1
|
Zhu X, Liu P, Fang F, Wang H, Alimi LO, Moosa BA, Khashab NM. An Organic Vapor-Responsive Actuator Based on a Novel Urea Macrocycle. Chemistry 2025; 31:e202403657. [PMID: 39584427 DOI: 10.1002/chem.202403657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The mechanical actuation of smart materials has garnered considerable attention in biological and medical research due to their ability to mimic biological processes at both molecular level, such as conformational changes in individual compounds, and at the macroscopic level, where polymeric substrates respond to external stimuli. In this study, we present a polymeric composite incorporating a novel urea macrocycle as a filler, forming a soft actuator that responds to various organic solvent vapors. The underlying actuation mechanism is attributed to crystalline phase transition of urea macrocycle, driven by the host-guest interactions with diverse guest molecules. This work provides valuable insights for advancing the design of supramolecular hosts in smart material applications.
Collapse
Affiliation(s)
- Xuanfu Zhu
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Haochen Wang
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lukman O Alimi
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Basem A Moosa
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Guo Y, Xiao J, Ai F, Yang X, Zeng K, Wang Y, Li X, Zhang Z, Zhao H. Highly responsive cryogel based sensing platform by encapsulating programmed DNA for colorimetric detection of 17β-estradiol. Anal Chim Acta 2025; 1334:343394. [PMID: 39638461 DOI: 10.1016/j.aca.2024.343394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
Responsive hydrogels show obvious superiorities when being employed at detection owing to their polymeric networks and optical properties. Albeit important, the slow response of traditional hydrogels against targets limits their further applications, and enhancing the responsiveness of hydrogel is therefore imperative. Herein, a cryogel with hierarchical structures was designed through adjusting the hydrogel structure by the freezing process to improve the responsive properties, and fabricated for rapid analysis of 17β-estradiol (E2). The cryogel encapsulating the DNA hairpins rapidly adsorbed the complementary DNA isolated from the aptamer in the presence of E2 and activated an efficient hybridization chain reaction (HCR). After integration with a smartphone system, a portable colorimetric sensing platform was created for sensitive detection of E2 with a low detection limit of 0.5 nM. Our work provides a promising way for highly responsive hydrogel-based biosensor design, and broadens their applications in rapid and portable target detection.
Collapse
Affiliation(s)
- Yujia Guo
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiaxuan Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fengxiang Ai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaofeng Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yuhan Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Hongjun Zhao
- The Quzhou Affiliated Hospital of Wenzhon Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, China.
| |
Collapse
|
3
|
Yang L, Wang H, Yang Y, Li Y. Self-healing cellulose-based hydrogels: From molecular design to multifarious applications. Carbohydr Polym 2025; 347:122738. [PMID: 39486967 DOI: 10.1016/j.carbpol.2024.122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 11/04/2024]
Abstract
Self-healing cellulose-based hydrogels (SHCHs) exhibit wide-ranging potential applications in the fields of biomedicine, environmental management, energy storage, and smart materials due to their unique physicochemical properties and biocompatibility. This review delves into the molecular design principles, performance characteristics, and diverse applications of SHCHs. Firstly, the molecular structure and physicochemical properties of cellulose are analyzed, along with strategies for achieving self-healing properties through molecular design, with particular emphasis on the importance of self-healing mechanisms. Subsequently, methods for optimizing the performance of SHCHs through chemical modification, composite reinforcement, stimulus responsiveness, and functional integration technologies are discussed in detail. Furthermore, applications of SHCHs in drug delivery, tissue engineering, wound healing, smart sensing, supercapacitors, electronic circuits, anti-counterfeiting systems, oil/water separation, and food packaging are explored. Finally, future research directions for SHCHs are outlined, including the innovative development of new SHCHs, in-depth elucidation of cooperative strengthening mechanisms, a further expansion of application scope, and the establishment of intelligent systems. This review provides researchers with a comprehensive overview of SHCHs and serves as a reference and guide for future research and development.
Collapse
Affiliation(s)
- Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| | - Yanpeng Li
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China
| |
Collapse
|
4
|
Alnajjar MA, Hennig A. Fluorescence Turn-ON Displacement Assays with Cucurbit[7]uril-Thiophenylpyridinium Complexes as Host-Dye Reporter Pairs. Org Lett 2024; 26:9126-9131. [PMID: 39401389 DOI: 10.1021/acs.orglett.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The N-methyl-4-thiophenylpyridinium cation (ThioPy) is a high affinity (Kd ca. 5 nM), fast-exchanging fluorescent probe for cucurbit[7]uril (CB7). The CB7/ThioPy complex shows a unique fluorescence turn-ON response upon displacement by an analyte in sensing application. This enabled the development of a real-time fluorescence assay with the MRFA peptide for the protease thermolysin, which is also suitable for the cancer biomarker cathepsin B. Moreover, liposome encapsulation of CB7/ThioPy in large unilamellar vesicles (LUVs) provided mechanistic insight into intravesicular dye displacement reactions.
Collapse
Affiliation(s)
- Mohammad A Alnajjar
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| |
Collapse
|
5
|
Ouyang Y, Zhang P, Willner I. DNA Tetrahedra as Functional Nanostructures: From Basic Principles to Applications. Angew Chem Int Ed Engl 2024; 63:e202411118. [PMID: 39037936 DOI: 10.1002/anie.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Self-assembled supramolecular DNA tetrahedra composed of programmed sequence-engineered complementary base-paired strands represent elusive nanostructures having key contributions to the development and diverse applications of DNA nanotechnology. By appropriate engineering of the strands, DNA tetrahedra of tuneable sizes and chemical functionalities were designed. Programmed functionalities for diverse applications were integrated into tetrahedra structures including sequence-specific recognition strands (aptamers), catalytic DNAzymes, nanoparticles, proteins, or fluorophore. The article presents a comprehensive review addressing methods to assemble and characterize the DNA tetrahedra nanostructures, and diverse applications of DNA tetrahedra framework are discussed. Topics being addressed include the application of structurally functionalized DNA tetrahedra nanostructure for the assembly of diverse optical or electrochemical sensing platforms and functionalized intracellular sensing and imaging modules. In addition, the triggered reconfiguration of DNA tetrahedra nanostructures and dynamic networks and circuits emulating biological transformations are introduced. Moreover, the functionalization of DNA tetrahedra frameworks with nanoparticles provides building units for the assembly of optical devices and for the programmed crystallization of nanoparticle superlattices. Finally, diverse applications of DNA tetrahedra in the field of nanomedicine are addressed. These include the DNA tetrahedra-assisted permeation of nanocarriers into cells for imaging, controlled drug release, active chemodynamic/photodynamic treatment of target tissues, and regenerative medicine.
Collapse
Affiliation(s)
- Yu Ouyang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Pu Zhang
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Current address: Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P.R. China
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
6
|
Du M, Li C. Engineering Supramolecular Hydrogels via Reversible Photoswitching of Cucurbit[8]uril-Spiropyran Complexation Stoichiometry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408484. [PMID: 39188206 DOI: 10.1002/adma.202408484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/16/2024] [Indexed: 08/28/2024]
Abstract
The integration of photoswitchable supramolecular units into hydrogels allows for spatiotemporal control over their nanoscale topological network and macroscale properties using light. Nevertheless, the current availability of photoswitchable supramolecular interactions for the development of such materials remains limited. Here, the molecular design of a novel photoswitchable cucurbit[8]uril-spiropyran host-guest complex exhibiting fast and reversible switching of binding ratios between 1:2 and 1:1 is reported. Photoswitchable complexation stoichiometries are rationally exploited as (de)crosslinking units in multiple polymers for the design of supramolecular hydrogels displaying highly dynamic and switchable features that are spatiotemporally controlled by light. The hydrogels exhibit rapid reversible mechanical softening-hardening upon alternating irradiation with blue and UV light, which is used to significantly accelerate and improve the efficiency of self-healing and shape-remolding of hydrogels. Furthermore, spiropyran endows such materials with unique reversible photochromic properties for reproducible patterning/erasing and information storage. Using a dual-light-assisted extrusion process, meter-scale hydrogel fibers with enhanced structural integrity and photoswitchable ionic conductivity are constructed and woven into various slidable knots and fluorescent shapes. This work represents an innovative molecular design strategy for advancing the development of spatiotemporally engineered supramolecular hydrogels using light and opens avenues for their prospective applications in dynamic materials and adaptive systems.
Collapse
Affiliation(s)
- Mengqi Du
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuang Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
7
|
Pu M, Cao H, Zhang H, Wang T, Li Y, Xiao S, Gu Z. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. MATERIALS HORIZONS 2024; 11:3721-3746. [PMID: 38894682 DOI: 10.1039/d4mh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.
Collapse
Affiliation(s)
- Minju Pu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| |
Collapse
|
8
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
9
|
Luo R, Xiang X, Jiao Q, Hua H, Chen Y. Photoresponsive Hydrogels for Tissue Engineering. ACS Biomater Sci Eng 2024; 10:3612-3630. [PMID: 38816677 DOI: 10.1021/acsbiomaterials.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Hydrophilic and biocompatible hydrogels are widely applied as ideal scaffolds in tissue engineering. The "smart" gelation material can alter its structural, physiochemical, and functional features in answer to various endo/exogenous stimuli to better biomimic the endogenous extracellular matrix for the engineering of cells and tissues. Light irradiation owns a high spatial-temporal resolution, complete biorthogonal reactivity, and fine-tunability and can thus induce physiochemical reactions within the matrix of photoresponsive hydrogels with good precision, efficiency, and safety. Both gel structure (e.g., geometry, porosity, and dimension) and performance (like conductivity and thermogenic or mechanical properties) can hence be programmed on-demand to yield the biochemical and biophysical signals regulating the morphology, growth, motility, and phenotype of engineered cells and tissues. Here we summarize the strategies and mechanisms for encoding light-reactivity into a hydrogel and demonstrate how fantastically such responsive gels change their structure and properties with light irradiation as desired and thus improve their applications in tissue engineering including cargo delivery, dynamic three-dimensional cell culture, and tissue repair and regeneration, aiming to provide a basis for more and better translation of photoresponsive hydrogels in the clinic.
Collapse
Affiliation(s)
- Rui Luo
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Xianjing Xiang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Qiangqiang Jiao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Hui Hua
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
10
|
Baretta R, Davidson-Rozenfeld G, Gutkin V, Frasconi M, Willner I. Chemical and Photochemical-Driven Dissipative Fe 3+/Fe 2+-Ion Cross-Linked Carboxymethyl Cellulose Gels Operating Under Aerobic Conditions: Applications for Transient Controlled Release and Mechanical Actuation. J Am Chem Soc 2024; 146:9957-9966. [PMID: 38547022 PMCID: PMC11009950 DOI: 10.1021/jacs.4c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
A Fe3+-ion cross-linked carboxymethyl cellulose, Fe3+-CMC, redox-active gel exhibiting dissipative, transient stiffness properties is introduced. Chemical or photosensitized reduction of the higher-stiffness Fe3+-CMC to the lower-stiffness Fe2+-CMC gel, accompanied by the aerobic reoxidation of the Fe2+-CMC matrix, leads to the dissipative, transient stiffness, functional matrix. The light-induced, temporal, transient release of a load (Texas red dextran) and the light-triggered, transient mechanical bending of a poly-N-isopropylacrylamide (p-NIPAM)/Fe3+-CMC bilayer construct are introduced, thus demonstrating the potential use of the dissipative Fe3+-CMC gel for controlled drug release or soft robotic applications.
Collapse
Affiliation(s)
- Roberto Baretta
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Gilad Davidson-Rozenfeld
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Vitaly Gutkin
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Marco Frasconi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Itamar Willner
- The
Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Yin M, Zhang Y, Liang H, Liu C, Bi Y, Sun J, Guo W. Smart Free-Standing Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film-Based Sensing System Using Changes in Bending Angles as a Visual Signal Readout. Anal Chem 2024; 96:5215-5222. [PMID: 38506337 DOI: 10.1021/acs.analchem.3c05562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Stimuli-responsive DNA hydrogels have shown great potential in sensing applications due to their attractive properties such as programmable target responsiveness, excellent biocompatibility, and biodegradability. In contrast to the extensively developed DNA hydrogel sensing systems based on the stimuli-responsive hydrogel-to-solution phase transition of the hydrogel matrix, the quantitative sensing application of DNA hydrogels exhibiting smart shape deformations has rarely been explored. Moreover, bulk DNA hydrogel-based sensing systems also suffer from high material cost and slow response. Herein, free-standing bilayer polyacrylamide/DNA hybrid hydrogel films with programmable responsive properties directed by the sequence of functional DNA units have been constructed. Compared with bulk DNA hydrogels, these DNA hydrogel films with a thickness at the micrometer scale not only greatly reduce the consumption of DNA materials but also facilitate the mass transfer of biomacromolecular substances within the hydrogel network, thus favoring their sensing applications. Therefore, a target-responsive smart DNA hydrogel film-based sensor system is further demonstrated based on the large amplitude macroscopic shape deformation of the film as a visual signal readout. As a proof of concept, Pb2+ or UO22+ ion-responsive DNA units were introduced into the active layer of the bilayer hydrogel films. In the presence of Pb2+ or UO22+ ions, the occurrence of a cleavage reaction within the DNA units leads to the release of DNA segments from the hydrogel film, inducing a dramatic shape deformation of the film, and thus sensing of Pb2+ or UO22+ ions with high specificity is achieved based on measuring the bending angle changes of these smart free-standing films. These smart DNA hydrogel film sensors with target-programmable responsiveness, simple operation, and ease of storage may hold promise for future rapid on-site testing applications.
Collapse
Affiliation(s)
- Mengyuan Yin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yaxing Zhang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanxue Liang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanhui Bi
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Juanjuan Sun
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Qu W, Bi Z, Zou C, Chen C. Light, Heat, and Force-Responsive Polyolefins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307568. [PMID: 38183385 PMCID: PMC10953547 DOI: 10.1002/advs.202307568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Indexed: 01/08/2024]
Abstract
Stimuli-responsive polymers have found applications as shape-memory materials, optical switches, and sensors, but the installation of these responsive properties in non-polar and inert polyolefins is challenging. In this contribution, a series of spiropyran (SP)-based comonomers are synthesized and copolymerized with ethylene or ethylene/cyclic monomers. In addition to great mechanical and surface properties, these functionalized polyolefins responded to light, heat, and force, which induced changes in the polymer structure to transmit color or mechanical signals. These interesting responsive properties are also installed in a series of commercial polyolefin materials through reactive extrusion, making the scalable production of these materials possible.
Collapse
Affiliation(s)
- Weicheng Qu
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhengxing Bi
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Chen Zou
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent ChemistryDepartment of Polymer Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
13
|
Wang S, Hu N, Deng B, Wang H, Qiao R, Li C. A Guanosine-Derived Antitumor Supramolecular Prodrug. Biomacromolecules 2024; 25:290-302. [PMID: 38065622 DOI: 10.1021/acs.biomac.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The prodrug strategy for its potential to enhance the pharmacokinetic and/or pharmacodynamic properties of drugs, especially chemotherapeutic agents, has been widely recognized as an important means to improve therapeutic efficiency. Irinotecan's active metabolite, 7-ethyl-10-hydroxycamptothecin (SN38), a borate derivative, was incorporated into a G-quadruplex hydrogel (GB-SN38) by the ingenious and simple approach. Drug release does not depend on carboxylesterase, thus bypassing the side effects caused by ineffective activation, but specifically responds to the ROS-overexpressed tumor microenvironment by oxidative hydrolysis of borate ester that reduces serious systemic toxicity from nonspecific biodistribution of SN38. Comprehensive spectroscopy was used to define the structural and physicochemical characteristics of the drug-loaded hydrogel. The GB-SN38 hydrogel's high level of biosafety and notable tumor-suppressive properties were proven in in vitro and in vivo tests.
Collapse
Affiliation(s)
- Shuyun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Nanrong Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Bo Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Hongyue Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
14
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
15
|
Chen X, Zhao Y, Zhang Y, Li B, Li Y, Jiang L. Optical Manipulation of Soft Matter. SMALL METHODS 2023:e2301105. [PMID: 37818749 DOI: 10.1002/smtd.202301105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Optical manipulation has emerged as a pivotal tool in soft matter research, offering superior applicability, spatiotemporal precision, and manipulation capabilities compared to conventional methods. Here, an overview of the optical mechanisms governing the interaction between light and soft matter materials during manipulation is provided. The distinct characteristics exhibited by various soft matter materials, including liquid crystals, polymers, colloids, amphiphiles, thin liquid films, and biological soft materials are highlighted, and elucidate their fundamental response characteristics to optical manipulation techniques. This knowledge serves as a foundation for designing effective strategies for soft matter manipulation. Moreover, the diverse range of applications and future prospects that arise from the synergistic collaboration between optical manipulation and soft matter materials in emerging fields are explored.
Collapse
Affiliation(s)
- Xixi Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
16
|
Aryal P, Morris J, Adhikari SB, Bietsch J, Wang G. Synthesis and Self-Assembling Properties of Carbohydrate- and Diarylethene-Based Photoswitchable Molecular Gelators. Molecules 2023; 28:6228. [PMID: 37687056 PMCID: PMC10488493 DOI: 10.3390/molecules28176228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Carbohydrate-based low-molecular-weight gelators are interesting new materials with many potential applications. These compounds can be designed to include multiple stimuli-responsive functional groups. In this study, we designed and synthesized several chemically responsive bola-glycolipids and dimeric carbohydrate- and diarylethene-based photoswitchable derivatives. The dimeric glycolipids formed stable gels in a variety of solvent systems. The best performing gelators in this series contained decanedioic and dithienylethene (DTE) spacers, which formed gels in eight and nine of the tested solvents, respectively. The two new DTE-containing esters possessed interesting photoswitching properties and DTE derivative 7 was found to have versatile gelation properties in many solvents, including DMSO solutions at low concentrations. The gels formed by these compounds were stable under acidic conditions and tended to hydrolyze under basic conditions. Several gels were used to absorb rhodamine B and Toluidine blue from aqueous solutions. In this study, we demonstrated the rational design of molecular gelators which incorporated photoresponsive and pH responsive functions, leading to the discovery of multiple effective stimuli-responsive gelators.
Collapse
Affiliation(s)
| | | | | | | | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Avenue, Norfolk, VA 23529-0126, USA; (P.A.); (J.M.); (S.B.A.); (J.B.)
| |
Collapse
|
17
|
Dong J, Willner I. Transient Transcription Machineries Modulate Dynamic Functions of G-Quadruplexes: Temporal Regulation of Biocatalytic Circuits, Gene Replication and Transcription. Angew Chem Int Ed Engl 2023; 62:e202307898. [PMID: 37380611 DOI: 10.1002/anie.202307898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Native G-quadruplex-regulated temporal biocatalytic circuits, gene polymerization, and transcription processes are emulated by biomimetic, synthetically engineered transcription machineries coupled to reconfigurable G-quadruplex nanostructures. These are addressed by the following example: (i) A reaction module demonstrates the fuel-triggered transcription machinery-guided transient synthesis of G-quadruplex nanostructures. (ii) A dynamically triggered and modulated transcription machinery that guides the temporal separation and reassembly of the anti-thrombin G-quadruplex aptamer/thrombin complex is introduced, and the transient thrombin-catalyzed coagulation of fibrinogen is demonstrated. (iii) A dynamically fueled transient transcription machinery for the temporal activation of G-quadruplex-topologically blocked gene polymerization circuits is introduced. (iv) Transcription circuits revealing G-quadruplex-promoted or G-quadruplex-inhibited cascaded transcription machineries are presented. Beyond advancing the rapidly developing field of dynamically modulated G-quadruplex DNA nanostructures, the systems introduce potential therapeutic applications.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
18
|
Fadeev M, Davidson-Rozenfeld G, Li Z, Willner I. Stimuli-Responsive DNA-Based Hydrogels on Surfaces for Switchable Bioelectrocatalysis and Controlled Release of Loads. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37011-37025. [PMID: 37477942 PMCID: PMC10401574 DOI: 10.1021/acsami.3c06230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The assembly of enzyme [glucose oxidase (GOx)]-loaded stimuli-responsive DNA-based hydrogels on electrode surfaces, and the triggered control over the stiffness of the hydrogels, provides a means to switch the bioelectrocatalytic functions of the hydrogels. One system includes the assembly of GOx-loaded, pH-responsive, hydrogel matrices cross-linked by two cooperative nucleic acid motives comprising permanent duplex nucleic acids and "caged" i-motif pH-responsive duplexes. Bioelectrocatalyzed oxidation of glucose leads to the formation of gluconic acid that acidifies the hydrogel resulting in the separation of the i-motif constituents and lowering the hydrogel stiffness. Loading of the hydrogel matrices with insulin results in the potential-triggered, glucose concentration-controlled, switchable release of insulin from the hydrogel-modified electrodes. The switchable bioelectrocatalyzed release of insulin is demonstrated in the presence of ferrocenemethanol as a diffusional electron mediator or by applying an electrically wired integrated matrix that includes ferrocenyl-modified GOx embedded in the hydrogel. The second GOx-loaded, stimuli-responsive, DNA-based hydrogel matrix associated with the electrode includes a polyacrylamide hydrogel cooperatively cross-linked by duplex nucleic acids and "caged" G-quadruplex-responsive duplexes. The hydrogel matrix undergoes K+-ions/crown ether-triggered stiffness changes by the cyclic K+-ion-stimulated formation of G-quadruplexes (lower stiffness) and the crown ether-induced separation of the G-quadruplexes (higher stiffness). The hydrogel matrices demonstrate switchable bioelectrocatalytic functions guided by the stiffness properties of the hydrogels.
Collapse
Affiliation(s)
- Michael Fadeev
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gilad Davidson-Rozenfeld
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhenzhen Li
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Center
for Nanoscience and Nanotechnology, The
Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Alipour S, Pourjavadi A, Hosseini SH. Magnetite embedded κ-carrageenan-based double network nanocomposite hydrogel with two-way shape memory properties for flexible electronics and magnetic actuators. Carbohydr Polym 2023; 310:120610. [PMID: 36925232 DOI: 10.1016/j.carbpol.2023.120610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Shape memory hydrogels attract increasing attention as flexible strain sensors due to their shape recovery property that can improve the lifetime of the sensor. Herein, we have designed a magnetic shape memory hydrogel based on Fe3O4 nanoparticles, carrageenan, and poly (acrylamide-co-acrylic acid) with self-adhesive and conductive properties. The resulting double network hydrogel showed promising actuator and strain sensor applications. Electrical conductivity was observed in this hydrogel without using additional ions. The presence of magnetite nanoparticles increased the tensile strength and temporary shape fixity ratio to around 6.5 MPa and 94.3 %, respectively. The excellent cantilever and catheter-like behavior of the hydrogels were illustrated through magnetic routing by an external magnet. Also, these hydrogels demonstrated suitable performance in the 500 cycles strain sensing tests before and after their initial shape recovery.
Collapse
Affiliation(s)
- Sakineh Alipour
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
20
|
Zhou WL, Dai XY, Lin W, Chen Y, Liu Y. A pillar[5]arene noncovalent assembly boosts a full-color lanthanide supramolecular light switch. Chem Sci 2023; 14:6457-6466. [PMID: 37325139 PMCID: PMC10266474 DOI: 10.1039/d3sc01425h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
A photo-responsive full-color lanthanide supramolecular switch was constructed from a synthetic 2,6-pyridine dicarboxylic acid (DPA)-modified pillar[5]arene (H) complexing with lanthanide ion (Ln3+ = Tb3+ and Eu3+) and dicationic diarylethene derivative (G1) through a noncovalent supramolecular assembly. Benefiting from the strong complexation between DPA and Ln3+ with a 3 : 1 stoichiometric ratio, the supramolecular complex H/Ln3+ presented an emerging lanthanide emission in the aqueous and organic phase. Subsequently, a network supramolecular polymer was formed by H/Ln3+ further encapsulating dicationic G1via the hydrophobic cavity of pillar[5]arene, which greatly contributed to the increased emission intensity and lifetime, and also resulted in the formation of a lanthanide supramolecular light switch. Moreover, full-color luminescence, especially white light emission, was achieved in aqueous (CIE: 0.31, 0.32) and dichloromethane (CIE: 0.31, 0.33) solutions by the adjustment of different ratios of Tb3+ and Eu3+. Notably, the photo-reversible luminescence properties of the assembly were tuned via alternant UV/vis light irradiation due to the conformation-dependent photochromic energy transfer between the lanthanide and the open/closed-ring of diarylethene. Ultimately, the prepared lanthanide supramolecular switch was successfully applied to anti-counterfeiting through the use of intelligent multicolored writing inks, and presents new opportunities for the design of advanced stimuli-responsive on-demand color tuning with lanthanide luminescent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University Tongliao 028000 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271016 China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| |
Collapse
|
21
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
22
|
Zhu Y, Haghniaz R, Hartel MC, Mou L, Tian X, Garrido PR, Wu Z, Hao T, Guan S, Ahadian S, Kim HJ, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Advances in Bioinspired Hydrogels: Materials, Devices, and Biosignal Computing. ACS Biomater Sci Eng 2023; 9:2048-2069. [PMID: 34784170 PMCID: PMC10823919 DOI: 10.1021/acsbiomaterials.1c00741] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems. We will provide an overview of different types of bioinspired hydrogels tailored for wearable devices. Next, we will discuss the recent progress of bioinspired hydrogel wearable devices such as electronic skin and smart contact lenses. Also, we will comprehensively summarize biosignal readout methods for hydrogel wearable devices as well as advances in powering and wireless data transmission technologies. Finally, current challenges facing these wearable devices are discussed, and future directions are proposed.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, California 90095, United States
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Xinyu Tian
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pamela Rosario Garrido
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Department of Electric and Electronic Engineering, Technological Institute of Merida, Merida, Yucatan 97118, Mexico
| | - Zhuohong Wu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Taige Hao
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Shenghan Guan
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90064, United States
| |
Collapse
|
23
|
García MM, Yepes PM, Sánchez HV, Hernández HC. Blends of nitrophenylmaleimide isomers with carboxymethylcellulose for the preparation of supramolecular polymers. Heliyon 2023; 9:e16108. [PMID: 37215785 PMCID: PMC10192847 DOI: 10.1016/j.heliyon.2023.e16108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Novel water-compatible supramolecular polymers (WCSP) based on the non-covalent interaction between carboxymethylcellulose (CMC) and o, m, and p-nitrophenylmaleimide isomers are proposed. The non-covalent supramolecular polymer was obtained from high viscosity CMC with a degree of substitution 1.03 with o, m, and p-nitrophenylmaleimide molecules that were synthesized from maleic anhydride and its corresponding nitroaniline. Subsequently, blends were made at different nitrophenylmaleimide concentrations, stirring rate, and temperatures, with 1.5% CMC, to select the best conditions for each case and to evaluate the rheological properties. The selected blends were used to form films and analyze spectroscopic, physicochemical, and biological properties. Then, the interaction between a CMC monomer and each isomer of nitrophenylmaleimide was investigated using quantum chemistry computational calculations with the B3LYP/6-311 + G (d,p) method, providing a detailed explanation of their intermolecular interactions. The supramolecular polymers obtained exhibit an increase in viscosity of blends between 20% and 30% compared to CMC, a shift in the wavenumber of the OH infrared band by approximately 66 cm-1, and the first decomposition peak at the glass transition temperature occurring between 70 and 110 °C. These changes in properties are attributed to the formation of hydrogen bonds between the species. However, the degree of substitution and the viscosity of the CMC affects the physical, chemical, and biological properties of the polymer obtained. The supramolecular polymers are biodegradable regardless of the type of blends made and are easily obtainable. Notably, the CMC with m-nitrophenylmaleimide yields the polymer with the best properties.
Collapse
Affiliation(s)
- Maribel Montoya García
- Photocatalysis and Solid-state Research Group, School of Chemistry, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| | | | - Hoover Valencia Sánchez
- Photocatalysis and Solid-state Research Group, School of Chemistry, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| | - Héctor Cortés Hernández
- Photocatalysis and Solid-state Research Group, School of Chemistry, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| |
Collapse
|
24
|
Wang H, Wang X, Lai K, Yan J. Stimulus-Responsive DNA Hydrogel Biosensors for Food Safety Detection. BIOSENSORS 2023; 13:320. [PMID: 36979532 PMCID: PMC10046603 DOI: 10.3390/bios13030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.
Collapse
|
25
|
Wang Q, Wang XF, Sun WQ, Lin RL, Ye MF, Liu JX. Supramolecular Host-Guest Hydrogel Based on γ-Cyclodextrin and Carboxybenzyl Viologen Showing Reversible Photochromism and Photomodulable Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2479-2485. [PMID: 36583679 DOI: 10.1021/acsami.2c20153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Much effort has been devoted to the development of supramolecular hydrogels due to their broad applications and conveniently controllable properties. Here, we demonstrate a novel supramolecular host-guest hydrogel, which is constructed by the host γ-CD complexed with the guest 1-(4-carboxybenzyl)-4,4'-bipyridinium chloride (1+·Cl-) through the π···π interaction, hydrogen bonding, and host-guest interactions. The supramolecular hydrogel [1+@γ-CD]n exhibits reversible electron transfer photochromic behavior and photomodulable fluorescence. The excellent photochromic and fluorescence properties support the practical utility of the supramolecular hydrogel as a visual display and anti-counterfeiting material.
Collapse
Affiliation(s)
- Qin Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Xiao-Feng Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wen-Qi Sun
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Ming-Fu Ye
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
26
|
Current Self-Healing Binders for Energetic Composite Material Applications. Molecules 2023; 28:molecules28010428. [PMID: 36615616 PMCID: PMC9823830 DOI: 10.3390/molecules28010428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Energetic composite materials (ECMs) are the basic materials of polymer binder explosives and composite solid propellants, which are mainly composed of explosive crystals and binders. During the manufacturing, storage and use of ECMs, the bonding surface is prone to micro/fine cracks or defects caused by external stimuli such as temperature, humidity and impact, affecting the safety and service of ECMs. Therefore, substantial efforts have been devoted to designing suitable self-healing binders aimed at repairing cracks/defects. This review describes the research progress on self-healing binders for ECMs. The structural designs of these strategies to manipulate macro-molecular and/or supramolecular polymers are discussed in detail, and then the implementation of these strategies on ECMs is discussed. However, the reasonable configuration of robust microstructures and effective dynamic exchange are still challenges. Therefore, the prospects for the development of self-healing binders for ECMs are proposed. These critical insights are emphasized to guide the research on developing novel self-healing binders for ECMs in the future.
Collapse
|
27
|
Du X, He PP, Wang C, Wang X, Mu Y, Guo W. Fast Transport and Transformation of Biomacromolecular Substances via Thermo-Stimulated Active "Inhalation-Exhalation" Cycles of Hierarchically Structured Smart pNIPAM-DNA Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206302. [PMID: 36268982 DOI: 10.1002/adma.202206302] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Although smart hydrogels hold great promise in biosensing and biomedical applications, their response to external stimuli is governed by the passive diffusion-dependent substance transport between hydrogels and environments and within the 3D hydrogel matrices, resulting in slow response to biomacromolecules and limiting their extensive applications. Herein, inspired by the respiration systems of organisms, an active strategy to achieve highly efficient biomolecular substance transport through the thermo-stimulated "inhalation-exhalation" cycles of hydrogel matrices is demonstrated. The cryo-structured poly(N-isopropylacrylamide) (pNIPAM)-DNA hydrogels, composed of functional DNA-tethered pNIPAM networks and free-water-containing macroporous channels, exhibit thermally triggered fast and reversible shrinking/swelling cycles with high-volume changes, which drive the formation of dynamic water stream to accelerate the intake of external substances and expelling of endogenous substances, thus promoting the functional properties of hydrogel systems. Demonstrated by catalytic DNAzyme and CRISPR-Cas12a-incorporating hydrogels, significantly enhanced catalytic efficiency with up to 280% and 390% is achieved, upon the introduction of active "inhalation-exhalation" cycles, respectively. Moreover, remotely near-infrared (NIR)-triggering of "inhalation-exhalation" cycles is achieved after the introduction of NIR-responsive MXene nanosheets into the hydrogel matrix. These hydrogel systems with enhanced substance transport and transformation properties hold promise in the development of more effective biosensing and therapeutic systems.
Collapse
Affiliation(s)
- Xiaoxue Du
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ping-Ping He
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chunyan Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaowen Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yali Mu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
28
|
Wang Z, Miao Y, Ou Q, Niu RX, Jiang Y, Zhang C. Full-Color-Tunable Nanohydrogels as High-Stability Intracellular Nanothermometers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55423-55430. [PMID: 36485011 DOI: 10.1021/acsami.2c18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Full-color-tunable hydrogels with ultrahigh stability can be used in various fields, including intracellular temperature sensing. However, constructing full-color-tunable organic nanohydrogels with excellent biocompatibility and stability for intracellular temperature sensing remains a great challenge. Here, we report a full-color-tunable nanohydrogel with ultrahigh stability as an intracellular nanothermometer. Three types of temperature-sensitive polymers with red, green, and blue fluorescence were synthesized. Through easy mixing of these three polymers with regulation of the mass ratio, these polymers can be encoded to full-color-tunable fluorescent nanohydrogels, including nanohydrogels with white-light emission (NWLEs), with sizes of about 200 nm in aqueous media. Further study suggested that the as-obtained NWLEs exhibited good performance in intracellular temperature sensing because of their ultrahigh stability on their fluorescence properties and morphologies.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
- Technology Institute, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan430200, Hubei, China
| | - Yu Miao
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Qiang Ou
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Ruo-Xin Niu
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
29
|
Mortier C, Costa D, Oliveira M, Haugen H, Lyngstadaas S, Blaker J, Mano J. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. MATERIALS TODAY CHEMISTRY 2022; 26:101222. [DOI: 10.1016/j.mtchem.2022.101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
30
|
Wang Z, Chen R, Yang S, Li S, Gao Z. Design and application of stimuli-responsive DNA hydrogels: A review. Mater Today Bio 2022; 16:100430. [PMID: 36157049 PMCID: PMC9493390 DOI: 10.1016/j.mtbio.2022.100430] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Deoxyribonucleic acid (DNA) hydrogels combine the properties of DNAs and hydrogels, and adding functionalized DNAs is key to the wide application of DNA hydrogels. In stimuli-responsive DNA hydrogels, the DNA transcends its application in genetics and bridges the gap between different fields. Specifically, the DNA acts as both an information carrier and a bridge in constructing DNA hydrogels. The programmability and biocompatibility of DNA hydrogel make it change macroscopically in response to a variety of stimuli. In order to meet the needs of different scenarios, DNA hydrogels were also designed into microcapsules, beads, membranes, microneedle patches, and other forms. In this study, the stimuli were classified into single biological and non-biological stimuli and composite stimuli. Stimuli-responsive DNA hydrogels from the past five years were summarized, including but not limited to their design and application, in particular logic gate pathways and signal amplification mechanisms. Stimuli-responsive DNA hydrogels have been applied to fields such as sensing, nanorobots, information carriers, controlled drug release, and disease treatment. Different potential applications and the developmental pro-spects of stimuli-responsive DNA hydrogels were discussed.
Collapse
Affiliation(s)
- Zhiguang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shiping Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
31
|
He PP, Du X, Cheng Y, Gao Q, Liu C, Wang X, Wei Y, Yu Q, Guo W. Thermal-Responsive MXene-DNA Hydrogel for Near-Infrared Light Triggered Localized Photothermal-Chemo Synergistic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200263. [PMID: 36056901 DOI: 10.1002/smll.202200263] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Stimuli-responsive DNA hydrogels are promising candidates for cancer treatment, as they not only possess biocompatible and biodegradable 3D network structures as highly efficient carriers for therapeutic agents but also are capable of undergoing programmable gel-to-solution transition upon external stimuli to achieve controlled delivery. Herein, a promising platform for highly efficient photothermal-chemo synergistic cancer therapy is established by integrating DNA hydrogels with Ti3 C2 TX -based MXene as a photothermal agent and doxorubicin (DOX) as a loaded chemotherapeutic agent. Upon the irradiation of near-infrared light (NIR), temperature rise caused by photothermal MXene nanosheets triggers the reversible gel-to-solution transition of the DOX-loaded MXene-DNA hydrogel, during which the DNA duplex crosslinking structures unwind to release therapeutic agents for efficient localized cancer therapy. Removal of the NIR irradiation results in the re-formation of DNA duplex structures and the hydrogel matrix, and the recombination of free DOX and adaptive hydrogel transformations can also be achieved. As demonstrated by both in vitro and in vivo models, the MXene-DNA hydrogel system, with excellent biocompatibility and injectability, dynamically NIR-triggered drug delivery, and enhanced drug uptake under mild hyperthermia conditions, exhibits efficient localized cancer treatment with fewer side effects to the organisms.
Collapse
Affiliation(s)
- Ping-Ping He
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaoxue Du
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuan Cheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qi Gao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaowen Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yonghua Wei
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
32
|
Alimi LO, Fang F, Moosa B, Ding Y, Khashab NM. Vapor‐Triggered Mechanical Actuation in Polymer Composite Films Based on Crystalline Organic Cages. Angew Chem Int Ed Engl 2022; 61:e202212596. [DOI: 10.1002/anie.202212596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lukman O. Alimi
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Fang Fang
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Basem Moosa
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yanjun Ding
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Niveen M. Khashab
- Smart Hybrid Materials (SHMs) Laboratory Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
33
|
Zhang P, Fischer A, Ouyang Y, Sohn YS, Nechushtai R, Zhang J, Tian H, Fan C, Willner I. Topologically switchable and gated transcription machinery. Chem Sci 2022; 13:10555-10565. [PMID: 36277654 PMCID: PMC9473513 DOI: 10.1039/d2sc01599d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Topological barriers control in nature the transcription machinery, thereby perturbing gene expression. Here we introduce synthetically designed DNA templates that include built-in topological barriers for switchable, triggered-controlled transcription of RNA aptamers. This is exemplified with the design of transcription templates that include reversible and switchable topological barriers consisting of a Sr2+-ion-stabilized G-quadruplex and its separation by kryptofix [2.2.2], KP, for the switchable transcription of the malachite green (MG) RNA aptamer, the T-A·T triplex barrier being separated by a fuel-strand for the cyclic triggered transcription of the 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI)-binding aptamer, and the use of a photoactivated cis/trans azobenzene-modified nucleic acid barrier for the switchable "ON"/"OFF" transcription of the MG RNA aptamer. By applying a mixture of topologically triggered templates consisting of the photoresponsive barrier and the T-A·T triplex barrier, the gated transcription of the MG aptamer or the DFHBI-binding aptamer is demonstrated. In addition, a Sr2+-ion/KP topologically triggered DNA tetrahedra promoter-transcription scaffold, for the replication of the MG RNA aptamer, and T7 RNA polymerase are integrated into DNA-based carboxymethyl cellulose hydrogel microcapsules acting as cell-like assemblies. The switchable, reversible transcription of the MG RNA aptamer in a cell-like containment is introduced.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| | - Junji Zhang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University 200240 Shanghai China
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem Jerusalem 91904 Israel
| |
Collapse
|
34
|
Alimi LO, Fang F, Moosa B, Ding Y, Khashab NM. Vapor‐Triggered Mechanical Actuation in Polymer Composite Films Based on Crystalline Organic Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukman O. Alimi
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Fang Fang
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Basem Moosa
- KAUST: King Abdullah University of Science and Technology Chemistry SAUDI ARABIA
| | - Yanjun Ding
- KAUST: King Abdullah University of Science and Technology chemistry SAUDI ARABIA
| | - Niveen M. Khashab
- King Abdullah University of Science and Technology KAUST 4700 King Abdullah University 23955 Thuwal SAUDI ARABIA
| |
Collapse
|
35
|
Deng Y, Xi J, Meng L, Lou Y, Seidi F, Wu W, Xiao H. Stimuli-Responsive Nanocellulose Hydrogels: An Overview. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Dong J, O'Hagan MP, Willner I. Switchable and dynamic G-quadruplexes and their applications. Chem Soc Rev 2022; 51:7631-7661. [PMID: 35975685 DOI: 10.1039/d2cs00317a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-Quadruplexes attract growing interest as functional constituents in biology, chemistry, nanotechnology, and material science. In particular, the reversible dynamic reconfiguration of G-quadruplexes provides versatile means to switch DNA nanostructures, reversibly control catalytic functions of DNA assemblies, and switch material properties and functions. The present review article discusses the switchable dynamic reconfiguration of G-quadruplexes as central functional and structural motifs that enable diverse applications in DNA nanotechnology and material science. The dynamic reconfiguration of G-quadruplexes has a major impact on the development of DNA switches and DNA machines. The integration of G-quadruplexes with enzymes yields supramolecular assemblies exhibiting switchable catalytic functions guided by dynamic G-quadruplex topologies. In addition, G-quadruplexes act as important building blocks to operate constitutional dynamic networks and transient dissipative networks mimicking complex biological dynamic circuitries. Furthermore, the integration of G-quadruplexes with DNA nanostructures, such as origami tiles, introduces dynamic and mechanical features into these static frameworks. Beyond the dynamic operation of G-quadruplex structures in solution, the assembly of G-quadruplexes on bulk surfaces such as electrodes or nanoparticles provides versatile means to engineer diverse electrochemical and photoelectrochemical devices and to switch the dynamic aggregation/deaggregation of nanoparticles, leading to nanoparticle assemblies that reveal switchable optical properties. Finally, the functionalization of hydrogels, hydrogel microcapsules, or nanoparticle carriers, such as SiO2 nanoparticles or metal-organic framework nanoparticles, yields stimuli-responsive materials exhibiting shape-memory, self-healing, and controlled drug release properties. Indeed, G-quadruplex-modified nanomaterials find growing interest in the area of nanomedicine. Beyond the impressive G-quadruplex-based scientific advances achieved to date, exciting future developments are still anticipated. The review addresses these goals by identifying the potential opportunities and challenges ahead of the field in the coming years.
Collapse
Affiliation(s)
- Jiantong Dong
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
37
|
Yuan Z, Ding J, Zhang Y, Huang B, Song Z, Meng X, Ma X, Gong X, Huang Z, Ma S, Xiang S, Xu W. Components, mechanisms and applications of stimuli-responsive polymer gels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Zhou WL, Lin W, Chen Y, Liu Y. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging. Chem Sci 2022; 13:7976-7989. [PMID: 35919429 PMCID: PMC9278158 DOI: 10.1039/d2sc01770a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Purely organic room temperature phosphorescence, especially in aqueous solution, is attracting increasing attention owing to its large Stokes shift, long lifetime, low preparation cost, low toxicity, good processing performance advantages, and broad application value. This review mainly focuses on macrocyclic (cyclodextrin and cucurbituril) hosts, nanoassembly, and macromolecule (polyether) confinement-driven RTP. As an optical probe, the assembly and the two-stage assembly strategy can realize the confined purely organic RTP and achieve energy transfer and light-harvesting from fluorescence to delayed fluorescence or phosphorescence. This supramolecular assembly is widely applied for luminescent materials, cell imaging, and other fields because it effectively avoids oxygen quenching. In addition, the near-infrared excitation, near-infrared emission, and in situ imaging of purely organic room temperature phosphorescence in assembled confinement materials are also prospected.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
- College of Chemistry and Material Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University Tongliao 028000 P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
39
|
Wang H, Wang L, Guo S, Liu Z, Zhao L, Qiao R, Li C. Rutin-Loaded Stimuli-Responsive Hydrogel for Anti-Inflammation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26327-26337. [PMID: 35642748 DOI: 10.1021/acsami.2c02295] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An active flavonoid compound rutin was incorporated into a guanosine phenylborate hydrogel (GBR) by a stimuli-responsive borate ester linkage for the treatment of inflammatory bowel disease (IBD). The components and morphology of the drug delivery system were characterized by NMR, UV-vis spectroscopy, and AFM. Rheological measurements revealed the required injectability and self-healing ability, which contributed to its application in rectal administration. The cell assays proved the excellent compatibility and safety of the system, and a possible pathway to form multicellular aggregates. In vitro drug-release studies showed that the hydrogel exhibited good stability in physiological medium, and the drug was almost completely released (more than 90 wt % after 24 h of incubation) in acidic pH and excessive ROS-containing medium, realizing the dual-responsive release of pH/ROS. In vivo activities of the GBR hydrogel showed higher therapeutic efficacy than free rutin in a colitis mice model, and it could significantly inhibit overexpressed inflammatory cytokines, including TNF-α and IL-6. Degradation studies of the hydrogel provided further evidence for the safety of its in vivo application. The work provided a simple strategy to prepare a G-quadruplex drug carrier, which was expected to achieve multi-drug delivery.
Collapse
Affiliation(s)
- Hongyue Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shasha Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zehao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Luqing Zhao
- Digestive Disease Center, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100029, P. R. China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
40
|
Biswakarma D, Dey N, Bhattacharya S. Molecular design of amphiphiles for Microenvironment-Sensitive kinetically controlled gelation and their utility in probing alcohol contents. J Colloid Interface Sci 2022; 615:335-345. [DOI: 10.1016/j.jcis.2021.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
|
41
|
Shen J, Du S, Xu Z, Gan T, Handschuh-Wang S, Zhang X. Anti-Freezing, Non-Drying, Localized Stiffening, and Shape-Morphing Organohydrogels. Gels 2022; 8:gels8060331. [PMID: 35735675 PMCID: PMC9222875 DOI: 10.3390/gels8060331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Artificial shape-morphing hydrogels are emerging toward various applications, spanning from electronic skins to healthcare. However, the low freezing and drying tolerance of hydrogels hinder their practical applications in challenging environments, such as subzero temperatures and arid conditions. Herein, we report on a shape-morphing system of tough organohydrogels enabled by the spatially encoded rigid structures and its applications in conformal packaging of “island–bridge” stretchable electronics. To validate this method, programmable shape morphing of Fe (III) ion-stiffened Ca-alginate/polyacrylamide (PAAm) tough organohydrogels down to −50 °C, with long-term preservation of their 3D shapes at arid or even vacuum conditions, was successfully demonstrated, respectively. To further illustrate the potency of this approach, the as-made organohydrogels were employed as a material for the conformal packaging of non-stretchable rigid electronic components and highly stretchable liquid metal (galinstan) conductors, forming a so-called “island–bridge” stretchable circuit. The conformal packaging well addresses the mechanical mismatch between components with different elastic moduli. As such, the as-made stretchable shape-morphing device exhibits a remarkably high mechanical durability that can withstand strains as high as 1000% and possesses long-term stability required for applications under challenging conditions.
Collapse
Affiliation(s)
- Jiayan Shen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Shutong Du
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Ziyao Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
| | - Xueli Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; (J.S.); (S.D.); (Z.X.); (T.G.); (S.H.-W.)
- Correspondence: ; Tel.: +86-755-26557377
| |
Collapse
|
42
|
Liu C, Yao W, Zhou H, Chen H, Yu S, Qiao W. Series of High Magnetic Resonance-Guided Photoinduced Nanodelivery Systems for Precisely Improving the Efficiency of Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20616-20627. [PMID: 35471860 DOI: 10.1021/acsami.2c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanochemotherapy is recognized as one of the most promising cancer treatment options, and the design of the carrier has a crucial impact on the final efficacy. To precisely improve the efficacy and reduce the toxicity, we combined the clinical contrast agent (Gd-DTPA) with a stimulus-sensitive o-nitrobenzyl ester and then prepared a series of nNBGD lipids by varying the carbon chain length of the hydrophobic group. The self-assembled nNBGD liposomes can be tracked by MRI to localize the aggregation of drug carriers in vivo, so as to prompt the application of light stimulation at the optimal time to facilitate the precise release of carriers at the lesion site. And the application potential of this strategy was verified with 88% tumor suppression effect in the 12NBGD-DOX+UV group. In addition, this paper emphasizes that small differences in structure can affect the overall performance of the carriers. By exploration of the differences in stability, drug loading, stimulus responsiveness, MRI imaging effect, and toxicity of the series of nNBGD carriers, the relationship between the length of the hydrophobic group of nNBGD lipids and the overall performance of the carriers is given, which provides experimental support and design reference for other carriers.
Collapse
Affiliation(s)
- Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
43
|
β-Cyclodextrin Supramolecular Recognition of bis-Cationic Dithienylethenes. ORGANICS 2022. [DOI: 10.3390/org3020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The supramolecular interactions in water between β-cyclodextrin and the open and closed photochromic forms of two bis-cationic dithienylethenes, characterized by different electronic properties, were investigated aiming at underlying the key aspects of the recognition process. The dithienylethene equipped with the cyclopentenyl unit showed a difference in binding free energies to the β-cyclodextrin between the open and closed photochromic forms of about 1 kJ/mol. Conversely, the dithienylethene equipped with the perfluorinated cyclopentenyl unit not only was a better guest but showed a three times higher difference in the binding of free energies between the open and closed isomers.
Collapse
|
44
|
Büllmann SM, Kolmar T, Zorn NF, Zaumseil J, Jäschke A. A DNA-Based Two-Component Excitonic Switch Utilizing High-Performance Diarylethenes. Angew Chem Int Ed Engl 2022; 61:e202117735. [PMID: 35076154 PMCID: PMC9305942 DOI: 10.1002/anie.202117735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/13/2022]
Abstract
Nucleosidic diarylethenes (DAEs) are an emerging class of photochromes but have rarely been used in materials science. Here, we have developed doubly methylated DAEs derived from 2'-deoxyuridine with high thermal stability and fatigue resistance. These new photoswitches not only outperform their predecessors but also rival classical non-nucleosidic DAEs. To demonstrate the utility of these new DAEs, we have designed an all-optical excitonic switch consisting of two oligonucleotides: one strand containing a fluorogenic double-methylated 2'-deoxyuridine as a fluorescence donor and the other a tricyclic cytidine (tC) as acceptor, which together form a highly efficient conditional Förster-Resonance-Energy-Transfer (FRET) pair. The system was operated in liquid and solid phases and showed both strong distance- and orientation-dependent photochromic FRET. The superior ON/OFF contrast was maintained over up to 100 switching cycles, with no detectable fatigue.
Collapse
Affiliation(s)
- Simon M. Büllmann
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| | - Nicolas F. Zorn
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Jana Zaumseil
- Institute for Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityIm Neuenheimer Feld 36469120HeidelbergGermany
| |
Collapse
|
45
|
Simeth NA, de Mendoza P, Dubach VRA, Stuart MCA, Smith JW, Kudernac T, Browne WR, Feringa BL. Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale. Chem Sci 2022; 13:3263-3272. [PMID: 35414864 PMCID: PMC8926171 DOI: 10.1039/d1sc06490h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Molecular recognition-driven self-assembly employing single-stranded DNA (ssDNA) as a template is a promising approach to access complex architectures from simple building blocks. Oligonucleotide-based nanotechnology and soft-materials benefit from the high information storage density, self-correction, and memory function of DNA. Here we control these beneficial properties with light in a photoresponsive biohybrid hydrogel, adding an extra level of function to the system. An ssDNA template was combined with a complementary photo-responsive unit to reversibly switch between various functional states of the supramolecular assembly using a combination of light and heat. We studied the structural response of the hydrogel at both the microscopic and macroscopic scale using a combination of UV-vis absorption and CD spectroscopy, as well as fluorescence, transmission electron, and atomic force microscopy. The hydrogels grown from these supramolecular self-assembly systems show remarkable shape-memory properties and imprinting shape-behavior while the macroscopic shape of the materials obtained can be further manipulated by irradiation.
Collapse
Affiliation(s)
- Nadja A Simeth
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Paula de Mendoza
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Victor R A Dubach
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Groningen Biomolecular Sciences and Biotechnology, Faculty for Science and Engineering, University of Groningen Nijenborgh 7 9747 AG Groningen The Netherlands
| | - Julien W Smith
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Tibor Kudernac
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
46
|
Li Z, Zhou Y, Li T, Zhang J, Tian H. Stimuli‐responsive hydrogels: Fabrication and biomedical applications. VIEW 2022. [DOI: 10.1002/viw.20200112] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ziyuan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Tianyue Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science & Technology Shanghai China
| |
Collapse
|
47
|
Büllmann SM, Kolmar T, Zorn NF, Zaumseil J, Jäschke A. Ein DNA‐basierter exzitonischer Zweikomponenten‐Schalter auf der Grundlage von Hochleistungs‐Diarylethenen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simon M. Büllmann
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
| | - Theresa Kolmar
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
| | - Nicolas F. Zorn
- Physikalisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Deutschland
| | - Jana Zaumseil
- Physikalisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Deutschland
| | - Andres Jäschke
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Im Neuenheimer Feld 364 69120 Heidelberg Deutschland
| |
Collapse
|
48
|
Abstract
Stimuli-responsive DNA-based hydrogels are attracting growing interest because of their smart responsiveness, excellent biocompatibility, regulated biodegradability, and programmable design properties. Integration of reconfigurable DNA architectures and switchable supramolecular moieties (as cross-linkers) in hydrogels by responding to external stimuli provides an ideal approach for the reversible tuning structural and mechanical properties of the hydrogels, which can be exploited in the development of intelligent DNA-based materials. This review highlights recent advances in the design of responsive pure DNA hydrogels, DNA-polymer hybrid hydrogels, and autonomous DNA-based hydrogels with transient behaviors. A variety of chemically and physically triggered DNA-based stimuli-responsive hydrogels and their versatile applications in biosensing, biocatalysis, cell culture and separation, drug delivery, shape memory, self-healing, and robotic actuators are summarized. Finally, we address the key challenges that the field will face in the coming years, and future prospects are identified.
Collapse
Affiliation(s)
- Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, No. 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
49
|
Wavelength-selective responsive hybrid structures utilizing shape memory poly(aryl ether ketone). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Chen M, Wang Y, Zhang J, Peng Y, Li S, Han D, Ren S, Qin K, Li S, Gao Z. Stimuli-responsive DNA-based hydrogels for biosensing applications. J Nanobiotechnology 2022; 20:40. [PMID: 35062945 PMCID: PMC8777454 DOI: 10.1186/s12951-022-01242-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/02/2022] [Indexed: 12/26/2022] Open
Abstract
The base sequences of DNA are endowed with the rich structural and functional information and are available for the precise construction of the 2D and 3D macro products. The hydrogels formed by DNA are biocompatible, stable, tunable and biologically versatile, thus, these have a wide range of promising applications in bioanalysis and biomedicine. In particular, the stimuli-responsive DNA hydrogels (smart DNA hydrogels), which exhibit a reversible and switchable hydrogel to sol transition under different triggers, have emerged as smart materials for sensing. Thus far, the combination of the stimuli-responsive DNA hydrogels and multiple sensing platforms is considered as biocompatible and is useful as the flexible recognition components. A review of the stimuli-responsive DNA hydrogels and their biosensing applications has been presented in this study. The synthesis methods to prepare the DNA hydrogels have been introduced. Subsequently, the current status of the stimuli-responsive DNA hydrogels in biosensing has been described. The analytical mechanisms are further elaborated by the combination of the stimuli-responsive DNA hydrogels with the optical, electrochemical, point-of-care testing (POCT) and other detection platforms. In addition, the prospects of the application of the stimuli-responsive DNA hydrogels in biosensing are presented.
Collapse
|