1
|
Chaubey SK, Kumar R, Lalaguna PL, Kartau M, Bianco S, Tabouillot V, Thomson AR, Sutherland A, Lyutakov O, Gadegaard N, Karimullah AS, Kadodwala M. Ultrasensitive Raman Detection of Biomolecular Conformation at the Attomole Scale using Chiral Nanophotonics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404536. [PMID: 39045909 DOI: 10.1002/smll.202404536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Understanding the function of a biomolecule hinges on its 3D conformation or secondary structure. Chirally sensitive, optically active techniques based on the differential absorption of UV-vis circularly polarized light excel at rapid characterisation of secondary structures. However, Raman spectroscopy, a powerful method for determining the structure of simple molecules, has limited capacity for structural analysis of biomolecules because of intrinsically weak optical activity, necessitating millimolar (mM) sample quantities. A breakthrough is presented for utilising Raman spectroscopy in ultrasensitive biomolecular conformation detection, surpassing conventional Raman optical activity by 15 orders of magnitude. This strategy combines chiral plasmonic metasurfaces with achiral molecular Raman reporters and enables the detection of different conformations (α-helix and random coil) of a model peptide (poly-L/D-lysine) at the ≤attomole level (monolayer). This exceptional sensitivity stems from the ability to detect local, molecular-scale changes in the electromagnetic (EM) environment of a chiral nanocavity induced by the presence of biomolecules using molecular Raman reporters. Further signal enhancement is achieved by incorporating achiral Au nanoparticles. The introduction of the nanoparticles creates highly localized regions of extreme optical chirality. This approach, which exploits Raman, a generic phenomenon, paves the way for next-generation technologies for the ultrasensitive detection of diverse biomolecular structures.
Collapse
Affiliation(s)
- Shailendra K Chaubey
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rahul Kumar
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Paula L Lalaguna
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin Kartau
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Simona Bianco
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victor Tabouillot
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew R Thomson
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew Sutherland
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology, Prague, 16628, Czech Republic
| | - Nikolaj Gadegaard
- James Watt School of Engineering, Rankine Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Affar S Karimullah
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Malcolm Kadodwala
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
2
|
Shamim S, Mohsin AS, Rahman MM, Hossain Bhuian MB. Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains. Heliyon 2024; 10:e33272. [PMID: 39040247 PMCID: PMC11260956 DOI: 10.1016/j.heliyon.2024.e33272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Recently, metamaterials and metasurface have gained rapidly increasing attention from researchers due to their extraordinary optical and electrical properties. Metamaterials are described as artificially defined periodic structures exhibiting negative permittivity and permeability simultaneously. Whereas metasurfaces are the 2D analogue of metamaterials in the sense that they have a small but not insignificant depth. Because of their high optical confinement and adjustable optical resonances, these artificially engineered materials appear as a viable photonic platform for biosensing applications. This review paper discusses the recent development of metamaterial and metasurface in biosensing applications based on the gigahertz, terahertz, and optical frequency domains encompassing the whole electromagnetic spectrum. Overlapping features such as material selection, structure, and physical mechanisms were considered during the classification of our biosensing applications. Metamaterials and metasurfaces working in the GHz range provide prospects for better sensing of biological samples, THz frequencies, falling between GHz and optical frequencies, provide unique characteristics for biosensing permitting the exact characterization of molecular vibrations, with an emphasis on molecular identification, label-free analysis, and imaging of biological materials. Optical frequencies on the other hand cover the visible and near-infrared regions, allowing fine regulation of light-matter interactions enabling metamaterials and metasurfaces to offer excellent sensitivity and specificity in biosensing. The outcome of the sensor's sensitivity to an electric or magnetic field and the resonance frequency are, in theory, determined by the frequency domain and features. Finally, the challenges and possible future perspectives in biosensing application areas have been presented that use metamaterials and metasurfaces across diverse frequency domains to improve sensitivity, specificity, and selectivity in biosensing applications.
Collapse
Affiliation(s)
- Shadmani Shamim
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Abu S.M. Mohsin
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Md. Mosaddequr Rahman
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Mohammed Belal Hossain Bhuian
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
3
|
Kim RM, Han JH, Lee SM, Kim H, Lim YC, Lee HE, Ahn HY, Lee YH, Ha IH, Nam KT. Chiral plasmonic sensing: From the perspective of light-matter interaction. J Chem Phys 2024; 160:061001. [PMID: 38341778 DOI: 10.1063/5.0178485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024] Open
Abstract
Molecular chirality is represented as broken mirror symmetry in the structural orientation of constituent atoms and plays a pivotal role at every scale of nature. Since the discovery of the chiroptic property of chiral molecules, the characterization of molecular chirality is important in the fields of biology, physics, and chemistry. Over the centuries, the field of optical chiral sensing was based on chiral light-matter interactions between chiral molecules and polarized light. Starting from simple optics-based sensing, the utilization of plasmonic materials that could control local chiral light-matter interactions by squeezing light into molecules successfully facilitated chiral sensing into noninvasive, ultrasensitive, and accurate detection. In this Review, the importance of plasmonic materials and their engineering in chiral sensing are discussed based on the principle of chiral light-matter interactions and the theory of optical chirality and chiral perturbation; thus, this Review can serve as a milestone for the proper design and utilization of plasmonic nanostructures for improved chiral sensing.
Collapse
Affiliation(s)
- Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Yamane H, Hoshina M, Yokoshi N, Ishihara H. Mapping electric field components of superchiral field with photo-induced force. J Chem Phys 2024; 160:044115. [PMID: 38284655 DOI: 10.1063/5.0179189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024] Open
Abstract
Circular dichroism (CD) of materials, difference in absorbance of left- and right-circularly polarized light, is a standard measure of chirality. Detection of the chirality for individual molecules is a frontier in analytical chemistry and optical science. The usage of a superchiral electromagnetic field near metallic structure is one promising way because it boosts the molecular far-field CD signal. However, it is still elusive as to how such a field actually interacts with the molecules. The cause is that the distribution of the electric field vector is unclear in the vicinity of the metal surface. In particular, it is difficult to directly measure the localized field, e.g., using aperture-type scanning near-field optical microscope. Here, we calculate the three-dimensional (3D) electric field vector, including the longitudinal field, and reveal the whole figure of the near-field CD on a two-dimensional (2D) plane just above the metal surface. Moreover, we propose a method to measure the near-field CD of the whole superchiral field by photo-induced force microscopy (PiFM), where the optical force distribution is mapped in a scanning 2D plane. We numerically demonstrate that, although the presence of the metallic probe tip affects the 3D electric field distribution, the PiFM is sufficiently capable to evaluate the superchiral field. Unveiling the whole figure of near-field is significantly beneficial in obtaining rich information of single molecules with multiple orientations and in analyzing the boosted far-field CD signals.
Collapse
Affiliation(s)
- Hidemasa Yamane
- Osaka Research Institute of Industrial Science and Technology, 2-7-1, Ayumino, Izumi-city, Osaka 594-1157, Japan
| | - Masayuki Hoshina
- Department of Physics and Electronics, Osaka Prefecture University, 1-1 Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Nobuhiko Yokoshi
- Department of Physics and Electronics, Osaka Metropolitan University, 1-1 Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hajime Ishihara
- Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
5
|
Tadgell B, Liz-Marzán LM. Probing Interactions between Chiral Plasmonic Nanoparticles and Biomolecules. Chemistry 2023; 29:e202301691. [PMID: 37581332 DOI: 10.1002/chem.202301691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/16/2023]
Abstract
Chiral plasmonic nanoparticles (and their assemblies) interact with biomolecules in a variety of different ways, resulting in distinct optical signatures when probed by circular dichroism spectroscopy. These systems show promise for biosensing applications and offer several advantages over achiral plasmonic systems. Arguably the most notable advantage is that chiral nanoparticles can differentiate between molecular enantiomers and can, therefore, act as sensors for enantiomeric purity. Furthermore, chiral nanoparticles can couple more effectively to chiral biomolecules in biological systems if they have a matching handedness, improving their effectiveness as biomedical agents. In this article, we review the different types of interactions that occur between chiral plasmonic nanoparticle systems and biomolecules, and discuss how circular dichroism spectroscopy can probe these interactions and inform how to optimize systems for biosensing and biomedical applications.
Collapse
Affiliation(s)
- Ben Tadgell
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Networking Biomedical Research Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, 48009, Bilbao, Spain
- Cinbio, Universidade de Vigo, Campus Universitario, 36310, Vigo, Spain
| |
Collapse
|
6
|
Wallace S, Kartau M, Kakkar T, Davis C, Szemiel A, Samardzhieva I, Vijayakrishnan S, Cole S, De Lorenzo G, Maillart E, Gautier K, Lapthorn AJ, Patel AH, Gadegaard N, Kadodwala M, Hutchinson E, Karimullah AS. Multiplexed Biosensing of Proteins and Virions with Disposable Plasmonic Assays. ACS Sens 2023; 8:3338-3348. [PMID: 37610841 PMCID: PMC10521139 DOI: 10.1021/acssensors.2c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Our growing ability to tailor healthcare to the needs of individuals has the potential to transform clinical treatment. However, the measurement of multiple biomarkers to inform clinical decisions requires rapid, effective, and affordable diagnostics. Chronic diseases and rapidly evolving pathogens in a larger population have also escalated the need for improved diagnostic capabilities. Current chemical diagnostics are often performed in centralized facilities and are still dependent on multiple steps, molecular labeling, and detailed analysis, causing the result turnaround time to be over hours and days. Rapid diagnostic kits based on lateral flow devices can return results quickly but are only capable of detecting a handful of pathogens or markers. Herein, we present the use of disposable plasmonics with chiroptical nanostructures as a platform for low-cost, label-free optical biosensing with multiplexing and without the need for flow systems often required in current optical biosensors. We showcase the detection of SARS-CoV-2 in complex media as well as an assay for the Norovirus and Zika virus as an early developmental milestone toward high-throughput, single-step diagnostic kits for differential diagnosis of multiple respiratory viruses and any other emerging diagnostic needs. Diagnostics based on this platform, which we term "disposable plasmonics assays," would be suitable for low-cost screening of multiple pathogens or biomarkers in a near-point-of-care setting.
Collapse
Affiliation(s)
- Stephanie Wallace
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Martin Kartau
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Tarun Kakkar
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Agnieszka Szemiel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Iliyana Samardzhieva
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Sarah Cole
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Emmanuel Maillart
- HORIBA France SAS, 14, Boulevard Thomas Gobert-Passage Jobin Yvon, CS 45002, 91120 Palaiseau, France
| | - Kevin Gautier
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Adrian J Lapthorn
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Nikolaj Gadegaard
- James Watt School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, G12 8LT Glasgow, U.K
| | - Malcolm Kadodwala
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, G61 1QH Glasgow, U.K
| | - Affar S Karimullah
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, G12 8QQ Glasgow, U.K
| |
Collapse
|
7
|
McCarthy L, Verma O, Naidu GN, Bursi L, Alabastri A, Nordlander P, Link S. Chiral Plasmonic Pinwheels Exhibit Orientation-Independent Linear Differential Scattering under Asymmetric Illumination. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:30-39. [PMID: 37122830 PMCID: PMC10131493 DOI: 10.1021/cbmi.2c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2023]
Abstract
Plasmonic nanoantennas have considerably stronger polarization-dependent optical properties than their molecular counterparts, inspiring photonic platforms for enhancing molecular dichroism and providing fundamental insight into light-matter interactions. One such insight is that even achiral nanoparticles can yield strong optical activity when they are asymmetrically illuminated from a single oblique angle instead of evenly illuminated. This effect, called extrinsic chirality, results from the overall chirality of the experimental geometry and strongly depends on the orientation of the incident light. Although extrinsic chirality has been well-characterized, an analogous effect involving linear polarization sensitivity has not yet been discussed. In this study, we investigate the differential scattering of rotationally symmetric chiral plasmonic pinwheels when asymmetrically irradiated with linearly polarized light. Despite their high rotational symmetry, we observe substantial linear differential scattering that is maintained over all pinwheel orientations. We demonstrate that this orientation-independent linear differential scattering arises from the broken mirror and rotational symmetries of our overall experimental geometry. Our results underscore the necessity of considering both the rotational symmetry of the nanoantenna and the experimental setup, including illumination direction and angle, when performing plasmon-enhanced chiroptical characterizations. Our results demonstrate spectroscopic signatures of an effect analogous to extrinsic chirality for linear polarizations.
Collapse
Affiliation(s)
- Lauren
A. McCarthy
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ojasvi Verma
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Gopal Narmada Naidu
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Luca Bursi
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Peter Nordlander
- Department
of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| | - Stephan Link
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Electrical and Computer Engineering, Rice University, 6100
Main Street, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Guselnikova O, Elashnikov R, Svorcik V, Kartau M, Gilroy C, Gadegaard N, Kadodwala M, Karimullah AS, Lyutakov O. Coupling of plasmonic hot spots with shurikens for superchiral SERS-based enantiomer recognition. NANOSCALE HORIZONS 2023; 8:499-508. [PMID: 36752733 DOI: 10.1039/d3nh00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Detection of enantiomers is a challenging problem in drug development as well as environmental and food quality monitoring where traditional optical detection methods suffer from low signals and sensitivity. Application of surface enhanced Raman scattering (SERS) for enantiomeric discrimination is a powerful approach for the analysis of optically active small organic or large biomolecules. In this work, we proposed the coupling of disposable chiral plasmonic shurikens supporting the chiral near-field distribution with SERS active silver nanoclusters for enantio-selective sensing. As a result of the plasmonic coupling, significant difference in SERS response of optically active analytes is observed. The observations are studied by numerical simulations and it is hypothesized that the silver particles are being excited by superchiral fields generated at the surface inducing additional polarizations in the probe molecules. The plasmon coupling phenomena was found to be extremely sensitive to slight variations in shuriken geometry, silver nanostructured layer parameters, and SERS excitation wavelength(s). Designed structures were able to discriminate cysteine enantiomers at concentrations in the nanomolar range and probe biomolecular chirality, using a common Raman spectrometer within several minutes. The combination of disposable plasmonic substrates with specific near-field polarization can make the SERS enantiomer discrimination a commonly available technique using standard Raman spectrometers.
Collapse
Affiliation(s)
- Olga Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation.
| | - Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| | - Martin Kartau
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Cameron Gilroy
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Nikolaj Gadegaard
- James Watt School of Engineering, University of Glasgow, Rankine Building, Glasgow, G12 8LT, UK
| | - Malcolm Kadodwala
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Affar S Karimullah
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Republic.
| |
Collapse
|
9
|
Han JH, Lim YC, Kim RM, Lv J, Cho NH, Kim H, Namgung SD, Im SW, Nam KT. Neural-Network-Enabled Design of a Chiral Plasmonic Nanodimer for Target-Specific Chirality Sensing. ACS NANO 2023; 17:2306-2317. [PMID: 36648062 DOI: 10.1021/acsnano.2c08867] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Quantitative analysis of chiral molecules in various solvents is essential. However, there are still many challenges to enhancing the sensitivity in precisely determining both concentration and chirality. Here, we built an algorithmic methodology to predict and optimally design the chiroptical response of chiral plasmonic sensors for a specific target chiral analyte with the aid of deep learning. Based upon the analytic and intuitive understanding of the Born-Kuhn type plasmonic nanodimer, we designed and trained the neural networks that can successfully predict the chiroptical properties and further inversely design the plasmonic structure to achieve the intended circular dichroism. The developed algorithm could identify the optimum structure exhibiting the maximum sensitivity for the given specific analytes. Surprisingly, we discovered that sensitivity strongly depends on the various conditions of analytes and can be finely tuned with the structural parameters of plasmonic nanodimers. We envision that this study can provide a general platform to develop ultrasensitive chiral plasmonic sensors whose structure and sensitivity have been evolved algorithmically for adoption in specific applications.
Collapse
Affiliation(s)
- Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Jiawei Lv
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
10
|
Han Z, Wang F, Sun J, Wang X, Tang Z. Recent Advances in Ultrathin Chiral Metasurfaces by Twisted Stacking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206141. [PMID: 36284479 DOI: 10.1002/adma.202206141] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Artificial chiral nanostructures have been subjected to extensive research for their unique chiroptical activities. Planarized chiral films of ultrathin thicknesses are in particular demand for easy on-chip integration and improved energy efficiency as polarization-sensitive metadevices. Recently, controlled twisted stacking of two or more layers of nanomaterials, such as 2D van der Waals materials, ultrathin films, or traditional metasurfaces, at an angle has emerged as a general strategy to introduce optical chirality into achiral solid-state systems. This method endows new degrees of freedom, e.g., the interlayer twist angle, to flexibly engineer and tune the chiroptical responses without having to change the material or the design, thus greatly facilitating the development of multifunctional metamaterials. In this review, recent exciting progress in planar chiral metasurfaces are summarized and discussed from the viewpoints of building blocks, fabrication methods, as well as circular dichroism and modulation thereof in twisted stacked nanostructures. The review further highlights the ever-growing portfolio of applications of these chiral metasurfaces, including polarization conversion, information encryption, chiral sensing, and as an engineering platform for hybrid metadevices. Finally, forward-looking prospects are provided.
Collapse
Affiliation(s)
- Zexiang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Juehan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Tabouillot V, Kumar R, Lalaguna PL, Hajji M, Clarke R, Karimullah AS, Thomson AR, Sutherland A, Gadegaard N, Hashiyada S, Kadodwala M. Near-Field Probing of Optical Superchirality with Plasmonic Circularly Polarized Luminescence for Enhanced Bio-Detection. ACS PHOTONICS 2022; 9:3617-3624. [PMID: 36411820 PMCID: PMC9673156 DOI: 10.1021/acsphotonics.2c01073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Nanophotonic platforms in theory uniquely enable < femtomoles of chiral biological and pharmaceutical molecules to be detected, through the highly localized changes in the chiral asymmetries of the near fields that they induce. However, current chiral nanophotonic based strategies are intrinsically limited because they rely on far field optical measurements that are sensitive to a much larger near field volume, than that influenced by the chiral molecules. Consequently, they depend on detecting small changes in far field optical response restricting detection sensitivities. Here, we exploit an intriguing phenomenon, plasmonic circularly polarized luminescence (PCPL), which is an incisive local probe of near field chirality. This allows the chiral detection of monolayer quantities of a de novo designed peptide, which is not achieved with a far field response. Our work demonstrates that by leveraging the capabilities of nanophotonic platforms with the near field sensitivity of PCPL, optimal biomolecular detection performance can be achieved, opening new avenues for nanometrology.
Collapse
Affiliation(s)
- Victor Tabouillot
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Rahul Kumar
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Paula L. Lalaguna
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Maryam Hajji
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Rebecca Clarke
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Affar S. Karimullah
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Andrew R. Thomson
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Andrew Sutherland
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| | - Nikolaj Gadegaard
- School
of Engineering, Rankine Building, University
of Glasgow, GlasgowG12 8LT, U.K.
| | - Shun Hashiyada
- Department
of Electrical, Electronic, and Communication Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-Ku, Tokyo112-8551, Japan
| | - Malcolm Kadodwala
- School
of Chemistry, Joseph Black Building, University
of Glasgow, GlasgowG12 8QQ, U.K.
| |
Collapse
|
12
|
Wang Y, Ai B, Wang Z, Guan Y, Chen X, Zhang G. Chiral nanohelmet array films with Three-Dimensional (3D) resonance cavities. J Colloid Interface Sci 2022; 626:334-344. [DOI: 10.1016/j.jcis.2022.06.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
|
13
|
Wang P, Krasavin AV, Liu L, Jiang Y, Li Z, Guo X, Tong L, Zayats AV. Molecular Plasmonics with Metamaterials. Chem Rev 2022; 122:15031-15081. [PMID: 36194441 PMCID: PMC9562285 DOI: 10.1021/acs.chemrev.2c00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Molecular plasmonics, the area which deals with the interactions between surface plasmons and molecules, has received enormous interest in fundamental research and found numerous technological applications. Plasmonic metamaterials, which offer rich opportunities to control the light intensity, field polarization, and local density of electromagnetic states on subwavelength scales, provide a versatile platform to enhance and tune light-molecule interactions. A variety of applications, including spontaneous emission enhancement, optical modulation, optical sensing, and photoactuated nanochemistry, have been reported by exploiting molecular interactions with plasmonic metamaterials. In this paper, we provide a comprehensive overview of the developments of molecular plasmonics with metamaterials. After a brief introduction to the optical properties of plasmonic metamaterials and relevant fabrication approaches, we discuss light-molecule interactions in plasmonic metamaterials in both weak and strong coupling regimes. We then highlight the exploitation of molecules in metamaterials for applications ranging from emission control and optical modulation to optical sensing. The role of hot carriers generated in metamaterials for nanochemistry is also discussed. Perspectives on the future development of molecular plasmonics with metamaterials conclude the review. The use of molecules in combination with designer metamaterials provides a rich playground both to actively control metamaterials using molecular interactions and, in turn, to use metamaterials to control molecular processes.
Collapse
Affiliation(s)
- Pan Wang
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Alexey V. Krasavin
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Lufang Liu
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Yunlu Jiang
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| | - Zhiyong Li
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Xin Guo
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
- Jiaxing
Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing314000, China
- Intelligent
Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing314000, China
| | - Limin Tong
- State Key
Laboratory of Modern Optical Instrumentation, College of Optical Science
and Engineering, Zhejiang University, Hangzhou310027, China
| | - Anatoly V. Zayats
- Department
of Physics and London Centre for Nanotechnology, King’s College London, Strand, LondonWC2R 2LS, U.K.
| |
Collapse
|
14
|
Liu W, Deng L, Guo Y, Yang W, Xia S, Yan W, Yang Y, Qin J, Bi L. Enhanced chiral sensing in achiral nanostructures with linearly polarized light. OPTICS EXPRESS 2022; 30:26306-26314. [PMID: 36236825 DOI: 10.1364/oe.463918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 06/16/2023]
Abstract
Chiral plasmonic nanostructures can generate large superchiral near fields owing to their intrinsic chirality, leveraging applications for molecule chirality sensing. However, the large structural chirality of chiral nanostructures poses the risk of overshadowing molecular chiral signals, hampering the practical application of chiral nanostructures. Herein, we propose an achiral nanorod that shows no structural chirality and presents strong superchiral near-fields with linearly polarized incidence. The mechanism of the strong superchiral near-field originates from the coupling between the evanescent fields of the localized surface plasmon resonance and incident light. The enhanced near-field optical chirality at the corners of the nanorods reached 25 at a wavelength of 790 nm. Meanwhile, the sign of optical chirality can be tuned by the polarization of the incident light, which provides a convenient way to control the handedness of the light. Furthermore, the enantiomers of D- and L-phenylalanine molecules were experimentally characterized using an achiral platform, which demonstrated a promising nanophotonic platform for chiral biomedical sensing.
Collapse
|
15
|
Cho NH, Kim YB, Lee YY, Im SW, Kim RM, Kim JW, Namgung SD, Lee HE, Kim H, Han JH, Chung HW, Lee YH, Han JW, Nam KT. Adenine oligomer directed synthesis of chiral gold nanoparticles. Nat Commun 2022; 13:3831. [PMID: 35780141 PMCID: PMC9250518 DOI: 10.1038/s41467-022-31513-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/21/2022] [Indexed: 12/30/2022] Open
Abstract
Precise control of morphology and optical response of 3-dimensional chiral nanoparticles remain as a significant challenge. This work demonstrates chiral gold nanoparticle synthesis using single-stranded oligonucleotide as a chiral shape modifier. The homo-oligonucleotide composed of Adenine nucleobase specifically show a distinct chirality development with a dissymmetric factor up to g ~ 0.04 at visible wavelength, whereas other nucleobases show no development of chirality. The synthesized nanoparticle shows a counter-clockwise rotation of generated chiral arms with approximately 200 nm edge length. The molecular dynamics and density functional theory simulations reveal that Adenine shows the highest enantioselective interaction with Au(321)R/S facet in terms of binding orientation and affinity. This is attributed to the formation of sequence-specific intra-strand hydrogen bonding between nucleobases. We also found that different sequence programming of Adenine-and Cytosine-based oligomers result in chiral gold nanoparticles' morphological and optical change. These results extend our understanding of the biomolecule-directed synthesis of chiral gold nanoparticles to sequence programmable deoxyribonucleic acid and provides a foundation for programmable synthesis of chiral gold nanoparticles.
Collapse
Affiliation(s)
- Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Bi Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yoon Young Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Won Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok Daniel Namgung
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Won Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Sun X, Xu M, Wang G, Song Q, Li Y, Gao X. Circular dichroic metasurface based on a "double L" structure. APPLIED OPTICS 2022; 61:3435-3442. [PMID: 35471440 DOI: 10.1364/ao.451392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Based on the theory of circular polarization dichroism in electromagnetic fields, this paper studies the circular dichroism (CD) characteristics of metasurfaces. Using a stable silicon material, an innovative "double L-shaped" composite structure formed by two L crosses is proposed to improve CD. Under a wide spectrum with wavelengths of 1000-1500 nm, the left circularly polarized (LCP) and right circularly polarized (RCP) lights pass through the structure, and we study the influence of different structural parameters on the CD, in order to obtain the best structural parameters. These realize the cross polarization of left-right circularly polarized light. In addition, at the wavelength of 1302.63 nm, the LCP light illuminates the structure, which realizes the cross polarization of LCP light; that is, the structure realizes the function of a half-wave plate. The RCP light incident structure realizes the function of a filter. It has great application prospects in biological detection, half-wave plates, filters, and other fields.
Collapse
|
17
|
Sun M, Wang X, Guo X, Xu L, Kuang H, Xu C. Chirality at nanoscale for bioscience. Chem Sci 2022; 13:3069-3081. [PMID: 35414873 PMCID: PMC8926252 DOI: 10.1039/d1sc06378b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/08/2022] [Indexed: 12/17/2022] Open
Abstract
In the rapidly expanding fields of nanoscience and nanotechnology, there is considerable interest in chiral nanomaterials, which are endowed with unusually strong circular dichroism. In this review, we summarize the principles of organization underlying chiral nanomaterials and generalize the recent advances in the main strategies used to fabricate these nanoparticles for bioscience applications. The creation of chirality from nanoscale building blocks has been investigated both experimentally and theoretically, and the tunability of chirality using external fields, such as light and magnetic fields, has allowed the optical activity of these materials to be controlled and their properties understood. Therefore, the specific recognition and potential applications of chiral materials in bioscience are discussed. The effects of the chirality of nanostructures on biological systems have been exploited to sense and cut molecules, for therapeutic applications, and so on. In the final part of this review, we examine the future perspectives for chiral nanomaterials in bioscience and the challenges posed by them.
Collapse
Affiliation(s)
- Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiuxiu Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
18
|
Gong Y, Cao Z, Zhang Z, Liu R, Zhang F, Wei J, Yang Z. Chirality Inversion in Self-Assembled Nanocomposites Directed by Curvature-Mediated Interactions. Angew Chem Int Ed Engl 2022; 61:e202117406. [PMID: 34981650 DOI: 10.1002/anie.202117406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 11/05/2022]
Abstract
Nanoscale curvature-dependent interactions are of paramount importance in biological systems. Here, we report that nanoscale curvature plays an important role in regulating the chirality of self-assembled nanocomposites from chiral organic molecules and achiral nanoparticles. Specifically, we show that the supramolecular chirality of the nanocomposites markedly depends on the nanoparticle curvature, where small-sized nanoparticles of high curvature and large-sized nanoparticles of low curvature lead to nanocomposites with opposite chirality. Quantitative kinetic experiments and molecular dynamics simulations reveal that nanoparticle curvature plays a key role in promoting the pre-nucleation oligomerization of chiral molecules, which consequently regulates the supramolecular chirality of the nanocomposites. We anticipate that this study will aid in rational design of an artificial cooperative system giving rise to emergent assembling phenomena that can be surprisingly rich and often cannot be understood by studying the conventional noncooperative systems.
Collapse
Affiliation(s)
- Yanjun Gong
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zhaozhen Cao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zongze Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Rongjuan Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Fenghua Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of MOE, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
19
|
Both S, Schäferling M, Sterl F, Muljarov EA, Giessen H, Weiss T. Nanophotonic Chiral Sensing: How Does It Actually Work? ACS NANO 2022; 16:2822-2832. [PMID: 35080371 DOI: 10.1021/acsnano.1c09796] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanophotonic chiral sensing has recently attracted a lot of attention. The idea is to exploit the strong light-matter interaction in nanophotonic resonators to determine the concentration of chiral molecules at ultralow thresholds, which is highly attractive for numerous applications in life science and chemistry. However, a thorough understanding of the underlying interactions is still missing. The theoretical description relies on either simple approximations or on purely numerical approaches. We close this gap and present a general theory of chiral light-matter interactions in arbitrary resonators. Our theory describes the chiral interaction as a perturbation of the resonator modes, also known as resonant states or quasi-normal modes. We observe two dominant contributions: A chirality-induced resonance shift and changes in the modes' excitation and emission efficiencies. Our theory brings deep insights for tailoring and enhancing chiral light-matter interactions. Furthermore, it allows us to predict spectra much more efficiently in comparison to conventional approaches. This is particularly true, as chiral interactions are inherently weak and therefore perturbation theory fits extremely well for this problem.
Collapse
Affiliation(s)
- Steffen Both
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Martin Schäferling
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Florian Sterl
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Egor A Muljarov
- Cardiff University, School of Physics and Astronomy, The Parade, CF24 3AA, Cardiff, United Kingdom
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Thomas Weiss
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Institute of Physics, University of Graz, and NAWI Graz, Universitätsplatz 5, 8010 Graz, Austria
| |
Collapse
|
20
|
Gong Y, Cao Z, Zhang Z, Liu R, Zhang F, Wei J, Yang Z. Chirality Inversion in Self‐Assembled Nanocomposites Directed by Curvature‐Mediated Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanjun Gong
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zhaozhen Cao
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zongze Zhang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Rongjuan Liu
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Fenghua Zhang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering Key Laboratory of Colloid and Interface Chemistry of MOE Shandong University Jinan 250100 P. R. China
| |
Collapse
|
21
|
Hajji M, Cariello M, Gilroy C, Kartau M, Syme CD, Karimullah A, Gadegaard N, Malfait A, Woisel P, Cooke G, Peveler WJ, Kadodwala M. Chiral Quantum Metamaterial for Hypersensitive Biomolecule Detection. ACS NANO 2021; 15:19905-19916. [PMID: 34846858 DOI: 10.1021/acsnano.1c07408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral biological and pharmaceutical molecules are analyzed with phenomena that monitor their very weak differential interaction with circularly polarized light. This inherent weakness results in detection levels for chiral molecules that are inferior, by at least six orders of magnitude, to the single molecule level achieved by state-of-the-art chirally insensitive spectroscopic measurements. Here, we show a phenomenon based on chiral quantum metamaterials (CQMs) that overcomes these intrinsic limits. Specifically, the emission from a quantum emitter, a semiconductor quantum dot (QD), selectively placed in a chiral nanocavity is strongly perturbed when individual biomolecules (here, antibodies) are introduced into the cavity. The effect is extremely sensitive, with six molecules per nanocavity being easily detected. The phenomenon is attributed to the CQM being responsive to significant local changes in the optical density of states caused by the introduction of the biomolecule into the cavity. These local changes in the metamaterial electromagnetic environment, and hence the biomolecules, are invisible to "classical" light-scattering-based measurements. Given the extremely large effects reported, our work presages next generation technologies for rapid hypersensitive measurements with applications in nanometrology and biodetection.
Collapse
Affiliation(s)
- Maryam Hajji
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michele Cariello
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Cameron Gilroy
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Martin Kartau
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Christopher D Syme
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Affar Karimullah
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nikolaj Gadegaard
- School of Engineering, Rankine Building, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Aurélie Malfait
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Patrice Woisel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Graeme Cooke
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - William J Peveler
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Malcolm Kadodwala
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
22
|
Warning LA, Miandashti AR, McCarthy LA, Zhang Q, Landes CF, Link S. Nanophotonic Approaches for Chirality Sensing. ACS NANO 2021; 15:15538-15566. [PMID: 34609836 DOI: 10.1021/acsnano.1c04992] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiral nanophotonic materials are promising candidates for biosensing applications because they focus light into nanometer dimensions, increasing their sensitivity to the molecular signatures of their surroundings. Recent advances in nanomaterial-enhanced chirality sensing provide detection limits as low as attomolar concentrations (10-18 M) for biomolecules and are relevant to the pharmaceutical industry, forensic drug testing, and medical applications that require high sensitivity. Here, we review the development of chiral nanomaterials and their application for detecting biomolecules, supramolecular structures, and other environmental stimuli. We discuss superchiral near-field generation in both dielectric and plasmonic metamaterials that are composed of chiral or achiral nanostructure arrays. These materials are also applicable for enhancing chiroptical signals from biomolecules. We review the plasmon-coupled circular dichroism mechanism observed for plasmonic nanoparticles and discuss how hotspot-enhanced plasmon-coupled circular dichroism applies to biosensing. We then review single-particle spectroscopic methods for achieving the ultimate goal of single-molecule chirality sensing. Finally, we discuss future outlooks of nanophotonic chiral systems.
Collapse
Affiliation(s)
| | | | | | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
23
|
Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. SENSORS 2021; 21:s21165262. [PMID: 34450704 PMCID: PMC8401600 DOI: 10.3390/s21165262] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.
Collapse
|
24
|
Manoccio M, Esposito M, Primiceri E, Leo A, Tasco V, Cuscunà M, Zuev D, Sun Y, Maruccio G, Romano A, Quattrini A, Gigli G, Passaseo A. Femtomolar Biodetection by a Compact Core-Shell 3D Chiral Metamaterial. NANO LETTERS 2021; 21:6179-6187. [PMID: 34251835 DOI: 10.1021/acs.nanolett.1c01791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced sensing tools, detecting extremely low concentrations of circulating biomarkers, can open unexplored routes toward early diagnostics and diseases progression monitoring. Here, we demonstrate the sensing capabilities of a chip-based metamaterial, combining 3D chiral geometry with a functional core-shell nanoarchitecture. The chiral metamaterial provides a circular polarization-dependent optical response, allowing analysis in a complex environment without significant background interferences. The functional nanoarchitecture, based on the conformal coating with a polymer shell, modifies the chiral metamaterial near- and far-field optical response because of the energy transfer between dielectric shell polarization charges and plasmonic core free electrons, leading to efficient interaction with biomolecules. The system sensitivity slope is 27 nm/pM, in the detection of TAR DNA-binding protein 43, clinically relevant for neurodegenerative diseases. Measurements were performed in spiked solution and in human serum with concentrations from 1 pM down to 10 fM, which is a range not accessible with common immunological assays, opening new perspectives for next-generation biomedical systems.
Collapse
Affiliation(s)
- Mariachiara Manoccio
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Marco Esposito
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | | | - Angelo Leo
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Vittorianna Tasco
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Massimo Cuscunà
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Dmitry Zuev
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy Av., St. Petersburg 197101, Russia
| | - Yali Sun
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy Av., St. Petersburg 197101, Russia
| | - Giuseppe Maruccio
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Alessandro Romano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Angelo Quattrini
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giuseppe Gigli
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics Ennio De Giorgi, University of Salento, Via Arnesano, 73100 Lecce, Italy
| | - Adriana Passaseo
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
25
|
Noriega R. Measuring the Multiscale Dynamics, Structure, and Function of Biomolecules at Interfaces. J Phys Chem B 2021; 125:5667-5675. [PMID: 34042455 DOI: 10.1021/acs.jpcb.1c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The individual and collective structure and properties of biomolecules can change dramatically when they are localized at an interface. However, the small spatial extent of interfacial regions poses challenges to the detailed characterization of multiscale processes that dictate the structure and function of large biological units such as peptides, proteins, or nucleic acids. This Perspective surveys a broad set of tools that provide new opportunities to probe complex, dynamic interfaces across the vast range of temporal regimes that connect molecular-scale events to macroscopic observables. An emphasis is placed on the integration over multiple time scales, the use of complementary techniques, and the incorporation of external stimuli to control interfacial properties with spatial, temporal, and chemical specificity.
Collapse
Affiliation(s)
- Rodrigo Noriega
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Wang Y, Wang Q, Wang Q, Wang Y, Li Z, Lan X, Dong J, Gao W, Han Q, Zhang Z. Dynamically adjustable-induced THz circular dichroism and biosensing application of symmetric silicon-graphene-metal composite nanostructures. OPTICS EXPRESS 2021; 29:8087-8097. [PMID: 33820261 DOI: 10.1364/oe.419614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Induced circular dichroism (ICD) has been used to detect biomolecular conformations through the coupling between chiral molecules and achiral metal nanostructures with the localized surface plasmon (LSP). However, this ICD is always weak and cannot be dynamically adjusted. Here, we put dielectric and graphene nanostructures on a metal-substrate for restricting more light energies and obtaining dynamic adjustable performance. A composite nanostructure array composed of achiral silicon-nanorods on a metal-substrate and graphene-ribbons (ASMG) is theoretically investigated. Two strong ICD signals appear in the THz region. Near-field magnetic distributions of ASMG reveal that the two strong ICD signals are mainly due to the surface plasmon resonances (SPPs) on the metal-substrate and LSP in the graphene nanostructures, respectively. The ICD signals strongly depend on the geometric parameters of ASMG and are dynamically adjusted by just changing the Fermi levels of graphene-ribbons. In addition, left-handed ASMG and right-handed ASMG can be used to identify the chiral molecular solutions with different chiralities. The maximum enhancement factor of the chiral molecular solutions could reach up to 3500 times in the THz region. These results can help to design dynamically adjustable THz chiral sensors and promote their application in biological monitoring and asymmetric catalysis.
Collapse
|
27
|
Kakkar T, Keijzer C, Rodier M, Bukharova T, Taliansky M, Love AJ, Milner JJ, Karimullah AS, Barron LD, Gadegaard N, Lapthorn AJ, Kadodwala M. Superchiral near fields detect virus structure. LIGHT, SCIENCE & APPLICATIONS 2020; 9:195. [PMID: 33298854 PMCID: PMC7705013 DOI: 10.1038/s41377-020-00433-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 05/14/2023]
Abstract
Optical spectroscopy can be used to quickly characterise the structural properties of individual molecules. However, it cannot be applied to biological assemblies because light is generally blind to the spatial distribution of the component molecules. This insensitivity arises from the mismatch in length scales between the assemblies (a few tens of nm) and the wavelength of light required to excite chromophores (≥150 nm). Consequently, with conventional spectroscopy, ordered assemblies, such as the icosahedral capsids of viruses, appear to be indistinguishable isotropic spherical objects. This limits potential routes to rapid high-throughput portable detection appropriate for point-of-care diagnostics. Here, we demonstrate that chiral electromagnetic (EM) near fields, which have both enhanced chiral asymmetry (referred to as superchirality) and subwavelength spatial localisation (∼10 nm), can detect the icosahedral structure of virus capsids. Thus, they can detect both the presence and relative orientation of a bound virus capsid. To illustrate the potential uses of the exquisite structural sensitivity of subwavelength superchiral fields, we have used them to successfully detect virus particles in the complex milieu of blood serum.
Collapse
Affiliation(s)
- Tarun Kakkar
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Chantal Keijzer
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
- Institute of Molecular, Cell and Systems Biology and School of Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK.
| | - Marion Rodier
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Michael Taliansky
- James Hutton Inst, Cell & Mol Sci, Dundee, DD2 5DA, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Andrew J Love
- James Hutton Inst, Cell & Mol Sci, Dundee, DD2 5DA, UK
| | - Joel J Milner
- Institute of Molecular, Cell and Systems Biology and School of Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Affar S Karimullah
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laurence D Barron
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nikolaj Gadegaard
- School of Engineering, Rankine Building, University of Glasgow, Glasgow, G12 8LT, UK
| | - Adrian J Lapthorn
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Malcolm Kadodwala
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
28
|
Controlling the symmetry of inorganic ionic nanofilms with optical chirality. Nat Commun 2020; 11:5169. [PMID: 33057000 PMCID: PMC7560753 DOI: 10.1038/s41467-020-18869-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022] Open
Abstract
Manipulating symmetry environments of metal ions to control functional properties is a fundamental concept of chemistry. For example, lattice strain enables control of symmetry in solids through a change in the nuclear positions surrounding a metal centre. Light–matter interactions can also induce strain but providing dynamic symmetry control is restricted to specific materials under intense laser illumination. Here, we show how effective chemical symmetry can be tuned by creating a symmetry-breaking rotational bulk polarisation in the electronic charge distribution surrounding a metal centre, which we term a meta-crystal field. The effect arises from an interface-mediated transfer of optical spin from a chiral light beam to produce an electronic torque that replicates the effect of strain created by high pressures. Since the phenomenon does not rely on a physical rearrangement of nuclear positions, material constraints are lifted, thus providing a generic and fully reversible method of manipulating effective symmetry in solids. The symmetry of metal ions in inorganic nanofilms can be manipulated by the transfer of optical spin from a chiral light beam. Here the authors present a route to functional manipulation that does not require the application of extreme conditions.
Collapse
|
29
|
Kim H, Im SW, Cho NH, Seo DH, Kim RM, Lim YC, Lee HE, Ahn HY, Nam KT. γ-Glutamylcysteine- and Cysteinylglycine-Directed Growth of Chiral Gold Nanoparticles and their Crystallographic Analysis. Angew Chem Int Ed Engl 2020; 59:12976-12983. [PMID: 32337812 DOI: 10.1002/anie.202003760] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Indexed: 12/12/2022]
Abstract
Chiral optical metamaterials with delicate structures are in high demand in various fields because of their strong light-matter interactions. Recently, a scalable strategy for the synthesis of chiral plasmonic nanoparticles (NPs) using amino acids and peptides has been reported. Reported herein, 3D chiral gold NPs were synthesized using dipeptide γ-Glu-Cys and Cys-Gly and analyzed crystallographically. The γ-Glu-Cys-directed NPs present a cube-like outline with a protruding chiral wing. In comparison, the NPs synthesized with Cys-Gly exhibited a rhombic dodecahedron-like outline with curved edges and elliptical cavities on each face. Morphology analysis of intermediates indicated that γ-Glu-Cys generated an intermediate concave hexoctahedron morphology, while Cys-Gly formed a concave rhombic dodecahedron. NPs synthesized with Cys-Gly are named 432 helicoid V because of their unique morphology and growth pathway.
Collapse
Affiliation(s)
- Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Da Hye Seo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
30
|
Kim H, Im SW, Cho NH, Seo DH, Kim RM, Lim Y, Lee H, Ahn H, Nam KT. γ‐Glutamylcysteine‐ and Cysteinylglycine‐Directed Growth of Chiral Gold Nanoparticles and their Crystallographic Analysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hyeohn Kim
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Da Hye Seo
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Yae‐Chan Lim
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Hye‐Eun Lee
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Hyo‐Yong Ahn
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu Seoul 08826 Republic of Korea
| |
Collapse
|
31
|
Solomon ML, Saleh AAE, Poulikakos LV, Abendroth JM, Tadesse LF, Dionne JA. Nanophotonic Platforms for Chiral Sensing and Separation. Acc Chem Res 2020; 53:588-598. [PMID: 31913015 DOI: 10.1021/acs.accounts.9b00460] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chirality in Nature can be found across all length scales, from the subatomic to the galactic. At the molecular scale, the spatial dissymmetry in the atomic arrangements of pairs of mirror-image molecules, known as enantiomers, gives rise to fascinating and often critical differences in chemical and physical properties. With increasing hierarchical complexity, protein function, cell communication, and organism health rely on enantioselective interactions between molecules with selective handedness. For example, neurodegenerative and neuropsychiatric disorders including Alzheimer's and Parkinson's diseases have been linked to distortion of chiral-molecular structure. Moreover, d-amino acids have become increasingly recognized as potential biomarkers, necessitating comprehensive analytical methods for diagnosis that are capable of distinguishing l- from d-forms and quantifying trace concentrations of d-amino acids. Correspondingly, many pharmaceuticals and agrochemicals consist of chiral molecules that target particular enantioselective pathways. Yet, despite the importance of molecular chirality, it remains challenging to sense and to separate chiral compounds. Chiral-optical spectroscopies are designed to analyze the purity of chiral samples, but they are often insensitive to the trace enantiomeric excess that might be present in a patient sample, such as blood, urine, or sputum, or pharmaceutical product. Similarly, existing separation schemes to enable enantiopure solutions of chiral products are inefficient or costly. Consequently, most pharmaceuticals or agrochemicals are sold as racemic mixtures, with reduced efficacy and potential deleterious impacts.Recent advances in nanophotonics lay the foundation toward highly sensitive and efficient chiral detection and separation methods. In this Account, we highlight our group's effort to leverage nanoscale chiral light-matter interactions to detect, characterize, and separate enantiomers, potentially down to the single molecule level. Notably, certain resonant nanostructures can significantly enhance circular dichroism for improved chiral sensing and spectroscopy as well as high-yield enantioselective photochemistry. We first describe how achiral metallic and dielectric nanostructures can be utilized to increase the local optical chirality density by engineering the coupling between electric and magnetic optical resonances. While plasmonic nanoparticles locally enhance the optical chirality density, high-index dielectric nanoparticles can enable large-volume and uniform-sign enhancements in the optical chirality density. By overlapping these electric and magnetic resonances, local chiral fields can be enhanced by several orders of magnitude. We show how these design rules can enable high-yield enantioselective photochemistry and project a 2000-fold improvement in the yield of a photoionization reaction. Next, we discuss how optical forces can enable selective manipulation and separation of enantiomers. We describe the design of low-power enantioselective optical tweezers with the ability to trap sub-10 nm dielectric particles. We also characterize their chiral-optical forces with high spatial and force resolution using combined optical and atomic force microscopy. These optical tweezers exhibit an enantioselective optical force contrast exceeding 10 pN, enabling selective attraction or repulsion of enantiomers based on the illumination polarization. Finally, we discuss future challenges and opportunities spanning fundamental research to technology translation. Disease detection in the clinic as well as pharmaceutical and agrochemical industrial applications requiring large-scale, high-throughput production will gain particular benefit from the simplicity and relative low cost that nanophotonic platforms promise.
Collapse
Affiliation(s)
- Michelle L. Solomon
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Amr A. E. Saleh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Lisa V. Poulikakos
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - John M. Abendroth
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Loza F. Tadesse
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
32
|
Ozcelik A, Pereira-Cameselle R, Poklar Ulrih N, Petrovic AG, Alonso-Gómez JL. Chiroptical Sensing: A Conceptual Introduction. SENSORS (BASEL, SWITZERLAND) 2020; 20:E974. [PMID: 32059394 PMCID: PMC7071115 DOI: 10.3390/s20040974] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022]
Abstract
Chiroptical responses have been an essential tool over the last decades for chemical structural elucidation due to their exceptional sensitivity to geometry and intermolecular interactions. In recent times, there has been an increasing interest in the search for more efficient sensing by the rational design of tailored chiroptical systems. In this review article, advances made in chiroptical systems towards their implementation in sensing applications are summarized. Strategies to generate chiroptical responses are illustrated. Theoretical approaches to assist in the design of these systems are discussed. The development of efficient chiroptical reporters in different states of matter, essential for the implementation in sensing devises, is reviewed. In the last part, remarkable examples of chiroptical sensing applications are highlighted.
Collapse
Affiliation(s)
- Ani Ozcelik
- Department of Organic Chemistry, University of Vigo, 36310 Vigo, Spain; (A.O.); (R.P.-C.)
| | | | - Natasa Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Kongresni trg 12, 1000 Ljubljana, Slovenia;
| | - Ana G. Petrovic
- Department of Biological & Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA
| | | |
Collapse
|
33
|
García-Guirado J, Svedendahl M, Puigdollers J, Quidant R. Enhanced Chiral Sensing with Dielectric Nanoresonators. NANO LETTERS 2020; 20:585-591. [PMID: 31851826 DOI: 10.1021/acs.nanolett.9b04334] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chiro-sensitive molecular detection is highly relevant as many biochemical compounds, the building blocks of life, are chiral. Optical chirality is conventionally detected through circular dichroism (CD) in the UV range, where molecules naturally absorb. Recently, plasmonics has been proposed as a way to boost the otherwise very weak CD signal and translate it to the visible/NIR range, where technology is friendlier. Here, we explore how dielectric nanoresonators can contribute to efficiently differentiate molecular enantiomers. We study the influence of the detuning between electric (ED) and magnetic dipole (MD) resonances in silicon nanocylinders on the quality of the CD signal. While our experimental data, supported by numerical simulations, demonstrate that dielectric nanoresonators can perform even better than their plasmonic counterpart, exhibiting larger CD enhancements, we do not observe any significant influence of the optical chirality.
Collapse
Affiliation(s)
- Jose García-Guirado
- ICFO-Institut de Ciències Fotòniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - Mikael Svedendahl
- KTH Royal Institute of Technology , Roslagstullsbacken 21 , 10691 Stockholm , Sweden
| | - Joaquim Puigdollers
- Universitat Politècnica de Catalunya (UPC) , Departament d'Ingeniería Electrónica , 08034 Barcelona , Spain
| | - Romain Quidant
- ICFO-Institut de Ciències Fotòniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
- ICREA-Institució Catalana de Recerca I Estudis Avançats , 08010 Barcelona , Spain
| |
Collapse
|
34
|
Lee YY, Kim RM, Im SW, Balamurugan M, Nam KT. Plasmonic metamaterials for chiral sensing applications. NANOSCALE 2020; 12:58-66. [PMID: 31815994 DOI: 10.1039/c9nr08433a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plasmonic metamaterials are artificially designed materials which exhibit optical properties that cannot be found in nature. They have unique and special abilities related to electromagnetic wave control, including strong field enhancement in the vicinity of the surfaces. Over the years, scientists have succeeded in dramatically improving the detection limit of molecular chirality utilizing a variety of plasmonic metamaterial platforms. In this mini-review, we will discuss the principles of most recent issues in chiral sensing applications of plasmonic metamaterials, including suggested formulas for signal enhancement of chiroptical plasmonic sensors, and studies on various platforms that employ different sensing mechanisms.
Collapse
Affiliation(s)
- Yoon Young Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
35
|
Rodier M, Keijzer C, Milner J, Karimullah AS, Barron LD, Gadegaard N, Lapthorn AJ, Kadodwala M. Probing Specificity of Protein-Protein Interactions with Chiral Plasmonic Nanostructures. J Phys Chem Lett 2019; 10:6105-6111. [PMID: 31549842 DOI: 10.1021/acs.jpclett.9b02288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Protein-protein interactions (PPIs) play a pivotal role in many biological processes. Discriminating functionally important well-defined protein-protein complexes formed by specific interactions from random aggregates produced by nonspecific interactions is therefore a critical capability. While there are many techniques which enable rapid screening of binding affinities in PPIs, there is no generic spectroscopic phenomenon which provides rapid characterization of the structure of protein-protein complexes. In this study we show that chiral plasmonic fields probe the structural order and hence the level of PPI specificity in a model antibody-antigen system. Using surface-immobilized Fab' fragments of polyclonal rabbit IgG antibodies with high specificity for bovine serum albumin (BSA), we show that chiral plasmonic fields can discriminate between a structurally anisotropic ensemble of BSA-Fab' complexes and random ovalbumin (OVA)-Fab' aggregates, demonstrating their potential as the basis of a useful proteomic technology for the initial rapid high-throughput screening of PPIs.
Collapse
Affiliation(s)
- Marion Rodier
- School of Chemistry, Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Chantal Keijzer
- School of Chemistry, Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , U.K
- Institute of Molecular, Cell and Systems Biology , University of Glasgow , Glasgow G12 8TA , U.K
| | - Joel Milner
- Institute of Molecular, Cell and Systems Biology , University of Glasgow , Glasgow G12 8TA , U.K
| | - Affar S Karimullah
- School of Chemistry, Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Laurence D Barron
- School of Chemistry, Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Nikolaj Gadegaard
- School of Engineering, Rankine Building , University of Glasgow , Glasgow G12 8LT , U.K
| | - Adrian J Lapthorn
- School of Chemistry, Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Malcolm Kadodwala
- School of Chemistry, Joseph Black Building , University of Glasgow , Glasgow G12 8QQ , U.K
| |
Collapse
|
36
|
Ahn HY, Yoo S, Cho NH, Kim RM, Kim H, Huh JH, Lee S, Nam KT. Bioinspired Toolkit Based on Intermolecular Encoder toward Evolutionary 4D Chiral Plasmonic Materials. Acc Chem Res 2019; 52:2768-2783. [PMID: 31536328 DOI: 10.1021/acs.accounts.9b00264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Over the last two decades, nanophotonics, including plasmonics and metamaterials, have promised compelling opportunities for exotic control over light-matter interactions. The strong chiral light-matter interaction is a representative example. Three-dimensional (3D) chirality has existed naturally only in organic molecules and bio-organisms, but a negligible chiroptic effect was attained with these naturally occurring materials because of their small absorption cross sections. However, inspired by biological chirality, nanophotonic chiral materials have greatly expanded the design space of accessible chiroptic effects (e.g., pushing the chiral light-matter interaction to an exceptional regime, such as a broad-band circular polarizer, negative refractive index, and sensitive chiral sensing). Nevertheless, it is still a challenge to achieve precisely defined and dynamically reconfigurable chiral morphologies that further increase the chiroptic effect. Biological systems continue to inspire approaches to the design and synthesis of precisely defined 3D nanostructures. In particular, a living organism can program the evolutionary pathway of highly complexed 3D chiral morphology precisely from the molecular scale to the macroscopic scale while simultaneously enabling dynamic reconfiguration of their chirality. What if we could harness the power of biological selectivity and evolutionary capability in synthesizing chiral plasmonic materials? We envisioned that platform technology mimicking biological principles would enable control of 3D chiral structures for effective plasmonic interactions with polarized light and further impart the concept of time-dependent evolution (3D + 1D = 4D) to bring about responsive and dynamic changes in chiral plasmonics. In this Account, we review our efforts to develop the biomolecule-based synthesis of 3D chiral plasmonic materials and share the vision that as in biological systems, chirality can be programmed at the molecular level and hierarchically transferred at multiple scales to develop macroscopic chirality. Accompanied by a biomimetic time-dependent chirality of singular plasmonic nanometals, we also summarize recent achievements in the chemistry and nanophotonics communities pursuing 4D plasmonics that are closely related to our research. The biomimetic and bioinspired approaches discussed in this Account will provide new synthetic insights into implementing chiral nanomaterials and extend the range of accessible nanophotonic design. We hope that the molecular encoding approach will be useful to achieve dynamic light-matter interactions at unprecedented dimensions, time scales, and chirality.
Collapse
Affiliation(s)
- Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - SeokJae Yoo
- Department of Physics, Korea University, Seoul 02841, Korea
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology and Department of Biomicrosystem Technology, Korea University, Seoul 02841, Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology and Department of Biomicrosystem Technology, Korea University, Seoul 02841, Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
37
|
Lin L, Lepeshov S, Krasnok A, Jiang T, Peng X, Korgel BA, Alù A, Zheng Y. All-optical reconfigurable chiral meta-molecules. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2019; 25:10-20. [PMID: 31777449 PMCID: PMC6880947 DOI: 10.1016/j.mattod.2019.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chirality is a ubiquitous phenomenon in the natural world. Many biomolecules without inversion symmetry such as amino acids and sugars are chiral molecules. Measuring and controlling molecular chirality at a high precision down to the atomic scale are highly desired in physics, chemistry, biology, and medicine, however, have remained challenging. Herein, we achieve all-optical reconfigurable chiral meta-molecules experimentally using metallic and dielectric colloidal particles as artificial atoms or building blocks to serve at least two purposes. One is that the on-demand meta-molecules with strongly enhanced optical chirality are well-suited as substrates for surface-enhanced chiroptical spectroscopy of chiral molecules and as active components in optofluidic and nanophotonic devices. The other is that the bottom-up-assembled colloidal meta-molecules provide microscopic models to better understand the origin of chirality in the actual atomic and molecular systems.
Collapse
Affiliation(s)
- Linhan Lin
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Alex Krasnok
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Taizhi Jiang
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brian A. Korgel
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Mc Ketta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea Alù
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, USA
- Physics Program, Graduate Center, City University of New York, NY 10016, USA
- Department of Electrical Engineering, City College of The City University of New York, NY 10031, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
38
|
Bochenkov VE, Shabatina TI. Chiral Plasmonic Biosensors. BIOSENSORS 2018; 8:E120. [PMID: 30513775 PMCID: PMC6316110 DOI: 10.3390/bios8040120] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022]
Abstract
Biosensing requires fast, selective, and highly sensitive real-time detection of biomolecules using efficient simple-to-use techniques. Due to a unique capability to focus light at nanoscale, plasmonic nanostructures provide an excellent platform for label-free detection of molecular adsorption by sensing tiny changes in the local refractive index or by enhancing the light-induced processes in adjacent biomolecules. This review discusses the opportunities provided by surface plasmon resonance in probing the chirality of biomolecules as well as their conformations and orientations. Various types of chiral plasmonic nanostructures and the most recent developments in the field of chiral plasmonics related to biosensing are considered.
Collapse
Affiliation(s)
- Vladimir E Bochenkov
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moskva, Russia.
| | - Tatyana I Shabatina
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moskva, Russia.
| |
Collapse
|