1
|
Domato DC, Munio AAZ, Jacosalem NJP, Fuentes DRT, Ambolode LCC. Insights on the Bonding Mechanism, Electronic and Optical Properties of Diamond Nanothread-Polymer and Cement-Boron Nitride Nanotube Composites. Molecules 2024; 29:4693. [PMID: 39407621 PMCID: PMC11477966 DOI: 10.3390/molecules29194693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The success of composite materials is attributed to the nature of bonding at the nanoscale and the resulting structure-related properties. This study reports on the interaction, electronic, and optical properties of diamond nanothread/polymers (cellulose and epoxy) and boron nitride nanotube/calcium silicate hydrate composites using density functional theory modeling. Our findings indicate that the interaction between the nanothread and polymer is due to van der Waals-type bonding. Minor modifications in the electronic structures and absorption spectra are noticed. Conversely, the boron nitride nanotube-calcium silicate hydrate composite displays an electron-shared type of interaction. The electronic structure and optical absorption spectra of the diamond nanothread and boron nitride nanotube in all configurations studied in the aforementioned composite systems are well maintained. Our findings offer an electronic-level perspective into the bonding characteristics and electronic-optical properties of diamond nanothread/polymer and boron nitride nanotube/calcium silicate hydrate composites for developing next-generation materials.
Collapse
Affiliation(s)
- Diamond C. Domato
- Department of Physics, Mindanao State University–Iligan Institute of Technology, Iligan City 9200, Philippines; (N.J.P.J.)
- Center for Nanoscience Research, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University–Iligan Institute of Technology, Iligan City 9200, Philippines;
| | - Art Anthony Z. Munio
- College of Arts and Sciences, Jose Rizal Memorial State University, Tampilisan 7116, Philippines
| | - Naomi Jane P. Jacosalem
- Department of Physics, Mindanao State University–Iligan Institute of Technology, Iligan City 9200, Philippines; (N.J.P.J.)
- Center for Nanoscience Research, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University–Iligan Institute of Technology, Iligan City 9200, Philippines;
| | - Dexter Rhys T. Fuentes
- Center for Nanoscience Research, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University–Iligan Institute of Technology, Iligan City 9200, Philippines;
| | - Leo Cristobal C. Ambolode
- Department of Physics, Mindanao State University–Iligan Institute of Technology, Iligan City 9200, Philippines; (N.J.P.J.)
- Center for Nanoscience Research, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University–Iligan Institute of Technology, Iligan City 9200, Philippines;
| |
Collapse
|
2
|
Barman BK, Yamada H, Watanabe K, Deguchi K, Ohki S, Hashi K, Goto A, Nagao T. Rare-Earth-Metal-Free Solid-State Fluorescent Carbonized-Polymer Microspheres for Unclonable Anti-Counterfeit Whispering-Gallery Emissions from Red to Near-Infrared Wavelengths. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400693. [PMID: 38867440 PMCID: PMC11321640 DOI: 10.1002/advs.202400693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/05/2024] [Indexed: 06/14/2024]
Abstract
Colloidal carbon dots (CDs) have garnered much attention as metal-free photoluminescent nanomaterials, yet creation of solid-state fluorescent (SSF) materials emitting in the deep red (DR) to near-infrared (NIR) range poses a significant challenge with practical implications. To address this challenge and to engineer photonic functionalities, a micro-resonator architecture is developed using carbonized polymer microspheres (CPMs), evolved from conventional colloidal nanodots. Gram-scale production of CPMs utilizes controlled microscopic phase separation facilitated by natural peptide cross-linking during hydrothermal processing. The resulting microstructure effectively suppresses aggregation-induced quenching (AIQ), enabling strong solid-state light emission. Both experimental and theoretical analysis support a role for extended π-conjugated polycyclic aromatic hydrocarbons (PAHs) trapped within these microstructures, which exhibit a progressive red shift in light absorption/emission toward the NIR range. Moreover, the highly spherical shape of CPMs endows them with innate photonic functionalities in combination with their intrinsic CD-based attributes. Harnessing their excitation wavelength-dependent photoluminescent (PL) property, a single CPM exhibits whispering-gallery modes (WGMs) that are emission-tunable from the DR to the NIR. This type of newly developed microresonator can serve as, for example, unclonable anti-counterfeiting labels. This innovative cross-cutting approach, combining photonics and chemistry, offers robust, bottom-up, built-in photonic functionality with diverse NIR applications.
Collapse
Affiliation(s)
- Barun Kumar Barman
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Hiroyuki Yamada
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Keisuke Watanabe
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Kenzo Deguchi
- Research Network and Facility Services DivisionNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Shinobu Ohki
- Research Network and Facility Services DivisionNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Kenjiro Hashi
- Center for Basic Research on MaterialsNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Atsushi Goto
- Center for Basic Research on MaterialsNational Institute for Materials Science (NIMS)3‐13 SakuraTsukubaIbaraki305‐0003Japan
| | - Tadaaki Nagao
- Research Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
- Department of Condensed Matter Physics Graduate School of ScienceHokkaido UniversitySapporoHokkaido060‐0810Japan
| |
Collapse
|
3
|
Wang T, Gao Y, Chen B, Crespi VH, van Duin ACT. Prediction of a Novel Electromechanical Response in Polar Polymers with Rigid Backbones: Contrasting Furan-Derived Nanothreads to Poly(Vinylidene Fluoride). NANO LETTERS 2024. [PMID: 39016328 DOI: 10.1021/acs.nanolett.4c01431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Syn furan nanothreads have all oxygen atoms arranged on one side of the thread backbone; these polar threads present intriguing opportunities in electromechanical response owing to their rigid ladder-like backbone. We retrained a C/H/O reactive force field to simulate their response to external electric field for both end-anchored individual threads and bulk nanothread crystals, contrasting the results to those for poly(vinylidene fluoride) (PVDF) polymer. Whereas the field induces a length-independent torque in PVDF through backbone rotation about σ bonds, furan-derived nanothreads generate a length-dependent torque by progressively twisting their rigid backbone. This mode of response couples the rotational history of the electric field to axial tension in the anchored thread. In simulations of densely packed syn furan nanothread crystals without anchors, the crystals pole in a field (∼3 GV/m at 300 K) similar to that seen in simulations of PVDF, suggesting that crystals of polar nanothreads can be ferroelectric.
Collapse
Affiliation(s)
- Tao Wang
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yawei Gao
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bo Chen
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Vincent H Crespi
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Lian J, Subburam G, El-Khodary SA, Zhang K, Zou B, Wang J, Wang C, Ma J, Wu X. Critical Role of Aromatic C(sp 2)-H in Boosting Lithium-Ion Storage. J Am Chem Soc 2024; 146:8110-8119. [PMID: 38489846 DOI: 10.1021/jacs.3c12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Exploring high-sloping-capacity carbons is of great significance in the development of high-power lithium-ion batteries/capacitors (LIBs/LICs). Herein, an ion-catalyzed self-template method is utilized to synthesize the hydrogen-rich carbon nanoribbon (HCNR), achieving high specific and rate capacity (1144.2/471.8 mAh g-1 at 0.1/2.5 A g-1). The Li+ storage mechanism of the HCNR is elucidated by in situ spectroscopic techniques. Intriguingly, the protonated aromatic sp2-hybridized carbon (C(sp2)-H) can provide additional active sites for Li+ uptake via reversible rehybridization to sp3-C, which is the origin of the high sloping capacity. The presence of this sloping feature suggests a highly capacitance-dominated storage process, characterized by rapid kinetics that facilitates superior rate performance. For practical usage, the HCNR-based LIC device can deliver high energy/power densities of 198.3 Wh kg-1/17.9 kW kg-1. This work offers mechanistic insights on the crucial role of aromatic C(sp2)-H in boosting Li+ storage and opens up new avenues to develop such sloping-type carbons for high-performance rechargeable batteries/capacitors.
Collapse
Affiliation(s)
- Jiabiao Lian
- Institute for Energy Research, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Gokila Subburam
- Institute for Energy Research, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Sherif A El-Khodary
- Institute for Energy Research, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Kai Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bobo Zou
- Institute for Energy Research, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Juan Wang
- Institute for Energy Research, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Chuan Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Jianmin Ma
- School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
5
|
Agati M, Romi S, Fanetti S, Bini R. High-pressure structure and reactivity of crystalline bibenzyl: Insights and prospects for the synthesis of functional double-core carbon nanothreads. J Chem Phys 2023; 159:244507. [PMID: 38156639 DOI: 10.1063/5.0174157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The high-pressure synthesis of double-core nanothreads derived from pseudo-stilbene crystals represents a captivating approach to isolate within the thread chromophores or functional groups without altering its mechanical properties. These entities can be effectively utilized to finely tune optical properties or as preferential sites for functionalization. Bibenzyl, being isostructural with other members of this class, represents the ideal system for building co-crystals from which we can synthesize double-core nanothreads wherein bridging chromophores, such as the azo or ethylene moieties, are embedded in the desired concentration within a fully saturated environment. To achieve this, a critical step is the preliminary characterization of the high-pressure behavior of crystalline bibenzyl. We report here an accurate investigation performed through state-of-the-art spectroscopic techniques, Raman and Fourier transform infrared spectroscopy, and x-ray diffraction up to 40 GPa. Our findings reveal a strongly anisotropic compression of the crystal, which determines, at pressures between 1 and 2 GPa, consistent modifications of the vibrational spectrum, possibly related to a torsional distortion of the molecules. A phase transition is detected between 9 and 10 GPa, leading to a high pressure phase where, above 24 GPa, the nanothread formation is observed. However, the observed reaction was limited in extent and required significantly higher pressures in comparison to other members of the pseudo-stilbene family. This comprehensive study is imperative in laying the foundation for future endeavors, aiming to synthesize double-core nanothreads from pseudo-stilbene crystals, and provides crucial insights into the high-pressure behavior and phase transitions of crystalline bibenzyl.
Collapse
Affiliation(s)
- Milo Agati
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Sebastiano Romi
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Samuele Fanetti
- ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Roberto Bini
- Dipartimento di Chimica "Ugo Schiff," Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Mohammed SJ, Omer KM, Hawaiz FE. Deep insights to explain the mechanism of carbon dot formation at various reaction times using the hydrothermal technique: FT-IR, 13C-NMR, 1H-NMR, and UV-visible spectroscopic approaches. RSC Adv 2023; 13:14340-14349. [PMID: 37180002 PMCID: PMC10170355 DOI: 10.1039/d3ra01646c] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
A well-explained mechanism for synthesizing carbon dots (CDs) is not yet explored and is still a subject of great debate and challenge. This study used a one-step hydrothermal method to prepare highly efficient, gram-scale, excellent water solubility, and blue fluorescent nitrogen-doped carbon dots (NCDs) with the particle size average distribution of around 5 nm from 4-aminoantipyrine. The effects of varying synthesis reaction times on the structure and mechanism formation of NCDs were investigated using spectroscopic methods, namely FT-IR, 13C-NMR, 1H-NMR, and UV-visible spectroscopies. The spectroscopic results indicated that increasing the reaction time affects the structure of the NCDs. As the hydrothermal synthesis reaction time is extended, the intensity of the peaks in the aromatic region decreases, and new peaks in the aliphatic and carbonyl group regions are generated, which display enhanced intensity. In addition, the photoluminescent quantum yield increases as the reaction time increases. The presence of a benzene ring in 4-aminoantipyrine is thought to contribute to the observed structural changes in NCDs. This is due to the increased noncovalent π-π stacking interactions of the aromatic ring during the carbon dot core formation. Moreover, the hydrolysis of the pyrazole ring in 4-aminoantipyrine results in polar functional groups attached to aliphatic carbons. As the reaction time prolongs, these functional groups progressively cover a larger portion of the surface of the NCDs. After 21 h of the synthesis process, the XRD spectrum of the produced NCDs illustrates a broad peak at 21.1°, indicating an amorphous turbostratic carbon phase. The d-spacing measured from the HR-TEM image is about 0.26 nm, which agrees with the (100) plane lattice of graphite carbon and confirms the purity of the NCD product with a surface covered by polar functional groups. This investigation will lead to a greater understanding of the effect of hydrothermal reaction time on the mechanism and structure of carbon dot synthesis. Moreover, it offers a simple, low-cost, and gram-scale method for creating high-quality NCDs crucial for various applications.
Collapse
Affiliation(s)
- Sewara J Mohammed
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani 46002 Kurdistan Regional Government Iraq
- Anesthesia Department, College of Health Sciences, Cihan University Sulaimaniya Sulaimaniya 46001 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani 46002 Kurdistan Regional Government Iraq
| | - Farouq E Hawaiz
- Department of Chemistry, College of Education, Salahaddin University - Hawler Erbil Kurdistan Iraq
| |
Collapse
|
7
|
Dunning SG, Chen B, Zhu L, Cody GD, Chariton S, Prakapenka VB, Zhang D, Strobel TA. Synthesis and Post-Processing of Chemically Homogeneous Nanothreads from 2,5-Furandicarboxylic Acid. Angew Chem Int Ed Engl 2023; 62:e202217023. [PMID: 36757113 DOI: 10.1002/anie.202217023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Compared with conventional, solution-phase approaches, solid-state reaction methods can provide unique access to novel synthetic targets. Nanothreads-one-dimensional diamondoid polymers formed through the compression of small molecules-represent a new class of materials produced via solid-state reactions, however, the formation of chemically homogeneous products with targeted functionalization represents a persistent challenge. Through careful consideration of molecular precursor stacking geometry and functionalization, we report here the scalable synthesis of chemically homogeneous, functionalized nanothreads through the solid-state polymerization of 2,5-furandicarboxylic acid. The resulting product possesses high-density, pendant carboxyl functionalization along both sides of the backbone, enabling new opportunities for the post-synthetic processing and chemical modification of nanothread materials applicable to a broad range of potential applications.
Collapse
Affiliation(s)
- Samuel G Dunning
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC-20015, USA
| | - Bo Chen
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018, Donostia-San Sebastian, Spain.,IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Li Zhu
- Physics Department, Rutgers University-Newark, 101 Warren Street, Newark, NJ-07102, USA
| | - George D Cody
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC-20015, USA
| | - Stella Chariton
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL-60637, USA
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL-60637, USA
| | - Dongzhou Zhang
- Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI-96822, USA
| | - Timothy A Strobel
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC-20015, USA
| |
Collapse
|
8
|
Wang X, Yang X, Wang Y, Tang X, Zheng H, Zhang P, Gao D, Che G, Wang Z, Guan A, Xiang JF, Tang M, Dong X, Li K, Mao HK. From Biomass to Functional Crystalline Diamond Nanothread: Pressure-Induced Polymerization of 2,5-Furandicarboxylic Acid. J Am Chem Soc 2022; 144:21837-21842. [PMID: 36399710 DOI: 10.1021/jacs.2c08914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
2,5-Furandicarboxylic acid (FDCA) is one of the top-12 value-added chemicals from sugar. Besides the wide application in chemical industry, here we found that solid FDCA polymerized to form an atomic-scale ordered sp3-carbon nanothread (CNTh) upon compression. With the help of perfectly aligned π-π stacked molecules and strong intermolecular hydrogen bonds, crystalline poly-FDCA CNTh with uniform syn-configuration was obtained above 11 GPa, with the crystal structure determined by Rietveld refinement of the X-ray diffraction (XRD). The in situ XRD and theoretical simulation results show that the FDCA experienced continuous [4 + 2] Diels-Alder reactions along the stacking direction at the threshold C···C distance of ∼2.8 Å. Benefiting from the abundant carbonyl groups, the poly-FDCA shows a high specific capacity of 375 mAh g-1 as an anode material of a lithium battery with excellent Coulombic efficiency and rate performance. This is the first time a three-dimensional crystalline CNTh is obtained, and we demonstrated it is the hydrogen bonds that lead to the formation of the crystalline material with a unique configuration. It also provides a new method to move biomass compounds toward advanced functional carbon materials.
Collapse
Affiliation(s)
- Xuan Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China.,Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Yang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Yida Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Xingyu Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Haiyan Zheng
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Peijie Zhang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Dexiang Gao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Guangwei Che
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Zijia Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Aijiao Guan
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing, 100190, People's Republic of China
| | - Jun-Feng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Zhongguancunbeiyijie 2, Beijing, 100190, People's Republic of China.,University of Chinese Academy of Sciences, Yuquan Road 19(A), Beijing, 100049, People's Republic of China
| | - Mingxue Tang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Xiao Dong
- Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, People's Republic of China
| | - Kuo Li
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100193, People's Republic of China
| |
Collapse
|
9
|
Oburn SM, Huss S, Cox J, Gerthoffer MC, Wu S, Biswas A, Murphy M, Crespi VH, Badding JV, Lopez SA, Elacqua E. Photochemically Mediated Polymerization of Molecular Furan and Pyridine: Synthesis of Nanothreads at Reduced Pressures. J Am Chem Soc 2022; 144:22026-22034. [PMID: 36417898 DOI: 10.1021/jacs.2c09204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nanothreads are emerging one-dimensional sp3-hybridized materials with high predicted tensile strength and a tunable band gap. They can be synthesized by compressing aromatic or nonaromatic small molecules to pressures ranging from 15-30 GPa. Recently, new avenues are being sought that reduce the pressure required to afford nanothreads; the focus has been placed on the polymerization of molecules with reduced aromaticity, favorable stacking, and/or the use of higher reaction temperatures. Herein, we report the photochemically mediated polymerization of pyridine and furan aromatic precursors, which achieves nanothread formation at reduced pressures. In the case of pyridine, it was found that a combination of slow compression/decompression with broadband UV light exposure yielded a crystalline product featuring a six-fold diffraction pattern with similar interplanar spacings to previously synthesized pyridine-derived nanothreads at a reduced pressure. When furan is compressed to 8 GPa and exposed to broadband UV light, a crystalline solid is recovered that similarly demonstrates X-ray diffraction with an interplanar spacing akin to that of the high-pressure synthesized furan-derived nanothreads. Our method realizes a 1.9-fold reduction in the maximum pressure required to afford furan-derived nanothreads and a 1.4-fold reduction in pressure required for pyridine-derived nanothreads. Density functional theory and multiconfigurational wavefunction-based computations were used to understand the photochemical activation of furan and subsequent cascade thermal cycloadditions. The reduction of the onset pressure is caused by an initial [4+4] cycloaddition followed by increasingly facile thermal [4+2]-cycloadditions during polymerization.
Collapse
Affiliation(s)
- Shalisa M Oburn
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Steven Huss
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jordan Cox
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Margaret C Gerthoffer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sikai Wu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Arani Biswas
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Morgan Murphy
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vincent H Crespi
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John V Badding
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Elizabeth Elacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Wang T, Xu ES, Chen B, Hoffmann R, Crespi VH. Theory of Borazine-Derived Nanothreads: Enumeration, Reaction Pathways, and Piezoelectricity. ACS NANO 2022; 16:15884-15893. [PMID: 36166474 DOI: 10.1021/acsnano.2c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanothreads are one-dimensional macromolecules formed by pressure-induced polymerization along stacks of multiply unsaturated (or highly strained) molecules such as benzene (or cubane). Borazine is isoelectronic to benzene yet with substantial bond polarity, thus motivating a theoretical examination of borazine-derived nanothreads with degrees of saturation of 2, 4, and 6 (defined as the number of four-coordinated boron and nitrogen atoms per borazine formula unit). The energy increases upon going from molecular borazine to degree-2 borazine-derived threads and then decreases for degree-4 and degree-6 nanothreads as more σ bonds are formed. With the constraint of no more than two borazine formula units within the repeat unit of the framework's bonding topology, there are only 13 fully saturated (i.e., degree-6) borazine-derived nanothreads that avoid energetically costly homopolar bonds (as compared to more than 50 such candidates for benzene-derived threads). Only two of these are more stable than borazine. Hypothetical pathways from molecular borazine to these two degree-6 borazine-derived nanothreads are discussed. This relative paucity of outcomes may assist in kinetic control of reaction products. Beyond the high mechanical strength also predicted for carbon-based threads, properties such as piezoelectricity and flexoelectricity may be accessible to the polar lattice of borazine-derived nanothreads, with intriguing prospects for expression in these extremely thin yet rigid objects.
Collapse
Affiliation(s)
- Tao Wang
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - En-Shi Xu
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- School of Physics and Electronics, Qiannan Normal University for Nationalities, Duyun 558000, P.R. China
| | - Bo Chen
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Roald Hoffmann
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States
| | - Vincent H Crespi
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Wu SM, Wang YT, Xiao ST, Zhang YX, Tian G, Chen JB, Zhao XF, Janiak C, Shalom M, Bahnemann DW, Wang LY, Yang XY. Design and synthesis of TiO 2/C nanosheets with a directional cascade carrier transfer. Chem Sci 2022; 13:7126-7131. [PMID: 35799830 PMCID: PMC9214889 DOI: 10.1039/d2sc01872a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Directed transfer of carriers, akin to excited charges in photosynthesis, in semiconductors by structural design is challenging. Here, TiO2 nanosheets with interlayered sp2 carbon and titanium vacancies are obtained by low-temperature controlled oxidation calcination. The directed transfer of carriers from the excited position to Ti-vacancies to interlayered carbon is investigated and proven to greatly increase the charge transport efficiency. The TiO2/C obtained demonstrates excellent photocatalytic and photoelectrochemical activity and significant lithium/sodium ion storage performance. Further theoretical calculations reveal that the directional excited position/Ti-vacancies/interlayered carbon facilitate the spatial inside-out cascade electron transfer, resulting in high charge transfer kinetics.
Collapse
Affiliation(s)
- Si-Ming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis, Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology Wuhan 430070 China
- School of Chemical Engineering and Technology, Sun Yat-sen University (Zhuhai) Zhuhai 519000 China
| | - Yi-Tian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis, Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology Wuhan 430070 China
| | - Shi-Tian Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis, Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology Wuhan 430070 China
| | - Yan-Xiang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis, Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology Wuhan 430070 China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis, Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology Wuhan 430070 China
| | - Jiang-Bo Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis, Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Fang Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis, Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology Wuhan 430070 China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf Düsseldorf Germany
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Detlef W Bahnemann
- Institut für Technische Chemie, Leibniz Universität Hannover Callinstrasse 3 Hannover D-30167 Germany
- Laboratory "Photoactive Nanocomposite Materials" (Director), Saint-Petersburg State University Ulyanovskaya str. 1, Peterhof Saint-Petersburg 198504 Russia
| | - Li-Ying Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis, Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
12
|
Romi S, Fanetti S, Alabarse F, Mio AM, Haines J, Bini R. Towards custom built double core carbon nanothreads using stilbene and pseudo-stilbene type systems. NANOSCALE 2022; 14:4614-4625. [PMID: 35266485 DOI: 10.1039/d1nr08188h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Until recently, saturated carbon nanothreads were the missing tile in the world of low-dimension carbon nanomaterials. These one-dimensional fully saturated polymers possess superior mechanical properties by combining high tensile strength with flexibility and resilience. They can be obtained by compressing aromatic and heteroaromatic crystals above 15 GPa exploiting the anisotropic stress that can be achieved by the diamond anvil cell technique. Recently, double-core nanothreads were synthesized by compressing azobenzene crystals, achieving the remarkable result of preserving the azo group as a linker of the resulting double thread. Herein, we demonstrate the generality of these findings through the synthesis of double carbon nanothreads from trans stilbene and azobenzene-stilbene mixed crystals. Employment of Fourier transform infrared spectroscopy and synchrotron X-ray diffraction enabled a comprehensive characterization of the reactivity identifying threshold conditions, kinetics and structure-reaction relationship. In particular, the reaction is anticipated by a phase transition characterized by a sudden increase of the monoclinic angle and a collapse along the b axis direction. Large bidimensional crystalline areas extending several tens of nanometers are evidenced by transmission electron microscopy also confirming the monoclinic unit cell derived from X-ray diffraction data in which threads possessing the polymer 1 structure, as suggested by density functional theory calculations, are packed. The most exciting result of this study is the demonstration of viable synthesis of double nanothreads where the number and the nature of chromophoric groups linking the threads can be tuned by preparing starting crystals of desired composition, thanks to the isomorphism typical of the pseudo-stilbene molecules. This is extremely important in tailoring nanothreads with tunable optical properties and an adjustable band gap, also exploiting the possibility of introducing substituents in the phenyl groups.
Collapse
Affiliation(s)
- Sebastiano Romi
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Samuele Fanetti
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
- ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Frederico Alabarse
- ELETTRA, Elettra Sincrotrone Trieste S.C.p.A, in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Antonio M Mio
- IMM-CNR, Istituto per la Microelettronica e Microsistemi, VIII Strada 5 - Zona Industriale, 95121 Catania, Italy
| | - Julien Haines
- Institut Charles Gerhardt Montpellier, CNRS, Université de Montpellier, 34095 Montpellier, France
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
- ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy.
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy.
| |
Collapse
|
13
|
Thi Nghiem T, Nguyen TN, Yusof NH, Kawahara S. Effect of naturally occurring proteins on graft copolymerization of vinyltriethoxysilane on natural rubber. Polym J 2022. [DOI: 10.1038/s41428-022-00616-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Gerthoffer MC, Xu B, Wu S, Cox J, Huss S, Oburn S, Lopez SA, Crespi V, Badding J, Elacqua E. Mechanistic Insights into the Pressure-Induced Polymerization of Aryl/Perfluoroaryl Co-Crystals. Polym Chem 2022. [DOI: 10.1039/d1py01387d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently discovered diamond nanothreads offer a stiff, sp3-hybridized backbone unachievable in conventional polymer synthesis that is formed through the solid-state pressure-induced polymerization of simple aromatics. This method enables monomeric A-B...
Collapse
|
15
|
Li F, Xu J, Wang Y, Zheng H, Li K. Pressure-Induced Polymerization: Addition and Condensation Reactions. Molecules 2021; 26:7581. [PMID: 34946665 PMCID: PMC8704508 DOI: 10.3390/molecules26247581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Under pressure of 1-100 GPa, unsaturated organic molecules tend to form covalent bond to each other for a negative enthalpy change, which often produces polymeric materials with extended carbon skeleton. The polymerization reactions typically happen in crystal, which promotes the topochemical process. This review summarized the topochemical polymerization processes of several alkynes, aromatics, and alkynylphenyl compounds, including the critical crystal structures before the reaction, bonding process, and the structure of the products. Secondly, this review also summarized the condensation reaction identified in the polymerization process, including the elimination of small molecules such as NH3, etc.
Collapse
Affiliation(s)
| | | | - Yajie Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (F.L.); (J.X.)
| | - Haiyan Zheng
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (F.L.); (J.X.)
| | - Kuo Li
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; (F.L.); (J.X.)
| |
Collapse
|
16
|
Avila-Ramírez A, Valle-Pérez AU, Susapto HH, Pérez-Pedroza R, Briola GR, Alrashoudi A, Khan Z, Bilalis P, Hauser CAE. Ecologically Friendly Biofunctional Ink for Reconstruction of Rigid Living Systems Under Wet Conditions. Int J Bioprint 2021; 7:398. [PMID: 34805592 PMCID: PMC8600305 DOI: 10.18063/ijb.v7i4.398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
The development of three-dimensional (3D)-printable inks is essential for several applications, from industrial manufacturing to novel applications for biomedical engineering. Remarkably, biomaterials for tissue engineering applications can be expanded to other new horizons; for instance, restoration of rigid living systems as coral reefs is an emergent need derived from recent issues from climate change. The coral reefs have been endangered, which can be observed in the increasing bleaching around the world. Very few studies report eco-friendly inks for matter since most conventional approaches require synthetic polymer, which at some point could be a pollutant depending on the material. Therefore, there is an unmet need for cost-effective formulations from eco-friendly materials for 3D manufacturing to develop carbonate-based inks for coral reef restoration. Our value proposition derives from technologies developed for regenerative medicine, commonly applied for human tissues like bone and cartilage. In our case, we created a novel biomaterial formulation from biopolymers such as gelatin methacrylate, poly (ethylene glycol diacrylate), alginate, and gelatin as scaffold and binder for the calcium carbonate and hydroxyapatite bioceramics needed to mimic the structure of rigid structures. This project presents evidence from 2D/3D manufacturing, chemical, mechanical, and biological characterization, which supports the hypothesis of its utility to aid in the fight to counteract the coral bleaching that affects all the marine ecosystem, primarily when this is supported by solid research in biomaterials science used for living systems, it can extend tissue engineering into new approaches in different domains such as environmental or marine sciences.
Collapse
Affiliation(s)
- Alan Avila-Ramírez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Alexander U Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Hepi Hari Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Rosario Pérez-Pedroza
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Giuseppina R Briola
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Alrashoudi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Zainab Khan
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.,Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-69900, Saudi Arabia
| |
Collapse
|
17
|
Huang WT, He GJ, Tang WD, Zou XL, Yin XC. A facile approach to realize simultaneously chain extension and crystallization promotion of poly (ethylene terephthalate). Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Nghiem Thi T, Cao Hong H, Nurul Hayati Y, Kawahara S. Graft copolymerization of methyl methacrylate and vinyltriethoxysilane binary monomers onto natural rubber. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02606-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Matsuura BS, Huss S, Zheng Z, Yuan S, Wang T, Chen B, Badding JV, Trauner D, Elacqua E, van Duin ACT, Crespi VH, Schmidt-Rohr K. Perfect and Defective 13C-Furan-Derived Nanothreads from Modest-Pressure Synthesis Analyzed by 13C NMR. J Am Chem Soc 2021; 143:9529-9542. [PMID: 34130458 DOI: 10.1021/jacs.1c03671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular structure of nanothreads produced by the slow compression of 13C4-furan was studied by advanced solid-state NMR. Spectral editing showed that >95% of carbon atoms were bonded to one hydrogen (C-H) and that there were 2-4% CH2, 0.6% C═O, and <0.3% CH3 groups. Alkenes accounted for 18% of the CH moieties, while trapped, unreacted furan made up 7%. Two-dimensional (2D) 13C-13C and 1H-13C NMR identified 12% of all carbon in asymmetric O-CH═CH-CH-CH- and 24% in symmetric O-CH-CH═CH-CH- rings. While the former represented defects or chain ends, some of the latter appeared to form repeating thread segments. Around 10% of carbon atoms were found in highly ordered, fully saturated nanothread segments. Unusually slow 13C spin-exchange with sites outside the perfect thread segments documented a length of at least 14 bonds; the small width of the perfect-thread signals also implied a fairly long, regular structure. Carbons in the perfect threads underwent relatively slow spin-lattice relaxation, indicating slow spin exchange with other threads and smaller amplitude motions. Through partial inversion recovery, the signals of the perfect threads were observed and analyzed selectively. Previously considered syn-threads with four different C-H bond orientations were ruled out by centerband-only detection of exchange NMR, which was, on the contrary, consistent with anti-threads. The observed 13C chemical shifts were matched well by quantum-chemical calculations for anti-threads but not for more complex structures like syn/anti-threads. These observations represent the first direct determination of the atomic-level structure of fully saturated nanothreads.
Collapse
Affiliation(s)
- Bryan S Matsuura
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Steven Huss
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhaoxi Zheng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shichen Yuan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Tao Wang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bo Chen
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - John V Badding
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, New York 10003, United States
- Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016, United States
- NYU Neuroscience Institute, New York University School of Medicine, New York, New York 10016, United States
| | - Elizabeth Elacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vincent H Crespi
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
20
|
|
21
|
Zhan H, Zhou Y, Zhang G, Zhu J, Zhang W, Lü C, Gu Y. Carbon nanothreads enable remarkable enhancement in the thermal conductivity of polyethylene. NANOSCALE 2021; 13:6934-6943. [PMID: 33885495 DOI: 10.1039/d1nr00356a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polymer nanocomposites with high thermal conductivity have been increasingly sought after in the electronic industry. Based on molecular dynamics simulations, this work assesses the thermal transport in polyethylene (PE) nanocomposites with the presence of a new one-dimensional nanofiller-a carbon nanothread (NTH). It is found that the axial thermal conductivity of PE nanocomposites increases linearly with the content of regularly aligned NTH fillers, while the aggregated pattern suppresses the enhancement effect. This phenomenon is explained by a stronger filler-filler interaction that reduces the intrinsic thermal conductivity of the NTH. Results show that the randomly dispersed NTHs can hardly promote heat transfer because effective heat transfer channels are lacking. Strikingly, surface functionalization has an adverse effect on the thermal conductivity due to the presence of additional voids. The presence of voids answers a long-standing open question that functionalization of the heat conductive filler only slightly improves the thermal conductivity of the polymer composite. Additionally, the transverse thermal conductivity degrades in the presence of the NTH and exhibits no clear correlation with the filler content or the distribution pattern. Overall, this study provides an in-depth understanding of the heat transfer within the polymer nanocomposites, which opens up possibilities for the preparation of highly conductive polymers.
Collapse
Affiliation(s)
- Haifei Zhan
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Romi S, Fanetti S, Alabarse F, Mio AM, Bini R. Synthesis of double core chromophore-functionalized nanothreads by compressing azobenzene in a diamond anvil cell. Chem Sci 2021; 12:7048-7057. [PMID: 34123332 PMCID: PMC8153222 DOI: 10.1039/d0sc06968j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Carbon nanothreads are likely the most attracting new materials produced under high pressure conditions. Their synthesis is achieved by compressing crystals of different small aromatic molecules, while also exploiting the applied anisotropic stress to favor nontopochemical paths. The threads are nanometric hollow structures of saturated carbon atoms, reminiscent of the starting aromatic molecule, gathered in micron sized bundles. The examples collected so far suggest that their formation can be a general phenomenon, thus enabling the design of functionalities and properties by suitably choosing the starting monomer on the basis of its chemical properties and crystal arrangement. The presence of heteroatoms or unsaturation within the thread is appealing for improving the processability and tuning the electronic properties. Suitable simple chromophores can fulfill these requirements and their controlled insertion along the thread would represent a considerable step forward in tailoring the optical and electronic properties of these mechanically extraordinary materials. Here, we report the synthesis and extensive characterization of double core nanothreads linked by azo groups. This is achieved by compressing azobenzene in a diamond anvil cell, the archetype of a wide class of dyes, and represents a fundamental step in the realization of nanothreads with tailored photochemical and photophysical properties. One-step high-pressure synthesis of 2D crystalline double nanothreads linked by azo groups.![]()
Collapse
Affiliation(s)
- Sebastiano Romi
- LENS, European Laboratory for Non-linear Spectroscopy Via N. Carrara 1 I-50019 Sesto Fiorentino Firenze Italy +390554572489 +390554572436
| | - Samuele Fanetti
- LENS, European Laboratory for Non-linear Spectroscopy Via N. Carrara 1 I-50019 Sesto Fiorentino Firenze Italy +390554572489 +390554572436.,ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici Via Madonna del Piano 10 I-50019 Sesto Fiorentino Firenze Italy
| | - Frederico Alabarse
- ELETTRA, Elettra Sincrotrone Trieste S.C.p.A in AREA Science Park 34149 Basovizza Trieste Italy
| | - Antonio M Mio
- IMM-CNR, Istituto per la Microelettronica e Microsistemi VIII Strada 5 - Zona Industriale 95121 Catania Italy
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy Via N. Carrara 1 I-50019 Sesto Fiorentino Firenze Italy +390554572489 +390554572436.,ICCOM-CNR, Istituto di Chimica dei Composti OrganoMetallici Via Madonna del Piano 10 I-50019 Sesto Fiorentino Firenze Italy.,Dipartimento di Chimica "Ugo Schiff", Università di Firenze Via della Lastruccia 3 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
23
|
Huss S, Wu S, Chen B, Wang T, Gerthoffer MC, Ryan DJ, Smith SE, Crespi VH, Badding JV, Elacqua E. Scalable Synthesis of Crystalline One-Dimensional Carbon Nanothreads through Modest-Pressure Polymerization of Furan. ACS NANO 2021; 15:4134-4143. [PMID: 33470790 DOI: 10.1021/acsnano.0c10400] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon nanothreads, which are one-dimensional sp3-rich polymers, combine high tensile strength with flexibility owing to subnanometer widths and diamond-like cores. These extended carbon solids are constructed through pressure-induced polymerization of sp2 molecules such as benzene. Whereas a few examples of carbon nanothreads have been reported, the need for high onset pressures (≥17 GPa) to synthesize them precludes scalability and limits scope. Herein, we report the scalable synthesis of carbon nanothreads based on molecular furan, which can be achieved through ambient temperature pressure-induced polymerization with an onset reaction pressure of only 10 GPa due to its lessened aromaticity relative to other molecular precursors. When slowly compressed to 15 GPa and gradually decompressed to 1.5 GPa, a sharp 6-fold diffraction pattern is observed in situ, indicating a well-ordered crystalline material formed from liquid furan. Single-crystal X-ray diffraction (XRD) of the reaction product exhibits three distinct d-spacings from 4.75 to 4.9 Å, whose size, angular spacing, and degree of anisotropy are consistent with our atomistic simulations for crystals of furan nanothreads. Further evidence for polymerization was obtained by powder XRD, Raman/IR spectroscopy, and mass spectrometry. Comparison of the IR spectra with computed vibrational modes provides provisional identification of spectral features characteristic of specific nanothread structures, namely syn, anti, and syn/anti configurations. Mass spectrometry suggests that molecular weights of at least 6 kDa are possible. Furan therefore presents a strategic entry toward scalable carbon nanothreads.
Collapse
Affiliation(s)
- Steven Huss
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sikai Wu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bo Chen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853, United States
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia, San Sebastian, Spain
- Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Tao Wang
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Margaret C Gerthoffer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel J Ryan
- ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Stuart E Smith
- ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States
| | - Vincent H Crespi
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John V Badding
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Elizabeth Elacqua
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
24
|
Reif B, Ashbrook SE, Emsley L, Hong M. Solid-state NMR spectroscopy. NATURE REVIEWS. METHODS PRIMERS 2021; 1:2. [PMID: 34368784 PMCID: PMC8341432 DOI: 10.1038/s43586-020-00002-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.
Collapse
Affiliation(s)
- Bernd Reif
- Technische Universität München, Department Chemie, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Sharon E. Ashbrook
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Lyndon Emsley
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne, Switzerland
| | - Mei Hong
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
25
|
Demingos PG, Balzaretti NM, Muniz AR. First-principles study of carbon nanothreads derived from five-membered heterocyclic rings: thiophene, furan and pyrrole. Phys Chem Chem Phys 2021; 23:2055-2062. [DOI: 10.1039/d0cp05847e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural, mechanical and electronic properties of carbon nanothreads derived from five-membered ring heterocyclic compounds are presented and discussed, demonstrating their enhanced stability and promising set of features.
Collapse
Affiliation(s)
- Pedro G. Demingos
- Graduate Program in Materials Science
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Naira M. Balzaretti
- Graduate Program in Materials Science
- Universidade Federal do Rio Grande do Sul
- Porto Alegre
- Brazil
- Institute of Physics
| | - André R. Muniz
- Department of Chemical Engineering
- Universidade Federal do Rio Grande do Sul
- Porto Alegre 90040-060
- Brazil
| |
Collapse
|
26
|
Friedrich A, Collings IE, Dziubek KF, Fanetti S, Radacki K, Ruiz-Fuertes J, Pellicer-Porres J, Hanfland M, Sieh D, Bini R, Clark SJ, Marder TB. Pressure-Induced Polymerization of Polycyclic Arene-Perfluoroarene Cocrystals: Single Crystal X-ray Diffraction Studies, Reaction Kinetics, and Design of Columnar Hydrofluorocarbons. J Am Chem Soc 2020; 142:18907-18923. [PMID: 33095990 DOI: 10.1021/jacs.0c09021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pressure-induced polymerization of aromatic compounds leads to novel materials containing sp3 carbon-bonded networks. The choice of the molecular species and the control of their arrangement in the crystal structures via intermolecular interactions, such as the arene-perfluoroarene interaction, can enable the design of target polymers. We have investigated the crystal structure compression and pressure-induced polymerization reaction kinetics of two polycyclic 1:1 arene-perfluoroarene cocrystals, naphthalene/octafluoronaphthalene (NOFN) and anthracene/octafluoronaphthalene (AOFN), up to 25 and 30 GPa, respectively, using single-crystal synchrotron X-ray diffraction, infrared spectroscopy, and theoretical computations based on density-functional theory. Our study shows the remarkable pressure stability of the parallel arene-perfluoroarene π-stacking arrangement and a reduction of the interplanar π-stacking separations by ca. 19-22% before the critical reaction distance is reached. A further strong, discontinuous, and irreversible reduction along the stacking direction at 20 GPa in NOFN (18.8%) and 25 GPa in AOFN (8.7%) indicates the pressure-induced breakdown of π-stacking by formation of σ-bonded polymers. The association of the structural distortion with the occurrence of a chemical reaction is confirmed by a high-pressure kinetic study using infrared spectroscopy, indicating one-dimensional polymer growth. Structural predictions for the fully polymerized high-pressure phases consisting of highly ordered rods of hydrofluorocarbons are presented based on theoretical computations, which are in excellent agreement with the experimentally determined unit-cell parameters. We show that the polymerization takes place along the arene-perfluoroarene π-stacking direction and that the lateral extension of the columns depends on the extension of the arene and perfluoroarene molecules.
Collapse
Affiliation(s)
- Alexandra Friedrich
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ines E Collings
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Kamil F Dziubek
- LENS, European Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy
| | - Samuele Fanetti
- LENS, European Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Javier Ruiz-Fuertes
- MALTA Consolider Team, Departamento Física Aplicada-ICMUV, Universitat de València, C/Doctor Moliner 50, 46100 Burjassot, Spain.,DCITIMAC, MALTA Consolider Team, Universidad de Cantabria, 39005 Santander, Spain
| | - Julio Pellicer-Porres
- MALTA Consolider Team, Departamento Física Aplicada-ICMUV, Universitat de València, C/Doctor Moliner 50, 46100 Burjassot, Spain
| | - Michael Hanfland
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Daniel Sieh
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roberto Bini
- LENS, European Laboratory for Nonlinear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy.,Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Stewart J Clark
- Department of Physics, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Todd B Marder
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
27
|
Duan P, Lamm MS, Yang F, Xu W, Skomski D, Su Y, Schmidt-Rohr K. Quantifying Molecular Mixing and Heterogeneity in Pharmaceutical Dispersions at Sub-100 nm Resolution by Spin Diffusion NMR. Mol Pharm 2020; 17:3567-3580. [DOI: 10.1021/acs.molpharmaceut.0c00592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew S. Lamm
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fengyuan Yang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
28
|
Fu Y, Xu K, Wu J, Zhang Z, He J. The effects of morphology and temperature on the tensile characteristics of carbon nitride nanothreads. NANOSCALE 2020; 12:12462-12475. [PMID: 32495792 DOI: 10.1039/d0nr03206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Very recently synthesized carbon nitride nanothreads (CNNTs) by compressing crystalline pyridine show outperform diamond nanothreads in chemical and physical properties. Here, using first-principles-based ReaxFF molecular dynamics (MD) simulations, a comprehensive investigation on the mechanical characteristics of seven experimentally synthesized CNNTs has been performed. All CNNTs exhibit unique tensile properties that change with molecular morphology, atomic arrangement and the distribution of nitrogen in the skeleton. The CNNTs with more effective covalent bonds at cross-sections are more mechanically robust. Surprisingly, a tiny CNNT with periodic unit structures of 5462-cage shows extreme ductility because of the formation of a linear polymer via 4-step dissociation-and-reformation of bonds at extremely low temperatures in the range of 1-15 K; however, it shows brittle failure at one cross-section with low ductility at higher temperatures similar to other CNNTs at different temperatures; this offers a feasible way to design a kind of lightweight material that can be used in ultra-low temperature conditions, for example, the harsh deep space environment. The results also show that temperature significantly affects the fracture stress and rupture strain but not the effective stiffness. The analysis of atomic bond orders and bond lengthening reveals that the unique nonlinear elasticity of CNNTs is attributed to the occurrence of local bond transformations. This study provides physical insights into the tensile characteristics of CNNTs for the design and application of CNNT-based nanostructures as multifunctional materials.
Collapse
Affiliation(s)
- Yuequn Fu
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | | | | | | | | |
Collapse
|
29
|
High density mechanical energy storage with carbon nanothread bundle. Nat Commun 2020; 11:1905. [PMID: 32312980 PMCID: PMC7171126 DOI: 10.1038/s41467-020-15807-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
The excellent mechanical properties of carbon nanofibers bring promise for energy-related applications. Through in silico studies and continuum elasticity theory, here we show that the ultra-thin carbon nanothreads-based bundles exhibit a high mechanical energy storage density. Specifically, the gravimetric energy density is found to decrease with the number of filaments, with torsion and tension as the two dominant contributors. Due to the coupled stresses, the nanothread bundle experiences fracture before reaching the elastic limit of any individual deformation mode. Our results show that nanothread bundles have similar mechanical energy storage capacity compared to (10,10) carbon nanotube bundles, but possess their own advantages. For instance, the structure of the nanothread allows us to realize the full mechanical energy storage potential of its bundle structure through pure tension, with a gravimetric energy density of up to 1.76 MJ kg−1, which makes them appealing alternative building blocks for energy storage devices. Carbon nanothreads are promising for applications in mechanical energy storage and energy harvesting. Here the authors use large-scale molecular dynamics simulations and continuum elasticity theory to explore mechanical energy storage in carbon nanothreads-based bundles.
Collapse
|
30
|
Fanetti S, Santoro M, Alabarse F, Enrico B, Bini R. Modulating the H-bond strength by varying the temperature for the high pressure synthesis of nitrogen rich carbon nanothreads. NANOSCALE 2020; 12:5233-5242. [PMID: 32073094 DOI: 10.1039/c9nr10716a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon nanothreads are among the most attractive new materials produced under high pressure conditions. Their synthesis can be achieved by compressing the crystals of aromatic molecules exploiting both the anisotropic stress produced by the unidirectional applied force and that intrinsic to the crystal arrangement. We explored here the transformation of pyridine into a nitrogen rich carbon nanothread crystal by varying the pressure and temperature conditions with the twofold purpose of disclosing the microscopic mechanism of transformation and optimizing the yield and quality of the produced crystalline nanothreads. The best conditions for the synthesis were identified in the 14-18 GPa range at temperatures between 400 and 500 K with a product yield greater than 30%. The comparison of experiments performed under different P-T conditions allowed us to understand the role of high temperature, which is necessary to weaken or even destroy the complex H-bond network characterizing the pyridine crystal and preventing the correct approach of the aromatic rings for nanothread formation. X-ray diffraction data confirm the excellent 2D hexagonal packing of the nanothreads over several tens of microns, whereas the sharp absorption lines observed in the IR spectrum strongly support a substantial order along the threads. Diffraction results suggest a polytwistane structure of the threads derived from a Diels-Alder [4 + 2] polymerization involving molecules arranged in a slipped parallel configuration along the pyridine crystal a and b axes. Electron microscopy evidences an arrangement of the nanothreads in bundles of tens of nanometers.
Collapse
Affiliation(s)
- Samuele Fanetti
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy. and ICCOM, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Mario Santoro
- CNR-INO, Istituto Nazionale di Ottica, via Nello Carrara 1, 50019 Sesto Fiorentino, FI, Italy and LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy.
| | - Frederico Alabarse
- ELETTRA, Elettra Sincrotrone Trieste S.C.p.A, in AREA Science Park 34149 Basovizza, Trieste, Italy
| | - Berretti Enrico
- ICCOM, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy. and ICCOM, Istituto di Chimica dei Composti OrganoMetallici, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy and Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Huang HT, Zhu L, Ward MD, Wang T, Chen B, Chaloux BL, Wang Q, Biswas A, Gray JL, Kuei B, Cody GD, Epshteyn A, Crespi VH, Badding JV, Strobel TA. Nanoarchitecture through Strained Molecules: Cubane-Derived Scaffolds and the Smallest Carbon Nanothreads. J Am Chem Soc 2020; 142:17944-17955. [PMID: 31961671 DOI: 10.1021/jacs.9b12352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Relative to the rich library of small-molecule organics, few examples of ordered extended (i.e., nonmolecular) hydrocarbon networks are known. In particular, sp3 bonded, diamond-like materials represent appealing targets because of their desirable mechanical, thermal, and optical properties. While many covalent organic frameworks (COFs)-extended, covalently bonded, and porous structures-have been realized through molecular architecture with exceptional control, the design and synthesis of dense, covalent extended solids has been a longstanding challenge. Here we report the preparation of a sp3-bonded, low-dimensional hydrocarbon synthesized via high-pressure, solid-state diradical polymerization of cubane (C8H8), which is a saturated, but immensely strained, cage-like molecule. Experimental measurements show that the obtained product is crystalline with three-dimensional order that appears to largely preserve the basic structural topology of the cubane molecular precursor and exhibits high hardness (comparable to fused quartz) and thermal stability up to 300 °C. Among the plausible theoretical candidate structures, one-dimensional carbon scaffolds comprising six- and four-membered rings that pack within a pseudosquare lattice provide the best agreement with experimental data. These diamond-like molecular rods with extraordinarily small thickness are among the smallest members in the carbon nanothread family, and calculations indicate one of the stiffest one-dimensional systems known. These results present opportunities for the synthesis of purely sp3-bonded extended solids formed through the strain release of saturated molecules, as opposed to only unsaturated precursors.
Collapse
Affiliation(s)
| | - Li Zhu
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| | - Matthew D Ward
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| | | | | | - Brian L Chaloux
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | - Qianqian Wang
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| | | | | | | | - George D Cody
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| | - Albert Epshteyn
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375, United States
| | | | | | - Timothy A Strobel
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, DC 20015, United States
| |
Collapse
|
32
|
Shinozaki A, Nagai T, Kagi H, Nakano S. Pressure-induced irreversible amorphization of naphthalene and nitrogen-containing heteroaromatic compounds at room temperature. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Biswas A, Ward MD, Wang T, Zhu L, Huang HT, Badding JV, Crespi VH, Strobel TA. Evidence for Orientational Order in Nanothreads Derived from Thiophene. J Phys Chem Lett 2019; 10:7164-7171. [PMID: 31601100 DOI: 10.1021/acs.jpclett.9b02546] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanothreads are one-dimensional sp3 hydrocarbons that pack within pseudohexagonal crystalline lattices. They are believed to lack long-range order along the thread axis and also lack interthread registry. Here we investigate the phase behavior of thiophene up to 35 GPa and establish a pressure-induced phase transition sequence that mirrors previous observations in low-temperature studies. Slow compression to 35 GPa results in the formation of a recoverable saturated product with a 2D monoclinic diffraction pattern along (0001) that agrees closely with atomistic simulations for single crystals of thiophene-derived nanothreads. Paradoxically, this lower-symmetry packing signals a higher degree of structural order since it must arise from constituents with a consistent azimuthal orientation about their shared axis. The simplicity of thiophene reaction pathways (with only four carbon atoms per ring) apparently yields the first nanothreads with orientational order, a striking outcome considering that a single point defect in a 1D system can disrupt long-range structural order.
Collapse
Affiliation(s)
| | - Matthew D Ward
- Geophysical Laboratory , Carnegie Institution for Science , 5251 Broad Branch Road NW , Washington , D.C. 20015 , United States
| | | | - Li Zhu
- Geophysical Laboratory , Carnegie Institution for Science , 5251 Broad Branch Road NW , Washington , D.C. 20015 , United States
| | | | | | | | - Timothy A Strobel
- Geophysical Laboratory , Carnegie Institution for Science , 5251 Broad Branch Road NW , Washington , D.C. 20015 , United States
| |
Collapse
|
34
|
Ward MD, Tang WS, Zhu L, Popov D, Cody GD, Strobel TA. Controlled Single-Crystalline Polymerization of C10H8·C10F8 under Pressure. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Matthew D. Ward
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, D.C. 20015, United States
| | - Wan Si Tang
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, D.C. 20015, United States
| | - Li Zhu
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, D.C. 20015, United States
| | - Dmitry Popov
- High Pressure Collaborative Access Team (HPCAT), Geophysical Laboratory, Carnegie Institution for Science, Argonne, Illinois 60439, United States
| | - George D. Cody
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, D.C. 20015, United States
| | - Timothy A. Strobel
- Geophysical Laboratory, Carnegie Institution for Science, 5251 Broad Branch Road Northwest, Washington, D.C. 20015, United States
| |
Collapse
|
35
|
Silveira JF, Muniz AR. Flexible carbon nanothread-based membranes with strain-dependent gas transport properties. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Fritzsching KJ, Duan P, Alberts EM, Tibabuzo Perdomo AM, Kenny P, Wilker JJ, Schmidt-Rohr K. Silk-Like Protein with Persistent Radicals Identified in Oyster Adhesive by Solid-State NMR. ACS APPLIED BIO MATERIALS 2019; 2:2840-2852. [DOI: 10.1021/acsabm.9b00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Keith J. Fritzsching
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | | | | | - Paul Kenny
- Baruch Marine Field Laboratory, University of South Carolina, P.O. Box 1630, Georgetown, South Carolina 29442, United States
| | | | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
37
|
Juhl SJ, Wang T, Vermilyea B, Li X, Crespi VH, Badding JV, Alem N. Local Structure and Bonding of Carbon Nanothreads Probed by High-Resolution Transmission Electron Microscopy. J Am Chem Soc 2019; 141:6937-6945. [PMID: 30951295 DOI: 10.1021/jacs.8b13405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carbon nanothreads are a new one-dimensional sp3-bonded nanomaterial of CH stoichiometry synthesized from benzene at high pressure and room temperature by slow solid-state polymerization. The resulting threads assume crystalline packing hundreds of micrometers across. We show high-resolution electron microscopy (HREM) images of hexagonal arrays of well-aligned thread columns that traverse the 80-100 nm thickness of the prepared sample. Diffuse scattering in electron diffraction reveals that nanothreads are packed with axial and/or azimuthal disregistry between them. Layer lines in diffraction from annealed nanothreads provide the first evidence of translational order along their length, indicating that this solid-state reaction proceeds with some regularity. HREM also reveals bends and defects in nanothread crystals that can contribute to the broadening of their diffraction spots, and electron energy-loss spectroscopy confirms them to be primarily sp3-hybridized, with less than 27% sp2 carbon, most likely associated with partially saturated "degree-4" threads.
Collapse
|
38
|
Wang T, Duan P, Xu ES, Vermilyea B, Chen B, Li X, Badding JV, Schmidt-Rohr K, Crespi VH. Constraining Carbon Nanothread Structures by Experimental and Calculated Nuclear Magnetic Resonance Spectra. NANO LETTERS 2018; 18:4934-4942. [PMID: 29954179 DOI: 10.1021/acs.nanolett.8b01736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A one-dimensional (1D) sp3 carbon nanomaterial with high lateral packing order, known as carbon nanothreads, has recently been synthesized by slowly compressing and decompressing crystalline solid benzene at high pressure. The atomic structure of an individual nanothread has not yet been determined experimentally. We have calculated the 13C nuclear magnetic resonance (NMR) chemical shifts, chemical shielding tensors, and anisotropies of several axially ordered and disordered partially saturated and fully saturated nanothreads within density functional theory and systematically compared the results with experimental solid-state NMR data to assist in identifying the structures of the synthesized nanothreads. In the fully saturated threads, every carbon atom in each progenitor benzene molecule has bonded to a neighboring molecule (i.e., 6 bonds per molecule, a so-called "degree-6" nanothread), while the partially saturated threads examined retain a single double bond per benzene ring ("degree-4"). The most-parsimonious theoretical fit to the experimental 1D solid-state NMR spectrum, constrained by the measured chemical shift anisotropies and key features of two-dimensional NMR spectra, suggests a certain combination of degree-4 and degree-6 nanothreads as plausible components of this 1D sp3 carbon nanomaterial, with intriguing hints of a [4 + 2] cycloaddition pathway toward nanothread formation from benzene columns in the progenitor molecular crystal, based on the presence of nanothreads IV-7, IV-8, and square polymer in the minimal fit.
Collapse
Affiliation(s)
| | - Pu Duan
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02453 , United States
| | | | | | - Bo Chen
- Department of Chemistry and Chemical Biology , Cornell University , Baker Laboratory , Ithaca , New York 14853 , United States
| | | | | | - Klaus Schmidt-Rohr
- Department of Chemistry , Brandeis University , Waltham , Massachusetts 02453 , United States
| | | |
Collapse
|