1
|
Wang R, Cheng J, Wang L, Liu Y, Chen H. Construction of an upconversion luminescence composite nanoprobe for ratiometric single particle imaging detection of hydrogen peroxide in food. Food Chem 2024; 461:140928. [PMID: 39181043 DOI: 10.1016/j.foodchem.2024.140928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/31/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Hydrogen peroxide (H2O2) is associated with diseases and food safety. Thus, it is essential to achieve sensitive and efficient detection of H2O2. Herein, a ratiometric luminescence composite nanoprobe was designed for single particle imaging sensing of H2O2 by combining NaYbF4:Er@NaYbF4:Tm@NaGdF4:Yb upconversion nanoparticles (UCNPs) with cyanine dye IR-628. High brightness NaYbF4:Er@NaYbF4:Tm@NaGdF4:Yb UCNPs with double-peak emission (665 and 812 nm) were synthesised. Cyanine dye IR-628 with an absorption peak at 628 nm was synthesised and served as a recognition unit. More importantly, on the basis of the upconversion luminescence total internal reflection imaging technique, we developed a ratiometric single particle imaging quantitative analysis for sensing H2O2 with a limit of quantitation of 5 nM. This ratiometric single particle imaging method not only greatly eliminates the influence of the probe concentration and instrumental and environmental factors, but also reduces the dosage of the reagent used and improves the sensitivity of detection.
Collapse
Affiliation(s)
- Ruoxin Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Juanjuan Cheng
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Lun Wang
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yunchun Liu
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| | - Hongqi Chen
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China.
| |
Collapse
|
2
|
Wu J, Liu W, Tang S, Wei S, He H, Ma M, Shi Y, Zhu Y, Chen S, Wang X. Light-Responsive Smart Nanoliposomes: Harnessing the Azobenzene Moiety for Controlled Drug Release under Near-Infrared Irradiation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56850-56861. [PMID: 39380427 DOI: 10.1021/acsami.4c13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The azobenzene moiety is an intriguing structure that deforms under UV and visible light, indicating a high potential for biomedical applications. However, its reaction to UV radiation is problematic because of its high energy and low tissue penetration. Unlike previous research on azobenzene structures in photoresponsive materials, this study presents a novel method for imparting photostimulation-responsive properties to liposomes by incorporating the azobenzene moiety and extending the light wavelength with up-conversion nanoparticles. First, the azobenzene structure was incorporated into a phospholipid molecule to create Azo-PSG, which could spontaneously form vesicle assemblies in aqueous solutions and isomerizes within 1 h of light exposure. Furthermore, orthogonal up-conversion nanoparticles with a core-shell structure were created by sequentially growing lanthanide rare earths in the shell layer, which efficiently converts near-infrared light into ultraviolet (400 nm) and blue-green (540 nm) light. Combining these core-shell structured up-conversion nanomaterials with Azo-PSG molecules resulted in the creation of a near-infrared light-responsive smart nanoliposome system. Under near-infrared light irradiation, UCNPs emit UV and blue-green light, causing conformational changes in Azo-PSG molecules that allow drug release within 6 h. The reversible structural shift of Azo-PSG in response to light stimulation holds enormous promise for improving drug release techniques. This novel technique also expands the usage of UV-responsive compounds beyond their constraints of low penetration and high biotoxicity, allowing for rapid medication release under NIR light.
Collapse
Affiliation(s)
- Jiangjie Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wenjing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Shuangying Tang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sailong Wei
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yulu Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
3
|
Głowacki P, Tręda C, Rieske P. Regulation of CAR transgene expression to design semiautonomous CAR-T. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200833. [PMID: 39184876 PMCID: PMC11344471 DOI: 10.1016/j.omton.2024.200833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Effective transgene expression is critical for genetically engineered cell therapy. Therefore, one of CAR-T cell therapy's critical areas of interest, both in registered products and next-generation approaches is the expression of transgenes. It turns out that various constitutive promoters used in clinical products may influence CAR-T cell antitumor effectiveness and impact the manufacturing process. Furthermore, next-generation CAR-T starts to install remotely controlled inducible promoters or even autonomous expression systems, opening new ways of priming, boosting, and increasing the safety of CAR-T. In this article, a wide range of constitutive and inducible promoters has been grouped and structured, making it possible to compare their pros and cons as well as clinical usage. Finally, logic gates based on Synthetic Notch have been elaborated, demonstrating the coupling of desired external signals with genetically engineered cellular responses.
Collapse
Affiliation(s)
- Paweł Głowacki
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
| | - Cezary Tręda
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 Street, 90-752 Lodz, Poland
- Department of Research and Development Personather Ltd, Inwestycyjna 7, 95-050 Konstantynow Lodzki, Poland
| |
Collapse
|
4
|
Lamon S, Yu H, Zhang Q, Gu M. Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications. LIGHT, SCIENCE & APPLICATIONS 2024; 13:252. [PMID: 39277593 PMCID: PMC11401911 DOI: 10.1038/s41377-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 09/17/2024]
Abstract
Energy-intensive technologies and high-precision research require energy-efficient techniques and materials. Lens-based optical microscopy technology is useful for low-energy applications in the life sciences and other fields of technology, but standard techniques cannot achieve applications at the nanoscale because of light diffraction. Far-field super-resolution techniques have broken beyond the light diffraction limit, enabling 3D applications down to the molecular scale and striving to reduce energy use. Typically targeted super-resolution techniques have achieved high resolution, but the high light intensity needed to outperform competing optical transitions in nanomaterials may result in photo-damage and high energy consumption. Great efforts have been made in the development of nanomaterials to improve the resolution and efficiency of these techniques toward low-energy super-resolution applications. Lanthanide ion-doped upconversion nanoparticles that exhibit multiple long-lived excited energy states and emit upconversion luminescence have enabled the development of targeted super-resolution techniques that need low-intensity light. The use of lanthanide ion-doped upconversion nanoparticles in these techniques for emerging low-energy super-resolution applications will have a significant impact on life sciences and other areas of technology. In this review, we describe the dynamics of lanthanide ion-doped upconversion nanoparticles for super-resolution under low-intensity light and their use in targeted super-resolution techniques. We highlight low-energy super-resolution applications of lanthanide ion-doped upconversion nanoparticles, as well as the related research directions and challenges. Our aim is to analyze targeted super-resolution techniques using lanthanide ion-doped upconversion nanoparticles, emphasizing fundamental mechanisms governing transitions in lanthanide ions to surpass the diffraction limit with low-intensity light, and exploring their implications for low-energy nanoscale applications.
Collapse
Affiliation(s)
- Simone Lamon
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| | - Haoyi Yu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Qiming Zhang
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Min Gu
- School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, 200093, Shanghai, China.
- Institute of Photonic Chips, University of Shanghai for Science and Technology, 200093, Shanghai, China.
| |
Collapse
|
5
|
Arellano L, Martínez R, Pardo A, Diez I, Velasco B, Moreda-Piñeiro A, Bermejo-Barrera P, Barbosa S, Taboada P. Assessing the Effect of Surface Coating on the Stability, Degradation, Toxicity and Cell Endocytosis/Exocytosis of Upconverting Nanoparticles. J Colloid Interface Sci 2024; 668:575-586. [PMID: 38691966 DOI: 10.1016/j.jcis.2024.04.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Lanthanide-doped up-converting nanoparticles (UCNPs) have emerged as promising biomedical tools in recent years. Most research efforts were devoted to the synthesis of inorganic cores with the optimal physicochemical properties. However, the careful design of UCNPs with the adequate surface coating to optimize their biological performance still remains a significant challenge. Here, we propose the functionalization of UCNPs with four distinct types of surface coatings, which were compared in terms of the provided colloidal stability and resistance to degradation in different biological-relevant media, including commonly avoided analysis in acidic lysosomal-mimicking fluids. Moreover, the influence of the type of particle surface coating on cell cytotoxicity and endocytosis/exocytosis was also evaluated. The obtained results demonstrated that the functionalization of UCNPs with poly(isobutylene-alt-maleic anhydride) grafted with dodecylamine (PMA-g-dodecyl) constitutes an outstanding strategy for their subsequent biomedical application, whereas poly(ethylene glycol) (PEG) coating, although suitable for colloidal stability purposes, hinders extensive cell internalization. Conversely, surface coating with small ligand were found not to be suitable, leading to large degradation degrees of UCNPs. The analysis of particle' behavior in different biological media and in vitro conditions here performed pretends to help researchers to improve the design and implementation of UCNPs as theranostic nanotools.
Collapse
Affiliation(s)
- Lilia Arellano
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Martínez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberto Pardo
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Iago Diez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Brenda Velasco
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Huang P, Tang Q, Li M, Yang Q, Zhang Y, Lei L, Li S. Manganese-derived biomaterials for tumor diagnosis and therapy. J Nanobiotechnology 2024; 22:335. [PMID: 38879519 PMCID: PMC11179396 DOI: 10.1186/s12951-024-02629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Manganese (Mn) is widely recognized owing to its low cost, non-toxic nature, and versatile oxidation states, leading to the emergence of various Mn-based nanomaterials with applications across diverse fields, particularly in tumor diagnosis and therapy. Systematic reviews specifically addressing the tumor diagnosis and therapy aspects of Mn-derived biomaterials are lacking. This review comprehensively explores the physicochemical characteristics and synthesis methods of Mn-derived biomaterials, emphasizing their role in tumor diagnostics, including magnetic resonance imaging, photoacoustic and photothermal imaging, ultrasound imaging, multimodal imaging, and biodetection. Moreover, the advantages of Mn-based materials in tumor treatment applications are discussed, including drug delivery, tumor microenvironment regulation, synergistic photothermal, photodynamic, and chemodynamic therapies, tumor immunotherapy, and imaging-guided therapy. The review concludes by providing insights into the current landscape and future directions for Mn-driven advancements in the field, serving as a comprehensive resource for researchers and clinicians.
Collapse
Affiliation(s)
- Peiying Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
7
|
Tam V, Picchetti P, Liu Y, Skripka A, Carofiglio M, Tamboia G, Bresci A, Manetti F, Cerullo G, Polli D, De Cola L, Vetrone F, Cerruti M. Upconverting Nanoparticles Coated with Light-Breakable Mesoporous Silica for NIR-Triggered Release of Hydrophobic Molecules. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29029-29041. [PMID: 38771192 DOI: 10.1021/acsami.4c03444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Upconverting nanoparticles (UCNPs) doped with Yb3+ and Tm3+ are near-infrared (NIR) to ultraviolet (UV) transducers that can be used for NIR-controlled drug delivery. However, due to the low quantum yield of upconversion, high laser powers and long irradiation times are required to trigger this drug release. In this work, we report the one-step synthesis of a nanocomposite consisting of a LiYbF4:Tm3+@LiYF4 UCNP coated with mesoporous UV-breakable organosilica shells of various thicknesses. We demonstrate that a thin shell accelerates the breakage of the shell at 1 W/cm2 NIR light exposure, a laser power up to 9 times lower than that of conventional systems. When the mesopores are loaded with hydrophobic vitamin D3 precursor 7-dehydrocholesterol (7-DH), shell breakage results in subsequent cargo release. Its minimal toxicity in HeLa cells and successful internalization into the cell cytoplasm demonstrate its biocompatibility and potential application in biological systems. The tunability of this system due to its simple, one-step synthesis process and its ability to operate at low laser powers opens up avenues in UCNP-powered NIR-triggered drug delivery toward a more scalable, flexible, and ultimately translational option.
Collapse
Affiliation(s)
- Vivienne Tam
- Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec H3A 0C5, Canada
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Yiwei Liu
- Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec H3A 0C5, Canada
| | - Artiom Skripka
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boul. Lionel Boulet, Varennes, Québec J3X 1P7, Canada
- Nanomaterials for Bioimaging Group, Departamento de Fiśica de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marco Carofiglio
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri "IRCCS", Via Mario Negri 2, 20156 Milan, Italy
| | - Giulia Tamboia
- Department of Pharmaceutical Sciences, DISFARM, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri "IRCCS", Via Mario Negri 2, 20156 Milan, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesco Manetti
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (IFN-CNR), P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milan, Italy
- CNR-Institute for Photonics and Nanotechnologies (IFN-CNR), P.zza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Luisa De Cola
- Department of Pharmaceutical Sciences, DISFARM, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri "IRCCS", Via Mario Negri 2, 20156 Milan, Italy
| | - Fiorenzo Vetrone
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 Boul. Lionel Boulet, Varennes, Québec J3X 1P7, Canada
| | - Marta Cerruti
- Mining and Materials Engineering, McGill University, 3610 Rue University, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
8
|
Fatima M, Almalki WH, Khan T, Sahebkar A, Kesharwani P. Harnessing the Power of Stimuli-Responsive Nanoparticles as an Effective Therapeutic Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312939. [PMID: 38447161 DOI: 10.1002/adma.202312939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Indexed: 03/08/2024]
Abstract
The quest for effective and reliable methods of delivering medications, with the aim of improving delivery of therapeutic agent to the intended location, has presented a demanding yet captivating field in biomedical research. The concept of smart drug delivery systems is an evolving therapeutic approach, serving as a model for directing drugs to specific targets or sites. These systems have been developed to specifically target and regulate the administration of therapeutic substances in a diverse array of chronic conditions, including periodontitis, diabetes, cardiac diseases, inflammatory bowel diseases, rheumatoid arthritis, and different cancers. Nevertheless, numerous comprehensive clinical trials are still required to ascertain both the immediate and enduring impacts of such nanosystems on human subjects. This review delves into the benefits of different drug delivery vehicles, aiming to enhance comprehension of their applicability in addressing present medical requirements. Additionally, it touches upon the current applications of these stimuli-reactive nanosystems in biomedicine and outlines future development prospects.
Collapse
Affiliation(s)
- Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 715, Saudi Arabia
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
9
|
Schroter A, Hirsch T. Control of Luminescence and Interfacial Properties as Perspective for Upconversion Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306042. [PMID: 37986189 DOI: 10.1002/smll.202306042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Near-infrared (NIR) light is highly suitable for studying biological systems due to its minimal scattering and lack of background fluorescence excitation, resulting in high signal-to-noise ratios. By combining NIR light with lanthanide-based upconversion nanoparticles (UCNPs), upconversion is used to generate UV or visible light within tissue. This remarkable property has gained significant research interest over the past two decades. Synthesis methods are developed to produce particles of various sizes, shapes, and complex core-shell architectures and new strategies are explored to optimize particle properties for specific bioapplications. The diverse photophysics of lanthanide ions offers extensive possibilities to tailor spectral characteristics by incorporating different ions and manipulating their arrangement within the nanocrystal. However, several challenges remain before UCNPs can be widely applied. Understanding the behavior of particle surfaces when exposed to complex biological environments is crucial. In applications where deep tissue penetration is required, such as photodynamic therapy and optogenetics, UCNPs show great potential as nanolamps. These nanoparticles can combine diagnostics and therapeutics in a minimally invasive, efficient manner, making them ideal upconversion probes. This article provides an overview of recent UCNP design trends, highlights past research achievements, and outlines potential future directions to bring upconversion research to the next level.
Collapse
Affiliation(s)
- Alexandra Schroter
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
10
|
Bietar K, Chu S, Mandl G, Zhang E, Chabaytah N, Sabelli R, Capobianco JA, Stochaj U. Silica-coated LiYF 4:Yb 3+, Tm 3+ upconverting nanoparticles are non-toxic and activate minor stress responses in mammalian cells. RSC Adv 2024; 14:8695-8708. [PMID: 38495986 PMCID: PMC10938293 DOI: 10.1039/d3ra08869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) are ideal candidates for use in biomedicine. The interaction of nanomaterials with biological systems determines whether they are suitable for use in living cells. In-depth knowledge of the nano-bio interactions is therefore a pre-requisite for the development of biomedical applications. The current study evaluates fundamental aspects of the NP-cell interface for square bipyramidal UCNPs containing a LiYF4:Yb3+, Tm3+ core and two different silica surface coatings. Given their importance for mammalian physiology, fibroblast and renal proximal tubule epithelial cells were selected as cellular model systems. We have assessed the toxicity of the UCNPs and measured their impact on the homeostasis of living non-malignant cells. Rigorous analyses were conducted to identify possible toxic and sub-lethal effects of the UCNPs. To this end, we examined biomarkers that reveal if UCNPs induce cell killing or stress. Quantitative measurements demonstrate that short-term exposure to the UCNPs had no profound effects on cell viability, cell size or morphology. Indicators of oxidative, endoplasmic reticulum, or nucleolar stress, and the production of molecular chaperones varied with the surface modification of the UCNPs and the cell type analyzed. These differences emphasize the importance of evaluating cells of diverse origin that are relevant to the intended use of the nanomaterials. Taken together, we established that short-term, our square bipyramidal UCNPs are not toxic to non-malignant fibroblast and proximal renal epithelial cells. Compared with established inducers of cellular stress, these UCNPs have minor effects on cellular homeostasis. Our results build the foundation to explore square bipyramidal UCNPs for future in vivo applications.
Collapse
Affiliation(s)
- Kais Bietar
- Department of Physiology, McGill University Canada
| | - Siwei Chu
- Department of Physiology, McGill University Canada
| | - Gabrielle Mandl
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Emma Zhang
- Department of Physiology, McGill University Canada
| | | | | | - John A Capobianco
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University Canada
- Quantitative Life Sciences Program, McGill University Montreal Canada
| |
Collapse
|
11
|
Ding J, Ding X, Liao W, Lu Z. Red blood cell-derived materials for cancer therapy: Construction, distribution, and applications. Mater Today Bio 2024; 24:100913. [PMID: 38188647 PMCID: PMC10767221 DOI: 10.1016/j.mtbio.2023.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer has become an increasingly important public health issue owing to its high morbidity and mortality rates. Although traditional treatment methods are relatively effective, they have limitations such as highly toxic side effects, easy drug resistance, and high individual variability. Meanwhile, emerging therapies remain limited, and their actual anti-tumor effects need to be improved. Nanotechnology has received considerable attention for its development and application. In particular, artificial nanocarriers have emerged as a crucial approach for tumor therapy. However, certain deficiencies persist, including immunogenicity, permeability, targeting, and biocompatibility. The application of erythrocyte-derived materials will help overcome the above problems and enhance therapeutic effects. Erythrocyte-derived materials can be acquired via the application of physical and chemical techniques from natural erythrocyte membranes, or through the integration of these membranes with synthetic inner core materials using cell membrane biomimetic technology. Their natural properties such as biocompatibility and long circulation time make them an ideal choice for drug delivery or nanoparticle biocoating. Thus, red blood cell-derived materials are widely used in the field of biomedicine. However, further studies are required to evaluate their efficacy, in vivo metabolism, preparation, design, and clinical translation. Based on the latest research reports, this review summarizes the biology, synthesis, characteristics, and distribution of red blood cell-derived materials. Furthermore, we provide a reference for further research and clinical transformation by comprehensively discussing the applications and technical challenges faced by red blood cell-derived materials in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jianghua Ding
- Department of Hematology & Oncology, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
| | - Xinjing Ding
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| | - Weifang Liao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332005, China
- Department of Medical Laboratory, Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, 332005, China
| | - Zhihui Lu
- Oncology of Department, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 332000, China
| |
Collapse
|
12
|
Gültekin HE, Yaşayan G, Bal-Öztürk A, Bigham A, Simchi AA, Zarepour A, Iravani S, Zarrabi A. Advancements and applications of upconversion nanoparticles in wound dressings. MATERIALS HORIZONS 2024; 11:363-387. [PMID: 37955196 DOI: 10.1039/d3mh01330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Istanbul, Turkey
- Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, Istinye University, 34010 Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Abdolreza Arash Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
13
|
Park D, Lee SJ, Park JW. Aptamer-Based Smart Targeting and Spatial Trigger-Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024; 12:187. [PMID: 38255292 PMCID: PMC10813750 DOI: 10.3390/biomedicines12010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
In recent years, the field of drug delivery has witnessed remarkable progress, driven by the quest for more effective and precise therapeutic interventions. Among the myriad strategies employed, the integration of aptamers as targeting moieties and stimuli-responsive systems has emerged as a promising avenue, particularly in the context of anticancer therapy. This review explores cutting-edge advancements in targeted drug-delivery systems, focusing on the integration of aptamers and stimuli-responsive platforms for enhanced spatial anticancer therapy. In the aptamer-based drug-delivery systems, we delve into the versatile applications of aptamers, examining their conjugation with gold, silica, and carbon materials. The synergistic interplay between aptamers and these materials is discussed, emphasizing their potential in achieving precise and targeted drug delivery. Additionally, we explore stimuli-responsive drug-delivery systems with an emphasis on spatial anticancer therapy. Tumor microenvironment-responsive nanoparticles are elucidated, and their capacity to exploit the dynamic conditions within cancerous tissues for controlled drug release is detailed. External stimuli-responsive strategies, including ultrasound-mediated, photo-responsive, and magnetic-guided drug-delivery systems, are examined for their role in achieving synergistic anticancer effects. This review integrates diverse approaches in the quest for precision medicine, showcasing the potential of aptamers and stimuli-responsive systems to revolutionize drug-delivery strategies for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
14
|
Ahmad M, Gartland SA, Langton MJ. Photo- and Redox-Regulated Transmembrane Ion Transporters. Angew Chem Int Ed Engl 2023; 62:e202308842. [PMID: 37478126 DOI: 10.1002/anie.202308842] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/23/2023]
Abstract
Synthetic supramolecular ion transporters find applications as potential therapeutics and as tools for engineering functional membranes. Stimuli-responsive systems enable external control over transport, which is necessary for targeted activation. The Minireview provides an overview of current approaches to developing stimuli-responsive ion transport systems, including channels and mobile carriers, that can be controlled using photo or redox inputs.
Collapse
Affiliation(s)
- Manzoor Ahmad
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Shaun A Gartland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Matthew J Langton
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
15
|
Bulmahn J, Kuzmin AN, Parker C, Genco RJ, Kutscher HL, Prasad PN. Upconversion Nanoparticles as Imaging Agents for Dental Caries. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:566-574. [PMID: 37771601 PMCID: PMC10523427 DOI: 10.1021/cbmi.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Dental caries (cavities) is the most prevalent disease worldwide; however, current detection methods suffer from issues associated with sensitivity, subjective interpretations, and false positive identification of carious lesions. Therefore, there is a great need for the development of more sensitive, noninvasive imaging methods. The 30 nm core@shell NaYF4; Yb20%, Er2%@NaYF4 upconversion nanoparticles (UCNPs), exhibiting strong upconversion emission from erbium upon excitation at 975 nm, were used in the imaging of locations of demineralized enamel and oral biofilm formation for the detection of dental caries. UCNPs were modified with poly(acrylic acid) (PAA) or poly-d-lysine (PDL), and targeting peptides were conjugated to their surface with affinity for either hydroxyapatite (HA), the material dentin is composed of, or the caries causing bacteria Streptococcus mutans. A statistical difference in the binding of targeted vs nontargeted UCNPs to HA was observed after 15 min, using both upconversion fluorescence of UCNP (p < 0.001) and elemental analysis (p = 0.0091). Additionally, using the HA targeted UCNPs, holes drilled in the enamel of bovine teeth with diameters of 1.0 and 0.5 mm were visible by the green emission after a 20 min incubation with no observable nonspecific binding. A statistical difference was also observed in the binding of targeted versus nontargeted UCNPs to S. mutans biofilms. This difference was observed after 15 min, using the fluorescence measurements (p = 0.0125), and only 10 min (p < 0.001) using elemental analysis via ICP-OES measurements of Y3+ concentration present in the biofilms. These results highlight the potential of these UCNPs for use in noninvasive imaging diagnosis of oral disease.
Collapse
Affiliation(s)
- Julia
C. Bulmahn
- Institute
for Lasers, Photonics and Biophotonics, Department of Chemistry, University at Buffalo, The State University of New
York, Buffalo, New York 14260, United States
- Department
of Chemistry, University at Buffalo, The
State University of New York, Buffalo, New York 14260, United States
- Advanced
Cytometry Instrumentation System (ACIS), Amherst, New York 14260, United States
| | - Andrey N. Kuzmin
- Advanced
Cytometry Instrumentation System (ACIS), Amherst, New York 14260, United States
| | - Carol Parker
- Department
of Oral Biology, University at Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Robert J. Genco
- Microbiome
Center, Department of Oral Biology & Microbiology & Immunology, University at Buffalo, The State University of New
York, Buffalo, New York 14214, United States
| | - Hilliard L. Kutscher
- Advanced
Cytometry Instrumentation System (ACIS), Amherst, New York 14260, United States
- Division
of Allergy, Immunology, and Rheumatology, Department of Medicine,
Clinical Translational Research Center, The State University of New York at Buffalo, Buffalo, New York 14203, United States
- Department
of Anesthesiology, The State University
of New York at Buffalo, Buffalo, New York 14203, United States
| | - Paras N. Prasad
- Institute
for Lasers, Photonics and Biophotonics, Department of Chemistry, University at Buffalo, The State University of New
York, Buffalo, New York 14260, United States
- Department
of Chemistry, University at Buffalo, The
State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
16
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
17
|
Zharkov DK, Leontyev AV, Shmelev AG, Nurtdinova LA, Chuklanov AP, Nurgazizov NI, Nikiforov VG. Upconversion Luminescence Response of a Single YVO 4:Yb, Er Particle. MICROMACHINES 2023; 14:mi14051075. [PMID: 37241698 DOI: 10.3390/mi14051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
We present the results of the luminescence response studies of a single YVO4:Yb, Er particle of 1-µm size. Yttrium vanadate nanoparticles are well-known for their low sensitivity to surface quenchers in water solutions which makes them of special interest for biological applications. First, YVO4:Yb, Er nanoparticles (in the size range from 0.05 µm up to 2 µm), using the hydrothermal method, were synthesized. Nanoparticles deposited and dried on a glass surface exhibited bright green upconversion luminescence. By means of an atomic-force microscope, a 60 × 60 µm2 square of a glass surface was cleaned from any noticeable contaminants (more than 10 nm in size) and a single particle of 1-µm size was selected and placed in the middle. Confocal microscopy revealed a significant difference between the collective luminescent response of an ensemble of synthesized nanoparticles (in the form of a dry powder) and that of a single particle. In particular, a pronounced polarization of the upconversion luminescence from a single particle was observed. Luminescence dependences on the laser power are quite different for the single particle and the large ensemble of nanoparticles as well. These facts attest to the notion that upconversion properties of single particles are highly individual. This implies that to use an upconversion particle as a single sensor of the local parameters of a medium, the additional studying and calibration of its individual photophysical properties are essential.
Collapse
Affiliation(s)
- Dmitry K Zharkov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Andrey V Leontyev
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Artemi G Shmelev
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Larisa A Nurtdinova
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Anton P Chuklanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Niaz I Nurgazizov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| | - Victor G Nikiforov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky Tract, 10/7, 420029 Kazan, Russia
| |
Collapse
|
18
|
Wang X, Yang Y, Zhang G, Tang CY, Law WC, Yu C, Wu X, Li S, Liao Y. NIR-Cleavable and pH-Responsive Polymeric Yolk-Shell Nanoparticles for Controlled Drug Release. Biomacromolecules 2023; 24:2009-2021. [PMID: 37104701 DOI: 10.1021/acs.biomac.2c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Responsive drug release and low toxicity of drug carriers are important for designing controlled release systems. Here, a double functional diffractive o-nitrobenzyl, containing multiple electron-donating groups as a crosslinker and methacrylic acid (MAA) as a monomer, was used to decorate upconversion nanoparticles (UCNPs) to produce robust poly o-nitrobenzyl@UCNP nanocapsules using the distillation-precipitation polymerization and templating method. Poly o-nitrobenzyl@UCNP nanocapsules with a robust yolk-shell structure exhibited near-infrared (NIR) light-/pH-responsive properties. When the nanocapsules were exposed to 980 nm NIR irradiation, the loaded drug was efficiently released by altering the shell of the nanocapsules. The photodegradation kinetics of the poly o-nitrobenzyl@UCNP nanocapsules were studied. The anticancer drug, doxorubicin hydrochloride (DOX), was loaded at pH 8.0 with a loading efficiency of 13.2 wt %. The Baker-Lonsdale model was used to determine the diffusion coefficients under different release conditions to facilitate the design of dual-responsive drug release devices or systems. Additionally, cytotoxicity studies showed that the drug release of DOX could be efficiently triggered by NIR to kill cancer cells in a controlled manner.
Collapse
Affiliation(s)
- Xiaotao Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yebin Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Gaowen Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chak-Yin Tang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Cong Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xuanqi Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yonggui Liao
- Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Ping J, Du J, Ouyang R, Miao Y, Li Y. Recent advances in stimuli-responsive nano-heterojunctions for tumor therapy. Colloids Surf B Biointerfaces 2023; 226:113303. [PMID: 37086684 DOI: 10.1016/j.colsurfb.2023.113303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Stimuli-responsive catalytic therapy based on nano-catalysts has attracted much attention in the field of biomedicine for tumor therapy, due to its excellent and unique properties. However, the complex tumor microenvironment conditions and the rapid charge recombination in the catalyst limit catalytic therapy's effectiveness and further development. Effective heterojunction nanomaterials are constructed to address these problems to improve catalytic performance. Specifically, on the one hand, the band gap of the material is adjusted through the heterojunction structure to promote the charge separation efficiency under exogenous stimulation and further improve the catalytic capacity. On the other hand, the construction of a heterojunction structure can not only preserve the function of the original catalyst but also achieve significantly enhanced synergistic therapy ability. This review summarized the construction and functions of stimuli-responsive heterojunction nanomaterials under the excitation of X-rays, visible-near infrared light, and ultrasound in recent years, and further introduces their application in cancer therapy. Hopefully, the summary of stimuli-responsive heterojunction nanomaterials' applications will help researchers promote the development of nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
20
|
Rennie C, Huang Y, Siwakoti P, Du Z, Padula M, Bao G, Tuch BE, Xu X, McClements L. In vitro evaluation of a hybrid drug delivery nanosystem for fibrosis prevention in cell therapy for Type 1 diabetes. Nanomedicine (Lond) 2023; 18:53-66. [PMID: 36938861 DOI: 10.2217/nnm-2022-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Background: Implantation of insulin-secreting cells has been trialed as a treatment for Type 1 diabetes mellitus; however, the host immunogenic response limits their effectiveness. Methodology: The authors developed a core-shell nanostructure of upconversion nanoparticle-mesoporous silica for controlled local delivery of an immunomodulatory agent, MCC950, using near-infrared light and validated it in in vitro models of fibrosis. Results: The individual components of the nanosystem did not affect the proliferation of insulin-secreting cells, unlike fibroblast proliferation (p < 0.01). The nanosystem is effective at releasing MCC950 and preventing fibroblast differentiation (p < 0.01), inflammation (IL-6 expression; p < 0.05) and monocyte adhesion (p < 0.01). Conclusion: This MCC950-loaded nanomedicine system could be used in the future together with insulin-secreting cell implants to increase their longevity as a curative treatment for Type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Claire Rennie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Yanan Huang
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Prakriti Siwakoti
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ziqing Du
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Matthew Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Bernard E Tuch
- Department of Diabetes, Central Clinical School, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, 3004, Australia.,Australian Foundation for Diabetes Research, 2000, NSW, Australia
| | - Xiaoxue Xu
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.,Institute for Biomedical Materials & Devices, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
21
|
Zhu Y, Li Q, Wang C, Hao Y, Yang N, Chen M, Ji J, Feng L, Liu Z. Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chem Rev 2023. [PMID: 36912061 DOI: 10.1021/acs.chemrev.2c00822] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cancer thermal therapy, also known as hyperthermia therapy, has long been exploited to eradicate mass lesions that are now defined as cancer. With the development of corresponding technologies and equipment, local hyperthermia therapies such as radiofrequency ablation, microwave ablation, and high-intensity focused ultrasound, have has been validated to effectively ablate tumors in modern clinical practice. However, they still face many shortcomings, including nonspecific damages to adjacent normal tissues and incomplete ablation particularly for large tumors, restricting their wide clinical usage. Attributed to their versatile physiochemical properties, biomaterials have been specially designed to potentiate local hyperthermia treatments according to their unique working principles. Meanwhile, biomaterial-based delivery systems are able to bridge hyperthermia therapies with other types of treatment strategies such as chemotherapy, radiotherapy and immunotherapy. Therefore, in this review, we discuss recent progress in the development of functional biomaterials to reinforce local hyperthermia by functioning as thermal sensitizers to endow more efficient tumor-localized thermal ablation and/or as delivery vehicles to synergize with other therapeutic modalities for combined cancer treatments. Thereafter, we provide a critical perspective on the further development of biomaterial-assisted local hyperthermia toward clinical applications.
Collapse
Affiliation(s)
- Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
22
|
Li M, Liu W, Yang T, Xu Q, Mu H, Han J, Cao K, Jiao M, Liu M, Zhang S, Tan X, Yang C. Multi-color UCNPs/CsPb(Br 1-xI x) 3 for upconversion luminescence and dual-modal anticounterfeiting. OPTICS EXPRESS 2023; 31:2956-2966. [PMID: 36785297 DOI: 10.1364/oe.476991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Advanced hybrid materials have attracted extensive attention in optoelectronics and photonics application due to their unique and excellent properties. Here, the multicolor upconversion luminescence properties of the hybrid materials composed of CsPbX3(X = Br/I) perovskite quantum dots and upconversion nanoparticles (UCNPs, core-shell NaYF4:25%Yb3+,0.5%Tm3+@NaYF4) is reported, achieving the upconversion luminescence with stable and bright of CsPbX3 perovskite quantum dots under 980 nm excitation. Compared with the nonlinear upconversion of multi-photon absorption in perovskite, UCNPs/CsPbX3 achieves lower power density excitation by using the UCNPs as the physical energy transfer level, meeting the demand for multi-color upconversion luminescence in optical applications. Also, the UCNPs/CsPbX3 combined with ultraviolet curable resin (UVCR) shows excellent water and air stability, which can be employed as multicolor fluorescent ink for screen printing security labels. Through the conversion strategy, the message of the security labels can be encrypted and decrypted by using UV light and a 980 nm continuous wave excitation laser as a switch, which greatly improves the difficulty of forgery. These findings provide a general method to stimulate photon upconversion and improve the stability of perovskite nanocrystals, which will be better applied in the field of anti-counterfeiting.
Collapse
|
23
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
24
|
Luo Y, Chen Z, Wen S, Han Q, Fu L, Yan L, Jin D, Bünzli JCG, Bao G. Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Raab M, Skripka A, Bulmahn J, Pliss A, Kuzmin A, Vetrone F, Prasad P. Decoupled Rare-Earth Nanoparticles for On-Demand Upconversion Photodynamic Therapy and High-Contrast Near Infrared Imaging in NIR IIb. ACS APPLIED BIO MATERIALS 2022; 5:4948-4954. [PMID: 36153945 DOI: 10.1021/acsabm.2c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rare-earth doped multi-shell nanoparticles slated for theranostic applications produce a variety of emission bands upon near-infrared (NIR) excitation. Their downshifting emission is useful for high-contrast NIR imaging, while the upconversion light can induce photodynamic therapy (PDT). Unfortunately, integration of imaging and therapy is challenging. These modalities are better to be controlled independently so that, with the help of imaging, selective delivery of a theranostic agent at the site of interest could be ensured prior to on-demand PDT initiation. We introduce here multi-shell rare-earth doped nanoparticles (RENPs) arranged in a manner to produce only downshifting emission for NIR imaging when excited at one NIR wavelength and upconversion emission for therapeutic action by using a different excitation wavelength. In this work, multi-shell RENPs with a surface-bound sensitizer have been synthesized for decoupled 1550 nm downshifting emission upon 800 nm excitation and 550 nm upconversion emission caused by 980 nm irradiation. The independently controlled emission bands allow for high-contrast NIR imaging in NIR-IIb of optical transparency that gives high-contrast images due to significantly reduced light scattering. This can be conducted prior to PDT using 980 nm to produce upconverted light at 550 nm that excites the RENP surface-bound photosensitizer, Rose Bengal (RB), to effect photodynamic therapy with high specificity and safer theranostics.
Collapse
Affiliation(s)
- Micah Raab
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Artiom Skripka
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes (Montréal), Quebec J3X 1P7, Canada
| | - Julia Bulmahn
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Artem Pliss
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
| | - Andrey Kuzmin
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
| | - Fiorenzo Vetrone
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes (Montréal), Quebec J3X 1P7, Canada
| | - Paras Prasad
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
26
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022; 61:e202204277. [DOI: 10.1002/anie.202204277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhenghan Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology Beijing 100190 China
- College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
27
|
Zhao J, Di Z, Li L. Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence‐Controlled, DNA‐Based Biosensor Technology. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jian Zhao
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Zhenghan Di
- NCNST: National Center for Nanoscience and Technology CAS key Lab CHINA
| | - Lele Li
- National Center for Nanoscience and Technology CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety 11 ZhongGuanCun BeiYiTiao, Haidian District 100190 Beijing CHINA
| |
Collapse
|
28
|
Lv R, Raab M, Wang Y, Tian J, Lin J, Prasad PN. Nanochemistry advancing photon conversion in rare-earth nanostructures for theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Ansari AA, Labis JP, Khan A. Facile synthesized NaGdF 4 :Yb, Er peanut-shaped, highly biocompatible, colloidal upconversion nanospheres. LUMINESCENCE 2022; 37:1048-1056. [PMID: 35411678 DOI: 10.1002/bio.4249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/11/2022]
Abstract
A facile method was used for the synthesis of peanut-shaped very emissive NaGdF4 :Yb, Er upconversion nanospheres (UCNSs) at lower temperatures with uniform size distribution. Crystallographic structure, phase purity, morphology, thermal robustness, biocompatibility, colloidal stability, surface chemistry, optical properties, and luminesce properties were explored by X-ray diffraction (XRD), Scanning electron microscope (SEM), transmission electron microscope (TEM), zeta potential, Thermogravimetric/thermal differential analysis (TGA/DTA), Fourier transform infrared (FTIR), UV/visible and photoluminescence spectroscopic tools. XRD pattern verified the construction of a single-phase, highly-crystalline NaGdF4 phase with a hexagonal structure. Peanut-shaped morphology of the sample was obtained from SEM micrographs which were validated from high-resolution TEM images, have an equatorial diameter of 170-200 nm and a length of 220-230 nm, with irregular size, monodispersed, porous structure, and rough surface of the particles. The positive zeta potential value exhibited good biocompatibility along with high colloidal stability as observed from the absorption spectrum. The prepared UCNSs revealed high dispersibility, irregular size peanut-shaped morphology, rough surface, good colloidal stability, and excellent biocompatibility in aqueous media. A hexagonal phase NaGdF4 doped with Yb, and Er UCNSs revealed the characteristics of highly dominant emissions located at 520-525, 538-550, and 659-668 nm are corresponding to the 2 H11/2 →4 I15/2 , 4 S3/2 →4 I15/2 , and 4 F9/2 →4 I15/2 transition of Er3+ ions, respectively, as a result of energy transfer from sensitizer Yb3+ ion to emitter Er3+ ion.
Collapse
Affiliation(s)
- Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Joselito P Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
DFT study of 2D graphitic carbon nitride based preferential targeted delivery of levosimendan, a cardiovascular drug. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Liu S, Sun Y, Zhang T, Cao L, Zhong Z, Cheng H, Wang Q, Qiu Z, Zhou W, Wang X. Upconversion nanoparticles regulated drug & gas dual-effective nanoplatform for the targeting cooperated therapy of thrombus and anticoagulation. Bioact Mater 2022; 18:91-103. [PMID: 35387173 PMCID: PMC8961464 DOI: 10.1016/j.bioactmat.2022.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Thromboembolism is the leading cause of cardiovascular mortality. Currently, for the lack of targeting, short half-life, low bioavailability and high bleeding risk of the classical thrombolytic drugs, pharmacological thrombolysis is usually a slow process based on micro-pumping. In addition, frequently monitoring and regulating coagulation functions are also required during (and after) the process of thrombolysis. To address these issues, a targeted thrombolytic and anticoagulation nanoplatform (UCATS-UK) is developed based on upconversion nanoparticles (UCNPs) that can convert 808 or 980 nm near-infrared (NIR) light into UV/blue light. This nanoplatform can target and enrich in the thrombus site. Synergistic thrombolysis and anticoagulation therapy thus could be realized through the controlled release of urokinase (UK) and nitric oxide (NO). Both in vitro and in vivo experiments have confirmed the excellent thrombolytic and anticoagulative capabilities of this multifunctional nanoplatform. Combined with the unique fluorescent imaging capability of UCNPs, this work is expected to contribute to the development of clinical thrombolysis therapy towards an integrated system of imaging, diagnosis and treatment. This work is not only the first application of UCNPs in the thrombolysis therapy, but also the first attempt to develop a dual effective drug & gas nanoplatform for thrombolytic & anticoagulation therapy. Besides conventional in vitro and animal experiments, a 3D printed vascular model is also constructed to further verify the feasibility of UCATS-UK. Through surface chemical modification, the nanoplatform possesses the capabilities of targeting thrombus, as well as light-controlled NO release for drug-free anticoagulation therapy.
Collapse
|
33
|
McLellan CA, Siefe C, Casar JR, Peng CS, Fischer S, Lay A, Parakh A, Ke F, Gu XW, Mao W, Chu S, Goodman MB, Dionne JA. Engineering Bright and Mechanosensitive Alkaline-Earth Rare-Earth Upconverting Nanoparticles. J Phys Chem Lett 2022; 13:1547-1553. [PMID: 35133831 PMCID: PMC9587901 DOI: 10.1021/acs.jpclett.1c03841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Upconverting nanoparticles (UCNPs) are an emerging platform for mechanical force sensing at the nanometer scale. An outstanding challenge in realizing nanometer-scale mechano-sensitive UCNPs is maintaining a high mechanical force responsivity in conjunction with bright optical emission. This Letter reports mechano-sensing UCNPs based on the lanthanide dopants Yb3+ and Er3+, which exhibit a strong ratiometric change in emission spectra and bright emission under applied pressure. We synthesize and analyze the pressure response of five different types of nanoparticles, including cubic NaYF4 host nanoparticles and alkaline-earth host materials CaLuF, SrLuF, SrYbF, and BaLuF, all with lengths of 15 nm or less. By combining optical spectroscopy in a diamond anvil cell with single-particle brightness, we determine the noise equivalent sensitivity (GPa/√Hz) of these particles. The SrYb0.72Er0.28F@SrLuF particles exhibit an optimum noise equivalent sensitivity of 0.26 ± 0.04 GPa/√Hz. These particles present the possibility of robust nanometer-scale mechano-sensing.
Collapse
Affiliation(s)
- Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Alice Lay
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Abhinav Parakh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Feng Ke
- Department of Geological Sciences, Stanford University, Stanford, California 94305, United States
| | - X Wendy Gu
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Wendy Mao
- Department of Geological Sciences, Stanford University, Stanford, California 94305, United States
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Klimkevicius V, Voronovic E, Jarockyte G, Skripka A, Vetrone F, Rotomskis R, Katelnikovas A, Karabanovas V. Polymer brush coated upconverting nanoparticles with improved colloidal stability and cellular labeling. J Mater Chem B 2022; 10:625-636. [PMID: 34989749 DOI: 10.1039/d1tb01644j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upconverting nanoparticles (UCNPs) possess great potential for biomedical application. UCNPs absorb and convert near-infrared (NIR) radiation in the biological imaging window to visible (Vis) and even ultraviolet (UV) radiation. NIR excitation offers reduced scattering and diminished autofluorescence in biological samples, whereas the emitted UV-Vis and NIR photons can be used for cancer treatment and imaging, respectively. However, UCNPs are usually synthesized in organic solvents and are not readily suitable for biomedical application due to the hydrophobic nature of their surface. Herein, we have removed the hydrophobic ligands from the synthesized UCNPs and coated the bare UCNPs with two custom-made hydrophilic polyelectrolytes (synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization method). Polymers containing different amounts of PEGylated and carboxylic groups were studied. Coating with both polymers increased the upconversion (UC) emission intensity and photoluminescence lifetime values of the UCNPs, which directly translates to more efficient cancer cell labeling nanoprobes. The polymer composition plays a crucial role in the modification of UCNPs, not only with respect to their colloidal stability, but also with respect to the cellular uptake. Colloidally unstable bare UCNPs aggregate in cell culture media and precipitate, rendering themselves unsuitable for any biomedical use. However, stabilization with polymers prevents UCNPs from aggregation, increases their uptake in cells, and improves the quality of cellular labeling. This investigation sheds light on the appropriate coating for UCNPs and provides relevant insights for the rational development of imaging and therapeutic tools.
Collapse
Affiliation(s)
- Vaidas Klimkevicius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Evelina Voronovic
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania.,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Greta Jarockyte
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Biophotonics Group of Laser Research Centre, Vilnius University, Saulėtekio 9, c.3, LT-10222, Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
35
|
Yeow E, Wu X. Exploiting the upconversion luminescence, Lewis acid catalytic and photothermal properties of lanthanide-based nanomaterials for chemical and polymerization reactions. Phys Chem Chem Phys 2022; 24:11455-11470. [DOI: 10.1039/d2cp00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide-based nanocrystals possess three unique physical properties that make them attractive for facilitating photoreactions, namely photon upconversion, Lewis acid catalytic activity and photothermal effect. When co-doped with suitable sensitizer and...
Collapse
|
36
|
Fu M, Yang M, Xu X. Upconversion fluorescent nanoprobe based on 4-NP reversible structure for a wide range of pH determination. NEW J CHEM 2022. [DOI: 10.1039/d2nj01803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate detection of pH value has received more and more attention in various fields. However, most reported probes show pH values in the acidic or alkaline range and work within...
Collapse
|
37
|
Bao G, Wen S, Wang W, Zhou J, Zha S, Liu Y, Wong KL, Jin D. Enhancing Hybrid Upconversion Nanosystems via Synergistic Effects of Moiety Engineered NIR Dyes. NANO LETTERS 2021; 21:9862-9868. [PMID: 34780188 DOI: 10.1021/acs.nanolett.1c02391] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid upconversion nanosystems have been reported to improve the low absorption efficiency of lanthanide-doped upconversion nanoparticles (UCNPs). However, the low quantum yield and poor photostability of NIR dyes pose challenges for practical uses. Here, we introduce a bulky moiety, 4-(1,2,2-triphenylvinyl)-1,1'-biphenyl (TPEO), to enhance its quantum yield by suppressing the bond rotation and improve the stability by deactivating the photoinduced oxidization. Compared with the conventional IR806, the formed NIR dye, TPEO-Cy, has been characterized to deliver three times higher quantum yield and seven times better photostability. Moreover, we take advantage of the strong affinity of sulfonate chains on the TPEO-Cy to bind to the surface of UCNPs. Taking together the synergistic effect, we have achieved a 242-fold upconversion emission enhancement over the benchmark of IR806-sensitized system and an ∼800 000-fold increase than the bare UCNPs. Our design of the NIR dyes suggests a new scope to search for more efficient upconversion nanohybrids.
Collapse
Affiliation(s)
- Guochen Bao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, S.A.R., P.R. China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Wanhe Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, S.A.R., P.R. China
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Shuai Zha
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, S.A.R., P.R. China
| | - Yongtao Liu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, S.A.R., P.R. China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
38
|
Abstract
Azobenzenes are archetypal molecules that have a central role in fundamental and applied research. Over the course of almost two centuries, the area of azobenzenes has witnessed great achievements; azobenzenes have evolved from simple dyes to 'little engines' and have become ubiquitous in many aspects of our lives, ranging from textiles, cosmetics, food and medicine to energy and photonics. Despite their long history, azobenzenes continue to arouse academic interest, while being intensively produced for industrial purposes, owing to their rich chemistry, versatile and straightforward design, robust photoswitching process and biodegradability. The development of azobenzenes has stimulated the production of new coloured and light-responsive materials with various applications, and their use continues to expand towards new high-tech applications. In this Review, we highlight the latest achievements in the synthesis of red-light-responsive azobenzenes and the emerging application areas of photopharmacology, photoswitchable adhesives and biodegradable materials for drug delivery. We show how the synthetic versatility and adaptive properties of azobenzenes continue to inspire new research directions, with limits imposed only by one's imagination.
Collapse
|
39
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
40
|
Voronovic E, Skripka A, Jarockyte G, Ger M, Kuciauskas D, Kaupinis A, Valius M, Rotomskis R, Vetrone F, Karabanovas V. Uptake of Upconverting Nanoparticles by Breast Cancer Cells: Surface Coating versus the Protein Corona. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39076-39087. [PMID: 34378375 PMCID: PMC8824430 DOI: 10.1021/acsami.1c10618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fluorophores with multifunctional properties known as rare-earth-doped nanoparticles (RENPs) are promising candidates for bioimaging, therapy, and drug delivery. When applied in vivo, these nanoparticles (NPs) have to retain long blood-circulation time, bypass elimination by phagocytic cells, and successfully arrive at the target area. Usually, NPs in a biological medium are exposed to proteins, which form the so-called "protein corona" (PC) around the NPs and influence their targeted delivery and accumulation in cells and tissues. Different surface coatings change the PC size and composition, subsequently deciding the fate of the NPs. Thus, detailed studies on the PC are of utmost importance to determine the most suitable NP surface modification for biomedical use. When it comes to RENPs, these studies are particularly scarce. Here, we investigate the PC composition and its impact on the cellular uptake of citrate-, SiO2-, and phospholipid micelle-coated RENPs (LiYF4:Yb3+,Tm3+). We observed that the PC of citrate- and phospholipid-coated RENPs is relatively stable and similar in the adsorbed protein composition, while the PC of SiO2-coated RENPs is larger and highly dynamic. Moreover, biocompatibility, accumulation, and cytotoxicity of various RENPs in cancer cells have been evaluated. On the basis of the cellular imaging, supported by the inhibition studies, it was revealed that RENPs are internalized by endocytosis and that specific endocytic routes are PC composition dependent. Overall, these results are essential to fill the gaps in the fundamental understanding of the nano-biointeractions of RENPs, pertinent for their envisioned application in biomedicine.
Collapse
Affiliation(s)
- Evelina Voronovic
- Biomedical
Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406 Vilnius, Lithuania
- Life
Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
- Department
of Chemistry and Bioengineering, Vilnius
Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania
| | - Artiom Skripka
- Centre
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université
du Québec, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Greta Jarockyte
- Biomedical
Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406 Vilnius, Lithuania
- Life
Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Marija Ger
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Sauletekio
av. 7, LT-10257 Vilnius, Lithuania
| | - Dalius Kuciauskas
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Sauletekio
av. 7, LT-10257 Vilnius, Lithuania
| | - Algirdas Kaupinis
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Sauletekio
av. 7, LT-10257 Vilnius, Lithuania
| | - Mindaugas Valius
- Institute
of Biochemistry, Life Sciences Center, Vilnius
University, Sauletekio
av. 7, LT-10257 Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical
Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406 Vilnius, Lithuania
- Biophotonics
Group of Laser Research Centre, Vilnius
University, Sauletekio
av. 9, LT-10222 Vilnius, Lithuania
| | - Fiorenzo Vetrone
- Centre
Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université
du Québec, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Vitalijus Karabanovas
- Biomedical
Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406 Vilnius, Lithuania
- Department
of Chemistry and Bioengineering, Vilnius
Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
41
|
Zhu D, Zhu XH, Ren SZ, Lu YD, Zhu HL. Manganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics. J Drug Target 2021; 29:911-924. [DOI: 10.1080/1061186x.2020.1815209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Dong Lu
- Childrens Hospital, Neonatal Medical Center, Nanjing Medical University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
42
|
de Oliveira Lima K, Dos Santos LF, Galvão R, Tedesco AC, de Souza Menezes L, Gonçalves RR. Single Er 3+, Yb 3+: KGd 3F 10 Nanoparticles for Nanothermometry. Front Chem 2021; 9:712659. [PMID: 34368084 PMCID: PMC8333619 DOI: 10.3389/fchem.2021.712659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Among several optical non-contact thermometry methods, luminescence thermometry is the most versatile approach. Lanthanide-based luminescence nanothermometers may exploit not only downshifting, but also upconversion (UC) mechanisms. UC-based nanothermometers are interesting for biological applications: they efficiently convert near-infrared radiation to visible light, allowing local temperatures to be determined through spectroscopic investigation. Here, we have synthesized highly crystalline Er3+, Yb3+ co-doped upconverting KGd3F10 nanoparticles (NPs) by the EDTA-assisted hydrothermal method. We characterized the structure and morphology of the obtained NPs by transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and dynamic light scattering. Nonlinear spectroscopic studies with the Er3+, Yb3+: KGd3F10 powder showed intense green and red emissions under excitation at 980 and 1,550 nm. Two- and three-photon processes were attributed to the UC mechanisms under excitation at 980 and 1,550 nm. Strong NIR emission centered at 1,530 nm occurred under low 980-nm power densities. Single NPs presented strong green and red emissions under continuous wave excitation at 975.5 nm, so we evaluated their use as primary nanothermometers by employing the Luminescence Intensity Ratio technique. We determined the temperature felt by the dried NPs by integrating the intensity ratio between the thermally coupled 2H11/2→4I15/2 and 4S3/2→4I15/2 levels of Er3+ ions in the colloidal phase and at the single NP level. The best thermal sensitivity of a single Er3+, Yb3+: KGd3F10 NP was 1.17% at the single NP level for the dry state at 300 K, indicating potential application of this material as accurate nanothermometer in the thermal range of biological interest. To the best of our knowledge, this is the first promising thermometry based on single KGd3F10 particles, with potential use as biomarkers in the NIR-II region.
Collapse
Affiliation(s)
- Karmel de Oliveira Lima
- Laboratório de Materiais Luminescentes Micro e Nanoestruturados-Mater Lumen, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Luiz Fernando Dos Santos
- Laboratório de Materiais Luminescentes Micro e Nanoestruturados-Mater Lumen, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rodrigo Galvão
- Departamento de Física, Universidade Federal de Pernambuco, Recife, Brazil
| | - Antonio Claudio Tedesco
- Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Department of Chemistry, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rogéria Rocha Gonçalves
- Laboratório de Materiais Luminescentes Micro e Nanoestruturados-Mater Lumen, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
43
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
44
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
45
|
Mahata MK, De R, Lee KT. Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications. Biomedicines 2021; 9:756. [PMID: 34210059 PMCID: PMC8301434 DOI: 10.3390/biomedicines9070756] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Collapse
Affiliation(s)
- Manoj Kumar Mahata
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Ranjit De
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Kang Taek Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| |
Collapse
|
46
|
NIR light-responsive nanocarriers for controlled release. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100420] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Su Q, Sun L, Hemmer E, Jang HS. Editorial: Women in Lanthanide-Based Luminescence Research: From Basic Research to Applications. Front Chem 2021; 9:667672. [PMID: 33834017 PMCID: PMC8021728 DOI: 10.3389/fchem.2021.667672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Lining Sun
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Ho Seong Jang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
48
|
Rapp TL, DeForest CA. Targeting drug delivery with light: A highly focused approach. Adv Drug Deliv Rev 2021; 171:94-107. [PMID: 33486009 PMCID: PMC8127392 DOI: 10.1016/j.addr.2021.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022]
Abstract
Light is a uniquely powerful tool for controlling molecular events in biology. No other external input (e.g., heat, ultrasound, magnetic field) can be so tightly focused or so highly regulated as a clinical laser. Drug delivery vehicles that can be photonically activated have been developed across many platforms, from the simplest "caging" of therapeutics in a prodrug form, to more complex micelles and circulating liposomes that improve drug uptake and efficacy, to large-scale hydrogel platforms that can be used to protect and deliver macromolecular agents including full-length proteins. In this Review, we discuss recent innovations in photosensitive drug delivery and highlight future opportunities to engineer and exploit such light-responsive technologies in the clinical setting.
Collapse
Affiliation(s)
- Teresa L Rapp
- Department of Chemical Engineering, University of Washington, Seattle, WA 98105, USA
| | - Cole A DeForest
- Department of Chemical Engineering, University of Washington, Seattle, WA 98105, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Chemistry, University of Washington, Seattle, WA 98105, USA; Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
49
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
50
|
Wang Y, Chen B, Wang F. Overcoming thermal quenching in upconversion nanoparticles. NANOSCALE 2021; 13:3454-3462. [PMID: 33565549 DOI: 10.1039/d0nr08603g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermal quenching that is characterized by loss of light emission with increasing temperature is widely observed in luminescent materials including upconversion nanoparticles, causing problems in technological applications such as lighting, displays, and imaging. Because upconversion processes involve extensive intra-particle energy transfer that is temperature dependent, methods have been established to fight against thermal quenching in upconversion nanoparticles by engineering the energy transfer routes. In this minireview, we discuss the origin of thermal quenching and the role of energy transfer in thermal quenching. Accordingly, recent efforts in overcoming thermal quenching of upconversion are summarized.
Collapse
Affiliation(s)
- Yanze Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|