1
|
Petrosian A, Pinheiro PF, Ribeiro APC, Martins LMDRS, Justino GC. The Elusive Biological Activity of Scorpionates: A Useful Scaffold for Cancer Therapy? Molecules 2024; 29:5672. [PMID: 39683831 DOI: 10.3390/molecules29235672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer remains a formidable challenge, requiring the constant pursuit of novel therapeutic agents and strategies. Scorpionates, known for their unique coordination properties, have recently gained attention for their anticancer potential. Traditionally applied in catalysis, these compounds have demonstrated notable cytotoxicity across various cancer cell lines, often surpassing the efficacy of conventional chemotherapeutics. This review addresses recent findings on scorpionate complexes, emphasizing the impact of metal choice and ligand design on biological activity. Copper and ruthenium scorpionates show promise, leveraging redox activity and mitochondrial disruption mechanisms to selectively induce cancer cell death. Ligand modifications, including sulfur-containing heterocycles and unsubstituted pyrazoles, have proven effective in enhancing cytotoxicity and selectivity. Furthermore, dipodal ligands show unique potential, with selective binding sites that improve stability and facilitate specific cellular interactions, such as targeting metastatic pathways. These findings highlight the largely unexplored potential of scorpionate complexes, positioning them as candidates for next-generation anticancer therapies. Continued research into structure-activity relationships and precise mechanisms of action could pave the way for developing highly potent and selective anticancer agents based on scorpionate chemistry.
Collapse
Affiliation(s)
- Artem Petrosian
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Pedro F Pinheiro
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
- Escola Superior de Tecnologia do Barreiro, Instituto Politécnico de Setúbal, Rua Américo da Silva Marinho, 2839-001 Lavradio, Portugal
| | - Ana P C Ribeiro
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Luísa M D R S Martins
- Centro de Química Estrutural-Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Gonçalo C Justino
- Escola Superior de Tecnologia do Barreiro, Instituto Politécnico de Setúbal, Rua Américo da Silva Marinho, 2839-001 Lavradio, Portugal
| |
Collapse
|
2
|
Mandel RM, Lotlikar PS, Keasler KT, Chen EY, Wilson JJ, Milner PJ. Gas Delivery Relevant to Human Health using Porous Materials. Chemistry 2024; 30:e202402163. [PMID: 38949770 PMCID: PMC11443428 DOI: 10.1002/chem.202402163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Elena Y. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
3
|
Wei L, Kushwaha R, Sadhukhan T, Wu H, Dao A, Zhang Z, Zhu H, Gong Q, Ru J, Liang C, Zhang P, Banerjee S, Huang H. Dinuclear Tridentate Ru(II) Complex with Strong Near-Infrared Light-Triggered Anticancer Activity. J Med Chem 2024; 67:11125-11137. [PMID: 38905437 DOI: 10.1021/acs.jmedchem.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The design of the dinuclear Ru(II) complex (Ru2) with strong near-infrared (NIR) absorption properties has been reported for efficient anticancer phototherapy. Under 700 nm LED light excitation, Ru2 exhibited remarkable synergistic type I/II photosensitization ability and photocatalytic activity toward intracellular biomolecules. Ru2 showed impressive 700 nm light-triggered anticancer activity under normoxia and hypoxia compared with the clinically used photosensitizer Chlorin e6. The mechanistic studies showed that Ru2 induced intracellular redox imbalance and perturbed the energy metabolism and biosynthesis in A549 cancer cells. Overall, this work provides a new strategy for developing efficient metal-based complexes for anticancer phototherapy under NIR light.
Collapse
Affiliation(s)
- Li Wei
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Haorui Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Anyi Dao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Zhishang Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Haotu Zhu
- Department of Oncology, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Qiufang Gong
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Jiaxi Ru
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Chao Liang
- Institute for Advanced Research, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, Zhejinag 325035, P.R. China
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
4
|
Mishra R, Saha A, Chatterjee P, Bhattacharyya A, Patra AK. Ruthenium(II) Polypyridyl-Based Photocages for an Anticancer Phytochemical Diallyl Sulfide: Comparative Dark and Photoreactivity Studies of Caged and Precursor Uncaged Complexes. Inorg Chem 2023; 62:18839-18855. [PMID: 37930798 DOI: 10.1021/acs.inorgchem.3c02038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The spatiotemporal control over the drug's action offered by ruthenium(II) polypyridyl complexes by the selective activation of the prodrug inside the tumor has beaconed toward much-desired selectivity issues in cancer chemotherapy. The photocaging of anticancer bioactive ligands attached synergistically with cytotoxic Ru(II) polypyridyl cores and selective release thereof in cancer cells are a promising modality for more effective drug action. Diallyl sulfide (DAS) naturally found in garlic has anticancer, antioxidant, and anti-inflammatory activities. Herein, we designed two Ru(II) polypyridyl complexes to cage DAS having a thioether-based donor site. For in-depth photocaging studies, we compared the reactivity of the DAS-caged compounds with the uncaged Ru(II)-complexes with the general formula [Ru(ttp)(NN)(L)]+/2+. Here, in the first series, ttp = p-tolyl terpyridine, NN = phen (1,10-phenanthroline), and L = Cl- (1-Cl) and H2O (1-H2O), while for the second series, NN = dpq (pyrazino[2,3-f][1,10]phenanthroline), and L = Cl- (2-Cl) and H2O (2-H2O). The reaction of DAS with 1-H2O and 2-H2O yielded the caged complexes [Ru(ttp)(NN)(DAS)](PF6)2, i.e., 1-DAS and 2-DAS, respectively. The complexes were structurally characterized by X-ray crystallography, and the solution-state characterization was done by 1H NMR and ESI-MS studies. Photoinduced release of DAS from the Ru(II) core was monitored by 1H NMR and UV-vis spectroscopy. When irradiated with a 470 nm blue LED in DMSO, the photosubstitution quantum yields (Φ) of 0.035 and 0.057 were observed for 1-DAS and 2-DAS, respectively. Intriguing solution-state speciation and kinetic behaviors of the uncaged and caged Ru(II)-complexes emerged from 1H NMR studies in the dark, and they are depicted in this work. The caged 1-DAS and 2-DAS complexes remained mostly structurally intact for a reasonably long period in DMSO. The uncaged 1-Cl and 2-Cl complexes, although did not undergo substitution in only DMSO but in the 10% DMSO/H2O mixture, completely converted to the corresponding DMSO-adduct within 16 h. Toward gaining insights into the reactivity with the biological targets, we observed that 1-Cl upon hydrolysis formed an adduct with 5'-GMP, while a small amount of GSSG-adduct was observed when 1-Cl was reacted with GSH in H2O at 323 K. 1-Cl after hydrolysis reacted with l-methionine, although the rate was slightly slower compared with that with DMSO, suggesting varying reaction kinetics with different sulfur-based linkages. Although 1-H2O reacted with sulfoxide and thioether ligands at room temperature, the rate was much faster at higher temperatures obviously, and thiol-based systems needed higher thermal energy for conjugation. Overall, these studies provide insight for thoughtful design of new generation Ru(II) polypyridyl complexes for caging suitable bioactive organic molecules.
Collapse
Affiliation(s)
- Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Abhijit Saha
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Atish Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
5
|
He G, He M, Wang R, Li X, Hu H, Wang D, Wang Z, Lu Y, Xu N, Du J, Fan J, Peng X, Sun W. A Near‐Infrared Light‐Activated Photocage Based on a Ruthenium Complex for Cancer Phototherapy. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202218768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Guangli He
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Maomao He
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Xuezhao Li
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Hanze Hu
- Department of Biomedical Engineering Columbia University New York NY 10027 USA
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals Frontiers Science Center for Smart Materials Oriented Chemical Engineering Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology 26 Yucai Road, Jiangbei District Ningbo 315016 China
| |
Collapse
|
6
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
7
|
Wang Y, Qian M, Du Y, Zhou J, Huo T, Guo W, Akhtar M, Huang R. Tumor-Selective Biodegradation-Regulated Photothermal H 2 S Donor for Redox Dyshomeostasis- and Glycolysis Disorder-Enhanced Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106168. [PMID: 35023625 DOI: 10.1002/smll.202106168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
H2 S-mediated tumor therapy has received great attention due to its unique physiological activity and synergistical enhancement, but suffers from limited H2 S donors with promised biosafety to regulate the H2 S delivery and subsequently the elusive pathway to augment the combined therapy. Herein, a PEGylated porous molybdenum disulfide nanoflower (MSP) with abundant defects is facilely synthesized for tumor-targeted theranostics. MSP possesses good water-dispersity and high photothermal ability, which is used for photoacoustic imaging and photothermal therapy. Interestingly, MSP is selectively degraded upon exposure to superfluous glutathione (GSH) within tumor cells, the mechanism of which is investigated, as a reduction-coordination reaction. This special degradation induces redox dyshomeostasis via GSH depletion for reactive oxygen species-accumulated chemodynamic therapy. Meanwhile, the selective biodegradation of MSP regulates a sustained H2 S release within tumor and achieves a targeted H2 S gas therapy via enhancing the glycolysis to acidify the tumor cells (glycolysis disorder). Synergistically, these performances are further enhanced via near-infrared photothermal heating, where excellent therapeutic outcomes with good biosafety are accomplished in vitro and in vivo. These characteristics, together with the unique biodegradation and no obvious side-effects of the nanoparticles, suggest a potential therapeutic strategy for precise tumor treatments.
Collapse
Affiliation(s)
- Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, China
| | - Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Yilin Du
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Jianglu Zhou
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Taotao Huo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Wei Guo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, and Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| |
Collapse
|
8
|
Chen Y, Zhao R, Tang C, Zhang C, Xu W, Wu L, Wang Y, Ye D, Liang Y. Design and Development of a Bioorthogonal, Visualizable and Mitochondria‐Targeted Hydrogen Sulfide (H
2
S) Delivery System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yinghan Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Ruohan Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Cheng Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Chun Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Wenyuan Xu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Li L, Zhang Z. A fluorogenic H 2S donor activated by reactive oxygen species for real-time monitoring in cells and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120243. [PMID: 34371313 DOI: 10.1016/j.saa.2021.120243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is an important gasotransmitter in biological system, and plays a crucial role in varied physiological and pathological processes. Exogenous H2S is widely employed as a positive control in H2S related biological study. Herein, we develop a reactive oxygen species (ROS) triggered donor HSD545 that delivers H2S and simultaneously generates a fluorophore to real-time monitoring the process of H2S release in vitro and in vivo. The donor exhibits low cytotoxicity and strong cytoprotection against ROS-induce oxidative stress.
Collapse
Affiliation(s)
- Li Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
10
|
Molecular modeling and docking of new 2-acetamidothiazole-based compounds as antioxidant agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Li L, Lin Z, Cheng Y, Tang Y, Zhang Z. A cysteine-triggered fluorogenic donor base on native chemical ligation for tracking H 2S delivery in vivo. Analyst 2021; 146:7374-7378. [PMID: 34816826 DOI: 10.1039/d1an01809d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A hydrogen sulfide (H2S) donor is a fundamental molecular tool used as an exogenous source in biological studies and therapies. However, finding a controllable and visual fluorescent H2S donor is difficult. We report a new H2S donor, HSD560, the H2S release of which is triggered by cysteine. Importantly, the H2S generation is accompanied with enhanced green fluorescence, which could be utilized to track H2S release in cells using microscopy. H2S release from HSD560 undergoes a non-enzymatic native chemical ligation (NCL) process, which provides an accurate match with activated fluorescence and localization of H2S in zebrafish.
Collapse
Affiliation(s)
- Li Li
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Zhenmei Lin
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yongfang Cheng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Yaoping Tang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Ziqian Zhang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
12
|
He M, He G, Wang P, Jiang S, Jiao Z, Xi D, Miao P, Leng X, Wei Z, Li Y, Yang Y, Wang R, Du J, Fan J, Sun W, Peng X. A Sequential Dual-Model Strategy Based on Photoactivatable Metallopolymer for On-Demand Release of Photosensitizers and Anticancer Drugs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103334. [PMID: 34664422 PMCID: PMC8655221 DOI: 10.1002/advs.202103334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/04/2021] [Indexed: 05/13/2023]
Abstract
The synergistic combination of chemotherapy and photodynamic therapy has attracted considerable attention for its enhanced antitumoral effects; however, it remains challenging to successfully delivery photosensitizers and anticancer drugs while minimizing drug leakage at off-target sites. A red-light-activatable metallopolymer, Poly(Ru/PTX), is synthesized for combined chemo-photodynamic therapy. The polymer has a biodegradable backbone that contains a photosensitizer Ru complex and the anticancer drug paclitaxel (PTX) via a singlet oxygen (1 O2 ) cleavable linker. The polymer self-assembles into nanoparticles, which can efficiently accumulate at the tumor sites during blood circulation. The distribution of the therapeutic agents is synchronized because the Ru complex and PTX are covalently conjugate to the polymer, and off-target toxicity during circulation is also mostly avoided. Red light irradiation at the tumor directly cleaves the Ru complex and produces 1 O2 for photodynamic therapy. Sequentially, the generated 1 O2 triggers the breakage of the linker to release the PTX for chemotherapy. Therefore, this novel sequential dual-model release strategy creates a synergistic chemo-photodynamic therapy while minimizing drug leakage. This study offers a new platform to develop smart delivery systems for the on-demand release of therapeutic agents in vivo.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Guangli He
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Suhua Jiang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Ziyue Jiao
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Dongmei Xi
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Pengcheng Miao
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Xuefei Leng
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Zhiyong Wei
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yang Li
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Yanjun Yang
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Ran Wang
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
| | - Jianjun Du
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Jiangli Fan
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| | - Xiaojun Peng
- State Key Laboratory of Fine ChemicalsLiaoning key Laboratory of Polymer Science and EngineeringSchool of Chemical EngineeringDalian University of TechnologyDalian116024China
- Ningbo Institute of Dalian University of TechnologyNingbo315016China
| |
Collapse
|
13
|
Chen Y, Zhao R, Tang C, Zhang C, Xu W, Wu L, Wang Y, Ye D, Liang Y. Design and Development of a Bioorthogonal, Visualizable and Mitochondria-Targeted Hydrogen Sulfide (H 2 S) Delivery System. Angew Chem Int Ed Engl 2021; 61:e202112734. [PMID: 34806810 DOI: 10.1002/anie.202112734] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Indexed: 12/27/2022]
Abstract
Hydrogen sulfide (H2 S) is an important endogenous gasotransmitter, but the targeted delivery and real-time feedback of exogenous H2 S are still challenging. With the aid of density functional theory (DFT) calculations, we designed a new 1,3-dithiolium-4-olate (DTO) compound, which can react with a strained alkyne via the 1,3-dipolar cycloaddition and the retro-Diels-Alder reaction to generate carbonyl sulfide (COS) as the precursor of H2 S, and a thiophene derivative with turn-on fluorescence. Moreover, the diphenylamino substituent in DTO greatly increases the mitochondrial targeting of this H2 S delivery system. Such a bioorthogonal click-and-release reaction has integrated three functions in one system for the first time: (1) in situ controllable H2 S release, (2) concomitant fluorescence response, and (3) mitochondria-targeted delivery. In addition, we investigated the mitochondrial membrane potential loss alleviation by using this system in H9c2 cells under oxidative stress.
Collapse
Affiliation(s)
- Yinghan Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Ruohan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Cheng Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Chun Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Wenyuan Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Luyan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
14
|
Luo X, Chi X, Lin Y, Yang Z, Lin H, Gao J. A camptothecin prodrug induces mitochondria-mediated apoptosis in cancer cells with cascade activations. Chem Commun (Camb) 2021; 57:11033-11036. [PMID: 34608474 DOI: 10.1039/d1cc04379j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondria are crucial regulators of the intrinsic pathway of apoptosis. Herein, we report a photosensitizer-conjugated camptothecin (CPT)-based prodrug for combinative chemo-photodynamic treatment of solid tumors with cascade activations. Upon light irradiation, our prodrug can effectively target the mitochondria of cancer cells, generate singlet oxygen to increase the level of reactive oxygen species (ROS) and trigger ROS-responsive release of CPT, which synergistically induce mitochondrial damage and cause the apoptosis of cancer cells, therefore achieving high therapeutic efficacy for solid tumors and minimized adverse effects to normal tissues. Our prodrug holds great promise as a potent and inspiring means for cancer treatment.
Collapse
Affiliation(s)
- Xiangjie Luo
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital, Xiamen University, Xiamen 361004, China
| | - Yaying Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zhaoxuan Yang
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hongyu Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jinhao Gao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
15
|
Podda E, Carla Aragoni M, Arca M, Atzeni G, Coles SJ, Ennas G, Isaia F, Lippolis V, Orru G, Scano A, Orton JB, Pintus A, Scano A. Morpholine- and Thiomorpholine-Based Amidodithiophosphonato Nickel Complexes: Synthesis, Characterization, P-N Cleavage, Antibacterial Activity and Silica Nano-Dispersion. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2879-2891. [PMID: 33653454 DOI: 10.1166/jnn.2021.19058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The reactivity of thiomorpholinium P-(4-methoxyphenyl)-N-thiomorpholin-amidodithiophosphonate (S-MorH+₂)(S-Mor-adtp-) and morpholinium P-(4-methoxyphenyl)-N-morpholin-amidodithiophosphonate (O-MorH+₂)(O-Mor-adtp-) towards nickel (II) dichloride hexahydrated is presented and the hydrolysis of the relevant metal complexes investigated. The hydrolytic products (S-MorH+₂)₂ [Ni(dtp)₂]²- and (O-MorH+₂)₂[Ni(dtp)₂]²- were characterized by means of FT-IR, 1H, and 31P NMR and XRD and the experimented P-N cleavage investigated and elucidated by means of DFT calculations. The antimicrobial activity of the neutral nickel complex [Ni(S-Mor-adtp)₂] was tested against a set of Gram-positive and Gram-negative bacteria alongside with its nanodispersion in a silica matrix. The complex [Ni(S-Mor-adtp)₂] did not show antibacterial activity, whilst the nano-dispersed sample [Ni(S-Mor-adtp)₂]_SiO₂ demonstrated inhibition to growth of Staphylococcus aureus. The nanocomposites were fully characterized by means of XRPD, TGA, SEM and dinitrogen sorption techniques.
Collapse
Affiliation(s)
- Enrico Podda
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| | - M Carla Aragoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| | - Giulia Atzeni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| | - Simon J Coles
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - Guido Ennas
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| | - Germano Orru
- Department of Surgical Sciences, University of Cagliari, Cagliari, 09042, Italy
| | - Alessandra Scano
- Department of Surgical Sciences, University of Cagliari, Cagliari, 09042, Italy
| | - James B Orton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - Anna Pintus
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| | - Alessandra Scano
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 Bivio Sestu, 09042 Monserrato - Cagliari, Italy
| |
Collapse
|
16
|
Chen FE, Mandel RM, Woods JJ, Lee JH, Kim J, Hsu JH, Fuentes-Rivera JJ, Wilson JJ, Milner PJ. Biocompatible metal-organic frameworks for the storage and therapeutic delivery of hydrogen sulfide. Chem Sci 2021; 12:7848-7857. [PMID: 34168838 PMCID: PMC8188460 DOI: 10.1039/d1sc00691f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potential therapeutic value for treating a range of disorders, such as ischemia-reperfusion injury resulting from a myocardial infarction or stroke. However, the medicinal delivery of H2S is hindered by its corrosive and toxic nature. In addition, small molecule H2S donors often generate other reactive and sulfur-containing species upon H2S release, leading to unwanted side effects. Here, we demonstrate that H2S release from biocompatible porous solids, namely metal-organic frameworks (MOFs), is a promising alternative strategy for H2S delivery under physiologically relevant conditions. In particular, through gas adsorption measurements and density functional theory calculations we establish that H2S binds strongly and reversibly within the tetrahedral pockets of the fumaric acid-derived framework MOF-801 and the mesaconic acid-derived framework Zr-mes, as well as the new itaconic acid-derived framework CORN-MOF-2. These features make all three frameworks among the best materials identified to date for the capture, storage, and delivery of H2S. In addition, these frameworks are non-toxic to HeLa cells and capable of releasing H2S under aqueous conditions, as confirmed by fluorescence assays. Last, a cellular ischemia-reperfusion injury model using H9c2 rat cardiomyoblast cells corroborates that H2S-loaded MOF-801 is capable of mitigating hypoxia-reoxygenation injury, likely due to the release of H2S. Overall, our findings suggest that H2S-loaded MOFs represent a new family of easily-handled solid sources of H2S that merit further investigation as therapeutic agents. In addition, our findings add Zr-mes and CORN-MOF-2 to the growing lexicon of biocompatible MOFs suitable for drug delivery.
Collapse
Affiliation(s)
- Faith E Chen
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Ruth M Mandel
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University Ithaca NY 14850 USA
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - José J Fuentes-Rivera
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University Ithaca NY 14850 USA
| |
Collapse
|
17
|
Karges J, Stokes RW, Cohen SM. Photorelease of a metal-binding pharmacophore from a Ru(II) polypyridine complex. Dalton Trans 2021; 50:2757-2765. [PMID: 33564808 PMCID: PMC7944940 DOI: 10.1039/d0dt04290k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adoption of compounds that target metalloenzymes comprises a relatively low (<5%) percentage of all FDA approved therapeutics. Metalloenzyme inhibitors typically coordinate to the active site metal ions and therefore contain ligands with charged or highly polar functional groups. While these groups may generate highly water-soluble compounds, this functionalization can also limit their pharmacological properties. To overcome this drawback, drug candidates can be formulated as prodrugs. While a variety of protecting groups have been developed, increasing efforts have been devoted towards the use of caging groups that can be removed upon exposure to light to provide spatial and temporal control over the treatment. Among these, the application of Ru(ii) polypyridine complexes is receiving increased attention based on their attractive biological and photophysical properties. Herein, a conjugate consisting of a metalloenzyme inhibitor and a Ru(ii) polypyridine complex as a photo-cage is presented. The conjugate was designed using density functional theory calculations and docking studies. The conjugate is stable in an aqueous solution, but irradiation of the complex with 450 nm light releases the inhibitor within several minutes. As a model system, the biochemical properties were investigated against the endonucleolytic active site of the influenza virus. While showing no inhibition in the dark in an in vitro assay, the conjugate generated inhibition upon light exposure at 450 nm, demonstrating the ability to liberate the metalloenzyme inhibitor. The presented inhibitor-Ru(ii) polypyridine conjugate is an example of computationally-guided drug design for light-activated drug release and may help reveal new avenues for the prodrugging of metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Ryjul W Stokes
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
18
|
Woods JJ, Wilson JJ. A Dinuclear Persulfide-Bridged Ruthenium Compound is a Hypoxia-Selective Hydrogen Sulfide (H 2 S) Donor. Angew Chem Int Ed Engl 2021; 60:1588-1592. [PMID: 33022823 PMCID: PMC7855780 DOI: 10.1002/anie.202012620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/18/2022]
Abstract
Hydrogen sulfide (H2 S) is a gaseous molecule that has received attention for its role in biological processes and therapeutic potential in diseases, such as ischemic reperfusion injury. Despite its clinical relevance, delivery of H2 S to biological systems is hampered by its toxicity at high concentrations. Herein, we report the first metal-based H2 S donor that delivers this gas selectively to hypoxic cells. We further show that H2 S release from this compound protects H9c2 rat cardiomyoblasts from an in vitro model of ischemic reperfusion injury. These results validate the utility of redox-activated metal complexes as hypoxia-selective H2 S-releasing agents for use as tools to study the role of this gaseous molecule in complex biological systems.
Collapse
Affiliation(s)
- Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
19
|
Woods JJ, Wilson JJ. A Dinuclear Persulfide‐Bridged Ruthenium Compound is a Hypoxia‐Selective Hydrogen Sulfide (H
2
S) Donor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
20
|
Ryan LS, Nakatsuka A, Lippert AR. Photoactivatable 1,2-dioxetane chemiluminophores. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
22
|
Das D, Raza MK, Goswami TK. Evaluation of photochemotherapeutic potential of a few oxo-bridged dimeric Fe(III) compounds having Salen-type ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Zhou S, Mou Y, Liu M, Du Q, Ali B, Ramprasad J, Qiao C, Hu LF, Ji X. Insights into the Mechanism of Thiol-Triggered COS/H 2S Release from N-Dithiasuccinoyl Amines. J Org Chem 2020; 85:8352-8359. [PMID: 32496068 DOI: 10.1021/acs.joc.0c00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hydrolysis of carbonyl sulfide (COS) to form H2S by carbonic anhydrase has been demonstrated to be a viable strategy to deliver H2S in a biological system. Herein, we describe N-dithiasuccinoyl amines as thiol-triggered COS/H2S donors. Notably, thiol species especially GSH and homocysteine can trigger the release of both COS and H2S directly from several specific analogues via an unexpected mechanism. Importantly, two representative analogues Dts-1 and Dts-5 show intracellular H2S release, and Dts-1 imparts potent anti-inflammatory effects in LPS-challenged microglia cells. In conclusion, N-dithiasuccinoyl amine could serve as promising COS/H2S donors for either H2S biological studies or H2S-based therapeutics development.
Collapse
Affiliation(s)
- Shengchao Zhou
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yujie Mou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Miao Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Qian Du
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China
| | - Basharat Ali
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Jurupula Ramprasad
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Chunhua Qiao
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| | - Li-Fang Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu 215123, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xingyue Ji
- College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu 215021, China
| |
Collapse
|
24
|
Hua W, Zhao J, Gou S. A naphthalimide derivative can release COS and form H 2S in a light-controlled manner and protect cells against ROS with real-time monitoring ability. Analyst 2020; 145:3878-3884. [PMID: 32297624 DOI: 10.1039/d0an00371a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As an important gasotransmitter, hydrogen sulfide having multiple biological roles cannot be easily probed in cells. In this study, a light controllable H2S donor, Nap-Sul-ONB, derived from naphthalimide was developed. Under the irradiation of 365 nm light, a readily controlled stimulus, the donor could release COS to form H2S and exhibit turn on fluorescence to indicate the release of payload and its cellular location. Besides, the ROS scavenging ability and cell protective effect of Nap-Sul-ONB against endogenous and exogenous ROS were studied. The results showed that upon 365 nm light irradiation, Nap-Sul-ONB could reduce the cellular ROS level and increase the survival rate of PMA-treated cells.
Collapse
Affiliation(s)
- Wuyang Hua
- Pharmaceutical Research Centre and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | | | | |
Collapse
|
25
|
Podda E, Arca M, Atzeni G, Coles SJ, Ibba A, Isaia F, Lippolis V, Orrù G, Orton JB, Pintus A, Tuveri E, Aragoni MC. Antibacterial Activity of Amidodithiophosphonato Nickel(II) Complexes: An Experimental and Theoretical Approach. Molecules 2020; 25:E2052. [PMID: 32354035 PMCID: PMC7248947 DOI: 10.3390/molecules25092052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
The reactions of 2,4-bis(4-methoxyphenyl)-1,3-dithio-2,4-diphosphetane-2,4-disulfide (Lawesson's Reagent, LR) with benzylamine (BzNH2) and 4-phenylbutylamine (PhBuNH2) yield benzylammonium P-(4-methoxyphenyl)-N-benzyl-amidodithiophosphonate (BzNH3)(BzNH-adtp) and 4-phenylbutylammonium P-(4-methoxyphenyl)-N-(4-phenylbutyl)-amidodithiophosphonate (PhBuNH3)(PhBuNH-adtp). The relevant nickel complexes [Ni(BzNH-adtp)2] and [Ni(PhBuNH-adtp)2] and the corresponding hydrolysed derivatives (BzNH3)2[Ni(dtp)2] and (PhBuNH3)2[Ni(dtp)2] were prepared and fully characterized. The antimicrobial activity of the aforementioned amidodithiophosphonates against a set of Gram-positive and Gram-negative pathogen bacteria was evaluated, and [Ni(BzNH-adtp)2] and [Ni(PhBuNH-adtp)2] showed antiproliferative activity towards Staphylococcus aureus and Staphylococcus haemolyticus strains. density functional theory (DFT) calculations were performed to shed some light on the activity of reported compounds related to their tendency towards P-N bond cleavage.
Collapse
Affiliation(s)
- Enrico Podda
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 bivio Sestu, 09042 Monserrato–Cagliari, Italy
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 bivio Sestu, 09042 Monserrato–Cagliari, Italy
| | - Giulia Atzeni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 bivio Sestu, 09042 Monserrato–Cagliari, Italy
| | - Simon J. Coles
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Antonella Ibba
- Department of Surgical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 bivio Sestu, 09042 Monserrato–Cagliari, Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 bivio Sestu, 09042 Monserrato–Cagliari, Italy
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, 09042 Cagliari, Italy
- National Research Council of Italy, ISPA-CNR, 07100 Sassari, Italy
| | - James B. Orton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Anna Pintus
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 bivio Sestu, 09042 Monserrato–Cagliari, Italy
| | - Enrica Tuveri
- Department of Surgical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - M. Carla Aragoni
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, SS. 554 bivio Sestu, 09042 Monserrato–Cagliari, Italy
| |
Collapse
|
26
|
Podda E, Arca M, Coles SJ, Crespo Alonso M, Isaia F, Pintus A, Lippolis V, Aragoni MC. Supramolecular assemblies tailored by dipyridyl-1,2-4-thiadiazoles: influence of the building blocks in the predictability of the final network. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1749275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Enrico Podda
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Cittadella Universitaria, Monserrato – Cagliari, Italy
| | - Massimiliano Arca
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Cittadella Universitaria, Monserrato – Cagliari, Italy
| | - Simon J. Coles
- National Crystallography Service, School of Chemistry, University of Southampton, Southampton, UK
| | - Miriam Crespo Alonso
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Cittadella Universitaria, Monserrato – Cagliari, Italy
| | - Francesco Isaia
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Cittadella Universitaria, Monserrato – Cagliari, Italy
| | - Anna Pintus
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Cittadella Universitaria, Monserrato – Cagliari, Italy
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Cittadella Universitaria, Monserrato – Cagliari, Italy
| | - M. Carla Aragoni
- Dipartimento di Scienze Chimiche e Geologiche, Università Degli Studi di Cagliari, Cittadella Universitaria, Monserrato – Cagliari, Italy
| |
Collapse
|
27
|
Ge X, Fu Q, Su L, Li Z, Zhang W, Chen T, Yang H, Song J. Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics 2020; 10:4809-4821. [PMID: 32308751 PMCID: PMC7163452 DOI: 10.7150/thno.44376] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Fluorescence (FL) and photoacoustic (PA) imaging in the second near infrared window (NIR-II FL and NIR-II PA) hold great promise for biomedical applications because of their non-invasive nature and excellent spatial resolution properties. Methods: We develop a NIR-II PA and NIR-II FL dual-mode imaging gold nanorod vesicles (AuNR Ves) by self-assembly of amphiphilic AuNR coated with light responsive polyprodrug of Ru-complex and PEG, and NIR-II cyanine dye (IR 1061). The AuNR Ves showed strong ligh absorption property and PA imaging performance in the NIR-II windows. Moreover, the NIR-II fluorescence signal of IR 1061 loaded in the AuNR Ve is quenched. Results: The AuNR Ves can release photosensitizer Ru-complex and IR 1061 sequentially triggered by NIR light irradiation, leading to a corresponding NIR-II PA signal decrease and NIR-II FL signal recovery. Meanwhile, Ru-complex can not only serve as a chemotherapeutic drug but also generate singlet oxygen (1O2) under NIR light irradiation. The release of Ru-complex and photodynamic therapy are guided by the responsive variation of NIR-II PA and NIR-II FL signals. Conclusions: The AuNR Ve possessing not only precisely control 1O2/drug release but also the intrinsic ability to monitor therapy process offers a new strategy for the development of smart theranostic nanoplatform.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jibin Song
- MOE key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
28
|
Zhang N, Hu P, Wang Y, Tang Q, Zheng Q, Wang Z, He Y. A Reactive Oxygen Species (ROS) Activated Hydrogen Sulfide (H 2S) Donor with Self-Reporting Fluorescence. ACS Sens 2020; 5:319-326. [PMID: 31913018 DOI: 10.1021/acssensors.9b01093] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is an important cellular signaling molecule, and its physiological and pathophysiological properties have been under intensive investigation. In this study, a novel ratiometric fluorescent H2S donor (HSD-B) has been developed, which exhibited the following advantages: (i) scavenging ROS and producing H2S simultaneously; (ii) providing ratiometric fluorescence for visualization and quantification of H2S releasing; and (iii) targeting mitochondrion specifically. Moreover, it demonstrated protective effects on myocardial ischemia reperfusion injury in a cellular model. These attractive features promise this HSD-B as a fluorescent H2S donor for future research studies.
Collapse
Affiliation(s)
- Ning Zhang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Ping Hu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Yanfang Wang
- First Affiliated Hospital of the Medical College , Shihezi University , Xinjiang 832008 , PR China
| | - Qing Tang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Qiang Zheng
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Zhanlong Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| | - Yun He
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research , Chongqing University , 55 South Daxuecheng Road , Chongqing 401331 , China
| |
Collapse
|
29
|
Nin DS, Idres SB, Song ZJ, Moore PK, Deng LW. Biological Effects of Morpholin-4-Ium 4 Methoxyphenyl (Morpholino) Phosphinodithioate and Other Phosphorothioate-Based Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:145-158. [PMID: 31642346 DOI: 10.1089/ars.2019.7896] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is regarded as the third gasotransmitter along with nitric oxide and carbon monoxide. Extensive studies have demonstrated a variety of biological roles for H2S in neurophysiology, cardiovascular disease, endocrine regulation, and other physiological and pathological processes. Recent Advances: Novel H2S donors have proved useful in understanding the biological functions of H2S, with morpholin-4-ium 4 methoxyphenyl (morpholino) phosphinodithioate (GYY4137) being one of the most common pharmacological tools used. One advantage of GYY4137 over sulfide salts is its ability to release H2S in a slow and sustained manner akin to endogenous H2S production, rather than the delivery of H2S as a single concentrated burst. Critical Issues: Here, we summarize recent progress made in the characterization of the biological activities and pharmacological effects of GYY4137 in a range of in vitro and in vivo systems. Recent developments in the structural modification of GYY4137 to generate new compounds and their biological effects are also discussed. Future Directions: Slow-releasing H2S donor, GYY4137, and other phosphorothioate-based H2S donors are potent tools to study the biological functions of H2S. Despite recent progress, more work needs to be performed on these new compounds to unravel the mechanisms behind H2S release and pace of its discharge, as well as to define the effects of by-products of donors after H2S liberation. This will not only lead to better in-depth understanding of the biological effects of H2S but will also shed light on the future development of a new class of therapeutic agents with potential to treat a wide range of human diseases.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shabana Binte Idres
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi Jian Song
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Philip K Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, National University Health System, Singapore, Singapore
| |
Collapse
|
30
|
Levinn CM, Cerda MM, Pluth MD. Activatable Small-Molecule Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:96-109. [PMID: 31554416 PMCID: PMC6918874 DOI: 10.1089/ars.2019.7841] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is an important biological signaling molecule involved in many physiological processes. These diverse roles have led researchers to develop contemporary methods to deliver H2S under physiologically relevant conditions and in response to various stimuli. Recent Advances: Different small-molecule donors have been developed that release H2S under various conditions. Key examples include donors activated in response to hydrolysis, to endogenous species, such as thiols, reactive oxygen species, and enzymes, and to external stimuli, such as photoactivation and bio-orthogonal chemistry. In addition, an alternative approach to release H2S has utilized the catalyzed hydrolysis of carbonyl sulfide (COS) by carbonic anhydrase to generate libraries of activatable COS-based H2S donors. Critical Issues: Small-molecule H2S donors provide important research and pharmacological tools to perturb H2S levels. Key needs, both in the development and in the use of such donors, include access to new donors that respond to specific stimuli as well as donors with well-defined control compounds that allow for clear delineation of the impact of H2S delivery from other donor byproducts. Future Directions: The abundance of reported small-molecule H2S donors provides biologists and physiologists with a chemical toolbox to ask key biological questions and to develop H2S-related therapeutic interventions. Further investigation into different releasing efficiencies in biological contexts and a clear understanding of biological responses to donors that release H2S gradually (e.g., hours to days) versus donors that generate H2S quickly (e.g., seconds to minutes) is needed.
Collapse
Affiliation(s)
- Carolyn M. Levinn
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Matthew M. Cerda
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology, University of Oregon, Eugene, Oregon
| |
Collapse
|
31
|
Havrylyuk D, Stevens K, Parkin S, Glazer EC. Toward Optimal Ru(II) Photocages: Balancing Photochemistry, Stability, and Biocompatibility Through Fine Tuning of Steric, Electronic, and Physiochemical Features. Inorg Chem 2020; 59:1006-1013. [PMID: 31899619 DOI: 10.1021/acs.inorgchem.9b02065] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ru(II) complex photocages are used in a variety of biological applications, but the thermal stability, photosubstitution quantum yield, and biological compatibility of the most commonly used Ru(II) systems remain unoptimized. Here, multiple compounds used in photocaging applications were analyzed and found to have several unsatisfactory characteristics. To address these deficiencies, three new scaffolds were designed to improve key properties through modulation of a combination of electronic, steric, and physiochemical features. One of these new systems, containing the 2,2'-biquinoline-4,4'-dicarboxylic acid (2,2'-bicinchoninic acid) ligand, fulfills several of the requirements for an optimal photocage. Another complex, containing the 2-benzothiazol-2-yl-quinoline ligand, provides a scaffold for the creation of "dual action" agents.
Collapse
Affiliation(s)
- Dmytro Havrylyuk
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , Kentucky 40506 , United States
| | - Kimberly Stevens
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , Kentucky 40506 , United States
| | - Sean Parkin
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , Kentucky 40506 , United States
| | - Edith C Glazer
- Department of Chemistry , University of Kentucky , 505 Rose Street , Lexington , Kentucky 40506 , United States
| |
Collapse
|
32
|
Abstract
Gas-involving cancer theranostics have attracted considerable attention in recent years due to their high therapeutic efficacy and biosafety. We have reviewed the recent significant advances in the development of stimuli-responsive gas releasing molecules (GRMs) and gas nanogenerators for cancer bioimaging, targeted and controlled gas therapy, and gas-sensitized synergistic therapy. We have focused on gases with known anticancer effects, such as oxygen (O2), carbon monoxide (CO), nitric oxide (NO), hydrogen sulfide (H2S), hydrogen (H2), sulfur dioxide (SO2), carbon dioxide (CO2), and heavy gases that act via the gas-generating process. The GRMs and gas nanogenerators for each gas have been described in terms of the stimulation method, followed by their applications in ultrasound and multimodal imaging, and finally their primary and synergistic actions with other cancer therapeutic modalities. The current challenges and future possibilities of gas therapy and imaging vis-à-vis clinical translation have also been discussed.
Collapse
Affiliation(s)
- Lichan Chen
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| |
Collapse
|
33
|
Zhao Y, Steiger AK, Pluth MD. Cyclic Sulfenyl Thiocarbamates Release Carbonyl Sulfide and Hydrogen Sulfide Independently in Thiol-Promoted Pathways. J Am Chem Soc 2019; 141:13610-13618. [PMID: 31373809 PMCID: PMC7023849 DOI: 10.1021/jacs.9b06319] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule that provides protective activities in a variety of physiological and pathological processes. Among the different types of H2S donor compounds, thioamides have attracted attention due to prior conjugation to nonsteroidal anti-inflammatory drugs (NSAIDs) to access H2S-NSAID hybrids with significantly reduced toxicity, but the mechanism of H2S release from thioamides remains unclear. Herein, we reported the synthesis and evaluation of a class of thioamide-derived sulfenyl thiocarbamates (SulfenylTCMs) that function as a new class of H2S donors. These compounds are efficiently activated by cellular thiols to release carbonyl sulfide (COS), which is quickly converted to H2S by carbonic anhydrase (CA). In addition, through mechanistic investigations, we establish that COS-independent H2S release pathways are also operative. In contrast to the parent thioamide-based donors, the SulfenylTCMs exhibit excellent H2S releasing efficiencies of up to 90% and operate through mechanistically well-defined pathways. In addition, we demonstrate that the sulfenyl thiocarbamate group is readily attached to common NSAIDs, such as naproxen, to generate YZ-597 as an efficient H2S-NSAID hybrid, which we demonstrate releases H2S in cellular environments. Taken together, this new class of H2S donor motifs provides an important platform for new donor development.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Andrea K. Steiger
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
34
|
Hu Y, Li X, Fang Y, Shi W, Li X, Chen W, Xian M, Ma H. Reactive oxygen species-triggered off-on fluorescence donor for imaging hydrogen sulfide delivery in living cells. Chem Sci 2019; 10:7690-7694. [PMID: 31803407 PMCID: PMC6836935 DOI: 10.1039/c9sc02323b] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/08/2019] [Indexed: 01/20/2023] Open
Abstract
A reactive oxygen species-triggered off-on fluorescence H2S donor is develop for the real-time imaging of H2S delivery and the cytoprotection against the hazardous oxidative environment.
Hydrogen sulfide (H2S), an important gasotransmitter, can mediate a variety of pathophysiological processes, and H2S-based donors have been intensively explored for the therapy of cardiovascular injury, nerve damage and intestinal disorders. However, most of the H2S donors are not capable of simultaneously real-time tracking intracellular H2S delivery, which limits their biological application for elucidating the specific function of H2S. Herein we develop the first reactive oxygen species (ROS)-triggered off-on fluorescence H2S donor (NAB) by incorporating ROS-responsive arylboronate into a fluorophore through thiocarbamate. The donor NAB can release carbonyl sulfide (COS) and the fluorophore with a fluorescence off-on response via a ROS-triggered self-immolative reaction, and then COS is quickly converted to H2S by the ubiquitous carbonic anhydrase. This dual function makes NAB suitable for not only in situ and real-time monitoring of the intracellular H2S release but also rescuing RAW264.7 cells from the hazardous oxidative environment under the stimulation of phorbol-12-myristate-13-acetate, revealing the possible potential of NAB as a therapeutic prodrug with the fluorescence imaging capacity.
Collapse
Affiliation(s)
- Yiming Hu
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . .,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoyi Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Yu Fang
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . .,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Wei Chen
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , USA
| | - Ming Xian
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , USA
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences , Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China . .,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
35
|
Jiang YY, Zhu L, Fan X, Zhang Q, Fu YJ, Li H, Hu B, Bi S. A computational study on H 2S release and amide formation from thionoesters and cysteine. Org Biomol Chem 2019; 17:5771-5778. [PMID: 31135017 DOI: 10.1039/c9ob00854c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recognition of the biological activity of H2S has drawn much attention to the development of biocompatible H2S release reactions. Thiol-, particularly cysteine-triggered systems which mimic the enzymatic conversion of cysteine or homocysteine to H2S have been intensively reported recently. Herein, a density functional theory (DFT) study was performed to address the reaction mechanism of H2S release and potential amide bond formation from thionoesters and cysteine to gain deeper mechanistic insights. Three possible mechanisms were considered and we found that the one starting from the nucleophilic addition of the ionized mercapto of cysteine on thionoester to generate a dithioester intermediate (Path A) is kinetically favored over the others starting from the nucleophilic addition of the amine of cysteine to generate thionoamide intermediates (Paths B and C). Dithioester then undergoes intramolecular nucleophilic addition of an amine group and the rate-limiting water-assisted proton transfer to generate a cyclic thiol intermediate, and finally affords H2S and dihydrothiazole via water-assisted elimination. The hydrolysis of thionoamide or dihydrothiazole to produce amide is highly difficult under neutral conditions but is operative under strong basic conditions, which explains the experimental observation that dihydrothiazole rather than amide is the major product. Meanwhile, the ring opening reaction of the cyclic thiol intermediate to form the more stable thionoamide is detrimental to H2S release and becomes competitive under basic conditions.
Collapse
Affiliation(s)
- Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang X, Wang C, Zhang X, Chen S, Chen L, Lu S, Lu S, Yan X, Xiong K, Liu F, Yan J. Redox regulation in hydrogen sulfide action: From neurotoxicity to neuroprotection. Neurochem Int 2019; 128:58-69. [PMID: 31015021 DOI: 10.1016/j.neuint.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Xue Yang
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Chudong Wang
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Xudong Zhang
- Narcotics Division, Municipal Security Bureau, Changsha, Hunan, 410013, China
| | - Siqi Chen
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Liangpei Chen
- Department of Forensic Science,Changsha, Hunan, 410013, China
| | - Shanshan Lu
- Department of Forensic Science,Changsha, Hunan, 410013, China; Histology and Embryology,Changsha, Hunan, 410013, China
| | - Shuang Lu
- Department of Forensic Science,Changsha, Hunan, 410013, China; Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital, Wuhan, 430060, China
| | - Kun Xiong
- Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Jie Yan
- Department of Forensic Science,Changsha, Hunan, 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China.
| |
Collapse
|
37
|
Sabbatini M, Zanellato I, Ravera M, Gabano E, Perin E, Rangone B, Osella D. Pt(IV) Bifunctional Prodrug Containing 2-(2-Propynyl)octanoato Axial Ligand: Induction of Immunogenic Cell Death on Colon Cancer. J Med Chem 2019; 62:3395-3406. [PMID: 30879295 DOI: 10.1021/acs.jmedchem.8b01860] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis, characterization, and in vitro activity of a cyclohexane-1 R,2 R-diamine-based Pt(IV) derivative containing the histone deacetylase inhibitor rac-2-(2-propynyl)octanoato, namely, ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV), are reported together with those of its isomers containing enantiomerically enriched axial ligands. These Pt(IV) complexes showed comparable activity, of 2 orders of magnitude higher than reference drug oxaliplatin on three human (HCT 116, SW480, and HT-29) and one mouse (CT26) colon cancer cell lines. In vivo experiments were carried out on immunocompetent BALB/c mice bearing the same syngeneic tumor. The complex ( OC-6-44)-acetatodichlorido(cyclohexane-1 R,2 R-diamine)( rac-2-(2-propynyl)octanoato)platinum(IV) showed higher tumor mass Pt accumulation than oxaliplatin, due to its higher lipophilicity, with negligible nephro- and hepatotoxicities when administered intravenously. A remarkable tumor mass invasion by cytotoxic CD8+ T lymphocytes, following the Pt(IV) treatment, indicated a strong induction of immunogenic cell death.
Collapse
Affiliation(s)
- Maurizio Sabbatini
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Ilaria Zanellato
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Elena Perin
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Beatrice Rangone
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| | - Domenico Osella
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale , Viale Michel 11 , 15121 Alessandria , Italy
| |
Collapse
|
38
|
Zhao J, Liu N, Sun S, Gou S, Wang X, Wang Z, Li X, Zhang W. Light-activated ruthenium (II)-bicalutamide prodrugs for prostate cancer. J Inorg Biochem 2019; 196:110684. [PMID: 31054419 DOI: 10.1016/j.jinorgbio.2019.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 01/25/2023]
Abstract
Targeted delivery of clinically approved anticancer drug to tumor sites is an effective way to achieve enhanced drug efficacy as well as reduced side effects and toxicity. Here bicalutamide is caged by the Ru(II) center through the nitrile group, and three photoactive Ru(II) complexes were designed and synthesized. Docking study showed that the ruthenium(II) fragments can effectively block the binding of complexes 1-3 with AR (androgen receptor) owing to the large steric structures, thus bicalutamide in complexes 1-3 could not interact with AR-LBD (ligand binding domain). Once irradiation with blue light (465nm), complexes 1-3 can release bicalutamide and anticancer Ru(II) fragments, which possesses dual-action of AR binding and DNA interaction simultaneously. In vitro cytotoxicity study on these complexes further confirmed that complexes 1-3 exhibited considerable cytotoxicity upon irradiation with blue light. Significantly, complex 3 could be activated at 660nm, which greatly increases the scope of complex 3 to treat deeper within tissue. Theoretical calculations showed that the lowest singlet excitation energy of complex 3 is lower than those of complexes 1-2, which explains the experimental results well. Moreover, the 3MC (metal centered) states of these complexes are more stable than their 3MLCT (metal to ligand charge transfer) states, indicating that the photoactive processes of these complexes are likely to result in ligand dissociation.
Collapse
Affiliation(s)
- Jian Zhao
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Nannan Liu
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shuchen Sun
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Xinyi Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Zhimei Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Xiaoyan Li
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Wenjing Zhang
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
39
|
Cerda MM, Newton TD, Zhao Y, Collins BK, Hendon CH, Pluth MD. Dithioesters: simple, tunable, cysteine-selective H 2S donors. Chem Sci 2019; 10:1773-1779. [PMID: 30842844 PMCID: PMC6368244 DOI: 10.1039/c8sc04683b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Dithioesters have a rich history in polymer chemistry for RAFT polymerizations and are readily accessible through different synthetic methods. Here we demonstrate that the dithioester functional group is a tunable motif that releases H2S upon reaction with cysteine and that structural and electronic modifications enable the rate of cysteine-mediated H2S release to be modified. In addition, we use (bis)phenyl dithioester to carry out kinetic and mechanistic investigations, which demonstrate that the initial attack by cysteine is the rate-limiting step of the reaction. These insights are further supported by complementary DFT calculations. We anticipate that the results from these investigations will allow for the further development of dithioesters as important chemical motifs for studying H2S chemical biology.
Collapse
Affiliation(s)
- Matthew M Cerda
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Turner D Newton
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Yu Zhao
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Brylee K Collins
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| | - Michael D Pluth
- Department of Chemistry and Biochemistry , Materials Science Institute , Institute of Molecular Biology , University of Oregon , Eugene , Oregon 97403 , USA .
| |
Collapse
|
40
|
Li H, Yao Y, Shi H, Lei Y, Huang Y, Wang K, He X, Liu J. A near-infrared light-responsive nanocomposite for photothermal release of H2S and suppression of cell viability. J Mater Chem B 2019; 7:5992-5997. [DOI: 10.1039/c9tb01611b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Photothermal nanoparticles and thermo-labile precursors are combined together as a near-infrared light triggered photothermal H2S-release platform for synchronous photothermal stimulation and gas release to suppress cell viability.
Collapse
Affiliation(s)
- Haifeng Li
- A State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Yu Yao
- A State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Hui Shi
- A State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Yanli Lei
- School of Chemistry and Food Engineering
- Changsha University of Science and Technology
- Changsha 410114
- China
| | - Yan Huang
- A State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Kemin Wang
- A State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Xiaoxiao He
- A State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Jianbo Liu
- A State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| |
Collapse
|
41
|
Ballester FJ, Ortega E, Porto V, Kostrhunova H, Davila-Ferreira N, Bautista D, Brabec V, Domínguez F, Santana MD, Ruiz J. New half-sandwich ruthenium(ii) complexes as proteosynthesis inhibitors in cancer cells. Chem Commun (Camb) 2019; 55:1140-1143. [DOI: 10.1039/c8cc09211g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New Ru(ii) arene anticancer complexes with a non-coordinated CHO group that are able to inhibit the protein synthesis; this is a new mode of action for half-sandwich metal complexes.
Collapse
Affiliation(s)
- Francisco J. Ballester
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - Enrique Ortega
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - Vanesa Porto
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | - Hana Kostrhunova
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- 612 65 Brno
- Czech Republic
| | - Nerea Davila-Ferreira
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | | | - Viktor Brabec
- Institute of Biophysics
- Academy of Sciences of the Czech Republic
- v.v.i
- 612 65 Brno
- Czech Republic
| | - Fernando Domínguez
- CIMUS
- Universidad de Santiago de Compostela
- Avenida Barcelona s/n
- Santiago de Compostela
- Spain
| | - M. Dolores Santana
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| | - José Ruiz
- Departamento de Química Inorgánica
- Facultad de Química
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
- Universidad de Murcia
- E-30071 Murcia
| |
Collapse
|
42
|
Xu S, Hamsath A, Neill DL, Wang Y, Yang C, Xian M. Strategies for the Design of Donors and Precursors of Reactive Sulfur Species. Chemistry 2018; 25:4005-4016. [DOI: 10.1002/chem.201804895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/27/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Shi Xu
- Department of ChemistryWashington State University Pullman WA 99164 USA
| | - Akil Hamsath
- Department of ChemistryWashington State University Pullman WA 99164 USA
| | - Deshka L. Neill
- Department of ChemistryWashington State University Pullman WA 99164 USA
| | - Yingying Wang
- Department of ChemistryWashington State University Pullman WA 99164 USA
| | - Chun‐tao Yang
- School of Pharmaceutics ScienceGuangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Ming Xian
- Department of ChemistryWashington State University Pullman WA 99164 USA
- School of Pharmaceutics ScienceGuangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|