1
|
Ye W, Meng Z, Zhan G, Lv A, Gao Y, Shen K, Ma H, Shi H, Yao W, Wang L, Huang W, An Z. High-Performance Circularly Polarized Phosphorescence by Confining Isolated Chromophores with Chiral Counterions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410073. [PMID: 39540308 DOI: 10.1002/adma.202410073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Organic room-temperature phosphorescence (RTP) featuring circularly polarized luminescence (CPL) is highly valuable in chiroptoelectronics, but the trade-off issue between luminescence efficiency (Φ) and dissymmetry factor (glum) is still challenging to be solved. Here, chiroptical ionic crystals (R/S-DNP) are constructed through ionization-induced assembly, in which isolated chromophore of carboxylic anion is tightly confined by the surrounding chiral counterions. The long-range ordered and chiral counterions with asymmetric stacking are closely connected with isolated chromophores for molecular assembly via high-density electrostatic interactions, thus enabling the simultaneous realization of excellent single-molecule RTP emission and efficient chirality transfer. The synchronous enhancement of ΦP and glum is further achieved as 43.2% and 0.13, respectively. In view of the excellent CPL performances, the ionic materials hold the promising chiroptical encryption via programmable control in an electric-driven circularly polarized phosphorescent device. This result not only makes deeper insights into the relationship between the structure and chiral RTP property but also provides a guide to developing highly efficient chiroptical materials for potential applications.
Collapse
Affiliation(s)
- Wenpeng Ye
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhengong Meng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Guixiang Zhan
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yanhua Gao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Kang Shen
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Yao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
2
|
Wu Z, Herok C, Friedrich A, Engels B, Marder TB, Hudson ZM. Impurities in Arylboronic Esters Induce Persistent Afterglow. J Am Chem Soc 2024. [PMID: 39499625 DOI: 10.1021/jacs.4c08329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Several recent reports suggest that arylboronic esters can exhibit room temperature phosphorescence (RTP), an optical property that is desirable for applications in security printing, oxygen sensing, and bioimaging. These findings challenged the fundamental notion that heavy elements or changes in orbital symmetry were required for intersystem crossing to occur in organic compounds. As we had not observed long afterglow in the many arylboronic esters we had synthesized over many years, we suspected that the RTP observed in these systems had a simpler explanation: the materials reported were impure. Herein, we synthesized 12 arylboronic esters that were previously reported to show RTP, and carefully purified them by column chromatography, recrystallization, and sublimation. We re-examined their photophysical properties alongside single-crystal X-ray diffraction analysis and detailed theoretical studies. While 4 of the 12 compounds showed long afterglows as crude products, none of them showed persistent RTP after careful purification. We also successfully isolated the impurity 4-amino-3,5-bis(pinacolatoboryl)benzonitrile (2), identifying it as the impurity responsible for inducing delayed fluorescence in 3,5-bis(pinacolatoboryl)benzonitrile (1). Doping 1 with 1.0 mol % 2 led to a persistent afterglow with a lifetime of 67 ms, which is mediated by a dimer charge transfer state. Our findings call for a re-examination of previous studies reporting RTP from arylboronic esters, highlight the importance of careful purification in photophysical research, and provide a practical strategy for designing organic materials with a long afterglow.
Collapse
Affiliation(s)
- Zhu Wu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Christoph Herok
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institute of Physical and Theoretical Chemistry, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
3
|
Mahilary B, Patir K, Basumatary S. Excitation wavelength and time dependent colour tunable room temperature phosphorescence from boron doped carbon nanodots. J Fluoresc 2024:10.1007/s10895-024-04007-x. [PMID: 39466480 DOI: 10.1007/s10895-024-04007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
Developing metal free room temperature phosphorescence (RTP) materials have received tremendous attention due its potential application in various fields such as sensing, optoelectronics and anticounterfeiting. Herein, we have synthesized an excitation wavelength and time dependent phosphorescent boron doped carbon nanodots (BCNDs) by thermal treatment of ethanolamine and boric acid at 240 °C, where boric acid act as both doping and host agents. The obtained BCNDs display blue to orange fluorescence in both aqueous medium and solid state. In addition, the BCNDs display tunable orange-yellow-green phosphorescence in solid state under UV and visible light, lasting upto 10 s, visible to naked eye. The boron and nitrogen doping regulates the band gap of the BCNDs, resulting the phosphorescence colour tunability. The average phosphorescence lifetime and quantum yield of BCNDs are found to be 1.27 s and 8.61% respectively. Based on the optical properties, the BCNDs are applied as security ink in information encryption and security marking. Hence, this work can promote the development of metal free phosphorescent carbon based materials which may find application in various emerging fields.
Collapse
Affiliation(s)
- Bilipang Mahilary
- Department of Chemistry, Bodoland University, Kokrajhar, Assam, 783370, India
| | - Khemnath Patir
- Department of Applied Science and Humanities, Assam University, Silchar, Assam, 788011, India.
| | - Sanjay Basumatary
- Department of Chemistry, Bodoland University, Kokrajhar, Assam, 783370, India.
| |
Collapse
|
4
|
Yin Z, Xie Z, Zhang X, Xue Y, Zhang D, Liu B. Cocrystallization-Induced Red Ultralong Organic Phosphorescence. Angew Chem Int Ed Engl 2024:e202417868. [PMID: 39444192 DOI: 10.1002/anie.202417868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Organic cocrystals formed through multicomponent self-assembly have attracted significant interest owing to their clear structure and tunable optical properties. However, most cocrystal systems suffer from inefficient long-wavelength emission and low phosphorescence efficiency due to strong non-radiative processes governed by the energy gap law. Herein, an efficient long-lived red afterglow is achieved using a pyrene (Py) cocrystal system incorporating a second component (NPYC4) with thermally activated delayed fluorescence (TADF) and ultralong organic phosphorescence (UOP) properties. The cocrystal (NPYC4-Py) not only inherits the excellent luminescence of its monomeric counterparts, but also exhibits unique dual-mode characteristics, including persistent TADF and UOP emission with a high quantum yield of 58 % and a lifetime of 362 ms. The precise cocrystal stacking distinctly reveals that intermolecular interactions lock the cocrystal formation and weaken the intermolecular π-π interactions between NPYC4 and Py, thereby stabilizing the excited triplet excitons. Furthermore, the favorable energy level of NPYC4 acts as a bridge, reducing the energy gap between the S1 and T1 states for Py, therefore activating its red phosphorescence from Py. This research provides direct insights into achieving efficient red UOP through co-crystallization.
Collapse
Affiliation(s)
- Zheng Yin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zongliang Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xianhe Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yufeng Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
5
|
Peng Y, Yao X, Hu X, Wu B, Pei X, Yang Y, Dong Z, An Z, Huang W, Cai T. Edible Ultralong Organic Phosphorescent Excipient for Afterglow Visualizing the Quality of Tablets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406618. [PMID: 39205536 DOI: 10.1002/adma.202406618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Stimuli-responsive ultralong organic phosphorescence (UOP) materials that in response to external factors such as light, heat, and atmosphere have raised a tremendous research interest in fields of optoelectronics, anticounterfeiting labeling, biosensing, and bioimaging. However, for practical applications in life and health fields, some fundamental requirements such as biocompatibility and biodegradability are still challenging for conventional inorganic and aromatic-based stimuli-responsive UOP systems. Herein, an edible excipient, sodium carboxymethyl cellulose (SCC), of which UOP properties exhibit intrinsically multistimuli responses to excited wavelength, pressure, and moisture, is reported. Impressively, as a UOP probe, SCC enables nondestructive detection of hardness with superb contrast (signal-to-background ratio up to 120), while exhibiting a response sensitivity to moisture that is more than 5.0 times higher than that observed in conventional fluorescence. Additionally, its applicability for hardness monitoring and high-moisture warning for tablets containing a moisture-sensitive drug, with the quality of the drug being determinable through the naked-eye visible UOP, is demonstrated. This work not only elucidates the reason for stimulative corresponding properties in SCC but also makes a major step forward in extending the potential applications of stimuli-responsive UOP materials in manufacturing high-quality and safe medicine.
Collapse
Affiliation(s)
- Yayun Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China
| | - Xiaokang Yao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), No. 30 South Puzhu Rd., Nanjing, 211816, China
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University (Xiamen), Xiang'an Campus, No. 4221 Xiang'an South Road, Xiamen, Fujian, 361102, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361102, China
| | - Xiwen Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China
| | - Beishen Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), No. 30 South Puzhu Rd., Nanjing, 211816, China
| | - Xiangyu Pei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China
| | - Yuhan Yang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China
| | - Zaiqing Dong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), No. 30 South Puzhu Rd., Nanjing, 211816, China
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University (Xiamen), Xiang'an Campus, No. 4221 Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), No. 30 South Puzhu Rd., Nanjing, 211816, China
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University (Xiamen), Xiang'an Campus, No. 4221 Xiang'an South Road, Xiamen, Fujian, 361102, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics and Pharmaceutical Engineering, China Pharmaceutical University (Nanjing), No. 24 Tongjia Rd., Nanjing, 211198, China
| |
Collapse
|
6
|
Sun HL, Zhang QS, Wang ZH, Huang YT, Pan M. Long-persistent luminescence by host-guest Förster resonance energy transfer. Chem Sci 2024; 15:d4sc04746j. [PMID: 39386906 PMCID: PMC11457519 DOI: 10.1039/d4sc04746j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
In this study, Förster resonance energy transfer (FRET) is harnessed to construct a novel stimulus-responsive long-persistent luminescence (LPL) system. Two organic molecules, DPSD and DPOD, were initially found to have no afterglow under ambient conditions, but exhibited prolonged afterglow upon friction with paper, showing a significantly promoted transition of triplet excited states. Substituting paper with α-cellulose (the main composition of paper) reveals a novel host-guest long afterglow system and allows for a deeper investigation of the above paper-promoted LPL phenomenon. The activation of the LPL effect was achieved by matrixing these components through a grinding process, capitalizing on the efficient FRET from the host to the guest owing to the appropriate energy level match, and the robust intersystem crossing (ISC) capability of the guest. This model presents a new matrix strategy to achieve efficient LPL by a facile, low cost and easy-to-handle process. Furthermore, we successfully implemented anti-counterfeiting, encryption and decryption, decoration, and water/heat stimulus-responsive applications of the obtained materials. These advancements bring LPL materials one step closer to practical commercialization.
Collapse
Affiliation(s)
- Hui-Li Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Qiang-Sheng Zhang
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University Haikou P. R. China
| | - Zhong-Hao Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yan-Ting Huang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
7
|
Wang X, Wang Z, Wang X, Kang F, Gu Q, Zhang Q. Recent Advances of Organic Cocrystals in Emerging Cutting-Edge Properties and Applications. Angew Chem Int Ed Engl 2024:e202416181. [PMID: 39305144 DOI: 10.1002/anie.202416181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Indexed: 11/01/2024]
Abstract
Organic cocrystals, representing one type of new functional materials, have gathered significant interest in various engineering areas. Owing to their diverse stacking modes, rich intermolecular interactions and abundant functional components, the physicochemical properties of organic cocrystals can be tailored to meet different requirements and exhibit novel characteristics. The past few years have witnessed the rapid development of organic cocrystals in both fundamental characteristics and various applications. Beyond the typical properties like ambipolarity, emission tuning ability, ferroelectricity, etc. that are previously well demonstrated, many novel, impressive and cutting-edge properties and applications of cocrystals are also emerged and advanced recently. Especially during the nearest five years, photothermal conversion, room-temperature phosphorescence, thermally activated delay fluorescence, circularly polarized luminescence, organic solid-state lasers, near-infrared sensing, photocatalysis, batteries, and stimuli responses have been reported. In this review, these new properties are carefully summarized. Besides, some neoteric architecture and methodologies, such as host-guest structures and machine learning-based screening, are introduced. Finally, the potential future developments and expectations for organic cocrystals are discussed for further investigations on multiple functions and applications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Zongrui Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
8
|
Cai M, Qiu Y, Li F, Cai S, Cai Z. Supramolecular Assembly of Hydrogen-Bonded Organic Frameworks with Carbon Dots: Realizing Ultralong Aqueous Room-Temperature Phosphorescence for Anticounterfeiting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46609-46618. [PMID: 39171831 DOI: 10.1021/acsami.4c09567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications. Nevertheless, the realization of RTP-CDs in aqueous solutions remains a considerable challenge due to the water-molecule- and oxygen-induced deactivation of the triplet excitons, which leads to phosphorescence quenching. In this study, ultralong phosphorescence in water was achieved by in situ self-assembly of CDs encapsulated in a rigid hydrogen-bonded organic framework (HOF). The phosphorescence lifetime reaches an impressive 956.96 ms and exhibits long-lasting optical and structural stability in water for more than 90 days. The composite material not only has ultralong luminescence life and excellent luminescence stability but also has two-color phosphorescence emission, as well as excellent antiphotobleaching and phosphorescence stability in aqueous solution, which can solve the current problem that RTP is easily burst out by water and moisture. In addition, this study introduced a fluorescent dye based on the triplet-singlet Förster resonance energy transfer system (TS-FRET) to fine-tune the afterglow properties. This work will inspire the design of RTP systems with dual phosphor light sources and provide new strategies for the development of smart RTP materials in water.
Collapse
Affiliation(s)
- Minjuan Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
| | - Yijie Qiu
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
- Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
| | - Shunyou Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
- Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
- Micro-Nano Organic Optical Materials Laboratory, Minnan Normal University, Zhangzhou, Fujian 363000, PR China
| |
Collapse
|
9
|
Hu Z, Yan B. Machine Learning-Assisted Eu(III)-Functionalized HOF-on-HOF Composite-Based Sensor Platform for Precise and Visual Identification of Multiple Pesticides. Anal Chem 2024; 96:14248-14256. [PMID: 39167046 DOI: 10.1021/acs.analchem.4c02913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Precise and rapid identification of pesticides is crucial to ensure a green environment, food safety, and human health. However, complex sample environments often hinder precise identification, especially for simultaneous differentiation of multiple pesticides. Herein, we first synthesize a Eu(III)-functionalized HOF-on-HOF composite (Eu@PFC-1@MA-TPA) and then utilize principal component analysis (PCA) and a machine learning (ML) algorithm to achieve simultaneous identification of the pesticides 2,6-dichloro-4-nitroaniline (DCN) and thiabendazole (TBZ) and their mixtures. Eu@PFC-1@MA-TPA displays high quantitative identification ability, which can distinguish single DCN and TBZ as low as 1 μM and their mixtures at 5 μM through PCA. In addition, the hydrogel film Eu@PFC-1@MA-TPA/AG is fabricated to monitor DCN and TBZ in drinking water, tap water, river water, and apple juice with high sensitivity. Furthermore, based on the obvious fluorescence color variance of pesticides, Eu@PFC-1@MA-TPA/AG achieves visual and in situ imaging detection of single DCN and TBZ and their mixtures. More importantly, we construct an intelligent artificial vision platform integrating Eu@PFC-1@MA-TPA/AG with a DenseNet algorithm, which can identify the concentrations and types of DCN and TBZ and their mixtures within 1 s with over 98% accuracy. This work develops a precise and rapid analysis method for simultaneous identification of multiple pesticides through combining a visualized fluorescence sensor and an ML algorithm.
Collapse
Affiliation(s)
- Zhongqian Hu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
10
|
Liang YC, Shao HC, Liu KK, Cao Q, Jiang LY, Shan CX, Kuang LM, Jing H. Thermally Enhanced Phosphorescent Carbon Nanodots for Monitoring Cold-Chain Logistics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312218. [PMID: 38716754 DOI: 10.1002/smll.202312218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/21/2024] [Indexed: 10/04/2024]
Abstract
Room-temperature phosphorescent materials, renowned for their long luminescence lifetimes, have garnered significant attention in the field of optical materials. However, the challenges posed by thermally induced quenching have significantly hindered the advancement of luminescence efficiency and stability. In this study, thermally enhanced phosphorescent carbon nanodots (CND) are developed by incorporating them into fiber matrices. Remarkably, the phosphorescence lifetime of the thermally enhanced CND exhibits a twofold enhancement, increasing from 326 to 753 ms, while the phosphorescence intensity experienced a tenfold enhancement, increasing from 25 to 245 as the temperature increased to 373 K. Rigid fiber matrices can effectively suppress the non-radiative transition rate of triplet excitons, while high temperatures can desorb oxygen adsorbed on the surface of the CND, disrupting the interaction between the CND and oxygen. Consequently, a thermally enhanced phosphorescence is obtained. In addition, benefiting from the thermally enhanced phosphorescence property of CND, a warning indicator with an anti-counterfeiting function for monitoring cold-chain logistics is demonstrated based on CND.
Collapse
Affiliation(s)
- Ya-Chuan Liang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Hao-Chun Shao
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Quantum Materials and Physics Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Qing Cao
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
| | - Li-Ying Jiang
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Quantum Materials and Physics Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Le-Man Kuang
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Hui Jing
- Academy for Quantum Science and Technology, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
11
|
Yin G, Zhou J, Lu W, Li L, Liu D, Qi M, Tang BZ, Théato P, Chen T. Targeting Compact and Ordered Emitters by Supramolecular Dynamic Interactions for High-performance Organic Ambient Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311347. [PMID: 38335472 DOI: 10.1002/adma.202311347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Purely organic room-temperature phosphorescence (RTP) materials have received intense attention due to their fascinating optical properties and advanced optoelectronic applications. The promotion of intersystem crossing (ISC) and minimalization of nonradiative dissipation under ambient conditions are key prerequisites for realizing high-performance organic RTP; However, the ISC process is generally inefficient for organic fluorogens and the populated triplet excitons are always too susceptible to be well stabilized by conventional means. Particularly, organizing organic fluorophores into compact and ordered entities by supramolecular dynamic interactions has proven to be a newly-emerged strategy to boost the ISC process greatly and suppress the non-radiative relaxations immensely, facilitating the population and stabilization of triplet excitons to access high-performance organic RTP. Consequently, well-defined organic emitters enable robust RTP emission even in the solution state, thus greatly extending the applications. Here, this review is focused on a timely and brief introduction to recent progress in tailoring ordered high-performance RTP emitters by supramolecular dynamic interactions. Their typical preparation strategies, optoelectronic properties, and applications are thoroughly summarized. In the summary section, key challenges and perspectives of this field are highlighted to suggest potential directions for future study.
Collapse
Affiliation(s)
- Guangqiang Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayin Zhou
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longqiang Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Qi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Patrick Théato
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str.18, 76131, Karlsruhe, Germany
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
12
|
Tian Y, Si D, Li J, Lin W, Yang X, Gao S, Cao R. Heavy-Atom-Free Covalent Organic Frameworks for Organic Room-Temperature Phosphorescence via Förster and Dexter Energy Transfer Mechanism. SMALL METHODS 2024:e2401083. [PMID: 39194386 DOI: 10.1002/smtd.202401083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/17/2024] [Indexed: 08/29/2024]
Abstract
Covalent organic frameworks (COFs), with their accessible nanoscale porosity, selectable building blocks, and precisely engineered topology, offer unique benefits in the design of room-temperature phosphorescent (RTP) materials. However, their potential has been limited by phosphorescence quenching caused by interlayer π-π stacking interactions. This paper presents a novel strategy to enhance RTP in heavy-atom-free COFs by employing a donor-acceptor (D-A) system that leverages the Förster resonance energy transfer (FRET) and Dexter energy transfer (DET) mechanisms. Among the materials investigated, the best-performing COF exhibits a phosphorescence lifetime of 4.35 ms at room temperature. Spectral analysis, structural analysis, and theoretical calculations indicate the presence of intralayer FRET processes as well as interlayer DET processes within the D-A COF system. Potential anti-counterfeiting applications are explored by exploiting the unique phosphorescent properties of these materials. Additionally, the inherent permanent porosity of COFs presents new opportunities for future development and application. This strategy offers many promising prospects for advancing the RTP technology in COF materials and broadens their potential applications in various fields.
Collapse
Affiliation(s)
- Ye Tian
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Duanhui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlie Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xue Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Shuiying Gao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
13
|
Sun C, Li D, Dan W, Yin J, Fei H. Mixed-Layered Lead Halide Frameworks with High Stability and Efficient Room-Temperature Phosphorescence. J Phys Chem Lett 2024; 15:8451-8458. [PMID: 39121497 DOI: 10.1021/acs.jpclett.4c01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Room-temperature phosphorescent (RTP) materials play a crucial role in optical anticounterfeiting science and information security technologies. Ionically bonded organic metal halides have emerged as promising RTP material systems due to their excellent self-assembly and unique photophysical property, but their intrinsic instability largely hinders their advanced practical applications. Herein, we employ a coordination-driven synthetic strategy utilizing organocarboxylates for the synthesis of two isostructural layered lead halide frameworks. The frameworks adopt a new mixed-layered topology, consisting of alternating [Pb10X9]11+ (X = Cl-/Br-) layers and [Pb6XO3]11+ (X = Cl-/Br-) layers that are coordinatively sandwiched by organocarboxylate layers. The frameworks exhibit long-lived green afterglow emission with the long lifetime of up to 45.89 ms and the photoluminescence quantum yield (PLQY) of up to 43.13%. The Pb2+-carboxylate coordination accelerates the metal-to-ligand charge transfer from the light-harvesting lead halide layers to the phosphorescent organic component, promoting efficient spin-orbit coupling and intersystem crossing. Moreover, the coordination networks exhibit good structural robustness under ambient conditions for at least 12 months, as well as stability in boiling water, acidic and basic aqueous environments. The highly efficient afterglow and high structural integrity enable multiple anticounterfeiting applications across diverse chemical environments.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Dongyang Li
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Wenyan Dan
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Jinlin Yin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
14
|
Cong Y, Wang X, Bai H, Yao C, Liu J, Wei Y, Kang Y, Wang S, Li L. Intracellular Gold Nanocluster/Organic Semiconductor Heterostructure for Enhancing Photosynthesis. Angew Chem Int Ed Engl 2024:e202406527. [PMID: 39137101 DOI: 10.1002/anie.202406527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Photosynthetic microorganisms, which rely on light-driven electron transfer, store solar energy in self-energy carriers and convert it into bioenergy. Although these microorganisms can operate light-induced charge separation with nearly 100 % quantum efficiency, their practical applications are inherently limited by the photosynthetic energy conversion efficiency. Artificial semiconductors can induce an electronic response to photoexcitation, providing additional excited electrons for natural photosynthesis to improve solar conversion efficiency. However, challenges remain in importing exogenous electrons across cell membranes. In this work, we have developed an engineered gold nanocluster/organic semiconductor heterostructure (AuNCs@OFTF) to couple the intracellular electron transport chain of living cyanobacteria. AuNCs@OFTF exhibits a prolonged excited state lifetime and effective charge separation. The internalized AuNCs@OFTF permits its photogenerated electrons to participate in the downstream of photosystem II and construct an oriented electronic highway, which enables a five-fold increase in photocurrent in living cyanobacteria. Moreover, the binding events of AuNCs@OFTF established an abiotic-biotic electronic interface at the thylakoid membrane to enhance electron flux and finally furnished nicotinamide adenine dinucleotide phosphate. Thus, AuNCs@OFTF can be exploited to spatiotemporally manipulate and enhance the solar conversion of living cyanobacteria in cells, providing an extended nanotechnology for re-engineering photosynthetic pathways.
Collapse
Affiliation(s)
- Yujie Cong
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Chongqing, Yangtze Normal University, Chongqing, 408100, P.R. China
| | - Jiaren Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yi Wei
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuetong Kang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lidong Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
15
|
Guan Z, Tang Z, Zeng J, Zheng Y, Ding L, Chen D, Li H, Liu X. Stepwise Stiffening Chromophore Strategy Realizes a Series of Ultralong Blue Room-Temperature Phosphorescent Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402632. [PMID: 38923328 PMCID: PMC11348177 DOI: 10.1002/advs.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Indexed: 06/28/2024]
Abstract
Ultralong room-temperature phosphorescent (URTP) materials have attracted wide attention in anti-counterfeiting, optoelectronic display, and bio-imaging due to their special optical properties. However, room-temperature blue phosphorescent materials are very scarce during applications because of the need to simultaneously populate and stabilize high-energy excited states. In this work, a stepwise stiffening chromophore strategy is proposed to suppress non-radiative jump by continuously reducing the internal spin of the chromophore, and successfully developing a series of blue phosphorescent materials. Phosphorescence lifetimes of more than 3 s are achieved, with the longest lifetime reaching 5.44 s and lasting more than 70 s in the naked eye. As far as is know, this is the best result that has been reported. By adjusting the chromophore conjugation, multicolor phosphorescences from cyan to green have been realized. In addition, these chromophores exhibit the same excellent optical properties in urea and polyvinyl alcohmance (PVA). Finally, these materials are successfully applied to luminescent displays.
Collapse
Affiliation(s)
- Zhihao Guan
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Zhaorun Tang
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Jianwen Zeng
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Yuewei Zheng
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Lin Ding
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Dongzhi Chen
- State Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430073P. R. China
| | - Houbin Li
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Xinghai Liu
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
16
|
Shen X, Wu W, Yang C. Recent Progress in Solid-State Room Temperature Afterglow Based on Pure Organic Small Molecules. Molecules 2024; 29:3236. [PMID: 38999187 PMCID: PMC11243238 DOI: 10.3390/molecules29133236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Organic room temperature afterglow (ORTA) can be categorized into two key mechanisms: continuous thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP), both of which involve a triplet excited state. However, triplet excited states are easily quenched by non-radiative transitions due to oxygen and molecular vibrations. Solid-phase systems provide a conducive environment for triplet excitons due to constrained molecular motion and limited oxygen permeation within closely packed molecules. The stimulated triplet state tends to release energy through radiative transitions. Despite numerous reports on RTP in solid-phase systems in recent years, the complexity of these systems precludes the formulation of a universal theory to elucidate the underlying principles. Several strategies for achieving ORTA luminescence in the solid phase have been developed, encompassing crystallization, polymer host-guest doping, and small molecule host-guest doping. Many of these systems exhibit luminescent responses to various physical stimuli, including light stimulation, mechanical stimuli, and solvent vapor exposure. The appearance of these intriguing luminescent phenomena in solid-phase systems underscores their significant potential applications in areas such as light sensing, biological imaging, and information security.
Collapse
Affiliation(s)
- Xin Shen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
17
|
Zhong D, Liu S, Yue L, Feng Z, Wang H, Yang P, Su B, Yang X, Sun Y, Zhou G. Achieving pure room temperature phosphorescence (RTP) in phenoselenazine-based organic emitters through synergism among heavy atom effect, enhanced n → π* transitions and magnified electron coupling by the A-D-A molecular configuration. Chem Sci 2024; 15:9112-9119. [PMID: 38903225 PMCID: PMC11186343 DOI: 10.1039/d4sc01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
The weak spin-orbit coupling (SOC) in metal-free organic molecules poses a challenge in achieving phosphorescence emission. To attain pure phosphorescence in RTP organic emitters, a promising molecular design concept has been proposed. This involves incorporating n → π* transitions and leveraging the heavy atomic effect within the spin-orbit charge transfer-induced intersystem crossing (SOCT-ISC) mechanism of bipolar molecules. Following this design concept, two bipolar metal-free organic molecules (PhSeB and PhSeDB) with donor-acceptor (D-A) and acceptor-donor-acceptor (A-D-A) configurations have been synthesized. When the molecular configuration changes from D-A to A-D-A, PhSeDB exhibits stronger electron coupling and n → π* transitions, which can further enhance the spin-orbit coupling (SOC) together with the heave atom effect from the selenium atom. By the advanced synergism among enhanced n → π* transitions, heavy atom effect and magnified electron coupling to efficiently promote phosphorescence emission, PhSeDB can achieve pure RTP emission in both the solution and doped solid film. Thanks to the higher spin-orbit coupling matrix elements (SOCMEs) for T1 ↔ S0, PhSeDB attains the highest phosphorescence quantum yield (ca. 0.78) among all the RTP organic emitters reported. Consequently, the purely organic phosphorescent light-emitting diodes (POPLEDs) based on PhSeDB achieve the highest external quantum efficiencies of 18.2% and luminance of 3000 cd m-2. These encouraging results underscore the significant potential of this innovative molecular design concept for highly efficient POPLEDs.
Collapse
Affiliation(s)
- Daokun Zhong
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Siqi Liu
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ling Yue
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zhao Feng
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Hongyan Wang
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Peng Yang
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Bochao Su
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xiaolong Yang
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuanhui Sun
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Guijiang Zhou
- Engineering Research Center of Energy Storage Materials and Devices, School of Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
18
|
Liu H, Su H, Chen N, Cen J, Tan J, Zhang B, Chen X, Cheng A, Fu S, Zhou X, Liu S, Zhang X, Liu S, Luo Y, Zhang G. Water-Ice Microstructures and Hydration States of Acridinium Iodide Studied by Phosphorescence Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202405314. [PMID: 38602843 DOI: 10.1002/anie.202405314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
Ice has been suggested to have played a significant role in the origin of life partly owing to its ability to concentrate organic molecules and promote reaction efficiency. However, the techniques for studying organic molecules in ice are absorption-based, which limits the sensitivity of measurements. Here we introduce an emission-based method to study organic molecules in water ice: the phosphorescence displays high sensitivity depending on the hydration state of an organic salt probe, acridinium iodide (ADI). The designed ADI aqueous system exhibits phosphorescence that can be severely perturbed when the temperature is higher than 110 K at a concentration of the order of 10-5 M, indicating changes in hydration for ADI. Using the ADI phosphorescent probe, it is found that the microstructures of water ice, i.e., crystalline vs. glassy, can be strongly dictated by a trace amount (as low as 10-5 M) of water-soluble organic molecules. Consistent with cryoSEM images and temperature-dependent Raman spectral data, the ADI is dehydrated in more crystalline ice and hydrated in more glassy ice. The current investigation serves as a starting point for using more sensitive spectroscopic techniques for studying water-organics interactions at a much lower concentration and wider temperature range.
Collapse
Affiliation(s)
- Hongping Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Su
- Hefei National Laboratory, Hefei, 230088, China
| | - Ning Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Cen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jiajia Tan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | | | - Xiaoyu Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | | | - Shengquan Fu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoguo Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shilin Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Shiyong Liu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
19
|
Yang G, Hao S, Deng X, Song X, Sun B, Hyun WJ, Li MD, Dang L. Efficient intersystem crossing and tunable ultralong organic room-temperature phosphorescence via doping polyvinylpyrrolidone with polyaromatic hydrocarbons. Nat Commun 2024; 15:4674. [PMID: 38824140 PMCID: PMC11144212 DOI: 10.1038/s41467-024-48913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024] Open
Abstract
Polymer-based pure organic room-temperature phosphorescent materials have tremendous advantages in applications owing to their low cost, vast resources, and easy processability. However, designing polymer-based room-temperature phosphorescent materials with large Stokes shifts as key requirements in biocompatibility and environmental-friendly performance is still challenging. By generating charge transfer states as the gangplank from singlet excited states to triplet states in doped organic molecules, we find a host molecule (pyrrolidone) that affords charge transfer with doped guest molecules, and excellent polymer-based organic room-temperature phosphorescent materials can be easily fabricated when polymerizing the host molecule. By adding polyaromatic hydrocarbon molecules as electron-donor in polyvinylpyrrolidone, efficient intersystem crossing and tunable phosphorescent from green to near-infrared can be achieved, with maximum phosphorescence wavelength and lifetime up to 757 nm and 3850 ms, respectively. These doped polyvinylpyrrolidone materials have good photoactivation properties, recyclability, advanced data encryption, and anti-counterfeiting. This reported design strategy paves the way for the design of polyvinylpyrrolidone-based room-temperature phosphorescent materials.
Collapse
Affiliation(s)
- Guangxin Yang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Subin Hao
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Xin Deng
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Xinluo Song
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Bo Sun
- State & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Institute for Eco-environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
| | - Woo Jin Hyun
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China
| | - Ming-De Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China.
| | - Li Dang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China.
| |
Collapse
|
20
|
Xia W, Li X, Li J, Yan Q, Wang G, Piao X, Zhang K. Narrowband Organic/Inorganic Hybrid Afterglow Materials. Molecules 2024; 29:2343. [PMID: 38792203 PMCID: PMC11123977 DOI: 10.3390/molecules29102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Narrowband afterglow materials display interesting functions in high-quality anti-counterfeiting and multiplexed bioimaging. However, there is still a limited exploration of these afterglow materials, especially for those with a full width at half maxima (FWHM) around 30 nm. Here, we report the fabrication of narrowband organic/inorganic hybrid afterglow materials via energy transfer technology. Coronene (Cor) with a long phosphorescence feature and broad phosphorescence band is selected as the donor for energy transfer, and inorganic quantum dots (QDs) of CdSe/ZnS with a narrowband emission are used as acceptors. Upon doping into the organic matrix, the resultant three-component materials exhibit a narrowband afterglow with an afterglow lifetime of approximately 3.4 s and an FWHM of 31 nm. The afterglow wavelength of the afterglow materials can be controlled by the QDs. This work based on organic/inorganic hybrids provides a facile approach for developing multicolor and narrowband afterglow materials, as well as opens a new way for expanding the features of organic afterglow for multifunctional applications. It is expected to rely on narrowband afterglow emitters to solve the "spectrum congestion" problem of high-density information storage in optical anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Wen Xia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (W.X.); (J.L.)
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (X.L.); (Q.Y.); (G.W.)
| | - Xun Li
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (X.L.); (Q.Y.); (G.W.)
| | - Junbo Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (W.X.); (J.L.)
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (X.L.); (Q.Y.); (G.W.)
| | - Qianqian Yan
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (X.L.); (Q.Y.); (G.W.)
| | - Guangming Wang
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (X.L.); (Q.Y.); (G.W.)
| | - Xixi Piao
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (X.L.); (Q.Y.); (G.W.)
| | - Kaka Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China; (W.X.); (J.L.)
- State Key Laboratory of Organometallic Chemistry, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; (X.L.); (Q.Y.); (G.W.)
| |
Collapse
|
21
|
Lu G, Tan J, Wang H, Man Y, Chen S, Zhang J, Duan C, Han C, Xu H. Delayed room temperature phosphorescence enabled by phosphines. Nat Commun 2024; 15:3705. [PMID: 38697970 PMCID: PMC11066103 DOI: 10.1038/s41467-024-47888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Organic ultralong room-temperature phosphorescence (RTP) usually emerges instantly and immediately decays after excitation removal. Here we report a new delayed RTP that is postponed by dozens of milliseconds after excitation removal and decays in two steps including an initial increase in intensity followed by subsequent decrease in intensity. The delayed RTP is achieved through introduction of phosphines into carbazole emitters. In contrast to the rapid energy transfer from single-molecular triplet states (T1) to stabilized triplet states (Tn*) of instant RTP systems, phosphine groups insert their intermediate states (TM) between carbazole-originated T1 and Tn* of carbazole-phosphine hybrids. In addition to markedly increasing emission lifetimes by ten folds, since TM → Tn* transition require >30 milliseconds, RTP is thereby postponed by dozens of milliseconds. The emission character of carbazole-phosphine hybrids can be used to reveal information through combining instant and delayed RTP, realizing multi-level time resolution for advanced information, biological and optoelectronic applications.
Collapse
Affiliation(s)
- Guang Lu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Jing Tan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Hongxiang Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, 150080, Harbin, P. R. China.
| |
Collapse
|
22
|
Zheng H, Zhang Z, Cai S, An Z, Huang W. Enhancing Purely Organic Room Temperature Phosphorescence via Supramolecular Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311922. [PMID: 38270348 DOI: 10.1002/adma.202311922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Long-lived and highly efficient room temperature phosphorescence (RTP) materials are in high demand for practical applications in lighting and display, security signboards, and anti-counterfeiting. Achieving RTP in aqueous solutions, near-infrared (NIR) phosphorescence emission, and NIR-excited RTP are crucial for applications in bio-imaging, but these goals pose significant challenges. Supramolecular self-assembly provides an effective strategy to address the above problems. This review focuses on the recent advances in the enhancement of RTP via supramolecular self-assembly, covering four key aspects: small molecular self-assembly, cocrystals, the self-assembly of macrocyclic hosts and guests, and multi-stage supramolecular self-assembly. This review not only highlights progress in these areas but also underscores the prominent challenges associated with developing supramolecular RTP materials. The resulting strategies for the development of high-performance supramolecular RTP materials are discussed, aiming to satisfy the practical applications of RTP materials in biomedical science.
Collapse
Affiliation(s)
- Han Zheng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zaiyong Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suzhi Cai
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
23
|
Xie Z, Xue Y, Zhang X, Chen J, Lin Z, Liu B. Isostructural doping for organic persistent mechanoluminescence. Nat Commun 2024; 15:3668. [PMID: 38693122 PMCID: PMC11063035 DOI: 10.1038/s41467-024-47962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Mechanoluminescence, featuring light emission triggered by mechanical stimuli, holds immense promise for diverse applications. However, most organic Mechanoluminescence materials suffer from short-lived luminescence, limiting their practical applications. Herein, we report isostructural doping as a valuable strategy to address this challenge. By strategically modifying the host matrices with specific functional groups and simultaneously engineering guest molecules with structurally analogous features for isostructural doping, we have successfully achieved diverse multicolor and high-efficiency persistent mechanoluminescence materials with ultralong lifetimes. The underlying persistent mechanoluminescence mechanism and the universality of the isostructural doping strategy are also clearly elucidated and verified. Moreover, stress sensing devices are fabricated to show their promising prospects in high-resolution optical storage, pressure-sensitive displays, and stress monitoring. This work may facilitate the development of highly efficient organic persistent mechanoluminescence materials, expanding the horizons of next-generation smart luminescent technologies.
Collapse
Affiliation(s)
- Zongliang Xie
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yufeng Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Xianhe Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Junru Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Zesen Lin
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Bin Liu
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Malpicci D, Maver D, Rosadoni E, Colombo A, Lucenti E, Marinotto D, Botta C, Bellina F, Cariati E, Forni A. 3-Ethynyltriimidazo[1,2- a:1',2'- c:1″,2″- e][1,3,5]triazine Dual Short- and Long-Lived Emissions with Crystallization-Enhanced Feature: Role of Hydrogen Bonds and π-π Interactions. Molecules 2024; 29:1967. [PMID: 38731457 PMCID: PMC11085060 DOI: 10.3390/molecules29091967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Organic room temperature phosphorescent (ORTP) materials with stimuli-responsive, multicomponent emissive behaviour are extremely desirable for various applications. The derivative of cyclic triimidazole (TT) functionalized with an ethynyl group, TT-CCH, is isolated and investigated. The compound possesses crystallization-enhanced emission (CEE) comprising dual fluorescence and dual phosphorescence of both molecular and supramolecular origin with aggregation-induced components highly sensitive to grinding. The mechanisms involved in the emissions have been disclosed thanks to combined structural, spectroscopic and computational investigations. In particular, strong CH⋯N hydrogen bonds are deemed responsible, for the first time in the TT family, together with frequently observed π⋯π stacking interactions, for the aggregated fluorescence and phosphorescence.
Collapse
Affiliation(s)
- Daniele Malpicci
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (D.M.); (D.M.); (A.C.)
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
| | - Daniele Maver
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (D.M.); (D.M.); (A.C.)
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
| | - Elisabetta Rosadoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy (F.B.)
| | - Alessia Colombo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (D.M.); (D.M.); (A.C.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Elena Lucenti
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Marinotto
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Chiara Botta
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Corti 12, 20133 Milano, Italy;
| | - Fabio Bellina
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy (F.B.)
| | - Elena Cariati
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy; (D.M.); (D.M.); (A.C.)
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| | - Alessandra Forni
- Institute of Chemical Sciences and Technologies “Giulio Natta” (SCITEC) of CNR, Via Golgi 19, 20133 Milano, Italy; (E.L.); (D.M.)
- INSTM Research Unit of Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
25
|
Shi Y, Zhang Y, Wang Z, Yuan T, Meng T, Li Y, Li X, Yuan F, Tan Z, Fan L. Onion-like multicolor thermally activated delayed fluorescent carbon quantum dots for efficient electroluminescent light-emitting diodes. Nat Commun 2024; 15:3043. [PMID: 38589394 PMCID: PMC11001924 DOI: 10.1038/s41467-024-47372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Carbon quantum dots are emerging as promising nanomaterials for next-generation displays. The elaborate structural design is crucial for achieving thermally activated delayed fluorescence, particularly for improving external quantum efficiency of electroluminescent light-emitting diodes. Here, we report the synthesis of onion-like multicolor thermally activated delayed fluorescence carbon quantum dots with quantum yields of 42.3-61.0%. Structural, spectroscopic characterization and computational studies reveal that onion-like structures assembled from monomer carbon quantum dots of different sizes account for the decreased singlet-triplet energy gap, thereby achieving efficient multicolor thermally activated delayed fluorescence. The devices exhibit maximum luminances of 3785-7550 cd m-2 and maximum external quantum efficiency of 6.0-9.9%. Importantly, owing to the weak van der Waals interactions and adequate solution processability, flexible devices with a maximum luminance of 2554 cd m-2 are realized. These findings facilitate the development of high-performance carbon quantum dots-based electroluminescent light-emitting diodes that are promising for practical applications.
Collapse
Affiliation(s)
- Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Zhibin Wang
- College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China
| | - Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ting Meng
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Zhan'ao Tan
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
26
|
Singh M, Shen K, Ye W, Gao Y, Lv A, Liu K, Ma H, Meng Z, Shi H, An Z. Achieving High-Temperature Phosphorescence by Organic Cocrystal Engineering. Angew Chem Int Ed Engl 2024; 63:e202319694. [PMID: 38314961 DOI: 10.1002/anie.202319694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Organic phosphors offer a promising alternative in optoelectronics, but their temperature-sensitive feature has restricted their applications in high-temperature scenarios, and the attainment of high-temperature phosphorescence (HTP) is still challenging. Herein, a series of organic cocrystal phosphors are constructed by supramolecular assembly with an ultralong emission lifetime of up to 2.16 s. Intriguingly, remarkable stabilization of triplet excitons can also be realized at elevated temperature, and green phosphorescence is still exhibited in solid state even up to 150 °C. From special molecular packing within the crystal lattice, it has been observed that the orientation of isolated water cluster and well-controlled molecular organization via multiple interactions can favor the structural rigidity of cocrystals more effectively to suppress the nonradiative transition, thus resulting in efficient room-temperature phosphorescence and unprecedented survival of HTP.
Collapse
Affiliation(s)
- Manjeet Singh
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Kang Shen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Wenpeng Ye
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Yanhua Gao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Anqi Lv
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Kun Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Huili Ma
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Zhengong Meng
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Huifang Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| | - Zhongfu An
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, China
| |
Collapse
|
27
|
Zhang ZX, Wang H, Ni HF, Wang N, Wang CF, Huang PZ, Jia QQ, Teri G, Fu DW, Zhang Y, An Z, Zhang Y. Organic-Inorganic Hybrid Ferroelectric and Antiferroelectric with Afterglow Emission. Angew Chem Int Ed Engl 2024; 63:e202319650. [PMID: 38275283 DOI: 10.1002/anie.202319650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
Luminescent ferroelectrics are holding exciting prospect for integrated photoelectronic devices due to potential light-polarization interactions at electron scale. Integrating ferroelectricity and long-lived afterglow emission in a single material would offer new possibilities for fundamental research and applications, however, related reports have been a blank to date. For the first time, we here achieved the combination of notable ferroelectricity and afterglow emission in an organic-inorganic hybrid material. Remarkably, the presented (4-methylpiperidium)CdCl3 also shows noticeable antiferroelectric behavior. The implementation of cationic customization and halogen engineering not only enables a dramatic enhancement of Curie temperature of 114.4 K but also brings a record longest emission lifetime up to 117.11 ms under ambient conditions, realizing a leapfrog improvement of at least two orders of magnitude compared to reported hybrid ferroelectrics so far. This finding would herald the emergence of novel application potential, such as multi-level density data storage or multifunctional sensors, towards the future integrated optoelectronic devices with multitasking capabilities.
Collapse
Affiliation(s)
- Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - He Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, People's Republic of China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Na Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Chang-Feng Wang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Pei-Zhi Huang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Gele Teri
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211800, People's Republic of China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
28
|
Sk B, Hirata S. Symmetry-Breaking Triplet Excited State Enhances Red Afterglow Enabling Ubiquitous Afterglow Readout. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308897. [PMID: 38311585 PMCID: PMC11005713 DOI: 10.1002/advs.202308897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Molecular vibrations are often factors that deactivate luminescence. However, if there are molecular motion elements that enhance luminescence, it may be possible to utilize molecular movement as a design guideline to enhance luminescence. Here, the authors report a large contribution of symmetry-breaking molecular motion that enhances red persistent room-temperature phosphorescence (RTP) in donor-π-donor conjugated chromophores. The deuterated form of the donor-π-donor chromophore exhibits efficient red persistent RTP with a yield of 21% and a lifetime of 1.6 s. A dynamic calculation of the phosphorescence rate constant (kp) indicates that the symmetry-breaking movement has a crucial role in selectively facilitating kp without increasing nonradiative transition from the lowest triplet excited state. Molecules exhibiting efficient red persistent RTP enable long-wavelength excitation, indicating the suitability of observing afterglow readout in a bright indoor environment with a white-light-emitting diode flashlight, greatly expanding the range of anti-counterfeiting applications that use afterglow.
Collapse
Affiliation(s)
- Bahadur Sk
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Shuzo Hirata
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| |
Collapse
|
29
|
Cui J, Ali SH, Shen Z, Xu W, Liu J, Li P, Li Y, Chen L, Wang B. ε-Polylysine organic ultra-long room-temperature phosphorescent materials based on phosphorescent molecule doping. Chem Sci 2024; 15:4171-4178. [PMID: 38487222 PMCID: PMC10935660 DOI: 10.1039/d3sc06271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
Achieving long-lived room-temperature phosphorescence from pure organic amorphous polymers is attractive, and afterglow materials with colour-tunable and multiple-stimuli-responsive afterglow are particularly important, but only few materials with these characteristics have been reported so far. Herein, a facile and general method is reported to construct a series of ε-polylysine (ε-PL)-based afterglow materials with tunable colour (from blue to red) and long life. By doping guest molecules into ε-PL to obtain composite materials, the polymer matrix provides a rigid environment for luminescent groups, resulting in amorphous polymers with different RTPs. In this system, the materials even have impressive humidity-stimulated responses, and the phosphorescence emission exhibits excitation-dependent and time-dependent properties. The humidity-responsive afterglow is caused by the destruction of hydrogen bonds and quenching of triplet excitons. The time-dependent afterglow should stem from the formation of diversified RTP emissive species with comparable but different lifetimes. 9,10-diaminophene has Ex-De properties in the film doping state. With the change of excitation wavelength (254 nm to 365 nm), the emission wavelength shifts from 461 nm to 530 nm, accompanied by the change of emission colour from blue to green. In addition, the phosphorescence life of the film is the longest, up to 2504.7 ms, and the afterglow lasts up to 15 s, which is conducive to its applications in anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Jiaying Cui
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Syed Husnain Ali
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Zhuoyao Shen
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Wensheng Xu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Jiayi Liu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Pengxiang Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin 300350 P.R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Zhejiang Institute of Tianjin University Shaoxing 312300 P.R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin 300350 P.R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 P. R. China
- Zhejiang Institute of Tianjin University Shaoxing 312300 P.R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals Tianjin 300350 P.R. China
| |
Collapse
|
30
|
Li G, Liu S, Bian Y, Chen R, Li S, Kang W, Gao Z. In Situ Fabrication of Photoluminescent Hydrogen-Bonded Organic Framework-Functionalized Ca (II) Hydrogel Film for the Tetracyclines Visual Sensor and Information Security. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10522-10531. [PMID: 38353225 DOI: 10.1021/acsami.3c17697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
A facilely in situ fabricated hydrogen-bonded organic framework (HOF) hydrogel film with perfect photoluminescent performance was designed for visual sensing of tetracycline antibiotics (TCs) and information security. Luminescent HOF (MA-IPA) was combined with sodium alginate (SA) through hydrogen bonding actions and electrostatic interactions, then cross-linked with Ca2+ ions to form HOF hydrogel film (Ca@MA-IPA@SA). The HOF hydrogel film exhibited exceptional mechanical robustness along with stable blue fluorescence and ultralong green phosphorescence. After exposure to TCs, Ca2+ was combined with TCs to generate a new green fluorescence exciplex (TC-Ca2+) in hydrogel films. Due to fluorescence resonance energy transfer, the fluorescence of MA-IPA was quenched, and the fluorescent color of the HOF hydrogel film was changed from blue to green. This dichromatic fluorescent response is convenient for the visual and rapid detection of TCs. The detection limits of tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC) were 5.1, 7.7, and 32.7 ng mL-1, respectively. Importantly, this hydrogel sensing platform was free of tedious operation and enabled the ultrasensitive and selective detection of TCs within 6 min. It has been successfully applied to TC detection in pork and milk samples. Based on the stable photoluminescence performance of HOF hydrogel films and fluorescent-responsive properties to TCs, two types of anticounterfeiting arrays were fabricated for information encryption and decryption. This work provides a novel approach for on-site detection of TCs and offers valuable insights into information security.
Collapse
Affiliation(s)
- Guanghua Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Yalan Bian
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| | - Weijun Kang
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environment and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
31
|
Zuo M, Li T, Feng H, Wang K, Zhao Y, Wang L, Hu XY. Chaperone Mimetic Strategy for Achieving Organic Room-Temperature Phosphorescence based on Confined Supramolecular Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306746. [PMID: 37658491 DOI: 10.1002/smll.202306746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/21/2023] [Indexed: 09/03/2023]
Abstract
The development of organic materials that deliver room-temperature phosphorescence (RTP) is highly interesting for potential applications such as anticounterfeiting, optoelectronic devices, and bioimaging. Herein, a molecular chaperone strategy for controlling isolated chromophores to achieve high-performance RTP is demonstrated. Systematic experiments coupled with theoretical evidence reveal that the host plays a similar role as a molecular chaperone that anchors the chromophores for limited nonradiative decay and directs the proper conformation of guests for enhanced intersystem crossing through noncovalent interactions. For deduction of structure-property relationships, various structure-related descriptors that correlate with the RTP performance are identified, thus offering the possibility to quantitatively design and predict the phosphorescent behaviors of these systems. Furthermore, application in thermal printing is well realized for these RTP materials. The present work discloses an effective strategy for efficient construction of organic RTP materials, delivering a modular model which is expected to help expand the diversity of desirable RTP systems.
Collapse
Affiliation(s)
- Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Tinghan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, P. R. China
| | - Haohui Feng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| | - Yue Zhao
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, P. R. China
| |
Collapse
|
32
|
Li H, Qu H, Zhang X, Chen M, Wang J. Coordination-assembled phosphorescent microstructure from RTP HOF and Eu 3+-doping ZGO:Mn phosphors for cancer biomarker amplification detection and information encryption. J Colloid Interface Sci 2024; 653:220-228. [PMID: 37713920 DOI: 10.1016/j.jcis.2023.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The ultra-long room temperature phosphorescent hydrogen-bonded organic framework (RTP HOF) materials can achieve long afterglow via ligand hydrogen bond interaction and water implement to suppress the non-radiative decays by matrices rigidification, and its electron donor conjugated structure is first developed as a phosphorescent quencher. The Eu3+/Mn2+ co-doped Zn2GeO4 phosphors (ZGO:Mn, Eu) with abundant metal sites and enhanced phosphorescence were synthesized as response factors and electron acceptors, combined with RTP HOFs to form microstructures featuring multi-color modulation, as an high-level anti-counterfeiting platform and lysophosphatidic acid (LPA) detection unit. LPA is an ideal plasma biomarker for early diagnosis of ovarian and other gynecologic cancers. This detection strategy relies on the differential coordination substitution to restore ZGO:Mn, Eu phosphorescence through synergistic coordination of LPA and the hydrophobic assistance of LPA, and dual functional groups identification of LPA achieve specific detection at the nanomolar level. The anti-counterfeiting platform can fetch specific information by controlling the afterglow distinction and excited light from ZGO:Mn, Eu and RTP HOF. This study not only provides a typical case of the preparation of two phosphors with heterogeneous optical properties, but also expands the application field of combined phosphors as intelligent luminescent materials.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Hongli Qu
- Analytical and Testing Center, Northeastern University, Box 115, Shenyang 110819, China
| | - Xinyue Zhang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Mingli Chen
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China; Analytical and Testing Center, Northeastern University, Box 115, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
33
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
34
|
Kongasseri AA, Ansari SN, Garain S, Wagalgave SM, George SJ. Revisiting organic charge-transfer cocrystals for wide-range tunable, ambient phosphorescence. Chem Sci 2023; 14:12548-12553. [PMID: 38020368 PMCID: PMC10646860 DOI: 10.1039/d3sc04001a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Simple and efficient designs that enable a wide range of phosphorescence emission in organic materials have ignited scientific interest across diverse fields. One particularly promising approach is the cocrystallization strategy, where organic cocrystals are ingeniously formed through relatively weaker and dynamic non-covalent interactions. In our present study, we push the boundaries further by extending this cocrystal strategy to incorporate donor-acceptor components, stabilized by various halogen bonding interactions. This non-covalent complexation triggers ambient, charge-transfer phosphorescence (3CT), which can be precisely tuned across a broad spectrum by a modular selection of components with distinct electronic characteristics. At the core of our investigation lies the electron-deficient phosphor, pyromellitic diimide, which, upon complexation with different donors based on their electron-donating strength, manifests a striking array of phosphorescence emission from CT triplet states, spanning from green to yellow to reddish orange accompanied by noteworthy quantum yields. Through a systematic exploration of the electronic properties using spectroscopic studies and molecular organization through single-crystal X-ray diffraction, we decisively establish the molecular origin of the observed phosphorescence. Notably, our work presents, for the first time, an elegant demonstration of tunable 3CT phosphorescence emission in intermolecular donor-acceptor systems, highlighting their immense significance in the quest for efficient organic phosphors.
Collapse
Affiliation(s)
- Anju Ajayan Kongasseri
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Shagufi Naz Ansari
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Swadhin Garain
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Sopan M Wagalgave
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur Bangalore 560064 India
| |
Collapse
|
35
|
Gao Q, Shi M, Chen M, Hao X, Chen G, Bian J, Lü B, Ren J, Peng F. Facile Preparation of Full-Color Tunable Room Temperature Phosphorescence Cellulose via Click Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309131. [PMID: 37967324 DOI: 10.1002/smll.202309131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Sustainable long-lived room temperature phosphorescence (RTP) materials with color-tunable afterglows are attractive but rarely reported. Here, cellulose is reconstructed by directed redox to afford ample active hydroxyl groups and water-solubility; arylboronic acids with various π conjugations can be facilely anchored to reconstructed cellulose via click chemistry within 1 min in pure water, resulting in full-color tunable RTP cellulose. The rigid environment provided by the B─O covalent bonds and hydrogen bonds can stabilize the triplet excitons, thus the target cellulose displays outstanding RTP performances with the lifetime of 2.67 s, phosphorescence quantum yield of 9.37%, and absolute afterglow luminance of 348 mcd m-2 . Furthermore, due to the formation of various emissive species, the smart RTP cellulose shows excitation- and time-dependent afterglows. Taking advantages of sustainability, ultralong lifetime, and full-color tunable afterglows, et al, the environmentally friendly RTP cellulose is successfully used for nontoxic afterglow inks, delay lighting, and afterglow display.
Collapse
Affiliation(s)
- Qian Gao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Meichao Shi
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingxing Chen
- Analytical Instrumentation Center of Peking University, Peking University, Beijing, 100871, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Gegu Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Baozhong Lü
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100083, China
| |
Collapse
|
36
|
Ju CW, Wang XC, Li B, Ma Q, Shi Y, Zhang J, Xu Y, Peng Q, Zhao D. Evolution of organic phosphor through precision regulation of nonradiative decay. Proc Natl Acad Sci U S A 2023; 120:e2310883120. [PMID: 37934818 PMCID: PMC10655561 DOI: 10.1073/pnas.2310883120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Development of single-component organic phosphor attracts increasing interest due to its wide applications in optoelectronic technologies. Theoretically, activating efficient intersystem crossing (ISC) via 1(π, π*) to 3(π, π*) transitions, rather than 1(n, π*) → 3(π, π*) transitions, is an alternative access to purely organic phosphors but remains challenging. Herein, we designed and successfully synthesized the sila-8-membered ring fused biaryl benzoskeleton by transition metal catalysis, which served as a new organic phosphor with efficient 1(π, π*) to 3(π, π*) ISC. We first found that such a compound exhibits a record-long phosphorescence lifetime of 6.5 s at low temperature for single-component organic systems. Then, we developed two strategies to tune their decay channels to evolve such nonemissive molecules into bright phosphors with elongated lifetimes at room temperature: 1) Physic-based design, where quantitative analyses of electron-phonon coupling led us to reveal and hinder the major nonradiative channels, thus lighted up room temperature phosphorescence (RTP) with a lifetime of 480 ms at 298 K; 2) chemical geometry-driven molecular engineering, where a geometry-based descriptor ΔΘT1-S0/ΘS0 was developed for rational screening RTP candidates and further improved the RTP lifetime to 794 ms. This study clearly shows the power of interdiscipline among synthetic methodology, physics-based rational design, and computational modeling, which represents a paradigm for the development of an organic emitter.
Collapse
Affiliation(s)
- Cheng-Wei Ju
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Xi-Chao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Qiushi Ma
- Department of Chemistry, Marquette University, Milwaukee, WI53233
| | - Yuhao Shi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| | - Yuzhi Xu
- Department of Chemistry, New York University, New York, NY10003
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, People’s Republic of China
| |
Collapse
|
37
|
Cheng A, Su H, Gu X, Zhang W, Zhang B, Zhou M, Jiang J, Zhang X, Zhang G. Disorder-Enhanced Charge-Transfer-Mediated Room-Temperature Phosphorescence in Polymer Media. Angew Chem Int Ed Engl 2023; 62:e202312627. [PMID: 37732517 DOI: 10.1002/anie.202312627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Room-temperature phosphorescence (RTP) polymers have important applications for biological imaging, oxygen sensing, data encryption, and photodynamic therapy. Despite the many advantages polymeric materials offer such as great control over gas permeability and processing flexibility, disorder is traditionally considered as an intrinsic negative impact on the efficiency for embedded RTP luminophores, as various allowed thermal motions could quench the emitting states. However, we propose that such disorder-enabled freedoms of microscopic motions can be beneficial for charge-transfer-mediated RTP, which is facilitated by molecular conformational changes among different electronic transition states. Using the "classic" pyrene-aniline exciplex as an example, we demonstrate the mutual enhancement of red/near-infrared and green RTP emissions from the pyrene and aniline moieties, respectively, upon doping the aniline polymer with trace pyrene derivatives. In comparison, a pyrene-doped crystal formed with the same aniline structure exhibits only charge-transfer fluorescence with no red or green RTP observed, suggesting that order suppresses the RTP channels. The proposed polymerization strategy may be used as a unified method to generate multi-emissive polymeric RTP materials from a vast pool of known and unknown exciplexes and charge-transfer complexes.
Collapse
Affiliation(s)
- Aoyuan Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Su
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Xuewen Gu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Baicheng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Xuepeng Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
38
|
Yu L, Gao Z, Cheng H, Yan X, Cao H, Guo G, Li H, Li P, Chen R, Tao Y. Time-Dependent Colorful Circularly Polarized Organic Ultralong Room Temperature Phosphorescence from a Single-Component Chiral Molecule. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303579. [PMID: 37464566 DOI: 10.1002/smll.202303579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Colorful circularly polarized organic ultralong room temperature phosphorescence (CP-OURTP) materials have attracted much attention due to their superior optoelectronic properties for various applications. However, the development of colorful CP-OURTP materials in a single-component molecular system is currently facing great challenges. Herein, a feasible strategy is proposed to develop colorful CP-OURTP material from a single-component chiral molecule by introducing a chiral unit into the phosphorescence chromophore. A dual CP-OURTP band originated from inherent triplet excitons emission showing a lifetime of 946.44 ms and triplet-triplet annihilation induced delayed emission with a short lifetime of 209.91 ms as well as maximum asymmetry factors of ≈10-3 are realized. Owing to the changed OURTP intensity ratios between inherent CP-OURTP and delayed emission at different delayed times, time-dependent colorful CP-OURTP turned from yellow to green is obtained. This study provides a potential platform to prepare circularly polarized material systems showing colorful luminescent properties.
Collapse
Affiliation(s)
- Lan Yu
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhisheng Gao
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - He Cheng
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xin Yan
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hengyu Cao
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Guangyao Guo
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Huanhuan Li
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ping Li
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Runfeng Chen
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ye Tao
- Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
39
|
Gao Y, Ye W, Qiu K, Zheng X, Yan S, Wang Z, An Z, Shi H, Huang W. Regulating Isolated-Molecular and Aggregated-State Phosphorescence for Multicolor Afterglow by Photoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306501. [PMID: 37793797 DOI: 10.1002/adma.202306501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Indexed: 10/06/2023]
Abstract
Ultralong organic phosphorescence (UOP) materials have attracted considerable attention in recent years. Herein, a new type of flexible films is fabricated by doping amphipathic pyrene tetrasulfonic acid sodium salts into amorphous poly(vinyl alcohol) matrix, which enables the realization of color-tunable UOP spanning from orange-red to green after excitation light is switched off. Interestingly, precise control of the proportion of isolated-molecular and aggregated-state phosphorescence is demonstrated for colorful afterglow using photo-activation. An increase in the dynamic phosphorescence lifetime of isolated molecules is observed from 894.75 to 1735.71 ms following an 8 min irradiation under ambient conditions. The photo-activation, however, showed little influence on aggreated-state phosphorescence. This flexible and processable film exhibits versatile applications in multicolor afterglow displays, ultraviolet detection, multilevel information encryption, etc. This study not only provides a strategy for the rational regulation of UOP colors but also expands the application potential of color-tunable UOP materials.
Collapse
Affiliation(s)
- Yanhua Gao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Wenpeng Ye
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Kefan Qiu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xifang Zheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Shuanma Yan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhaoyu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing), 30 South Puzhu Road, Nanjing, 211816, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
40
|
Sun C, Han J, Zhao Y, Liu X, Fan C, Lian K. Highly efficient and robust multi-color afterglow of ZnO nanoparticles. Dalton Trans 2023; 52:13278-13289. [PMID: 37668164 DOI: 10.1039/d3dt01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Room temperature phosphorescence (RTP) materials are widely used in various fields. However, the realization of multicolor RTP via facile approaches still remains a great challenge. In this study, we propose an in situ hydrolysis method using different solvents to synthesize blue, green, and yellow phosphorescence ZnO/SiO2 composites. By investigating the photoluminescence (PL) and phosphorescence mechanisms of ZnO/SiO2 composites, it is discovered that the solvents not only introduce impurities to ZnO but also affect the position of defect energy levels, leading to the variation in luminescent performance. Meanwhile, the as-synthesized ZnO/SiO2 composites exhibit stable PL and phosphorescence under extreme conditions. Specifically, the PL and phosphorescence properties of the composites are well maintained at high temperature (523 K) or underwater. Owing to the multicolor phosphorescence properties of these ZnO/SiO2 products, herein, we demonstrate that ZnO/SiO2 composites can act as new smart materials for information encryption, fingerprint identification, and white light-emitting diodes (WLEDs).
Collapse
Affiliation(s)
- Chun Sun
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | - Jiachen Han
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | - Yiwei Zhao
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | - Xiaohui Liu
- Baotou Teachers' College, Inner Mongolia University of Science and Technology, Baotou, P. R. China.
- Zhejiang Ruico Advanced Material Co., Ltd, No. 188 Liangshan Road, Huzhou, 313018, P. R. China
| | - Chao Fan
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | - Kai Lian
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| |
Collapse
|
41
|
Siddig LA, Alzard RH, Abdelhamid AS, Ramachandran T, Nguyen HL, Paz AP, Alzamly A. Cobalt Hydrogen-Bonded Organic Framework as a Visible Light-Driven Photocatalyst for CO 2 Cycloaddition Reaction. Inorg Chem 2023; 62:15550-15564. [PMID: 37698585 DOI: 10.1021/acs.inorgchem.3c02051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
A novel cobalt hydrogen-bonded organic framework (Co-HOF, C24H14CoN4O8) was synthesized from a mixed linker, that is, 2,5-pyridinedicarboxylic acid (PDC) and 2,2'-bipyridyl (BPY) linkers and cobalt ion through a simple, one-pot, low-cost, and scalable solvothermal method. The Co-HOF was fully characterized using several analytical and spectroscopic techniques including single-crystal X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy. The Co-HOF exhibits high thermal and chemical stabilities compared to previously reported HOF materials. Moreover, Co-HOF shows excellent photocatalytic activity under visible light irradiation due to its narrow band gap of 2.05 eV. The cycloaddition reaction of CO2 to variable epoxides was investigated to evaluate the photocatalytic performance of Co-HOF under visible light radiation and was found to produce the corresponding cyclic carbonates in yields up to 99.9%.
Collapse
Affiliation(s)
- Lamia A Siddig
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | - Reem H Alzard
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | - Abdalla S Abdelhamid
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
- Department of Chemical Engineering, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | | | - Ha L Nguyen
- Berkeley Global Science Institute, University of California Berkeley, Berkeley,California 94720, United States
| | | | - Ahmed Alzamly
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| |
Collapse
|
42
|
Zhai X, Zeng Y, Deng X, Lou Q, Cao A, Ji L, Yan Q, Wang B, Zhang K. Visible-light-excitable aqueous afterglow exhibiting long emission wavelength and ultralong afterglow lifetime of 7.64 s. Chem Commun (Camb) 2023; 59:10500-10503. [PMID: 37565268 DOI: 10.1039/d3cc03288d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We utilize the dopant-matrix strategy and emulsion polymerization to obtain aqueous afterglow dispersions from a liquid precursor, which avoids the processing of solid materials, protects organic triplets and achieves long phosphorescence lifetime of 7.64 s. The aqueous afterglow dispersions display great potential for biomedical applications due to their ultralong-lived excited states.
Collapse
Affiliation(s)
- Xiangxiang Zhai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China.
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Ying Zeng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Xinjian Deng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Qianqian Lou
- Shandong Longchang Animal Health Product Co. Ltd, Qihe Economic Development Zone, Qihe County, Dezhou City, Shandong Province, People's Republic of China
| | - Aizhi Cao
- Shandong Longchang Animal Health Product Co. Ltd, Qihe Economic Development Zone, Qihe County, Dezhou City, Shandong Province, People's Republic of China
| | - Limin Ji
- Shandong Longchang Animal Health Product Co. Ltd, Qihe Economic Development Zone, Qihe County, Dezhou City, Shandong Province, People's Republic of China
| | - Qianqian Yan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| | - Biaobing Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China.
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China.
| |
Collapse
|
43
|
Yang G, Li J, Deng X, Song X, Lu M, Zhu Y, Yu Z, Xu B, Li MD, Dang L. Construction and Application of Large Stokes-Shift Organic Room Temperature Phosphorescence Materials by Intermolecular Charge Transfer. J Phys Chem Lett 2023:6927-6934. [PMID: 37498211 DOI: 10.1021/acs.jpclett.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Notably, the intermolecular charge transfer between pyrene (Py) and benzophonenes (BPs) can significantly enhance the quantum yield of the triplet state of Py, which will convert Py from a fluorescence molecule to a phosphorescence molecule. The intermolecular charge transfer is confirmed by steady-state and time-resolved spectroscopy and theoretical study. Based on these foundations, Py is doped into BPs systems and a large Stokes-shift organic room temperature phosphorescence (ORTP) is observed. By using different benzophenone derivatives, a series of host-guest ORTP materials with different luminescent properties adjusted by intermolecular charge transfer features are developed. Fortunately, these host-guest ORTP systems from benzophenone derivatives and pyrene are readily fabricated, and the red gradient color lasting as long as 3 s is observed after removing UV excitation. This host-guest charge transfer strategy plays an important role in the mechanism of the luminous type shift. Our strategy paves the way to design ORTP materials conveniently and apply these materials in encryption and temperature alarm device.
Collapse
Affiliation(s)
- Guangxin Yang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Jiayu Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Xin Deng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Xinluo Song
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Manlin Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Yuyi Zhu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Zidong Yu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
| | - Bingjia Xu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
44
|
Fu M, Lin L, Wang X, Yang X. Hydrogen bonds and space restriction promoting long-lived room-temperature phosphorescence and its application for white light-emitting diodes. J Colloid Interface Sci 2023; 639:78-86. [PMID: 36804795 DOI: 10.1016/j.jcis.2023.02.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Achieving the long-lived and strong room-temperature phosphorescence (RTP) is challengeable but desirable, especially for the enhanced phosphorescence and metal-free nanomaterials. Herein, we initially synthesized the green-fluorescence carbon dots (pm-CDs), and further obtained the composite of pm-CDs@DCDA with a long RTP lifetime of 1.01 s through embedding pm-CDs in dicyandiamide (DCDA). And the bright and long-lived afterglow of pm-CDs@DCDA with 365 nm of UV light excitation was observed by the naked eyes for more than 17 s either emerging as the dry solid or in water. Importantly, the phosphorescence intensity and lifetime of pm-CDs@DCDA were remarkably promoted owing to the intermolecular hydrogen bonds and the rigid environment, hence facilitating the intersystem crossing (ISC) process and restricting the non-radiative transition of triplet excitons. Taking advantage of the superior solid-state luminescence of pm-CDs@DCDA, we further innovatively prepared the white light-emitting diodes (WLEDs) with the tunable color temperatures by regulating the mass of pm-CDs@DCDA coated on the chips. This proposed study originally employed DCDA as a matrix to separate and immobilize pm-CDs, which built up a new avenue to improve the RTP property and offered a promising application in WLEDs.
Collapse
Affiliation(s)
- Miao Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liuquan Lin
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoming Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
45
|
Sun H, Zhou L, Gong R, Zhang M, Shen S, Liu M, Wang C, Xu X, Li Z, Cheng J, Chen W, Zhu L. A Single Carbon-Dot System Enabling Multiple Stimuli Activated Room-Temperature Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22415-22425. [PMID: 37104144 DOI: 10.1021/acsami.3c02350] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Room-temperature phosphorescent carbon dots (RTPCDs) have attracted considerable interests due to their unique nanoluminescent characteristic with time resolution. However, it is still a formidable challenge to construct multiple stimuli-activated RTP behaviors on CDs. Since the address of this issue facilitates complex and high-regulatable phosphorescent applications, we here develop a novel strategy to achieve a multiple stimuli responsive phosphorescent activation on a single carbon-dot system (S-CDs), using persulfurated aromatic carboxylic acid as the precursor. The introduction of aromatic carbonyl groups and multiple S atoms can promote the intersystem crossing process to generate RTP characteristic of the produced CDs. Meanwhile, by introducing these functional surface groups into S-CDs, the RTP property can be activated by light, acid, and thermal stimuli in solution or in film state. In this way, multistimuli responsive and tunable RTP characteristics are realized in the single carbon-dot system. Based on this set of RTP properties, S-CDs is applied to photocontrolled imaging in living cells, anticounterfeit label, and multilevel information encryption. Our work will benefit the development of multifunctional nanomaterials together with extending their application scope.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lulu Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Ruoqu Gong
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Mouwei Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Cisong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoyan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jianshuo Cheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wenbo Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
46
|
Yang R, Yang D, Wang M, Zhang F, Ji X, Zhang M, Jia M, Chen X, Wu D, Li XJ, Zhang Y, Shi Z, Shan C. High-Efficiency and Stable Long-Persistent Luminescence from Undoped Cesium Cadmium Chlorine Crystals Induced by Intrinsic Point Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207331. [PMID: 36825674 PMCID: PMC10214269 DOI: 10.1002/advs.202207331] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/11/2023] [Indexed: 05/27/2023]
Abstract
Application of long-persistent luminescence (LPL) materials in many technological fields is in the spotlight. However, the exploration of undoped persistent luminescent materials with high emission efficiency, robust stability, and long persistent duration remains challenging. Here, inorganic cesium cadmium chlorine (CsCdCl3 ) is developed, featuring remarkable LPL characteristics at room temperature, which is synthesized by a facile hydrothermal method. Excited by ultraviolet light, the CsCdCl3 crystals exhibit an intense yellow emission with a large photoluminescence quantum yield of ≈90%. Different from the reported systems with lanthanides or transition metals doping, the CsCdCl3 crystals without dopants perform yellow LPL with a long duration of 6000 s. Joint experiment-theory characterizations reveal the intrinsic point defects of CsCdCl3 act as the trap centers of excited electrons and the carrier de-trapping process from such trap sites to localized emission centers contributes to the LPL. Encouraged by the attractive fluorescence and persistent luminescence as well as good stability of CsCdCl3 against environment oxygen/moisture (75%), heat (100 °C for 10 h), and ultraviolet light irradiation, an effective dual-mode information storage-reading application is demonstrated. The results open up a new frontier for exploring LPL materials without dopants and provide an opportunity for advanced information storage compatible for practical applications.
Collapse
Affiliation(s)
- Ruoting Yang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Dongwen Yang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Meng Wang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Fei Zhang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Xinzhen Ji
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Mengyao Zhang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Mochen Jia
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Xu Chen
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Di Wu
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Xin Jian Li
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Yu Zhang
- State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityQianjin Street 2699Changchun130012P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Chongxin Shan
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| |
Collapse
|
47
|
Li MY, Zhai S, Nong XM, Gu A, Li J, Lin GQ, Liu Y. Trisubstituted alkenes featuring aryl groups: stereoselective synthetic strategies and applications. Sci China Chem 2023; 66:1261-1287. [DOI: 10.1007/s11426-022-1515-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/17/2023] [Indexed: 03/07/2024]
|
48
|
Chen B, Huang W, Zhang G. Observation of Chiral-selective room-temperature phosphorescence enhancement via chirality-dependent energy transfer. Nat Commun 2023; 14:1514. [PMID: 36934094 PMCID: PMC10024683 DOI: 10.1038/s41467-023-37157-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
Pure organic room-temperature phosphorescence (RTP), particularly from guest-host doped systems, has seen exponential growth in the last several years due to their high modulation flexibility, and yet challenges remain with respect to mechanistic elucidations and advantageous applications. Here we show that by constructing guest-host doped RTP systems from chiral components, namely, chiral amino compound-modified phthalimide hosts and naphthalimide guests, a chiral-selective RTP enhancement phenomenon can be observed. For example, R-enantiomeric guests in R-enantiomeric hosts produce strong red RTP afterglow while no appreciable RTP could be observed in the S-R guest-host counterpart. An unprecedented RTP intensity difference > 102 folds with the ability to distinguish an enantiomeric excess of 98% could be achieved. Temperature-dependent measurements suggest that a chirality-dependent energy transfer process may be involved in the observed phenomenon, which can be harnessed to extend the RTP application to the chiral recognition of amino compounds, such as amino alcohols.
Collapse
Affiliation(s)
- Biao Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wenhuan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, China
| | - Guoqing Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
49
|
Wang P, Wang Y, Guan W, Dong H, Sui L, Gan Z, Dong L, Yu L. Modulating the afterglow time of Mn 2+ doped double perovskites by size tuning and its applications in dynamic information display. OPTICS EXPRESS 2023; 31:10191-10200. [PMID: 37157572 DOI: 10.1364/oe.484244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mn2+ doped lead-free double perovskites are emerging afterglow materials that can avoid the usage of rare earth ions. However, the regulation of the afterglow time is still a challenge. In this work, the Mn doped Cs2Na0.2Ag0.8InCl6 crystals with afterglow emission at about 600 nm are synthesized by a solvothermal method. Then, the Mn2+ doped double perovskite crystals are crushed into different sizes. As the size decreases from 1.7 mm to 0.075 mm, the afterglow time decreases from 2070 s to 196 s. Steady-state photoluminescence (PL) spectra, time resolved PL, thermoluminescence (TL) reveal the afterglow time monotonously decreases due to the enhanced nonradiative surface trapping. The modulation on afterglow time will greatly promote their applications in various fields, such as bioimaging, sensing, encryption, and anti-counterfeiting. As a proof of concept, dynamic display of information is realized based on different afterglow times.
Collapse
|
50
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|