1
|
Hu C, Rees NH, Pink M, Goicoechea JM. Isolation and characterization of a two-coordinate phosphinidene oxide. Nat Chem 2024; 16:1855-1860. [PMID: 39009793 DOI: 10.1038/s41557-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Nitroso compounds, R-N=O, are common intermediates in organic synthesis, and are typically amenable to storage and manipulation at ambient temperature under aerobic conditions. By contrast, phosphorus-containing analogues, such as R-P=O (R = OH, CH3, OCH3, Ph), are extremely reactive and need to be studied in inert gas matrices at ultralow temperatures (3-15 K). These species are believed to be key intermediates in the degradation/combustion of organic phosphorus compounds, a class of chemicals that includes chemical warfare agents and flame retardants. Here we describe the isolation of a two-coordinate phosphorus(III) oxide under ambient conditions, enabled by the use of an extremely bulky amine ligand. Reactivity studies reveal that the phosphorus centre can be readily oxidized, and that in doing so, the P-O bond remains intact, an observation that is of interest to the proposed reactivity of transient phosphorus(III) oxides.
Collapse
Affiliation(s)
- Chenyang Hu
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Nicolas H Rees
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
2
|
Lu B, Jiang J, Wang L, Jupp AR, Goicoechea JM, Liu S, Li Z, Zhou M, Zeng X. Carbamoylphosphinidene: A Phosphorus Analogue of Carbonyl Nitrene. J Am Chem Soc 2024; 146:18699-18705. [PMID: 38943601 DOI: 10.1021/jacs.4c06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Carbonyl nitrenes are versatile intermediates that have been extensively characterized; however, their phosphorus analogues remain largely unknown. Herein, we report the observation of a rare example of carbonyl phosphinidene NH2C(O)P, which was generated through the photolytic (193 nm) dehydrogenation of phosphinecarboxamide (NH2C(O)PH2) in a solid N2-matrix at 12 K. The characterization of NH2C(O)P in the triplet ground state with matrix-isolation IR and ultraviolet-visible (UV-vis) spectroscopy is supported by comprehensive isotope labeling experiments (D and 15N) and quantum chemical calculations. Upon visible-light irradiation at 680 nm, NH2C(O)P inserts into dihydrogen by the reformation of NH2C(O)PH2 with concomitant isomerization to the more stable aminophosphaketene (NH2PCO). Additionally, the photoisomerization of NH2C(O)PH2 to NH2C(OH) = PH along with decomposition by yielding hydrogen-bonded complexes HNCO···PH3 and HPCO···NH3 has been observed in the matrix.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Andrew R Jupp
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jose M Goicoechea
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, United States
| | - Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510006 Guangzhou, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| |
Collapse
|
3
|
Deng G, Reimann M, Müller C, Lu Y, Kaupp M, Riedel S. Spectroscopic Identification of Trifluorosilylphosphinidene and Isomeric Phosphasilene and Silicon Trifluorophosphine Complex. Inorg Chem 2024; 63:7286-7292. [PMID: 38592208 DOI: 10.1021/acs.inorgchem.4c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The perfluorinated silylphosphinidene, F3SiP, in the triplet ground state is generated by the reaction of laser-ablated silicon atoms with PF3 in solid neon and argon matrices. The reactions proceed with the initial formation of a silicon trifluorophosphine complex, F3PSi, in the triplet ground state, and a more stable inserted phosphasilene, FPSiF2, in the singlet ground state upon deposition. The trifluorosilylphosphinidene was formed through F-migration reactions of FPSiF2 and F3PSi following a two-state mechanism under irradiation with visible light (λ = 470 nm) and full arc light (λ > 220 nm), respectively. High-level quantum-chemical methods support the identification of F3PSi, FPSiF2, and F3SiP by matrix-isolation IR spectroscopy.
Collapse
Affiliation(s)
- Guohai Deng
- Institut für Chemie und Biochemie-Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, Berlin 14195, Germany
| | - Marc Reimann
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, Berlin 10623, Germany
| | - Carsten Müller
- Institut für Chemie und Biochemie-Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, Berlin 14195, Germany
| | - Yan Lu
- Institut für Chemie und Biochemie-Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, Berlin 14195, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, Berlin 10623, Germany
| | - Sebastian Riedel
- Institut für Chemie und Biochemie-Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, Berlin 14195, Germany
| |
Collapse
|
4
|
Lortie JL, Davies M, Boyle PD, Karttunen M, Ragogna PJ. Chemoselective Staudinger Reactivity of Bis(azido)phosphines Supported with a π-Donating Imidazolin-2-iminato Ligand. Inorg Chem 2024; 63:6335-6345. [PMID: 38516707 DOI: 10.1021/acs.inorgchem.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Synthesis and characterization of new P(III) and P(V) bis(azido)phosphines/phosphoranes supported by an N,N'-bis(2,6-diisopropylphenyl) imidazolin-2-iminato (IPrN) ligand and their reactivity with various secondary and tertiary phosphines result in the formation of chiral and/or asymmetric mono(phosphinimino)azidophosphines via the Staudinger reaction. The reaction of IPrNP(N3)2 (2) or IPrNP(S)(N3)2 (4S) with an excess of tertiary phosphine resulted in the chemoselective formation of IPrNP(N3)(NPMe3) (7) or IPrNP(S)N3(NPR3) (5R), respectively. The chemoselective Staudinger reactivity was also observed in reactions using a secondary phosphine (HPCy2) to produce IPrNP(S)N3[NP(H)Cy2] (6a), which exists in equilibrium with a tautomeric IPrNP(S)N3[N(H)PCy2] form (6b), as confirmed by 31P-31P nuclear Overhauser effect spectroscopy (NOESY). Density functional theory (DFT) calculations point to a combination of energetically unfavorable lowest unoccupied molecular orbitals (LUMOs) and the accumulation of increasing negative charge at the terminal azido-nitrogen upon a single azide-to-phosphinimine conversion that gave rise to the observed chemoselectivity.
Collapse
Affiliation(s)
- John L Lortie
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Matthew Davies
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Paul D Boyle
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Paul J Ragogna
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Surface Science Western, London, Ontario N6G 0J3, Canada
| |
Collapse
|
5
|
Qian W, Schreiner PR, Mardyukov A. Preparation and Photochemistry of Parent Triplet Vinylarsinidene. J Am Chem Soc 2024; 146:930-935. [PMID: 38143310 DOI: 10.1021/jacs.3c11432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Vinyl pnictinidenes are an elusive family of molecules that have been suggested as key intermediates in multiple chemical reactions and commonly display a predisposition toward open-shell electronic ground states (as is evident from quantum chemical computations). However, owing to their expected extremely high reactivity, no vinyl pnictinidene has ever been isolated and characterized spectroscopically. Here, we report the synthesis and spectroscopic characterization of vinylarsinidene, a higher congener of vinylnitrene. As we demonstrate, triplet vinylarsinidene can be prepared through the low-temperature photolysis of diazidovinylarsine at 10 K in an argon matrix. The title compound can also be generated through high-vacuum flash pyrolysis of the diazide at 700 °C and trapped analogously. Triplet vinylarsinidene was characterized by IR and UV/vis spectroscopy and displayed remarkably rich unimolecular photochemistry. Upon selective photoirradiation, it rearranges to vinylidenearsine, 2H-arsirene, triplet ethynylarsinidene or an arsinidene (H-As) acetylene complex. The formation mechanisms of these products were rationalized with DFT and CASPT2 computations.
Collapse
Affiliation(s)
- Weiyu Qian
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Artur Mardyukov
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
6
|
Lu B, Zeng X. Phosphinidenes: Fundamental Properties and Reactivity. Chemistry 2023:e202303283. [PMID: 38108540 DOI: 10.1002/chem.202303283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Phosphinidenes are heavy congeners of nitrenes that have been broadly used as in situ reagents in synthetic phosphorus chemistry and also serve as versatile ligands in coordination with transition metals. However, the detection of free phosphinidenes is largely challenged by their high reactivity and also the lack of suitable synthetic methods, rendering the knowledge about the fundamental properties of this class of low-valent phosphorus compounds limited. Recently, an increasing number of free phosphinidenes bearing prototype structural and bonding properties have been prepared for the first time, thus enabling the exploration of their distinct reactivity from the nitrene analogues. This Concept article will discuss the experimental approaches for the generation of the highly unstable phosphinidenes and highlight their distinct reactivity from the nitrogen analogues so as to stimuate future studies about their potential applications in phosphorus chemistry.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
7
|
Zhong Q, Mardyukov A, Solel E, Ebeling D, Schirmeisen A, Schreiner PR. On-Surface Synthesis and Real-Space Visualization of Aromatic P 3 N 3. Angew Chem Int Ed Engl 2023; 62:e202310121. [PMID: 37702299 DOI: 10.1002/anie.202310121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
On-surface synthesis is at the verge of emerging as the method of choice for the generation and visualization of unstable or unconventional molecules, which could not be obtained via traditional synthetic methods. A case in point is the on-surface synthesis of the structurally elusive cyclotriphosphazene (P3 N3 ), an inorganic aromatic analogue of benzene. Here, we report the preparation of this fleetingly existing species on Cu(111) and Au(111) surfaces at 5.2 K through molecular manipulation with unprecedented precision, i.e., voltage pulse-induced sextuple dechlorination of an ultra-small (about 6 Å) hexachlorophosphazene P3 N3 Cl6 precursor by the tip of a scanning probe microscope. Real-space atomic-level imaging of cyclotriphosphazene reveals its planar D3h -symmetric ring structure. Furthermore, this demasking strategy has been expanded to generate cyclotriphosphazene from a hexaazide precursor P3 N21 via a different stimulation method (photolysis) for complementary measurements by matrix isolation infrared and ultraviolet spectroscopy.
Collapse
Affiliation(s)
- Qigang Zhong
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen, Germany
- Center for Materials Research (ZfM), Justus Liebig University Giessen, Giessen, Germany
| | - Artur Mardyukov
- Center for Materials Research (ZfM), Justus Liebig University Giessen, Giessen, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Ephrath Solel
- Center for Materials Research (ZfM), Justus Liebig University Giessen, Giessen, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Daniel Ebeling
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen, Germany
- Center for Materials Research (ZfM), Justus Liebig University Giessen, Giessen, Germany
| | - André Schirmeisen
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen, Germany
- Center for Materials Research (ZfM), Justus Liebig University Giessen, Giessen, Germany
| | - Peter R Schreiner
- Center for Materials Research (ZfM), Justus Liebig University Giessen, Giessen, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Lawzer AL, Ganesan E, Gronowski M, Custer T, Guillemin JC, Kołos R. Free Ethynylarsinidene and Ethynylstibinidene: Heavier Analogues of Nitrenes and Phosphinidenes. Chemistry 2023; 29:e202300887. [PMID: 37278982 DOI: 10.1002/chem.202300887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Until now, there has been very little experimental evidence for the existence of free arsinidenes and stibinidenes, apart from the hydrides, AsH and SbH. Here, we report on photogeneration of triplet ethynylarsinidene, HCCAs, and triplet ethynylstibinidene, HCCSb, from ethynylarsine and ethynylstibine, respectively, in solid argon matrices. The products were identified using infrared spectroscopy and the associated UV absorption spectra are interpreted with the aid of theoretical predictions.
Collapse
Affiliation(s)
- Arun-Libertsen Lawzer
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Elavenil Ganesan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Gronowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Thomas Custer
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jean-Claude Guillemin
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, IRCR-UMR 6226, 35000, Rennes, France
| | - Robert Kołos
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
9
|
Zechovský J, Kertész E, Kremláček V, Hejda M, Mikysek T, Erben M, Růžička A, Jambor R, Benkő Z, Dostál L. Exploring Differences between Bis(aldimino)- and amino-aldimino- N, C, N-Pincer-Stabilized Pnictinidenes: Limits of Synthesis, Structure, and Reversible Tautomerization-Controlled Oxidation. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Zechovský
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Erik Kertész
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Vít Kremláček
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Martin Hejda
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Tomáš Mikysek
- Department of Analytical Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Milan Erben
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Roman Jambor
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry and ELKH-BME Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Libor Dostál
- Department of General and Inorganic Chemistry, University of Pardubice, Studentská 573, CZ 532 10 Pardubice, Czech Republic
| |
Collapse
|
10
|
Jiang J, Zhu B, Jiang X, Lu B, Zeng X. Photochemistry of phosphenic chloride (ClPO 2): isomerization with chlorine metaphosphite (ClOPO) and reduction by carbon monoxide. Phys Chem Chem Phys 2022; 24:20828-20836. [PMID: 36040114 DOI: 10.1039/d2cp02986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphenic chloride (ClPO2) is an elusive congener of nitryl chloride (ClNO2). By high-vacuum flash pyrolysis of 2-chloro-1,3,2-dioxaphospholane in the gas phase, ClPO2 has been efficiently generated and subsequently isolated in cryogenic N2, Ar, and CO matrices (10 K) for a first time study on its photochemistry. Upon 193 nm laser irradiation, ClPO2 isomerizes to the novel chlorine metaphosphite (ClOPO) by initial cleavage of the Cl-P bond (→ ˙Cl + ˙PO2) with subsequent Cl-O bond formation inside the N2 and Ar matrix cages. The reverse transformation becomes feasible under further irradiation at 266 nm. This photochemistry is consistent with the observed absorptions of ClPO2 and ClOPO at 207 and 250 nm, respectively. When the photolysis was performed in solid CO ice, no isomerization occurs due to CO-trapping of the initially generated ˙Cl atoms by forming caged radical pair ClCO˙⋯˙PO2. Concomitantly, photolytic reduction of ClPO2 to ClPO by CO has been observed, yielding a weakly bonded molecular complex consisting of ClPO and CO2 bonded through short intermolecular C⋯O contact (2.910 Å). The characterization of ClPO, ClPO2, ClOPO, and the molecular complexes of ClPO2-CO and ClPO-CO2 using matrix-isolation IR and UV-vis spectroscopy is supported by the theoretical calculations at the B3LYP/6-311 + G(3df) level, and the photochemistry of ClPO2 is also compared with the revisited photochemistry of ClNO2 in the N2-matrix.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Bifeng Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Xin Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Zhu B, Jiang J, Lu B, Li X, Jiang X, Rauhut G, Zeng X. Phosphenic isocyanate (O2PNCO): Gas-phase generation, characterization, and photodecomposition reactions. Chem Commun (Camb) 2022; 58:10703-10706. [DOI: 10.1039/d2cc03178g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphenic isocyanate (O2PNCO), a novel phosphorus-containing small molecule has been generated by thermolysis of a dioxaphospholane-based precursor. The characterization of O2PNCO with IR and UV-vis spectroscopy in solid N2 and...
Collapse
|
12
|
Qian W, Lu B, Tan G, Rauhut G, Grützmacher H, Zeng X. Vibrational spectrum and photochemistry of phosphaketene HPCO. Phys Chem Chem Phys 2021; 23:19237-19243. [PMID: 34524290 DOI: 10.1039/d1cp02860j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational spectra of the simplest phosphaketene HPCO and its isotopologue DPCO in solid Ar-matrices at 12.0 K have been analyzed with the aid of the computations at the CCSD(T)-F12a/cc-pVTZ-F12 level using configuration-selective vibrational configuration interaction (VCI). In addition to the four IR fundamentals, four overtone and ten combination bands have been unambiguously identified. Furthermore, the photochemistry of HPCO in the matrix has been investigated for the first time. Upon UV-light irradiation (365 or 266 nm), CO-elimination occurs by forming the parent phosphinidene HP that can be trapped by ˙NO to yield the elusive phosphinimine-N-oxyl radical HPNO˙. In contrast, an excimer laser (193 nm) irradiation of HPCO causes additional decomposition to H˙ and ˙PCO with concomitant formation of the long-sought phosphaethyne HOCP.
Collapse
Affiliation(s)
- Weiyu Qian
- Department of Chemistry, Fudan University, 200433 Shanghai, China.
| | - Bo Lu
- Department of Chemistry, Fudan University, 200433 Shanghai, China.
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | | | - Xiaoqing Zeng
- Department of Chemistry, Fudan University, 200433 Shanghai, China.
| |
Collapse
|
13
|
Jing X, Zeng Y, Zhang X, Meng L, Li X. Competition and conversion between pnicogen bonds and hydrogen bonds involving prototype organophosphorus compounds. Phys Chem Chem Phys 2021; 23:18794-18805. [PMID: 34612418 DOI: 10.1039/d1cp00474c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio calculations have been performed to investigate the competition and conversion between the pnicogen bonds and hydrogen bonds in complexes containing prototype organophosphorus compounds RPO2 (R = CH3 and CH3O). The competition between the pnicogen bonds and hydrogen bonds is controlled by the magnitude of Vs,min and Vs,max in the prototype organophosphorus compounds. Monomeric methyl metaphosphate (CH3OPO2), with more positive π-holes, is more likely to form pnicogen bonds with different electron donors, such as NH3, H2O, HNC and HCCH. Methoxyphosphinidene oxide (trans- and cis-CH3OPO) is inclined to form hydrogen bonds with H2O, HNC and HCCH. Most of the pnicogen bonds have covalent or partially covalent character, while most of the hydrogen bonds exhibit the noncovalent characteristics of weak interactions. The mechanisms of three typical conversions between the pnicogen bond and the hydrogen bond have been investigated and the breakage and formation of the bonds along the reaction pathways have been analyzed using topological analysis of electron density. For the three studied conversion processes, the transformation between the hydrogen-bonded complex and pnicogen-bonded complex is achieved readily through several T-shape structure transition states.
Collapse
Affiliation(s)
- Xinyue Jing
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | | | | | | | | |
Collapse
|
14
|
Hu D, Lu B, Song C, Zhu B, Wang L, Bernhardt E, Zeng X. Synthesis and characterization of phosphorous(III) diisocyanate and triisocyanate. Dalton Trans 2021; 50:3299-3307. [PMID: 33595037 DOI: 10.1039/d1dt00261a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two phosphorous(iii) isocyanates, ClP(NCO)2 and P(NCO)3 were isolated as neat substances and characterized with IR (gas-phase and Ne-matrix), Raman (solid), and 31P NMR spectroscopy. Their vibrational spectra were analyzed in terms of a single conformer with the aid of quantum chemical computations at the B3LYP/6-311+G(3df) level of theory. In line with the theoretically computed favorable syn-configuration of the NCO ligands with the sterically active lone-pair electrons on the central phosphorous atom (nP), low-temperature single-crystal X-ray diffraction (XRD) of solid ClP(NCO)2 reveals a Cs symmetric syn-configuration for both NCO ligands with weak CO (r = 2.9692(4) Å) van der Waals (vdW) interactions. In the binary isocyante P(NCO)3, all the three NCO ligands adopt similar syn-configuration with nP, leading to a propeller-shaped structure with slightly distorted C3v symmetry due to steric repulsion of the NCO ligands and the PO vdW interactions (r = 3.1901(1) Å) in the solid state.
Collapse
Affiliation(s)
- Dandan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bo Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chao Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bifeng Zhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Lina Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Eduard Bernhardt
- FB C-Anorganische Chemie, Bergische Universität Wuppertal, Gaussstrasse 20, Wuppertal, 42119, Germany
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China and Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Synthesis and characterizations of fluorophosphoryl diazide and diisocyanate. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Chu X, Qian W, Lu B, Wang L, Qin J, Li J, Rauhut G, Trabelsi T, Francisco JS, Zeng X. The Triplet Hydroxyl Radical Complex of Phosphorus Monoxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xianxu Chu
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Weiyu Qian
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Bo Lu
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Lina Wang
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Jie Qin
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 401331 China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 401331 China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry University of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Tarek Trabelsi
- Department of Earth and Environment Science and Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6243 USA
| | - Joseph S. Francisco
- Department of Earth and Environment Science and Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6243 USA
| | - Xiaoqing Zeng
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
17
|
Chu X, Qian W, Lu B, Wang L, Qin J, Li J, Rauhut G, Trabelsi T, Francisco JS, Zeng X. The Triplet Hydroxyl Radical Complex of Phosphorus Monoxide. Angew Chem Int Ed Engl 2020; 59:21949-21953. [PMID: 33073924 DOI: 10.1002/anie.202011512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Indexed: 01/07/2023]
Abstract
Phosphorus monoxide (. PO) is a key intermediate in phosphorus chemistry, and its association with the hydroxyl radical (. OH) to yield metaphosphorous acid (cis-HOPO) contributes to the chemiluminescence in the combustion of phosphines. When photolyzing cis-HOPO in an Ar-matrix at 2.8 K, the simplest dioxophosphorane HPO2 and an elusive hydroxyl radical complex (HRC) of . PO form. This prototypical radical-radical complex reforms into cis-HOPO at above 12.0 K by overcoming a barrier of 0.28±0.02 kcal mol-1 . The vibrational spectra of this HRC and its D- and 18 O-isotopologues suggest a structure of . OH⋅⋅⋅OP. , for which a triplet spin multiplicity with a binding energy of -3.20 kcal mol-1 has been computed at the UCCSD(T)-F12a/aug-cc-pVTZ level.
Collapse
Affiliation(s)
- Xianxu Chu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bo Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lina Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Jie Qin
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Jun Li
- School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Tarek Trabelsi
- Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6243, USA
| | - Joseph S Francisco
- Department of Earth and Environment Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6243, USA
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
18
|
Mardyukov A, Keul F, Schreiner PR. Isolation and Characterization of the Free Phenylphosphinidene Chalcogenides C
6
H
5
P=O and C
6
H
5
P=S, the Phosphorous Analogues of Nitrosobenzene and Thionitrosobenzene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Artur Mardyukov
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Felix Keul
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R. Schreiner
- Institute of Organic Chemistry Justus Liebig University Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
19
|
Mardyukov A, Keul F, Schreiner PR. Isolation and Characterization of the Free Phenylphosphinidene Chalcogenides C 6 H 5 P=O and C 6 H 5 P=S, the Phosphorous Analogues of Nitrosobenzene and Thionitrosobenzene. Angew Chem Int Ed Engl 2020; 59:12445-12449. [PMID: 32311208 PMCID: PMC7384188 DOI: 10.1002/anie.202004172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/17/2020] [Indexed: 01/07/2023]
Abstract
The structures and reactivities of organic phosphinidene chalcogenides have been mainly inferred from trapping or complexation experiments. Phosphinidene chalcogenide derivatives appear to be an elusive family of molecules that have been suggested as reactive intermediates in multiple organophosphorus reactions. The quest to isolate "free" phosphinidene chalcogenides remains a challenge in the field. Here, we present the synthesis, IR, and UV/Vis spectroscopic identification of hitherto elusive phenylphosphinidene oxide and phenylphosphinidene sulfide from the corresponding phosphonic diazide precursors. We isolated these higher congeners of nitroso- and thionitrosobenzene in argon matrices at 10 K. The spectral assignments are supported by B3LYP/6-311++G(3df,3pd) and MP2/cc-pVTZ computations.
Collapse
Affiliation(s)
- Artur Mardyukov
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Felix Keul
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| | - Peter R. Schreiner
- Institute of Organic ChemistryJustus Liebig UniversityHeinrich-Buff-Ring 1735392GiessenGermany
| |
Collapse
|
20
|
Misochko EY, Akimov AV, Korchagin DV, Ganushevich YS, Melnikov EA, Miluykov VA. Generation and direct EPR spectroscopic observation of triplet arylphosphinidenes: stabilisation versus internal rearrangements. Phys Chem Chem Phys 2020; 22:27626-27631. [DOI: 10.1039/d0cp05254j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphinidene – to be or not to be: only the arylphosphinidenes with relatively small ortho-substituents are kinetically stable. EPR spectra of such stabilized intermediates have been detected for the first time.
Collapse
Affiliation(s)
| | | | | | - Yulia S. Ganushevich
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Kazan
- Russia
| | - Egor A. Melnikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Kazan
- Russia
| | - Vasili A. Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Kazan
- Russia
| |
Collapse
|
21
|
Zhao X, Song C, Hong K, Xu X, Chen C, Chu X, Zeng X. Spectroscopic identification of monomeric methyl metaphosphate. Dalton Trans 2019; 48:13907-13911. [PMID: 31469132 DOI: 10.1039/c9dt03367j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monomeric methyl metaphosphate (CH3OPO2), a highly electrophilic phosphorylating intermediate in chemical oligonucleotide synthesis, has been generated in the gas phase by high-vacuum flash pyrolysis (1000 K) of methyl 2-butenylphosphonate. In addition to the unambiguous characterization using IR spectroscopy in solid N2-, Ar-, and Ne-matrices, the formation CH3OPO2 in the photooxidation of the prototypical phosphinidene oxide CH3PO by O2 with 18O-isotope scrambling has been observed in the solid N2-matrix (15 K).
Collapse
Affiliation(s)
- Xiaofang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Chao Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Kemiao Hong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xinfang Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Changyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xianxu Chu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. and Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
22
|
Zhao X, Chu X, Rauhut G, Chen C, Song C, Lu B, Zeng X. Phosphorus Analogues of Methyl Nitrite and Nitromethane: CH
3
OPO and CH
3
PO
2. Angew Chem Int Ed Engl 2019; 58:12164-12169. [DOI: 10.1002/anie.201906874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaofang Zhao
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xianxu Chu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Guntram Rauhut
- Institute for Theoretical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Changyun Chen
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Chao Song
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Bo Lu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiaoqing Zeng
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|
23
|
Zhao X, Chu X, Rauhut G, Chen C, Song C, Lu B, Zeng X. Phosphorus Analogues of Methyl Nitrite and Nitromethane: CH
3
OPO and CH
3
PO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaofang Zhao
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xianxu Chu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Guntram Rauhut
- Institute for Theoretical ChemistryUniversity of Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Changyun Chen
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Chao Song
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Bo Lu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiaoqing Zeng
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
- Department of ChemistryFudan University Shanghai 200433 China
| |
Collapse
|
24
|
Ramanathan N, Sarkar S, Sankaran K, Sundararajan K. Photolysis of PCl 3
/POCl 3
with Oxygen Dopant Using 193 nm ArF Excimer at Low Temperatures: Oxygen Insertion through ‘Phosphadioxirane’ Pathway. ChemistrySelect 2019. [DOI: 10.1002/slct.201803318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nagarajan Ramanathan
- Materials Chemistry and Metal Fuel Cycle group; Homi Bhabha National Institute; Indira Gandhi Centre for Atomic Research; Kalpkkam- 603102 India
| | - Shubhra Sarkar
- Materials Chemistry and Metal Fuel Cycle group; Homi Bhabha National Institute; Indira Gandhi Centre for Atomic Research; Kalpkkam- 603102 India
| | - Kannan Sankaran
- Materials Chemistry and Metal Fuel Cycle group; Homi Bhabha National Institute; Indira Gandhi Centre for Atomic Research; Kalpkkam- 603102 India
| | - Kalyanasundaram Sundararajan
- Materials Chemistry and Metal Fuel Cycle group; Homi Bhabha National Institute; Indira Gandhi Centre for Atomic Research; Kalpkkam- 603102 India
| |
Collapse
|
25
|
Chu X, Song C, Yang Y, Zeng X. Oxidation of a phosphinidene oxide: formation of a dioxaphosphirane oxide with oxygen scrambling. Chem Commun (Camb) 2018; 55:245-248. [PMID: 30534675 DOI: 10.1039/c8cc08945k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of a prototypical phosphinidene oxide FP[double bond, length as m-dash]O has been studied in O2-doped Ar and N2 matrices at 10 K. Upon 266 nm laser irradiation, FP[double bond, length as m-dash]O combines with O2 and yields the cyclic peroxide, dioxaphosphirane oxide FP([double bond, length as m-dash]O)(O2). Unexpected oxygen scrambling occurs during the oxygenation as evidenced by the observation of a 1 : 2 mixture of FP([double bond, length as m-dash]16O)(18O18O) and FP([double bond, length as m-dash]18O)(16O18O) when 18O2 was used. Quantum chemical calculations suggest that the scrambling happens via the intermediacy of the low-lying triplet FPO3 by passing minimum energy crossing points (MECPs). In addition, inorganic dioxophosphorane FP([double bond, length as m-dash]O)2 has been also identified among the oxidation products of FP[double bond, length as m-dash]O.
Collapse
Affiliation(s)
- Xianxu Chu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | | | | | | |
Collapse
|