnCl2 ) exerted bidirectional effects on both EGL and PEAP : facilitatory at low concentration (~1 µM) while repressive at high concentration (~50 µM). To determine the action of endogenous Zn2+ , we also used extracellular Zn2+ chelator to remove the synaptically released Zn2+ . Zn2+ chelation reduced both EGL and PEAP , suggesting that endogenous Zn2+ has mainly a facilitative role in glutamate secretion on physiological condition. We revealed that calcium/calmodulin-dependent protein kinase II was integral to the mechanism by which Zn2+ facilitated the release of glutamate. Moreover, a glutamate transporter was the molecular entity for the action of Zn2+ on glutamate uptake by which Zn2+ decreases glutamate availability. Taken together, we show a novel action of Zn2+ , which is to biphasically regulate glutamate homeostasis via Zn2+ concentration-dependent synaptic facilitation and depression. Thus, co-released Zn2+ is physiologically important for enhancing weak stimulation, but potentially mitigates excessive stimulation to keep synaptic transmission within optimal physiological range.
Collapse
Affiliation(s)
- Zhijun Shen
- Departments of Biological Sciences and Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Hariprakash Haragopal
- Departments of Biological Sciences and Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Yang V Li
- Departments of Biological Sciences and Biomedical Sciences, Ohio University, Athens, OH, USA
| |
Collapse
|
32
|
Dogantzis NP, Hodgson GK, Impellizzeri S. Optical writing and single molecule reading of photoactivatable and silver nanoparticle-enhanced fluorescence. NANOSCALE ADVANCES 2020; 2:1956-1966. [PMID: 36132516 PMCID: PMC9418025 DOI: 10.1039/d0na00049c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/28/2020] [Indexed: 05/27/2023]
Abstract
We designed a hybrid nanoparticle-molecular system composed of silver nanostructures (AgNP) and a fluorogenic boron dipyrromethene (BODIPY) that can be selectively activated by UVA or UVC light in the presence of an appropriate photoacid generator (PAG). Light irradiation of the PAG encourages the release of p-toluenesulfonic, triflic or hydrobromic acid, any of which facilitate optical 'writing' by promoting the formation of a fluorescent species. Metal-enhanced fluorescence (MEF) by AgNP was achieved through rational design of the nano-molecular system in accordance with the principles of radiative decay engineering. In addition to increasing signal to noise, AgNP permitted shorter reaction times and low irradiance - all of which have important implications for applications of fluorescence activation in portable fluorescence patterning, bioimaging and super-resolution microscopy. Single molecule fluorescence microscopy provided unique insights into the MEF mechanism which were hidden by ensemble-averaged measurements, demonstrating that single molecule 'reading' is a valuable tool for characterizing particle-molecule interactions such as those responsible for the relative contributions of increased excitation and plasmophoric emission toward overall MEF. This work represents a step forward in the contemporary design of synergistic nano-molecular systems, and showcases the advantage of fusion between classic spectroscopic techniques and single molecule methods in terms of improved quantitative understanding of fluorophore-nanoparticle interactions, and how these interactions can be exploited to the fullest extent possible.
Collapse
Affiliation(s)
- Nicholas P Dogantzis
- Laboratory for Nanomaterials and Molecular Plasmonics, Department of Chemistry and Biology, Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| | - Gregory K Hodgson
- Laboratory for Nanomaterials and Molecular Plasmonics, Department of Chemistry and Biology, Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| | - Stefania Impellizzeri
- Laboratory for Nanomaterials and Molecular Plasmonics, Department of Chemistry and Biology, Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| |
Collapse
|
33
|
Yang S, Jiang J, Zhou A, Zhou Y, Ye W, Cao DS, Yang R. Substrate-Photocaged Enzymatic Fluorogenic Probe Enabling Sequential Activation for Light-Controllable Monitoring of Intracellular Tyrosinase Activity. Anal Chem 2020; 92:7194-7199. [PMID: 32309931 DOI: 10.1021/acs.analchem.0c00746] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tyrosinase (TYR) is a crucial enzyme involved in melanogenesis, and its overexpression is closely associated with melanoma. To precisely monitor intracellular TYR activity, remote control of a molecule imaging tool is highly meaningful but remains to be explored. In this work, we present the first photocaged tyrosinase fluorogenic probe by caging the substrate of the enzymatic probe with a photolabile group. Because of the sequential light and enzyme-activation feature, this probe exhibits photocontrollable "turn on" response toward TYR with good selectivity and high sensitivity (detection limit: 0.08 U/mL). Fluorescence imaging results validate that the caged probe possesses the capability of visualizing intracellular endogenous tyrosinase activity in a photocontrol fashion, thus offering a promising molecule imaging tool for investigating TYR-related physiological function and pathological role. Moreover, our sequential activation strategy has great potential for developing more photocontrollable enzymatic fluorogenic probes with spatiotemporal resolution.
Collapse
Affiliation(s)
- Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Jiaxing Jiang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Anxin Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Wenling Ye
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, P.R. China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, P.R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| |
Collapse
|
34
|
Arora H, Ramesh M, Rajasekhar K, Govindaraju T. Molecular Tools to Detect Alloforms of Aβ and Tau: Implications for Multiplexing and Multimodal Diagnosis of Alzheimer’s Disease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harshit Arora
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
- VNIR Biotechnologies Pvt. Ltd., Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
35
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Wei T, Lu S, Sun J, Xu Z, Yang X, Wang F, Ma Y, Shi YS, Chen X. Sanger's Reagent Sensitized Photocleavage of Amide Bond for Constructing Photocages and Regulation of Biological Functions. J Am Chem Soc 2020; 142:3806-3813. [PMID: 32023409 DOI: 10.1021/jacs.9b11357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photolabile groups offer promising tools to study biological processes with high spatial and temporal control. In the investigation, we designed and prepared several new glycine amide derivatives of Sanger's reagent and demonstrated that they serve as a new class of photocages for Zn2+ and an acetylcholinesterase (AChE) inhibitor. We showed that the mechanism for photocleavage of these substances involves initial light-driven cyclization between the 2,4-dinitrophenyl and glycine methylene groups to form acyl benzimidazole N-oxides, which undergo secondary photoinduced decarboxylation in association with rupture of an amide bond. The cleavage reactions proceed with modest to high quantum yields. We demonstrated that these derivatives can be used in targeted intracellular delivery of Zn2+, fluorescent imaging by light-triggered Zn2+ release, and regulation of biological processes including the enzymatic activity of carbonic anhydrase (CA), negative regulation of N-methyl-d-aspartate receptors (NMDARs), and pulse rate of cardiomyocytes. The successful proof-of-concept examples described above open a new avenue for using Sanger's reagent-based glycine amides as photocages for the exploration of complex cellular functions and signaling pathways.
Collapse
Affiliation(s)
- Tingwen Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Jiahui Sun
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210032 , China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center , Nanjing University , Nanjing 210032 , China
| | - Zhijun Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Xiao Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yang Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology , Nanjing University , Nanjing 210032 , China.,Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center , Nanjing University , Nanjing 210032 , China.,Chemistry and Biomedicine Innovation Center , Nanjing University , Nanjing 210032 , China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| |
Collapse
|
37
|
Xiong M, Yang Z, Lake RJ, Li J, Hong S, Fan H, Zhang XB, Lu Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 132:1907-1912. [PMID: 36312441 PMCID: PMC9615436 DOI: 10.1002/ange.201912514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 09/07/2024]
Abstract
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+-specific 10-23 or Zn2+-specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Ryan J Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Junjie Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Huanhuan Fan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University Changsha 410082 (P. R. China)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (USA)
| |
Collapse
|
38
|
Jin X, Gao J, Wang T, Feng W, Li R, Xie P, Si L, Zhou H, Zhang X. Rhodol-based fluorescent probes for the detection of fluoride ion and its application in water, tea and live animal imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117467. [PMID: 31425863 DOI: 10.1016/j.saa.2019.117467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Herein, we presented two novel turn-on colorimetric and fluorescent probes based on a F- triggered SiO bond cleavage reaction, which displayed several desired properties for the quantitative detection for F-, such as high specificity, rapid response time (within 3 min) and naked-eye visualization. The fluorescence intensity at 574 nm (absorbance at 544 nm) of the solution was found to increase linearly with the concentration of F- (0.00-30.0 μM) with the detection limit was estimated to be 0.47 μM/0.48 μM. Based on these excellent optical properties, the probes were employed to monitor F- in real water samples and tea samples with satisfactory. Furthermore, it was successfully applied for fluorescent imaging of F- in living nude mice, suggesting that it could be used as a powerful tool to predict and explore the biological functions of F- in physiological and pathological processes.
Collapse
Affiliation(s)
- Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Jingkai Gao
- School of Life Sciences and Technology, Xidian University, Xi'an 710071, Shaanxi, China
| | - Ting Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Wan Feng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Rong Li
- Hancheng Hongda Sichuan Pepper Flavor Co., Ltd, Hancheng 715400, Shaanxi, China
| | - Pu Xie
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Lele Si
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, Shaanxi, China.
| | - Xianghan Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an 710071, Shaanxi, China.
| |
Collapse
|
39
|
Xu H, Chen W, Zhang W, Ju L, Lu H. A selective purine-based fluorescent chemosensor for the “naked-eye” detection of zinc ions (Zn2+): applications in live cell imaging and test strips. NEW J CHEM 2020. [DOI: 10.1039/d0nj02687e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel purine based probe PTAHN was successfully designed and synthesized. PTAHN displayed high selectivity towards Zn2+via turn-on fluorescence. What's more, PTAHN can be proficiently employed for imaging Zn2+ in living cells.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Wei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Weixia Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Lixin Ju
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| |
Collapse
|
40
|
Yu J, Horsley JR, Abell AD. Unravelling electron transfer in peptide-cation complexes: a model for mimicking redox centres in proteins. Phys Chem Chem Phys 2020; 22:8409-8417. [DOI: 10.1039/d0cp00635a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We provide evidence that bound zinc promotes electron transfer in a peptide by changing the electronic properties of the peptide.
Collapse
Affiliation(s)
- Jingxian Yu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - John R. Horsley
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - Andrew D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute of Photonics and Advanced Sensing (IPAS)
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
41
|
Fang L, Trigiante G, Crespo-Otero R, Hawes CS, Philpott MP, Jones CR, Watkinson M. Endoplasmic reticulum targeting fluorescent probes to image mobile Zn 2. Chem Sci 2019; 10:10881-10887. [PMID: 32190243 PMCID: PMC7066664 DOI: 10.1039/c9sc04300d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Zn2+ plays an important role in the normal function of the endoplasmic reticulum (ER) and its deficiency can cause ER stress, which is related to a wide range of diseases. In order to provide tools to better understand the role of mobile Zn2+ in ER processes, the first custom designed ER-localised fluorescent Zn2+ probes have been developed through the introduction of a cyclohexyl sulfonylurea as an ER-targeting unit with different Zn2+ receptors. Experiments in vitro and in cellulo show that both probes have a good fluorescence switch on response to Zn2+, high selectivity over other cations, low toxicity, ER-specific targeting ability and are efficacious imaging agents for mobile Zn2+ in four different cell lines. Probe 9 has been used to detect mobile Zn2+ changes under ER stress induced by both tunicamycin or thapsigargin, which indicates that the new probes should allow a better understanding of the mechanisms cells use to respond to dysfunction of zinc homeostasis in the ER and its role in the initiation and progression of diseases to be developed.
Collapse
Affiliation(s)
- Le Fang
- School of Biological and Chemical Science , Queen Mary University of London , The Joseph Priestley Building, Mile End Road , London , E1 4NS , UK
| | - Giuseppe Trigiante
- Centre for Cutaneous Research , Institute of Cell and Molecular Science , Barts and The London School of Medicine and Dentistry , Queen Mary University of London , London E1 2AT , UK
| | - Rachel Crespo-Otero
- School of Biological and Chemical Science , Queen Mary University of London , The Joseph Priestley Building, Mile End Road , London , E1 4NS , UK
| | - Chris S Hawes
- The Lennard-Jones Laboratories , School of Chemical and Physical Science , Keele University , ST5 5BG , UK .
| | - Michael P Philpott
- Centre for Cutaneous Research , Institute of Cell and Molecular Science , Barts and The London School of Medicine and Dentistry , Queen Mary University of London , London E1 2AT , UK
| | - Christopher R Jones
- School of Biological and Chemical Science , Queen Mary University of London , The Joseph Priestley Building, Mile End Road , London , E1 4NS , UK
| | - Michael Watkinson
- The Lennard-Jones Laboratories , School of Chemical and Physical Science , Keele University , ST5 5BG , UK .
| |
Collapse
|
42
|
Xiong M, Yang Z, Lake RJ, Li J, Hong S, Fan H, Zhang XB, Lu Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019; 59:1891-1896. [PMID: 31746514 DOI: 10.1002/anie.201912514] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+ -specific 10-23 or Zn2+ -specific 8-17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.
Collapse
Affiliation(s)
- Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhenglin Yang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ryan J Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Junjie Li
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shanni Hong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huanhuan Fan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
43
|
A quinoline-based selective ‘turn on’ chemosensor for zinc(II) via quad-core complex, and its application in live cell imaging. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Chai X, Han HH, Zang Y, Li J, He XP, Zhang J, Tian H. Targeted photoswitchable imaging of intracellular glutathione by a photochromic glycosheet sensor. Beilstein J Org Chem 2019; 15:2380-2389. [PMID: 31666872 PMCID: PMC6808201 DOI: 10.3762/bjoc.15.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
The development of photochromic fluorescence sensors with dynamic and multiple-signaling is beneficial to the improvement of biosensing/imaging precision. However, elaborate designs with complicated molecular structures are always required to integrate these functions into one molecule. By taking advantages of both redox-active/high loading features of two-dimensional (2D) manganese dioxide (MnO2) and dynamic fluorescence photoswitching of photochromic sensors, we here design a hybrid photochromic MnO2 glycosheet (Glyco-DTE@MnO2) to achieve the photoswitchable imaging of intracellular glutathione (GSH). The photochromic glycosheet manifests significantly turn-on fluorescence and dynamic ON/OFF fluorescence signals in response to GSH, which makes it favorable for intracellular GSH double-check in targeted human hepatoma cell line (HepG2) through the recognition between β-D-galactoside and asialoglycoprotein receptor (ASGPr) on cell membranes. The dynamic fluorescence signals and excellent selectivity for detection and imaging of GSH ensure the precise determination of cell states, promoting its potential applications in future disease diagnosis and therapy.
Collapse
Affiliation(s)
- Xianzhi Chai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.,National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, People's Republic of China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, People's Republic of China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, People's Republic of China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
45
|
Li M, Zhao J, Chu H, Mi Y, Zhou Z, Di Z, Zhao M, Li L. Light-Activated Nanoprobes for Biosensing and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804745. [PMID: 30276873 DOI: 10.1002/adma.201804745] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/08/2018] [Indexed: 05/24/2023]
Abstract
Fluorescent nanoprobes are indispensable tools to monitor and analyze biological species and dynamic biochemical processes in cells and living bodies. Conventional nanoprobes have limitations in obtaining imaging signals with high precision and resolution because of the interference with biological autofluorescence, off-target effects, and lack of spatiotemporal control. As a newly developed paradigm, light-activated nanoprobes, whose imaging and sensing activity can be remotely regulated with light irradiation, show good potential to overcome these limitations. Herein, recent research progress on the design and construction of light-activated nanoprobes to improve bioimaging and sensing performance in complex biological systems is introduced. First, recent innovative strategies and their underlying mechanisms for light-controlled imaging are reviewed, including photoswitchable nanoprobes and phototargeted nanosystems. Subsequently, a short highlight is provided on the development of light-activatable nanoprobes for biosensing, which offer possibilities for the remote control of biorecognition and sensing activity in a precise manner both temporally and spatially. Finally, perspectives and challenges in light-activated nanoprobes are commented.
Collapse
Affiliation(s)
- Mengyuan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Hongqian Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Yongsheng Mi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zehao Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
46
|
Target-activated and ratiometric photochromic probe for “double-check” detection of toxic thiols in live cells. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9490-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Du C, Fu S, Wang X, Sedgwick AC, Zhen W, Li M, Li X, Zhou J, Wang Z, Wang H, Sessler JL. Diketopyrrolopyrrole-based fluorescence probes for the imaging of lysosomal Zn 2+ and identification of prostate cancer in human tissue. Chem Sci 2019; 10:5699-5704. [PMID: 31293754 PMCID: PMC6568042 DOI: 10.1039/c9sc01153f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
A series of diketopyrrolopyrrole-based fluorescent probes (DPP-C2, LysoDPP-C2, LysoDPP-C3, and LysoDPP-C4) have been developed for the detection of low pH and Zn2+ in an AND logic fashion. The chelation of Zn2+ or the protonation of a morpholine moiety within these probes results in a partial increase in the fluorescence intensity, an effect ascribed to suppression of one possible photo-induced electron transfer (PET) pathway. In contrast, a large increase in the observed fluorescence intensity is observed at low pH and in the presence of Zn2+; this is rationalized in terms of both possible PET pathways within the probes being blocked. Job plots, fluorescence titration curves, and isothermal titration calorimetry proved consistent with a 1 : 1 Zn2+ complexation stoichiometry. Each probe demonstrated an excellent selectivity towards Zn2+ and the resulting Zn2+ complexes demonstrated pH sensitivity over the 3.5-9 pH range. Fluorescence imaging experiments confirmed that LysoDPP-C4 was capable of imaging lysosomal Zn2+ in live cells. Little evidence of cytotoxicity was seen. LysoDPP-C4 was successfully applied to the bioimaging of nude mice, wherein it was shown capable of imaging the prostate. Histological studies using a human sample revealed that LysoDPP-C4 can discriminate cancerous prostate tissue from healthy prostate tissue.
Collapse
Affiliation(s)
- Chenchen Du
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Shibo Fu
- Department of Urology , Shanghai Ninth People's Hospital , Shanghai Jiaotong University , School of Medicine , Shanghai , 200011 , P. R. China
| | - Xiaohua Wang
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Adam C Sedgwick
- Department of Chemistry , The University of Texas at Austin , 105 E 24th Street A5300 , Austin , TX 78712-1224 , USA .
| | - Wei Zhen
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Minjie Li
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Xinqiang Li
- Pathology Department , First Affiliated Hospital of Zhengzhou University , 1 Jianshe East Road , Zhengzhou , Henan Province 450052 , P. R. China
| | - Juan Zhou
- Department of Urology , Shanghai Ninth People's Hospital , Shanghai Jiaotong University , School of Medicine , Shanghai , 200011 , P. R. China
| | - Zhong Wang
- Department of Urology , Shanghai Ninth People's Hospital , Shanghai Jiaotong University , School of Medicine , Shanghai , 200011 , P. R. China
| | - Hongyu Wang
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
| | - Jonathan L Sessler
- Department of Chemistry , College of Science , Center for Supramolecular Chemistry & Catalysis , Shanghai University , 99 Shangda Road , Shanghai , 200444 , P. R. China .
- Department of Chemistry , The University of Texas at Austin , 105 E 24th Street A5300 , Austin , TX 78712-1224 , USA .
| |
Collapse
|
48
|
Bakulina O, Rashevskii A, Dar'in D, Halder S, Khagar P, Krasavin M. Modular Assembly of Tunable Fluorescent Chemosensors Selective for Pb
2+
and Cu
2+
Metal Ions via the Multicomponent Castagnoli‐Cushman Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201901402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Olga Bakulina
- Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Artem Rashevskii
- Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| | - Sandipan Halder
- Department of ChemistryVisvesvaraya National Institute of Technology, Nagpur Maharashtra, 440010 India
| | - Prerna Khagar
- Department of ChemistryVisvesvaraya National Institute of Technology, Nagpur Maharashtra, 440010 India
| | - Mikhail Krasavin
- Saint Petersburg State University Saint Petersburg 199034 Russian Federation
| |
Collapse
|
49
|
Jang Y, Kim TI, Kim H, Choi Y, Kim Y. Photoactivatable BODIPY Platform: Light-Triggered Anticancer Drug Release and Fluorescence Monitoring. ACS APPLIED BIO MATERIALS 2019; 2:2567-2572. [DOI: 10.1021/acsabm.9b00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yul Jang
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Tae-Il Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Hyunjin Kim
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do 10408, Korea
| | - Yongdoo Choi
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do 10408, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
50
|
Das B, Jana A, Mahapatra AD, Chattopadhyay D, Dhara A, Mabhai S, Dey S. Fluorescein derived Schiff base as fluorimetric zinc (II) sensor via 'turn on' response and its application in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:222-231. [PMID: 30641362 DOI: 10.1016/j.saa.2018.12.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
A novel Schiff base L composed of fluorescein hydrazine and a phenol functionalized moiety has been designed and prepared via cost-effective condensation reaction. The L is utilized for selective sensing of Zn2+ over other environmental and biological relevant metal ions in aqueous alcoholic solution under physiological pH range. The binding of Zn2+ to the receptor L is found to causes ~23 fold fluorescence enhancement of L. The 1:1 binding mode of the metal complex is established by combined UV-Vis, fluorescence, and HRMS (high-resolution mass spectroscopy) spectroscopic methods. The binding constant (Ka) for complexation and the limit of detection (LOD) of Zn2+ is calculated to be 2.86 × 104 M-1 and 1.59 μM, respectively. Further photophysical investigations including steady-state, time-resolved fluorescence analysis and spectral investigations including NMR (nuclear magnetic resonance), IR (infrared spectroscopy) suggest introduction of CHEF (chelation enhance fluorescence) with the suppression of CN isomerization and PET (photo-induced electron transfer) mechanism for the strong fluorescent response towards Zn2+. Finally, the sensor L is successfully employed to monitor a real-time detection of Zn2+ by means of TLC (thin layer chromatography) based paper strip. The L is used in the cell imaging study using African green monkey kidney cells (Vero cells) for the determination of exogenous Zn2+ by Immunofluorescence Assay (IFA) process.
Collapse
Affiliation(s)
- Bhriguram Das
- Department of Chemistry, Tamralipta Mahavidyalaya, Purba Medinipur, West Bengal 721636, India
| | - Atanu Jana
- Center for Superfunctional Materials, Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
| | - Ananya Das Mahapatra
- ICMR-Virus Unit, ID & BG Hospital Campus, 57 Dr Suresh C Banerjee Road, Beliaghata, Kolkata 700010, India
| | - Debprasad Chattopadhyay
- ICMR-Virus Unit, ID & BG Hospital Campus, 57 Dr Suresh C Banerjee Road, Beliaghata, Kolkata 700010, India; ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Anamika Dhara
- Department of Chemistry, Jadavpur University, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Subhabrata Mabhai
- Department of Chemistry, Mahishadal Raj College, Purba Medinipur, Mahishadal, West Bengal 721628, India
| | - Satyajit Dey
- Department of Chemistry, Tamralipta Mahavidyalaya, Purba Medinipur, West Bengal 721636, India.
| |
Collapse
|