1
|
Thongpat K, Milehman N, Rojanaverawong W, Holasut P, Soodvilai S, Vaddhanaphuti CS, Tadpetch K. Total Synthesis and Anti-inflammatory Activity of Asperjinone and Asperimide C. JOURNAL OF NATURAL PRODUCTS 2024; 87:2045-2054. [PMID: 39110498 PMCID: PMC11348413 DOI: 10.1021/acs.jnatprod.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Total syntheses of two γ-butenolide natural products, asperjinone (1) and asperimide C (2) in both racemic and chiral forms have been accomplished utilizing Basavaiah's one-pot Friedel-Crafts/maleic anhydride formation protocol as a key strategy. Our syntheses verified the revised structure of 1 proposed by Williams et al. and the structure and absolute configuration of 2 reported by the Li group. This work also discloses the unprecedented anti-inflammatory activity of 1. Synthetic 1 exhibited significant anti-inflammatory activity in renal proximal tubular epithelial cells (RPTEC) by suppression of gene expression of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 under LPS-induced renal inflammation condition and was superior to (S)-1, rac-2, 2, and a positive drug control, indomethacin. Moreover, compound 1 inhibited downstream signaling of inflammation by significantly reducing iNOS and COX-2 gene expression and total NO production. The anti-inflammatory activity of asperjinone (1) renders it a potential and promising candidate for developing novel anti-inflammatory agents against inflammation worsening acute kidney injury.
Collapse
Affiliation(s)
- Kittisak Thongpat
- Division
of Physical Science and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Natthawat Milehman
- Division
of Physical Science and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Worarat Rojanaverawong
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovative
Research Unit of Epithelial Transport and Regulation, Department of
Physiology, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200 Thailand
| | - Pannita Holasut
- Innovative
Research Unit of Epithelial Transport and Regulation, Department of
Physiology, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200 Thailand
| | - Sunhapas Soodvilai
- Research
Center of Transport Protein for Medical Innovation, Department of
Physiology, Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Chutima S. Vaddhanaphuti
- Innovative
Research Unit of Epithelial Transport and Regulation, Department of
Physiology, Faculty of Medicine, Chiang
Mai University, Chiang
Mai 50200 Thailand
| | - Kwanruthai Tadpetch
- Division
of Physical Science and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Lu QT, Du YB, Xu MM, Xie PP, Cai Q. Catalytic Asymmetric Aza-Electrophilic Additions of 1,1-Disubstituted Styrenes. J Am Chem Soc 2024; 146:21535-21545. [PMID: 39056748 DOI: 10.1021/jacs.4c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Electrophilic addition of alkenes is a textbook reaction that plays a pivotal role in organic chemistry. In the past decades, catalytic asymmetric variants of this important type of reaction have witnessed great achievements by the development of novel catalytic systems. However, enantioselective aza-electrophilic additions of unactivated alkenes, which could provide a transformative strategy for the preparation of synthetically significant nitrogen-containing compounds, still remain a formidable challenge. Herein, we have developed unprecedented Au(I)/NHC-catalyzed asymmetric aza-electrophilic additions of unactivated 1,1-disubstituted styrenes by the utilization of readily available dialkyl azodicarboxylates as electrophilic nitrogen sources. Based on this approach, a series of transformations, including [2 + 2] cycloaddition, intermolecular 1,2-oxyamination, and several types of intramolecular hydrazination-induced cyclizations, have been realized. These transformations provide a previously unattainable platform for the divergent synthesis of hydrazine derivatives, which could also be converted to other nitrogen-containing chiral synthons. Experimental and computational studies support the idea that carbocation intermediates are involved in reaction pathways.
Collapse
Affiliation(s)
- Qi-Tao Lu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yuan-Bo Du
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Groslambert L, Pale P, Mamane V. Telluronium-Catalyzed Halogenation Reactions: Chalcogen-Bond Activation of N-Halosuccinimides and Catalysis. Chemistry 2024; 30:e202401650. [PMID: 38785097 DOI: 10.1002/chem.202401650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
The ability of triaryltelluronium salts to interact with N-halosuccinimides (NXS) through chalcogen bonding (ChB) in the solid state and in solution is demonstrated herein. Cocrystals of the triaryltelluronium bearing two CF3 electron-withdrawing groups per aryl ring with N-chloro-, N-bromo- and N-iodosuccinimide (respectively NCS, NBS and NIS) were analyzed by X-ray diffraction, evidencing a ChB between tellurium and the carbonyl group of NXS. This ChB was confirmed in solution by NMR spectroscopy, especially by 125Te NMR titration experiment, which allowed the determination of the association constant (Ka) between the telluronium and NBS. The so-obtained Ka value of 17.3±0.6 M-1 indicated a moderate interaction in solution because of the competitive role of the solvent. The strength of the Te⋅⋅⋅O ChB was however sufficient enough to promote the catalytic halofunctionalization of aromatics and of alkenes such as the intra- and intermolecular haloalkoxylation and haloesterification of alkenes.
Collapse
Affiliation(s)
- Loic Groslambert
- Institute of Chemistry of Strasbourg, UMR 7177, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177, CNRS and Strasbourg University, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
4
|
Yang X, Gao H, Yan J, Zhou J, Shi L. Intramolecular chaperone-assisted dual-anchoring activation (ICDA): a suitable preorganization for electrophilic halocyclization. Chem Sci 2024; 15:6130-6140. [PMID: 38665529 PMCID: PMC11041335 DOI: 10.1039/d4sc00581c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The halocyclization reaction represents one of the most common methodologies for the synthesis of heterocyclic molecules. Many efforts have been made to balance the relationship between structure, reactivity and selectivity, including the design of new electrophilic halogenation reagents and the utilization of activating strategies. However, discovering universal reagents or activating strategies for electrophilic halocyclization remains challenging due to the case-by-case practice for different substrates or different cyclization models. Here we report an intramolecular chaperone-assisted dual-anchoring activation (ICDA) model for electrophilic halocyclization, taking advantage of the non-covalent dual-anchoring orientation as the driving force. This protocol allows a practical, catalyst-free and rapid approach to access seven types of small-sized, medium-sized, and large-sized heterocyclic units and to realize polyene-like domino halocyclizations, as exemplified by nearly 90 examples, including a risk-reducing flow protocol for gram-scale synthesis. DFT studies verify the crucial role of ICDA in affording a suitable preorganization for transition state stabilization and X+ transfer acceleration. The utilization of the ICDA model allows a spatiotemporal adjustment to straightforwardly obtain fast, selective and high-yielding synthetic transformations.
Collapse
Affiliation(s)
- Xihui Yang
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Haowei Gao
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Jiale Yan
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Jia Zhou
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
- Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Lei Shi
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
| |
Collapse
|
5
|
Huang N, Luo J, Liao L, Zhao X. Catalytic Enantioselective Aminative Difunctionalization of Alkenes. J Am Chem Soc 2024; 146:7029-7038. [PMID: 38425285 DOI: 10.1021/jacs.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Enantioselective difunctionalization of alkenes offers a straightforward means for the rapid construction of enantioenriched complex molecules. Despite the tremendous efforts devoted to this field, enantioselective aminative difunctionalization remains a challenge, particularly through an electrophilic addition fashion. Herein, we report an unprecedented approach for the enantioselective aminative difunctionalization of alkenes via copper-catalyzed electrophilic addition with external azo compounds as nitrogen sources. A series of valuable cyclic hydrazine derivatives via either [3 + 2] cycloaddition or intramolecular cyclization have been achieved in high chemo-, regio-, enantio-, and diastereoselectivities. In this transformation, a wide range of functional groups, such as carboxylic acid, hydroxy, amide, sulfonamide, and aryl groups, could serve as nucleophiles. Importantly, a new cyano oxazoline chiral ligand was found to play a crucial role in the control of enantioselectivity.
Collapse
Affiliation(s)
- Nan Huang
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jie Luo
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lihao Liao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaodan Zhao
- Institute of Organic Chemistry and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Medina-Gil T, Sadurní A, Hammarback LA, Echavarren AM. Gold(I)-Catalyzed Intermolecular Aryloxyvinylation with Acetylene Gas. ACS Catal 2023; 13:10751-10755. [PMID: 37614519 PMCID: PMC10442918 DOI: 10.1021/acscatal.3c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Acetylene gas is an important feedstock for chemical production, although it is underutilized in organic synthesis. We have developed an intermolecular gold(I)-catalyzed alkyne/alkene reaction of o-allylphenols with acetylene gas that gives rise to chromanes by a stereospecific aryloxycyclization through the nucleophilic regioselective opening of cyclopropyl gold(I)-carbene intermediates. The synthetic application of this method was demonstrated in the late-stage functionalization of the natural product lapachol.
Collapse
Affiliation(s)
- Tania Medina-Gil
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Anna Sadurní
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - L. Anders Hammarback
- Institute of Chemical Research
of Catalonia (ICIQ), Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química
Orgànica i Analítica, Universitat
Rovira i Virgili (URV), C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
7
|
Tsuji Y, Kon K, Horibe T, Ishihara K. Catalytic Site-, Diastereo-, and Enantioselective Cascade Iodocyclization of 2-Geranylarenols. Chem Asian J 2023; 18:e202300019. [PMID: 36745467 DOI: 10.1002/asia.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
A chiral amidophosphate-N-iodosuccinimide cooperative catalysis has been developed for the site-, diastereo-, and enantioselective iodocyclization of 2-geranylarenols with molecular iodine to give the corresponding iodo-containing polycyclic compounds with good levels of selectivity. This is the first example of a catalytic enantioselective iodocarbocyclization. A reactive chiral iodonium species is generated from molecular iodine via the dual halogen-bonding interactions with a chiral Lewis base and Lewis acid. The sterically demanding 3,3'-substituents of the chiral BINOL-derived amidophosphate are critical to induce the site-selective iodination at the less-hindered terminal alkenyl moiety of 2-geranylarenols.
Collapse
Affiliation(s)
- Yasutaka Tsuji
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazumasa Kon
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan.,Venture Business Laboratory, Nagoya University B2-4, Furo-cho, Chikusa, Nagoya, 464-814, Japan
| | - Takahiro Horibe
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University B2-3(611), Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| |
Collapse
|
8
|
Yang J, Chan YY, Feng W, Tse YLS, Yeung YY. Study and Applications of Tetrasubstituted Hypervalent Selenium–Halogen Species in Catalytic Electrophilic Halogenations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Junjie Yang
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yung-Yin Chan
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Weida Feng
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying-Lung Steve Tse
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry and The State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
9
|
Wang Q, Mu J, Zeng J, Wan L, Zhong Y, Li Q, Li Y, Wang H, Chen F. Additive-controlled asymmetric iodocyclization enables enantioselective access to both α- and β-nucleosides. Nat Commun 2023; 14:138. [PMID: 36627283 PMCID: PMC9831021 DOI: 10.1038/s41467-022-35610-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
β-Nucleosides and their analogs are dominant clinically-used antiviral and antitumor drugs. α-Nucleosides, the anomers of β-nucleosides, exist in nature and have significant potential as drugs or drug carriers. Currently, the most widely used methods for synthesizing β- and α-nucleosides are via N-glycosylation and pentose aminooxazoline, respectively. However, the stereoselectivities of both methods highly depend on the assisting group at the C2' position. Herein, we report an additive-controlled stereodivergent iodocyclization method for the selective synthesis of α- or β-nucleosides. The stereoselectivity at the anomeric carbon is controlled by the additive (NaI for β-nucleosides; PPh3S for α-nucleosides). A series of β- and α-nucleosides are prepared in high yields (up to 95%) and stereoselectivities (β:α up to 66:1, α:β up to 70:1). Notably, the introduced iodine at the C2' position of the nucleoside is readily functionalized, leading to multiple structurally diverse nucleoside analogs, including stavudine, an FDA-approved anti-HIV agent, and molnupiravir, an FDA-approved anti-SARS-CoV-2 agent.
Collapse
Affiliation(s)
- Qi Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jiayi Mu
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jie Zeng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, 430205, Wuhan, China
| | - Linxi Wan
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yangyang Zhong
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qiuhong Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yitong Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huijing Wang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. .,Engineering Center of Catalysis and synthesis for Chiral Molecules, Department of chemistry, Fudan University, Shanghai, 200433, China. .,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China.
| |
Collapse
|
10
|
Stereochemistry of Chiral 2-Substituted Chromanes: Twist of the Dihydropyran Ring and Specific Optical Rotation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010439. [PMID: 36615631 PMCID: PMC9823451 DOI: 10.3390/molecules28010439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Chiral 2-substituted chromanes are important substructures in organic synthesis and appear in numerous natural products. Herein, the correlation between specific optical rotations (SORs) and the stereochemistry at C2 of chiral 2-substituted chromanes was investigated through data mining, quantum-chemical calculations using density functional theory (DFT), and mechanistic analyses. For 2-aliphatic (including acyloxy and alkenyl) chromanes, the P-helicity of the dihydropyran ring usually corresponds to a positive SOR; however, 2-aryl chromanes with P-helicity tend to exhibit negative SORs. 2-Carboxyl (including alkoxycarbonyl and carbonyl) chromanes often display small experimental SORs, and theoretical calculations for them are prone to error because of the fluctuating conformational distribution with computational parameters. Several typical compounds were discussed, including detailed descriptions of the asymmetric synthesis, absolute configuration (AC) assignment methods, and systematic conformational analysis. We hope this work will enrich the knowledge of the stereochemistry of chiral 2-substituted chromanes.
Collapse
|
11
|
Yoshida Y, Ao T, Mino T, Sakamoto M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010384. [PMID: 36615579 PMCID: PMC9822295 DOI: 10.3390/molecules28010384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
There has been a great focus on halogen-bonding as a unique interaction between electron-deficient halogen atoms with Lewis basic moieties. Although the application of halogen-bonded atoms in organic chemistry has been eagerly researched in these decades, the development of chiral molecules with halogen-bonding functionalities and their utilization in asymmetric catalysis are still in the\ir infancy. We have previously developed chiral halonium salts with amide functionalities, which behaved as excellent catalysts albeit in only two reactions due to the lack of substrate activation abilities. In this manuscript, we have developed chiral halonium salts with an N-nitrosamine moiety and applied them to the Mannich reaction of isatin-derived ketimines with malonic esters. The study focused on our novel bromonium salt catalyst which provided the corresponding products in high yields with up to 80% ee. DFT calculations of the chiral catalyst structure suggested that the high asymmetric induction abilities of this catalyst are due to the Lewis basic role of the N-nitrosamine part. To the best of our knowledge, this is the first catalytic application of N-nitrosamines.
Collapse
|
12
|
Shainyan BA. Conjugative Stabilization versus Anchimeric Assistance in Carbocations. Molecules 2022; 28:molecules28010038. [PMID: 36615233 PMCID: PMC9822469 DOI: 10.3390/molecules28010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, an old concept of anchimeric assistance is viewed from a different angle. Primary cations with two different heteroatomic substituents in the α-position to the cationic carbon atom CHXY−CH2+ (X, Y = Me2N, MeO, Me3Si, Me2P, MeS, MeS, Br) can be stabilized by the migration of either the X or Y group to the cation center. In each case, the migration can be either complete, resulting in the transfer of the migrating group to the adjacent carbon atom and the formation of a secondary carbocation stabilized by the remaining heteroatom, or incomplete, leading to an anchimerically assisted iranium ion. For all combinations of the above groups, these transformations have been studied by theoretical analysis at the MP2/aug-cc-pVTZ level and were shown to occur depending on the ability of anchimeric assistance by X and Y, as well as the conformation of the starting primary carbocation. In the conformers of α-amino cations with the p-orbital, C−N bond and the nitrogen lone pair in one plane, the Me2N group migrates to the cationic center to give aziranium ions. Otherwise, the second heteroatom is shifted to give iminium ions, without or with very slight anchimeric assistance. In the α-methoxy cations, the MeO group can be shifted to the cationic center to give the O-anchimerically assisted ions as local minima, the global minima being the ions anchimerically assisted by another heteroatom. The electropositive silicon tends to migrate towards the cationic center, but with the formation of a π-complex of the Me3Si cation with the C=C bond rather than a Si-anchimerically assisted cation. The phosphorus atom can either fully migrate to the cationic center (X = P, Y = S, Se) or form anchimerically stabilized phosphiranium ions (X = P, Y = O, Si, Br). The order of the anchimeric assistance for the heaviest atoms decreases in the order Se >> S > Br.
Collapse
Affiliation(s)
- Bagrat A Shainyan
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| |
Collapse
|
13
|
Luis‐Barrera J, Rodriguez S, Uria U, Reyes E, Prieto L, Carrillo L, Pedrón M, Tejero T, Merino P, Vicario JL. Brønsted Acid versus Phase-Transfer Catalysis in the Enantioselective Transannular Aminohalogenation of Enesultams. Chemistry 2022; 28:e202202267. [PMID: 36111677 PMCID: PMC10053555 DOI: 10.1002/chem.202202267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/12/2022]
Abstract
We have studied the enantioselective transannular aminohalogenation reaction of unsaturated medium-sized cyclic benzosulfonamides by using both chiral Brønsted acid and phase-transfer catalysis. Under optimized conditions, a variety of bicyclic adducts can be obtained with good yields and high enantioselectivities. The mechanism of the reaction was also studied by using computational tools; we observed that the reaction involves the participation of a conformer of the nine-membered cyclic substrate with planar chirality in which the stereochemical outcome is controlled by the relative reactivity of the two pseudorotational enantiomers when interacting with the chiral catalyst.
Collapse
Affiliation(s)
- Javier Luis‐Barrera
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Sandra Rodriguez
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Uxue Uria
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Efraim Reyes
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Liher Prieto
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Luisa Carrillo
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| | - Manuel Pedrón
- Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI)Universidad de Zaragoza50009ZaragozaSpain
| | - Tomás Tejero
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza-CSIC50009ZaragozaSpain
| | - Pedro Merino
- Instituto de Biocomputación y Fisica de Sistemas Complejos (BIFI)Universidad de Zaragoza50009ZaragozaSpain
| | - Jose L. Vicario
- Department of Organic and Inorganic ChemistryUniversity of the Basque Country (UPV/EHU) P.O. Box 64448080BilbaoSpain
| |
Collapse
|
14
|
Liao L, Xu X, Ji J, Zhao X. Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. J Am Chem Soc 2022; 144:16490-16501. [PMID: 36053004 DOI: 10.1021/jacs.2c05668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrophilic halogenation of alkenes is a powerful transformation offering a convenient route for the construction of valuable functionalized molecules. However, as a highly important reaction in this field, catalytic asymmetric intermolecular iodinative difunctionalization remains a formidable challenge. Herein, we report that an efficient Lewis basic chiral sulfide-catalyzed approach enables this reaction. By this approach, challenging substrates such as γ,γ-disubstituted allylic sulfonamides and 1,1-disubstituted alkenes with an allylic sulfonamide unit undergo electrophilic iodinative difunctionalization to give a variety of iodine-functionalized chiral molecules in good yields with excellent enantio- and diastereoselectivities. A series of free phenols as nucleophiles are successfully incorporated into the substrates. Aside from phenols, primary and secondary alcohols, fluoride, and azide also serve as efficient nucleophiles. The obtained iodinated products are a good platform molecule, which can be easily transformed into various chiral compounds such as α-aryl ketones, chiral secondary amines, and aziridines via rearrangement or substitution. Mechanistic studies revealed that the chiral sulfide catalyst displays a superior effect on control of the reactivity of electrophilic iodine and the enantioselective construction of the chiral iodiranium ion intermediate and catalyst aggregates might be formed as a resting state in the reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinru Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
De S, Dan AK, Sahu R, Das D. Asymmetric Synthesis of Halocyclized Products by Using Various Catalysts: A State‐of‐the‐Art Review. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Soumik De
- NIT Silchar: National Institute of Technology Silchar Department of Chemistry QQ5R+3WM, NIT Road, Fakiratilla 788010 Silchar INDIA
| | - Aritra Kumar Dan
- KIIT School of Biotechnology Department of Biotechnology School Of Biotechnology, KIIT ,Campus 11, Patia 751024 Bhubaneswar INDIA
| | - Raghaba Sahu
- Seoul National University College of Pharmacy College of Pharmacy 1 Gwanak-ro, Gwanak-gu 08826 KOREA, REPUBLIC OF
| | - Debadutta Das
- RITE: Radhakrishna Institute of Technology and Engineering Chemistry Barunai Temple Rd, IDCO-01, IDCO Industrial Estate, Barunei 752057 Khordha INDIA
| |
Collapse
|
16
|
Suzuki TK, Yamanaka M, Arai T. Intermolecular Catalytic Asymmetric Iodoetherification of Unfunctionalized Alkenes. Org Lett 2022; 24:3872-3877. [PMID: 35604948 DOI: 10.1021/acs.orglett.2c01490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A newly prepared trinuclear Zn3-(R,S,S)-aminoiminobinaphthoxide complex (triZn-II) catalyzed the first general intermolecular asymmetric iodoetherification of unfunctionalized alkenes. Using triZn-II, the iodoetherification reaction of unfunctionalized alkenes with o-nitrophenols proceeded smoothly to give the products with up to 92.5:7.5 er, and diene substrates were converted to the products with up to 99:1 er with the formation of a meso-isomer (dl/meso = 78/22). The chiral iodoethers gave a new platform for the synthesis of chiral morpholines.
Collapse
Affiliation(s)
- Takumi K Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
17
|
Hasija A, Som S, Chopra D. Investigation of crystal structures, energetics and isostructurality in halogen-substituted phosphoramidates. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:179-194. [PMID: 35411857 DOI: 10.1107/s2052520622000889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
A total of 14 compounds, one unsubstituted and 13 halogen-substituted phosphoramidates, have been synthesized from unsubstituted and halogenated (fluoro-, difluoro-, chloro-, bromo-, iodo-substituted) aniline and diphenyl phosphoryl chloride to investigate their molecular assembly in solid-state structures. Amongst them, six groups were formed based on similarities in unit-cell dimensions, space group and molecular assembly of the crystal. The analysis reveals that all the crystal structures contain robust N-H...O hydrogen bonds which are the primary building blocks with ancillary interactions such as C-H...O, C-H...π, C-H...F/Cl/Br/I, F...F, F...π, I...π, Br...π, I...O and Br...O. The role of short and directional C-H...O and C-H...π interactions providing significant stabilization to the densely packed crystalline arrangement is discussed. The contribution of these interactions in stabilizing the crystalline assembly was deduced via computing total interaction energy between dimers and the overall lattice energies using the computer programs Crystal Explorer 17.5 and PIXELC, respectively. Additionally, the occurrence of 3D isostructurality in phosphoradimates and their halogenated analogs was investigated using the XPac program. A comparison of the magnitudes of the torsion angles in the compounds substantiates the role of conformational flexibility in the solid state.
Collapse
Affiliation(s)
- Avantika Hasija
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Shubham Som
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-Pass Road, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
18
|
Yamashita K, Hirokawa R, Ichikawa M, Hisanaga T, Nagao Y, Takita R, Watanabe K, Kawato Y, Hamashima Y. Mechanistic Details of Asymmetric Bromocyclization with BINAP Monoxide: Identification of Chiral Proton-Bridged Bisphosphine Oxide Complex and Its Application to Parallel Kinetic Resolution. J Am Chem Soc 2022; 144:3913-3924. [PMID: 35226811 DOI: 10.1021/jacs.1c11816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mechanism of our previously reported catalytic asymmetric bromocyclization reactions using 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) monoxide was examined in detail by the means of control experiments, NMR studies, X-ray structure analysis, and CryoSpray electrospray ionization mass spectrometry (ESI-MS) analysis. The chiral BINAP monoxide was transformed to a key catalyst precursor, proton-bridged bisphosphine oxide complex (POHOP·Br), in the presence of N-bromosuccinimide (NBS) and contaminating water. The thus-formed POHOP further reacts with NBS to afford BINAP dioxide and molecular bromine (Br2) simultaneously in equimolar amounts. While the resulting Br2 is activated by NBS to form a more reactive brominating reagent (Br2─NBS), BINAP dioxide serves as a bifunctional catalyst, acting as both a Lewis base that reacts with Br2─NBS to form a chiral brominating agent (P═O+─Br) and also as a Brønsted base for the activation of the substrate. By taking advantage of this novel concerted Lewis/Brønsted base catalysis by BINAP dioxide, we achieved the first regio- and chemodivergent parallel kinetic resolutions (PKRs) of racemic unsymmetrical bisallylic amides via bromocyclization.
Collapse
Affiliation(s)
- Kenji Yamashita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Hirokawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mamoru Ichikawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tatsunari Hisanaga
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshihiro Nagao
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Kawato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
19
|
Wagenknecht HA, Weick F, Steuernagel D, Belov A. Complementary Photocatalytic Toolbox: Control of Intramolecular endo- versus exo-trig Cyclizations of α-Phenyl Olefins to Oxaheterocyclic Products. Synlett 2022. [DOI: 10.1055/s-0040-1719871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe regioselectivity of the intramolecular cyclization of bifunctional α-phenyl alkenes can be controlled simply by the choice of the organic chromophore as the photocatalyst. The central photoredox catalytic reaction in both cases is a nucleophilic addition of the hydroxy function to the olefin function of the substrates. N,N-(4-Diisobutylaminophenyl)phenothiazine catalyzes exo-trig cyclizations, whereas 1,7-dicyanoperylene-3,4,9,10-tetracarboxylic acid bisimides catalyze endo-trig additions to products with anti-Markovnikov regioselectivity. We preliminarily report the photoredox catalytic conversions of 11 representative substrates into 20 oxaheterocycles in order to demonstrate the similarity, but also the complementarity, of these two variants in this photoredox catalytic toolbox.
Collapse
|
20
|
Gorai S, Junghare V, Kundu K, Gharui S, Kumar M, Patro BS, Nayak SK, Hazra S, Mula S. Synthesis of Dihydrobenzofuro[3,2-b]chromenes as a potential 3CLpro inhibitors of SARS-CoV-2: A molecular docking and dynamics simulation study. ChemMedChem 2022; 17:e202100782. [PMID: 35112482 PMCID: PMC9015348 DOI: 10.1002/cmdc.202100782] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 11/29/2022]
Abstract
The recent emergence of pandemic of coronavirus (COVID‐19) caused by SARS‐CoV‐2 has raised significant global health concerns. More importantly, there is no specific therapeutics currently available to combat against this deadly infection. The enzyme 3‐chymotrypsin‐like cysteine protease (3CLpro) is known to be essential for viral life cycle as it controls the coronavirus replication. 3CLpro could be a potential drug target as established before in the case of severe acute respiratory syndrome coronavirus (SARS‐CoV) and Middle East respiratory syndrome coronavirus (MERS‐CoV). In the current study, we wanted to explore the potential of fused flavonoids as 3CLpro inhibitors. Fused flavonoids (5a,10a‐dihydro‐11H‐benzofuro[3,2‐b]chromene) are unexplored for their potential bioactivities due to their low natural occurrences. Their synthetic congeners are also rare due to unavailability of general synthetic methodology. Here we designed a simple strategy to synthesize 5a,10a‐dihydro‐11H‐benzofuro[3,2‐b]chromene skeleton and it's four novel derivatives. Our structural bioinformatics study clearly shows excellent potential of the synthesized compounds in comparison to experimentally validated inhibitor N3. Moreover, in‐silico ADMET study displays excellent druggability and extremely low level of toxicity of the synthesized molecules. Further, for better understanding, the molecular dynamic approach was implemented to study the change in dynamicity after the compounds bind to the protein. A detailed investigation through clustering analysis and distance calculation gave us sound comprehensive data about their molecular interaction. In summary, we anticipate that the currently synthesized molecules could not only be a potential set of inhibitors against 3CLpro but also the insights acquired from the current study would be instrumental in further developing novel natural flavonoid based anti‐COVID therapeutic spectrums.
Collapse
Affiliation(s)
- Sudip Gorai
- Bhabha Atomic Research Centre, Department of Atomic Energy, INDIA
| | - Vivek Junghare
- IIT Roorkee: Indian Institute of Technology Roorkee, Biotechnology, INDIA
| | - Kshama Kundu
- Bhabha Atomic Research Centre, Department of Atomic Energy, INDIA
| | | | - Mukesh Kumar
- Bhabha Atomic Research Centre, Department of Atomic Energy, INDIA
| | | | - Sandip K Nayak
- Bhabha Atomic Research Centre, Department of Atomic Energy, INDIA
| | - Saugata Hazra
- IIT Roorkee: Indian Institute of Technology Roorkee, Biotechnology, INDIA
| | - Soumyaditya Mula
- Bhabha Atomic Research Centre, Bio-Organic Division, 1-28H, Modular Laboratory, 400085, Mumbai, INDIA
| |
Collapse
|
21
|
Yoshida Y, Fujimura T, Mino T, Sakamoto M. Chiral Binaphthyl‐based Iodonium Salt (Hypervalent Iodine(III)) as Hydrogen‐ and Halogen‐bonding Bifunctional Catalyst: Insight into Abnormal Counteranion Effect and Asymmetric Synthesis of N, S‐Acetals. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Yan J, Zhou Z, He Q, Chen G, Wei H, Xie W. The applications of catalytic asymmetric halocyclization in natural product synthesis. Org Chem Front 2022. [DOI: 10.1039/d1qo01395e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Catalytic asymmetric halocyclization of olefinic substrate has evolved rapidly and been well utilized as a practical strategy for constructing enantioenriched cyclic skeletons in natural product synthesis.
Collapse
Affiliation(s)
- Jiahang Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Zhiqiang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Qiaoqiao He
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Guzhou Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
23
|
He Y, Qin X, He X, Wu X, Yin Z. Practical Synthesis of Halogenated
N
‐Heterocycles via Electrochemical Anodic Oxidation of Unactivated Alkenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanyang He
- School of Pharmacy Jiangsu University Zhenjiang 212013 P. R. China
| | - Xiaowen Qin
- School of Pharmacy Jiangsu University Zhenjiang 212013 P. R. China
| | - Xinxu He
- School of Pharmacy Jiangsu University Zhenjiang 212013 P. R. China
| | - Xiao‐Feng Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Science 116023 Dalian Liaoning China
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Zhiping Yin
- School of Pharmacy Jiangsu University Zhenjiang 212013 P. R. China
| |
Collapse
|
24
|
Saito K, Kurasawa K, Takino C, Kuwahara S, Enomoto M. Asymmetric total synthesis of (–)-rossinone A. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Han C, Feng X, Du H. Asymmetric Halocyclizations of 2-Vinylbenzyl Alcohols with Chiral FLPs. Org Lett 2021; 23:7325-7329. [PMID: 34505791 DOI: 10.1021/acs.orglett.1c02361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By the use of a chiral frustrated Lewis pair (FLP) consisting of a chiral-diene-derived borane and tBu3P as the catalyst, an asymmetric halocyclization of 2-vinylbenzyl alcohols with NBS or NIS was successfully realized. A variety of optically active 1,3-dihydroisobenofuran derivatives were obtained in high yields with up to 87% ee and could be conveniently converted to other useful chiral compounds.
Collapse
Affiliation(s)
- Caifang Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Chan YC, Wang X, Lam YP, Wong J, Tse YLS, Yeung YY. A Catalyst-Controlled Enantiodivergent Bromolactonization. J Am Chem Soc 2021; 143:12745-12754. [PMID: 34350758 DOI: 10.1021/jacs.1c05680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A catalyst-controlled enantiodivergent bromolactonization of olefinic acids has been developed. Quinine-derived amino-amides bearing the same chiral core but different achiral aryl substituents were used as the catalysts. Switching the methoxy substituent in the aryl amide system from meta- to ortho-position results in a complete switch in asymmetric induction to afford the desired lactone in good enantioselectivity and yield. Mechanistic studies, including chemical experiments and density functional theory calculations, reveal that the differences in steric and electronic effects of the catalyst substituent alter the reaction mechanism.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinyan Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Pong Lam
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jonathan Wong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Lung Steve Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Ying-Yeung Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
27
|
Li J, Kwon E, Lear MJ, Hayashi Y. Halogen Bonding of
N
‐Halosuccinimides with Amines and Effects of
Brønsted
Acids in Quinuclidine‐Catalyzed Halocyclizations. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Li
- Department of Chemistry, Graduate School of Science Tohoku University Sendai 980-8578 Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science Tohoku University Sendai 980-8578 Japan
| | - Martin J. Lear
- School of Chemistry University of Lincoln, Brayford Pool Lincoln LN6 7TS United Kingdom
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science Tohoku University Sendai 980-8578 Japan
| |
Collapse
|
28
|
Zhang Y, Liang Y, Zhao X. Chiral Selenide-Catalyzed, Highly Regio- and Enantioselective Intermolecular Thioarylation of Alkenes with Phenols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00296] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
29
|
Moriyama K, Kuramochi M, Tsuzuki S, Fujii K, Morita T. Nitroxyl Catalysts for Six-Membered Ring Bromolactonization and Intermolecular Bromoesterification of Alkenes with Carboxylic Acids. Org Lett 2021; 23:268-273. [PMID: 33300800 DOI: 10.1021/acs.orglett.0c03546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a nitroxyl-catalyzed bromoesterification of alkenes with bromo reagents, which includes a six-membered ring bromolactonization of alkenyl carboxylic acids catalyzed by AZADO as the nitroxyl radical catalyst, and an intermolecular bromoesterification of alkenes with carboxylic acids using NMO as the N-oxide catalyst. We also accomplished a remote diastereoselective bromohydroxylation via an AZADO-catalyzed six-membered ring bromolactonization and a subsequent ring cleavage reaction with alkylamines to furnish ε-bromo-δ-hydroxy amides with high diastereoselectivity.
Collapse
Affiliation(s)
- Katsuhiko Moriyama
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masako Kuramochi
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Seiji Tsuzuki
- Research Initiative of Computational Sciences (RICS), Nanosystem Research Institute (NRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Kozo Fujii
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takeshi Morita
- Department of Chemistry, Graduate School of Science and Soft Molecular Activation Research Center, Chiba University 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
30
|
Xiong B, Xu S, Liu Y, Tang KW, Qian PC, Wong WY. Recent Progress in the Selective Functionalization of P(O)-OH Bonds. Top Curr Chem (Cham) 2021; 379:5. [PMID: 33428018 DOI: 10.1007/s41061-020-00319-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
As we all know, organic phosphorus compounds have high application values in chemical industries. Compared with traditional compounds with P-X (X = Cl, Br, I) and P-H bonds, phosphorylation reagents containing P(O)-OH bonds are stable, environmentally friendly, and inexpensive. However, in recent years, there have been few studies on the selective functionalization of P(O)-OH bonds for the fabrication of P-C and P-Z bonds. In general, four-coordinated P(O)-OH compounds have reached coordination saturation due to the phosphorus atom center, but cannot evolve the phosphorus coordination center through intra-molecular tautomerization; however, the weak coordination effects between the P=O bond and transition metals can be utilized to activate P(O)-OH bonds. This review highlights the most important recent contributions toward the selective functionalization of P(O)-OH bonds via cyclization/cross coupling/esterification reactions using transition metals or small organic molecules as the catalyst.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China.
| | - Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China.
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials and Industry Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, People's Republic of China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China.
| |
Collapse
|
31
|
China H, Kumar R, Kikushima K, Dohi T. Halogen-Induced Controllable Cyclizations as Diverse Heterocycle Synthetic Strategy. Molecules 2020; 25:molecules25246007. [PMID: 33353126 PMCID: PMC7765919 DOI: 10.3390/molecules25246007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
In organic synthesis, due to their high electrophilicity and leaving group properties, halogens play pivotal roles in the activation and structural derivations of organic compounds. Recently, cyclizations induced by halogen groups that allow the production of diverse targets and the structural reorganization of organic molecules have attracted significant attention from synthetic chemists. Electrophilic halogen atoms activate unsaturated and saturated hydrocarbon moieties by generating halonium intermediates, followed by the attack of carbon-containing, nitrogen-containing, oxygen-containing, and sulfur-containing nucleophiles to give highly functionalized carbocycles and heterocycles. New transformations of halogenated organic molecules that can control the formation and stereoselectivity of the products, according to the difference in the size and number of halogen atoms, have recently been discovered. These unique cyclizations may possibly be used as efficient synthetic strategies with future advances. In this review, innovative reactions controlled by halogen groups are discussed as a new concept in the field of organic synthesis.
Collapse
Affiliation(s)
- Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, 1266, Tamuracho Nagahama-shi, Shiga 526-0829, Japan
- Correspondence: (H.C.); (T.D.)
| | - Ravi Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana 121006, India;
| | - Kotaro Kikushima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-0058, Japan;
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-0058, Japan;
- Correspondence: (H.C.); (T.D.)
| |
Collapse
|
32
|
Steigerwald DC, Soltanzadeh B, Sarkar A, Morgenstern CC, Staples RJ, Borhan B. Ritter-enabled catalytic asymmetric chloroamidation of olefins. Chem Sci 2020; 12:1834-1842. [PMID: 34163947 PMCID: PMC8179065 DOI: 10.1039/d0sc05224h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular asymmetric haloamination reactions are challenging due to the inherently high halenium affinity (HalA) of the nitrogen atom, which often leads to N-halogenated products as a kinetic trap. To circumvent this issue, acetonitrile, possessing a low HalA, was used as the nucleophile in the catalytic asymmetric Ritter-type chloroamidation of allyl-amides. This method is compatible with Z and E alkenes with both alkyl and aromatic substitution. Mild acidic workup reveals the 1,2-chloroamide products with enantiomeric excess greater than 95% for many examples. We also report the successful use of the sulfonamide chlorenium reagent dichloramine-T in this chlorenium-initiated catalytic asymmetric Ritter-type reaction. Facile modifications lead to chiral imidazoline, guanidine, and orthogonally protected 1,2,3 chiral tri-amines. Intermolecular haloamination reactions are challenging due to the high halenium affinity of the nitrogen atom. This is circumvented by using acetonitrile as an attenuated nucleophile, resulting in an enantioselective halo-Ritter reaction.![]()
Collapse
Affiliation(s)
| | - Bardia Soltanzadeh
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Aritra Sarkar
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | | | - Richard J Staples
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| | - Babak Borhan
- Michigan State University, Department of Chemistry East Lansing MI 48824 USA
| |
Collapse
|
33
|
Qi C, Force G, Gandon V, Lebœuf D. Hexafluoroisopropanol‐Promoted Haloamidation and Halolactonization of Unactivated Alkenes. Angew Chem Int Ed Engl 2020; 60:946-953. [DOI: 10.1002/anie.202010846] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chenxiao Qi
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
34
|
Qi C, Force G, Gandon V, Lebœuf D. Hexafluoroisopropanol‐Promoted Haloamidation and Halolactonization of Unactivated Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chenxiao Qi
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Guillaume Force
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Saclay 91405 Orsay France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris 91128 Palaiseau France
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS) CNRS UMR 7006 Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
35
|
Kaasik M, Kanger T. Supramolecular Halogen Bonds in Asymmetric Catalysis. Front Chem 2020; 8:599064. [PMID: 33195108 PMCID: PMC7609521 DOI: 10.3389/fchem.2020.599064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Halogen bonding has received a significant increase in attention in the past 20 years. An important part of this interest has centered on catalytic applications of halogen bonding. Halogen bond (XB) catalysis is still a developing field in organocatalysis, although XB catalysis has outgrown its proof of concept phase. The start of this year witnessed the publication of the first example of a purely XB-based enantioselective catalytic reaction. While the selectivity can be improved upon, there are already plenty of examples in which halogen bonds, among other interactions, play a crucial role in the outcome of highly enantioselective reactions. This paper will give an overview of the current state of the use of XBs in catalytic stereoselective processes.
Collapse
Affiliation(s)
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
36
|
Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Enantioselective Synthesis of 3-Fluorochromanes via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2020; 59:15069-15075. [PMID: 32347605 PMCID: PMC7496101 DOI: 10.1002/anie.202005181] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 12/24/2022]
Abstract
The chromane nucleus is common to a plenum of bioactive small molecules where it is frequently oxidized at position 3. Motivated by the importance of this position in conferring efficacy, and the prominence of bioisosterism in drug discovery, an iodine(I)/iodine(III) catalysis strategy to access enantioenriched 3-fluorochromanes is disclosed (up to 7:93 e.r.). In situ generation of ArIF2 enables the direct fluorocyclization of allyl phenyl ethers to generate novel scaffolds that manifest the stereoelectronic gauche effect. Mechanistic interrogation using deuterated probes confirms a stereospecific process consistent with a type IIinv pathway.
Collapse
Affiliation(s)
- Jérôme C. Sarie
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Christian Thiehoff
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Jessica Neufeld
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
37
|
Yoshida K, Inoue H, Oji Y, Suzuki H, Takao KI. Enantioselective Organocatalytic Construction of Spirochroman Derivatives. J Org Chem 2020; 85:10189-10197. [PMID: 32672459 DOI: 10.1021/acs.joc.0c00589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly enantioselective organocatalytic construction of spirochromans containing a tetrasubstituted stereocenter was developed. Intramolecular oxy-Michael addition was catalyzed with a bifunctional cinchona alkaloid thiourea catalyst. A variety of spirochroman compounds containing a tetrasubstituted stereocenter were obtained with excellent enantioselectivities of up to 99% enantiomeric excess. The reaction was applied to the asymmetric formal synthesis of (-)-(R)-cordiachromene.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Hiroki Inoue
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yurika Oji
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hina Suzuki
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
38
|
Suzuki T, Kuwano S, Arai T. Non‐Bonding Electron Pair versus π‐Electrons in Solution Phase Halogen Bond Catalysis: Povarov Reaction of 2‐Vinylindoles and Imines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|
39
|
Horibe T, Tsuji Y, Ishihara K. Halogen-Bonding Interaction between I 2 and N-Iodosuccinimide in Lewis Base-Catalyzed Iodolactonization. Org Lett 2020; 22:4888-4892. [PMID: 32484356 DOI: 10.1021/acs.orglett.0c01735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-bonding interaction between I2 and N-iodosuccinimide (NIS) stabilized by a Lewis base (LB) has been explored. 1H NMR, nuclear Overhauser effect (NOE), and diffusion-ordered NMR spectroscopy (DOSY) suggest the generation of a 1:1:1 assembly, LB-I2-NIS. In contrast, when N-iodotrifluoromethanesulfonimide (INTf2) is used instead of NIS, LB-I5+-LB is generated. On the basis of these results in combination with density functional theory (DFT) calculations, we propose a mechanism for the formation of I2-NIS and the subsequent generation of an active iodinating species LB-I+.
Collapse
Affiliation(s)
- Takahiro Horibe
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Yasutaka Tsuji
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
40
|
Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Enantioselektive Synthese von 3‐Fluorchromanen durch Iod(I)/Iod(III)‐Katalyse. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jérôme C. Sarie
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Christian Thiehoff
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Jessica Neufeld
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Ryan Gilmour
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
41
|
Zheng Y, Dai P, Gao D, Hong K, Kou L, Dong S, Hu J, Qiu L, Hu W, Bao X, Xu X. Desaturation via Redox-Neutral Hydrogen Transfer Process: Synthesis of 2-Allyl Anilines, Mechanism and Applications. iScience 2020; 23:101168. [PMID: 32480129 PMCID: PMC7262561 DOI: 10.1016/j.isci.2020.101168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 11/26/2022] Open
Abstract
An unprecedented desaturation method via redox-neutral hydrogen transfer process has been disclosed under mild conditions for the selective formation of terminal alkene with alkyl diazo compounds and aza-o-QMs. The control experiments and DFT calculations suggest that the visible light was introduced as a key parameter to enhance the reactivity via a radical process in the formation of closed-shell cyclopropane intermediate, followed by a ring opening and redox-neutral hydrogen transfer process to give the desaturated product. The high regioselectivity in this transformation is enabled by the internal amino species as an ancillary group (AG) in the final olefin formation step. This method provides a missing link in the expeditious preparation of synthetically useful 2-allyl anilines with broad substrate generality. Further applications of these generated products in N-heterocycle construction, including 5- and 6-membered rings with structural diversity, have been tactfully explored, which highlight the potential in methodology development and drug discovery. Highly site and regioselective synthesis enabled by ancillary group Desaturation via redox-neutral inert hydrogen transfer process Missing link in the synthesis of 2-allyl anilines with board substrate scope Methodology development and diversity synthesis based on 2-allyl anilines
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Ping Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Dafang Gao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Luyao Kou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Shanliang Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jundie Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China; Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215003, China
| | - Lihua Qiu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiaoguang Bao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China.
| | - Xinfang Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
42
|
Yang Q, Li S, Wang J(J. Asymmetric Synthesis of Chiral Chromanes by Copper‐Catalyzed Hydroamination of 2
H
‐Chromenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000601] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingjing Yang
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 P. R. China
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Sifeng Li
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Jun (Joelle) Wang
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
43
|
Kuwano S, Nishida Y, Suzuki T, Arai T. Catalytic Asymmetric Mannich‐Type Reaction of Malononitrile with N‐Boc α‐Ketiminoesters Using Chiral Organic Base Catalyst with Halogen Bond Donor Functionality. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Yuki Nishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|
44
|
Xie Q, Long HJ, Zhang QY, Tang P, Deng J. Enantioselective Syntheses of 4 H-3,1-Benzoxazines via Catalytic Asymmetric Chlorocyclization of o-Vinylanilides. J Org Chem 2020; 85:1882-1893. [PMID: 31880445 DOI: 10.1021/acs.joc.9b02395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic asymmetric halocyclization of alkene is a powerful and straightforward strategy for the synthesis of chiral heterocyclic compounds. Herein, an effective approach to chiral benzoxazine derivatives through organocatalyzed chlorocyclization of o-vinylanilides was reported. This method provides facile access to a series of chiral benzoxazines in good to excellent yields (up to 99% yield) and with high-level enantiocontrol (up to 92% ee).
Collapse
Affiliation(s)
- Qinxia Xie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Hai-Jiao Long
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Qiong-Yin Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| | - Pei Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| | - Jun Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences , Chongqing University , 55 Daxuecheng South Road , Shapingba , Chongqing 401331 , China
| |
Collapse
|
45
|
Abstract
Halonium ions are particularly strong halogen bond donors, and are accordingly valuable tools for a variety of fields, such as supramolecular and synthetic organic chemistry.
Collapse
Affiliation(s)
- Lotta Turunen
- Department of Chemistry – BMC
- Uppsala University
- SE-751 23 Uppsala
- Sweden
| | - Máté Erdélyi
- Department of Chemistry – BMC
- Uppsala University
- SE-751 23 Uppsala
- Sweden
| |
Collapse
|
46
|
Affiliation(s)
- Qingjing Yang
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin, Heilongjiang 150080 China
- Department of ChemistrySouthern University of Science and Technology Shenzhen, Guangdong 518055 China
| | - Rui Guo
- Department of ChemistrySouthern University of Science and Technology Shenzhen, Guangdong 518055 China
| | - Jun (Joelle) Wang
- Department of ChemistrySouthern University of Science and Technology Shenzhen, Guangdong 518055 China
| |
Collapse
|
47
|
Iida K, Ishida S, Watanabe T, Arai T. Disulfide-Catalyzed Iodination of Electron-Rich Aromatic Compounds. J Org Chem 2019; 84:7411-7417. [DOI: 10.1021/acs.joc.9b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Keisuke Iida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Shunsuke Ishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Takamichi Watanabe
- Nippoh Chemicals Co., Ltd. Neo Kawai Building, 8-15,4-Chome, Nihonbashi-Honchou,
Chuo-Ku, Tokyo 103-0023, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
48
|
Hua AM, Bidwell SL, Baker SI, Hratchian HP, Baxter RD. Experimental and Theoretical Evidence for Nitrogen–Fluorine Halogen Bonding in Silver-Initiated Radical Fluorinations. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alyssa M. Hua
- Department of Chemistry and Chemical Biology, University of California, 5200 N. Lake Road, Merced, California 95343, United States
| | - Samantha L. Bidwell
- Department of Chemistry and Chemical Biology, University of California, 5200 N. Lake Road, Merced, California 95343, United States
| | - Sarah I. Baker
- Department of Chemistry and Chemical Biology, University of California, 5200 N. Lake Road, Merced, California 95343, United States
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology, University of California, 5200 N. Lake Road, Merced, California 95343, United States
| | - Ryan D. Baxter
- Department of Chemistry and Chemical Biology, University of California, 5200 N. Lake Road, Merced, California 95343, United States
| |
Collapse
|
49
|
Arai T, Horigane K, Watanabe O, Kakino J, Sugiyama N, Makino H, Kamei Y, Yabe S, Yamanaka M. Association of Halogen Bonding and Hydrogen Bonding in Metal Acetate-Catalyzed Asymmetric Halolactonization. iScience 2019; 12:280-292. [PMID: 30731356 PMCID: PMC6365408 DOI: 10.1016/j.isci.2019.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/26/2018] [Accepted: 01/18/2019] [Indexed: 12/24/2022] Open
Abstract
Cooperative activation using halogen bonding and hydrogen bonding works in metal-catalyzed asymmetric halolactonization. The Zn3(OAc)4-3,3'-bis(aminoimino)binaphthoxide (tri-Zn) complex catalyzes both asymmetric iodolactonization and bromolactonization. Carboxylic acid substrates are converted to zinc carboxylates on the tri-Zn complex, and the N-halosuccinimide (N-bromosuccinimide [NBS] or N-iodosuccinimide [NIS]) is activated by hydrogen bonding with the diamine unit of chiral ligand. Halolactonization is significantly enhanced by the addition of catalytic I2. Density functional theory calculations revealed that a catalytic amount of I2 mediates the alkene portion of the substrates and NIS to realize highly enantioselective iodolactonization. The tri-Zn catalyst activates both sides of the carboxylic acid and alkene moiety, so that asymmetric five-membered iodolactonization of prochiral diallyl acetic acids proceeded to afford the chiral γ-butyrolactones. In the total description of the catalytic cycle, iodolactonization using the NIS-I2 complex proceeds with the regeneration of I2, which enables the catalytic use of I2. The actual iodination reagent is I2 and not NIS.
Collapse
Affiliation(s)
- Takayoshi Arai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan; Soft Molecular Activation Research Center (SMARC), Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan; Chiba Iodine Research Innovation Center (CIRIC), 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| | - Kodai Horigane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Ohji Watanabe
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Junki Kakino
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Noriyuki Sugiyama
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Hiroki Makino
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Yuto Kamei
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8588, Japan
| | - Shinnosuke Yabe
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8588, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8588, Japan; Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
50
|
Nishikawa Y, Hamamoto Y, Satoh R, Akada N, Kajita S, Nomoto M, Miyata M, Nakamura M, Matsubara C, Hara O. Enantioselective Bromolactonization of Trisubstituted Olefinic Acids Catalyzed by Chiral Pyridyl Phosphoramides. Chemistry 2018; 24:18880-18885. [PMID: 30230634 DOI: 10.1002/chem.201804630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 11/11/2022]
Abstract
Enantioselective bromolactonization of trisubstituted olefinic acids producing synthetically useful chiral lactones with two contiguous asymmetric centers has remained mainly unexplored except for the 6-exo cyclization mode. In this work, the 5-exo- and 6-endo modes of bromocyclization of trisubstituted olefinic acids were enabled for the first time using N-bromosuccinimide and a pyridyl phosphoramide catalyst. The utility of the resulting bromolactones was demonstrated by transformations harnessing reactive alkyl bromide moieties without losing stereochemical information. Optimization studies and control experiments revealed that the basicity of pyridine moieties and presence of N-H protons in the phosphoramide species strongly affected both the reactivity and enantioselectivity parameters.
Collapse
Affiliation(s)
- Yasuhiro Nishikawa
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Yuhta Hamamoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Rika Satoh
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Naho Akada
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Shuhei Kajita
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Marina Nomoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Megumi Miyata
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Madoka Nakamura
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Chinatsu Matsubara
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| | - Osamu Hara
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi, 468-8503, Japan
| |
Collapse
|