1
|
Ran G, Zhuang B, Huang J, Lu H, Liu Y, Bo Z, Gai F, Zhang W. Electron, hole, and energy transfer dynamics in non-fullerene small-molecule acceptors. Chem Sci 2024:d4sc04072d. [PMID: 39318869 PMCID: PMC11417900 DOI: 10.1039/d4sc04072d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
When photoexcited, an organic photovoltaic (OPV) donor/acceptor (D/A) blend is expected to undergo charge separation (CS) through three channels: electron transfer, hole transfer, and energy transfer-induced electron/hole transfer. However, previous spectroscopic studies on various blends based on non-fullerene acceptors (NFAs) have not been able to directly characterize the dynamics of these processes, due to spectral overlap of the involved intermediate species. Herein, we study the excited-state dynamics of D/A blends composed of PBDB-T (D) and a L-series NFA (L4 or L5) and show that the species responsible for these processes in the PBDB-T/L4 blend can be spectroscopically identified, allowing us to disentangle their dynamics. Moreover, we confirm the occurrence of photoinduced CS in neat L4 and L5 films, providing direct evidence that CS can occur under nearly zero driving force in OPV systems. Further density functional theory calculations suggest that specific molecular packing patterns may play an important role in facilitating CS.
Collapse
Affiliation(s)
- Guangliu Ran
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875 China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University Beijing 100875 China
| | - Bo Zhuang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jiulong Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Hao Lu
- College of Materials Science and Engineering, Qingdao University Qingdao Shandong 266071 China
| | - Yahui Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University Qingdao Shandong 266071 China
| | - Zhishan Bo
- College of Textiles and Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University Qingdao Shandong 266071 China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Wenkai Zhang
- School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875 China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University Beijing 100875 China
| |
Collapse
|
2
|
Pranav M, Shukla A, Moser D, Rumeney J, Liu W, Wang R, Sun B, Smeets S, Tokmoldin N, Cao Y, He G, Beitz T, Jaiser F, Hultzsch T, Shoaee S, Maes W, Lüer L, Brabec C, Vandewal K, Andrienko D, Ludwigs S, Neher D. On the critical competition between singlet exciton decay and free charge generation in non-fullerene based organic solar cells with low energetic offsets. ENERGY & ENVIRONMENTAL SCIENCE 2024; 17:6676-6697. [PMID: 39157178 PMCID: PMC11323475 DOI: 10.1039/d4ee01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Reducing voltage losses while maintaining high photocurrents is the holy grail of current research on non-fullerene acceptor (NFA) based organic solar cell. Recent focus lies in understanding the various fundamental mechanisms in organic blends with minimal energy offsets - particularly the relationship between ionization energy offset (ΔIE) and free charge generation. Here, we quantitatively probe this relationship in multiple NFA-based blends by mixing Y-series NFAs with PM6 of different molecular weights, covering a broad power conversion efficiency (PCE) range: from 15% down to 1%. Spectroelectrochemistry reveals that a ΔIE of more than 0.3 eV is necessary for efficient photocurrent generation. Bias-dependent time-delayed collection experiments reveal a very pronounced field-dependence of free charge generation for small ΔIE blends, which is mirrored by a strong and simultaneous field-dependence of the quantified photoluminescence from the NFA local singlet exciton (LE). We find that the decay of singlet excitons is the primary competition to free charge generation in low-offset NFA-based organic solar cells, with neither noticeable losses from charge-transfer (CT) decay nor evidence for LE-CT hybridization. In agreement with this conclusion, transient absorption spectroscopy consistently reveals that a smaller ΔIE slows the NFA exciton dissociation into free charges, albeit restorable by an electric field. Our experimental data align with Marcus theory calculations, supported by density functional theory simulations, for zero-field free charge generation and exciton decay efficiencies. We conclude that efficient photocurrent generation generally requires that the CT state is located below the LE, but that this restriction is lifted in systems with a small reorganization energy for charge transfer.
Collapse
Affiliation(s)
- Manasi Pranav
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| | - Atul Shukla
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| | - David Moser
- IPOC - Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Julia Rumeney
- IPOC - Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wenlan Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10 55128 Mainz Germany
| | - Rong Wang
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7 Erlangen 91058 Germany
| | - Bowen Sun
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| | - Sander Smeets
- UHasselt-Hasselt University, Institute for Materials Research, (IMO-IMOMEC), Agoralaan 1 3590 Diepenbeek Belgium
- IMOMEC Division, IMEC, Wetenschapspark 1 3590 Diepenbeek Belgium
| | - Nurlan Tokmoldin
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
- Heterostructure Semiconductor Physics, Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V, Hausvogteiplatz 5-7 10117 Berlin Germany
| | - Yonglin Cao
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| | - Guorui He
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| | - Thorben Beitz
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| | - Frank Jaiser
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| | - Thomas Hultzsch
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| | - Safa Shoaee
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
- Heterostructure Semiconductor Physics, Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V, Hausvogteiplatz 5-7 10117 Berlin Germany
| | - Wouter Maes
- UHasselt-Hasselt University, Institute for Materials Research, (IMO-IMOMEC), Agoralaan 1 3590 Diepenbeek Belgium
- IMOMEC Division, IMEC, Wetenschapspark 1 3590 Diepenbeek Belgium
| | - Larry Lüer
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7 Erlangen 91058 Germany
| | - Christoph Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7 Erlangen 91058 Germany
- Helmholtz-Institut Erlangen-Nürnberg for Renewable Energies (HIERN), Forschungszentrum Jülich, Immerwahrstraße 2 91058 Erlangen Germany
| | - Koen Vandewal
- UHasselt-Hasselt University, Institute for Materials Research, (IMO-IMOMEC), Agoralaan 1 3590 Diepenbeek Belgium
- IMOMEC Division, IMEC, Wetenschapspark 1 3590 Diepenbeek Belgium
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10 55128 Mainz Germany
| | - Sabine Ludwigs
- IPOC - Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Dieter Neher
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25 14476 Potsdam Germany
| |
Collapse
|
3
|
Wang J, Cui Y, Chen Z, Zhang J, Xiao Y, Zhang T, Wang W, Xu Y, Yang N, Yao H, Hao XT, Wei Z, Hou J. A Wide Bandgap Acceptor with Large Dielectric Constant and High Electrostatic Potential Values for Efficient Organic Photovoltaic Cells. J Am Chem Soc 2023. [PMID: 37311087 DOI: 10.1021/jacs.3c01634] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low-bandgap materials have achieved rapid development and promoted the enhancement of power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells. However, the design of wide-bandgap non-fullerene acceptors (WBG-NFAs), required by indoor applications and tandem cells, has been lagging far behind the development of OPV technologies. Here, we designed and synthesized two NFAs named ITCC-Cl and TIDC-Cl by finely optimizing ITCC. In contrast with ITCC and ITCC-Cl, TIDC-Cl can maintain a wider bandgap and a higher electrostatic potential simultaneously. When blending with the donor PB2, the highest dielectric constant is also obtained in TIDC-Cl-based films, enabling efficient charge generation. Therefore, the PB2:TIDC-Cl-based cell possessed a high PCE of 13.8% with an excellent fill factor (FF) of 78.2% under the air mass 1.5G (AM 1.5G) condition. Furthermore, an exciting PCE of 27.1% can be accomplished in the PB2:TIDC-Cl system under the illumination of 500 lux (2700 K light-emitting diode). Combined with the theoretical simulation, the tandem OPV cell based on TIDC-Cl was fabricated and exhibited an excellent PCE of 20.0%.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Nuber M, Spanier LV, Roth S, Vayssilov GN, Kienberger R, Müller-Buschbaum P, Iglev H. Picosecond Charge-Transfer-State Dynamics in Wide Band Gap Polymer-Non-Fullerene Small-Molecule Blend Films Investigated via Transient Infrared Spectroscopy. J Phys Chem Lett 2022; 13:10418-10423. [PMID: 36326207 DOI: 10.1021/acs.jpclett.2c02864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organic solar cells based on wide band gap polymers and nonfullerene small-molecule acceptors have demonstrated remarkably good device performances. Nevertheless, a thorough understanding of the charge-transfer process in these materials has not been achieved yet. In this study, we use Fano resonance signals caused by the interaction of broad electronic charge carrier absorption and the molecular vibrations of the electron acceptor molecule to monitor the charge-transfer state dynamics. In our time-resolved infrared spectroscopy experiments, we find that in the small-molecule acceptor, they have additional dynamics on the order of a few picoseconds. A change in the solvent used in thin film deposition, leading to different morphologies, influences this time further. We interpret our findings as the dynamics of the charge-transfer state at the interface of the electron donor and the electron- acceptor. The additional mid-infrared transient signal is generated in this state, as both electron and hole polarons can interact with small-molecule acceptor vibrational modes.
Collapse
Affiliation(s)
- Matthias Nuber
- Lehrstuhl für Laser- und Röntgenphysik, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Lukas V Spanier
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sebastian Roth
- Lehrstuhl für Laser- und Röntgenphysik, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Georgi N Vayssilov
- Faculty of Chemistry and Pharmacy, University of Sofia, Blvd. J. Bauchier 1, 1126 Sofia, Bulgaria
| | - Reinhard Kienberger
- Lehrstuhl für Laser- und Röntgenphysik, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Lehrstuhl für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Hristo Iglev
- Lehrstuhl für Laser- und Röntgenphysik, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
5
|
Zhang T, An C, Xu Y, Bi P, Chen Z, Wang J, Yang N, Yang Y, Xu B, Yao H, Hao X, Zhang S, Hou J. A Medium-Bandgap Nonfullerene Acceptor Enabling Organic Photovoltaic Cells with 30% Efficiency under Indoor Artificial Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207009. [PMID: 36070897 DOI: 10.1002/adma.202207009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The correlation between molecular structure and photovoltaic performance is lagging for constructing high-performance indoor organic photovoltaic (OPV) cells. Herein, this relationship is investigated in depth by employing two medium-bandgap nonfullerene acceptors (NFAs). The newly synthesized NFA of FTCCBr exhibits a similar bandgap and molecular energy level, but a much stronger dipole moment and larger average electrostatic potential (ESP) compared with ITCC. After blending with the polymer donor PB2, the PB2:ITCC and PB2:FTCCBr blends exhibit favorable bulk-heterojunction morphologies and the same driving force, but the PB2:FTCCBr blend exhibits a large ESP difference. In OPV cells, the PB2:ITCC-based device produces a power conversion efficiency (PCE) of 11.0%, whereas the PB2:FTCCBr-based device gives an excellent PCE of 14.8% with an open-circuit voltage (VOC ) of 1.05 V, which is the highest value among OPV cells with VOC values above 1.0 V. When both acceptor-based devices work under a 1000 lux of 3000 K light-emitting diode, the PB2:ITCC-based 1 cm2 device yields a good PCE of 25.4%; in contrast, the PB2:FTCCBr-based 1 cm2 device outputs a record PCE of 30.2%. These results suggest that a large ESP offset in photovoltaic materials is important for achieving high-performance OPV cells.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhihao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Peng WT, Brey D, Giannini S, Dell’Angelo D, Burghardt I, Blumberger J. Exciton Dissociation in a Model Organic Interface: Excitonic State-Based Surface Hopping versus Multiconfigurational Time-Dependent Hartree. J Phys Chem Lett 2022; 13:7105-7112. [PMID: 35900333 PMCID: PMC9376959 DOI: 10.1021/acs.jpclett.2c01928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 05/20/2023]
Abstract
Quantum dynamical simulations are essential for a molecular-level understanding of light-induced processes in optoelectronic materials, but they tend to be computationally demanding. We introduce an efficient mixed quantum-classical nonadiabatic molecular dynamics method termed eXcitonic state-based Surface Hopping (X-SH), which propagates the electronic Schrödinger equation in the space of local excitonic and charge-transfer electronic states, coupled to the thermal motion of the nuclear degrees of freedom. The method is applied to exciton decay in a 1D model of a fullerene-oligothiophene junction, and the results are compared to the ones from a fully quantum dynamical treatment at the level of the Multilayer Multiconfigurational Time-Dependent Hartree (ML-MCTDH) approach. Both methods predict that charge-separated states are formed on the 10-100 fs time scale via multiple "hot-exciton dissociation" pathways. The results demonstrate that X-SH is a promising tool advancing the simulation of photoexcited processes from the molecular to the true nanomaterials scale.
Collapse
Affiliation(s)
- Wei-Tao Peng
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Dominik Brey
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Samuele Giannini
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - David Dell’Angelo
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| | - Irene Burghardt
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Jochen Blumberger
- Department
of Physics and Astronomy and Thomas Young Centre, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Azzouzi M, Gallop NP, Eisner F, Yan J, Zheng X, Cha H, He Q, Fei Z, Heeney M, Bakulin AA, Nelson J. Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency. ENERGY & ENVIRONMENTAL SCIENCE 2022; 15:1256-1270. [PMID: 35419090 PMCID: PMC8924960 DOI: 10.1039/d1ee02788c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Achieving the simultaneous increases in the open circuit voltage (V oc), short circuit current (J sc) and fill factor (FF) necessary to further increase the power conversion efficiency (PCE) of organic photovoltaics (OPV) requires a unified understanding of how molecular and device parameters affect all three characteristics. In this contribution, we introduce a framework that for the first time combines different models that have been used separately to describe the different steps of the charge generation and collection processes in OPV devices: a semi-classical rate model for charge recombination processes in OPV devices, zero-dimensional kinetic models for the photogeneration process and exciton dissociation and one-dimensional semiconductor device models. Using this unified multi-scale model in conjunction with experimental techniques (time-resolved absorption spectroscopy, steady-state and transient optoelectronic measurements) that probe the various steps involved in charge generation we can shed light on how the energy offsets in a series of polymer: non-fullerene devices affect the charge carrier generation, collection, and recombination properties of the devices. We find that changing the energy levels of the donor significantly affects not only the transition rates between local-exciton (LE) and charge-transfer (CT) states, but also significantly changes the transition rates between CT and charge-separated (CS) states, challenging the commonly accepted picture of charge generation and recombination. These results show that in order to obtain an accurate picture of charge generation in OPV devices, a variety of different experimental techniques under different conditions in conjunction with a comprehensive model of processes occurring at different time-scales are required.
Collapse
Affiliation(s)
- Mohammed Azzouzi
- Department of Physics and Centre for Plastic Electronics, Imperial College London London SW7 2AZ UK
| | - Nathaniel P Gallop
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Flurin Eisner
- Department of Physics and Centre for Plastic Electronics, Imperial College London London SW7 2AZ UK
| | - Jun Yan
- Department of Physics and Centre for Plastic Electronics, Imperial College London London SW7 2AZ UK
| | - Xijia Zheng
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Hyojung Cha
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
- Department of Hydrogen & Renewable Energy, Kyungpook National University Daegu 41566 Republic of Korea
| | - Qiao He
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Zhuping Fei
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University Tianjin 300072 P. R. China
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London London W12 0BZ UK
| | - Jenny Nelson
- Department of Physics and Centre for Plastic Electronics, Imperial College London London SW7 2AZ UK
| |
Collapse
|
8
|
Wu J, Cha H, Du T, Dong Y, Xu W, Lin C, Durrant JR. A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101833. [PMID: 34773315 PMCID: PMC11469080 DOI: 10.1002/adma.202101833] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The charge carrier dynamics in organic solar cells and organic-inorganic hybrid metal halide perovskite solar cells, two leading technologies in thin-film photovoltaics, are compared. The similarities and differences in charge generation, charge separation, charge transport, charge collection, and charge recombination in these two technologies are discussed, linking these back to the intrinsic material properties of organic and perovskite semiconductors, and how these factors impact on photovoltaic device performance is elucidated. In particular, the impact of exciton binding energy, charge transfer states, bimolecular recombination, charge carrier transport, sub-bandgap tail states, and surface recombination is evaluated, and the lessons learned from transient optical and optoelectronic measurements are discussed. This perspective thus highlights the key factors limiting device performance and rationalizes similarities and differences in design requirements between organic and perovskite solar cells.
Collapse
Affiliation(s)
- Jiaying Wu
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Hyojung Cha
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
- Department of Hydrogen & Renewable EnergyKyungpook National UniversityDaegu41566South Korea
| | - Tian Du
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Yifan Dong
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Weidong Xu
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Chieh‐Ting Lin
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - James R. Durrant
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
- SPECIFIC IKCCollege of EngineeringSwansea UniversityBay Campus, Fabian WaySwanseaWalesSA1 8ENUK
| |
Collapse
|
9
|
Godin R, Durrant JR. Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chem Soc Rev 2021; 50:13372-13409. [PMID: 34786578 DOI: 10.1039/d1cs00577d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The continued development of solar energy conversion technologies relies on an improved understanding of their limitations. In this review, we focus on a comparison of the charge carrier dynamics underlying the function of photovoltaic devices with those of both natural and artificial photosynthetic systems. The solar energy conversion efficiency is determined by the product of the rate of generation of high energy species (charges for solar cells, chemical fuels for photosynthesis) and the energy contained in these species. It is known that the underlying kinetics of the photophysical and charge transfer processes affect the production yield of high energy species. Comparatively little attention has been paid to how these kinetics are linked to the energy contained in the high energy species or the energy lost in driving the forward reactions. Here we review the operational parameters of both photovoltaic and photosynthetic systems to highlight the energy cost of extending the lifetime of charge carriers to levels that enable function. We show a strong correlation between the energy lost within the device and the necessary lifetime gain, even when considering natural photosynthesis alongside artificial systems. From consideration of experimental data across all these systems, the emprical energetic cost of each 10-fold increase in lifetime is 87 meV. This energetic cost of lifetime gain is approx. 50% greater than the 59 meV predicted from a simple kinetic model. Broadly speaking, photovoltaic devices show smaller energy losses compared to photosynthetic devices due to the smaller lifetime gains needed. This is because of faster charge extraction processes in photovoltaic devices compared to the complex multi-electron, multi-proton redox reactions that produce fuels in photosynthetic devices. The result is that in photosynthetic systems, larger energetic costs are paid to overcome unfavorable kinetic competition between the excited state lifetime and the rate of interfacial reactions. We apply this framework to leading examples of photovoltaic and photosynthetic devices to identify kinetic sources of energy loss and identify possible strategies to reduce this energy loss. The kinetic and energetic analyses undertaken are applicable to both photovoltaic and photosynthetic systems allowing for a holistic comparison of both types of solar energy conversion approaches.
Collapse
Affiliation(s)
- Robert Godin
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, British Columbia, V1V 1V7, Canada. .,Clean Energy Research Center, University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Okanagan Institute for Biodiversity, Resilience, and Ecosystem Services, University of British Columbia, Kelowna, British Columbia, Canada
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
10
|
Dela Peña TA, Khan JI, Chaturvedi N, Ma R, Xing Z, Gorenflot J, Sharma A, Ng FL, Baran D, Yan H, Laquai F, Wong KS. Understanding the Charge Transfer State and Energy Loss Trade-offs in Non-fullerene-Based Organic Solar Cells. ACS ENERGY LETTERS 2021; 6:3408-3416. [DOI: 10.1021/acsenergylett.1c01574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Top Archie Dela Peña
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Jafar I. Khan
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Neha Chaturvedi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Ruijie Ma
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Zengshan Xing
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Julien Gorenflot
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Anirudh Sharma
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Fai Lun Ng
- Department of Electrical and Electronic Engineering, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Derya Baran
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Kam Sing Wong
- Department of Physics, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology (HKUST), 000000 Kowloon, Hong Kong, P.R. China
| |
Collapse
|
11
|
Kulichenko M, Smith JS, Nebgen B, Li YW, Fedik N, Boldyrev AI, Lubbers N, Barros K, Tretiak S. The Rise of Neural Networks for Materials and Chemical Dynamics. J Phys Chem Lett 2021; 12:6227-6243. [PMID: 34196559 DOI: 10.1021/acs.jpclett.1c01357] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Machine learning (ML) is quickly becoming a premier tool for modeling chemical processes and materials. ML-based force fields, trained on large data sets of high-quality electron structure calculations, are particularly attractive due their unique combination of computational efficiency and physical accuracy. This Perspective summarizes some recent advances in the development of neural network-based interatomic potentials. Designing high-quality training data sets is crucial to overall model accuracy. One strategy is active learning, in which new data are automatically collected for atomic configurations that produce large ML uncertainties. Another strategy is to use the highest levels of quantum theory possible. Transfer learning allows training to a data set of mixed fidelity. A model initially trained to a large data set of density functional theory calculations can be significantly improved by retraining to a relatively small data set of expensive coupled cluster theory calculations. These advances are exemplified by applications to molecules and materials.
Collapse
Affiliation(s)
- Maksim Kulichenko
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Justin S Smith
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin Nebgen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ying Wai Li
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikita Fedik
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Alexander I Boldyrev
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Nicholas Lubbers
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kipton Barros
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
12
|
Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nat Commun 2021; 12:1772. [PMID: 33741966 PMCID: PMC7979693 DOI: 10.1038/s41467-021-22032-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
A critical bottleneck for improving the performance of organic solar cells (OSC) is minimising non-radiative losses in the interfacial charge-transfer (CT) state via the formation of hybrid energetic states. This requires small energetic offsets often detrimental for high external quantum efficiency (EQE). Here, we obtain OSC with both non-radiative voltage losses (0.24 V) and photocurrent losses (EQE > 80%) simultaneously minimised. The interfacial CT states separate into free carriers with ≈40-ps time constant. We combine device and spectroscopic data to model the thermodynamics of charge separation and extraction, revealing that the relatively high performance of the devices arises from an optimal adjustment of the CT state energy, which determines how the available overall driving force is efficiently used to maximize both exciton splitting and charge separation. The model proposed is universal for donor:acceptor (D:A) with low driving forces and predicts which D:A will benefit from a morphology optimization for highly efficient OSC.
Collapse
|
13
|
Limbu S, Park KB, Wu J, Cha H, Yun S, Lim SJ, Yan H, Luke J, Ryu G, Heo CJ, Kim S, Jin YW, Durrant JR, Kim JS. Identifying the Molecular Origins of High-Performance in Organic Photodetectors Based on Highly Intermixed Bulk Heterojunction Blends. ACS NANO 2021; 15:1217-1228. [PMID: 33332092 DOI: 10.1021/acsnano.0c08287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A bulk-heterojunction (BHJ) structure of organic semiconductor blend is widely used in photon-to-electron converting devices such as organic photodetectors (OPD) and photovoltaics (OPV). However, the impact of the molecular structure on the interfacial electronic states and optoelectronic properties of the constituent organic semiconductors is still unclear, limiting further development of these devices for commercialization. Herein, the critical role of donor molecular structure on OPD performance is identified in highly intermixed BHJ blends containing a small-molecule donor and C60 acceptor. Blending introduces a twisted structure in the donor molecule and a strong coupling between donor and acceptor molecules. This results in ultrafast exciton separation (<1 ps), producing bound (binding energy ∼135 meV), localized (∼0.9 nm), and highly emissive interfacial charge transfer (CT) states. These interfacial CT states undergo efficient dissociation under an applied electric field, leading to highly efficient OPDs in reverse bias but poor OPVs. Further structural twisting and molecular-scale aggregation of the donor molecules occur in blends upon thermal annealing just above the transition temperature of 150 °C at which donor molecules start to reorganize themselves without any apparent macroscopic phase-segregation. These subtle structural changes lead to significant improvements in charge transport and OPD performance, yielding ultralow dark currents (∼10-10 A cm-2), 2-fold faster charge extraction (in μs), and nearly an order of magnitude increase in effective carrier mobility. Our results provide molecular insights into high-performance OPDs by identifying the role of subtle molecular structural changes on device performance and highlight key differences in the design of BHJ blends for OPD and OPV devices.
Collapse
Affiliation(s)
- Saurav Limbu
- Department of Physics and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kyung-Bae Park
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16678, South Korea
| | - Jiaying Wu
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hyojung Cha
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sungyoung Yun
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16678, South Korea
| | - Seon-Jeong Lim
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16678, South Korea
| | - Hao Yan
- Department of Physics and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Joel Luke
- Department of Physics and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gihan Ryu
- Department of Physics and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chul-Joon Heo
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16678, South Korea
| | - Sunghan Kim
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16678, South Korea
| | - Yong Wan Jin
- Organic Materials Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do16678, South Korea
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ji-Seon Kim
- Department of Physics and Centre for Processable Electronics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Chen Z, Chen X, Qiu B, Zhou G, Jia Z, Tao W, Li Y, Yang YM, Zhu H. Ultrafast Hole Transfer and Carrier Transport Controlled by Nanoscale-Phase Morphology in Nonfullerene Organic Solar Cells. J Phys Chem Lett 2020; 11:3226-3233. [PMID: 32259443 DOI: 10.1021/acs.jpclett.0c00919] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonfullerene acceptors (NFAs) have attracted great attention in high-efficiency organic solar cells (OSCs). While the effect of molecular properties including structures and energetics on charge transfer has been extensively investigated, the effect of macroscopic-phase properties is yet to be revealed. Here we have performed a correlation study of the nanoscale-phase morphology on the photoexcited hole transfer (HT) process and photovoltaic performance by combining ultrafast spectroscopy with high temporal resolution and photo-induced force microscopy (PiFM) with high spatial and chemical resolution. In PM6/IT-4F, we observe biphasic HT behavior with a minor ultrafast (<100 fs) interfacial process and a major diffusion-mediated HT process until ∼100 ps, which depends strongly on phase segregation. Because of the interplay between charge transfer and transport, a compromised domain size of 20-30 nm for NFAs shows the best performance. This study highlights the critical role of phase morphology in high-efficiency OSCs.
Collapse
Affiliation(s)
| | | | - Beibei Qiu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | |
Collapse
|
15
|
Perdigón-Toro L, Zhang H, Markina A, Yuan J, Hosseini SM, Wolff CM, Zuo G, Stolterfoht M, Zou Y, Gao F, Andrienko D, Shoaee S, Neher D. Barrierless Free Charge Generation in the High-Performance PM6:Y6 Bulk Heterojunction Non-Fullerene Solar Cell. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906763. [PMID: 31975446 DOI: 10.1002/adma.201906763] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/19/2019] [Indexed: 05/22/2023]
Abstract
Organic solar cells are currently experiencing a second golden age thanks to the development of novel non-fullerene acceptors (NFAs). Surprisingly, some of these blends exhibit high efficiencies despite a low energy offset at the heterojunction. Herein, free charge generation in the high-performance blend of the donor polymer PM6 with the NFA Y6 is thoroughly investigated as a function of internal field, temperature and excitation energy. Results show that photocurrent generation is essentially barrierless with near-unity efficiency, regardless of excitation energy. Efficient charge separation is maintained over a wide temperature range, down to 100 K, despite the small driving force for charge generation. Studies on a blend with a low concentration of the NFA, measurements of the energetic disorder, and theoretical modeling suggest that CT state dissociation is assisted by the electrostatic interfacial field which for Y6 is large enough to compensate the Coulomb dissociation barrier.
Collapse
Affiliation(s)
- Lorena Perdigón-Toro
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Disordered Semiconductor Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Huotian Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Anastasia Markina
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jun Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Seyed Mehrdad Hosseini
- Disordered Semiconductor Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Christian M Wolff
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Guangzheng Zuo
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Martin Stolterfoht
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Safa Shoaee
- Disordered Semiconductor Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Dieter Neher
- Soft Matter Physics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
16
|
Jones AL, Schanze KS. Free Energy Dependence of Photoinduced Electron Transfer in Octathiophene-Diimide Dyads. J Phys Chem A 2019; 124:21-29. [DOI: 10.1021/acs.jpca.9b08622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Austin L. Jones
- Department of Chemistry and Center for Macromolecular Science and Engineering, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Kirk S. Schanze
- Department of Chemistry, University of Texas at San Antonio, One UTSA Way, San Antonio, Texas 78249, United States
- Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
17
|
Patel JB, Tiwana P, Seidler N, Morse GE, Lozman OR, Johnston MB, Herz LM. Effect of Ultraviolet Radiation on Organic Photovoltaic Materials and Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21543-21551. [PMID: 31124649 PMCID: PMC7007002 DOI: 10.1021/acsami.9b04828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Organic photovoltaics are a sustainable and cost-effective power-generation technology that may aid the move to zero-emission buildings, carbon neutral cities, and electric vehicles. While state-of-the-art organic photovoltaic devices can be encapsulated to withstand air and moisture, they are currently still susceptible to light-induced degradation, leading to a decline in the long-term efficiency of the devices. In this study, the role of ultraviolet (UV) radiation on a multilayer organic photovoltaic device is systematically uncovered using spectral filtering. By applying long-pass filters to remove different parts of the UV portion of the AM1.5G spectrum, two main photodegradation processes are shown to occur in the organic photovoltaic devices. A UV-activated process is found to cause a significant decrease in the photocurrent across the whole spectrum and is most likely linked to the deterioration of the charge extraction layers. In addition, a photodegradation process caused by UV-filtered sunlight is found to change the micromorphology of the bulk heterojunction material, leading to a reduction in photocurrent at high photon energies. These findings strongly suggest that the fabrication of inherently photostable organic photovoltaic devices will require the replacement of fullerene-based electron transporter materials with alternative organic semiconductors.
Collapse
Affiliation(s)
- Jay B. Patel
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Priti Tiwana
- Merck
Chemicals Ltd., Chilworth Technical Centre, University Parkway, Southampton SO16 7QD, United Kingdom
| | - Nico Seidler
- Merck
Chemicals Ltd., Chilworth Technical Centre, University Parkway, Southampton SO16 7QD, United Kingdom
| | - Graham E. Morse
- Merck
Chemicals Ltd., Chilworth Technical Centre, University Parkway, Southampton SO16 7QD, United Kingdom
| | - Owen R. Lozman
- Merck
Chemicals Ltd., Chilworth Technical Centre, University Parkway, Southampton SO16 7QD, United Kingdom
| | - Michael B. Johnston
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Laura M. Herz
- Department
of Physics, Clarendon Laboratory, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| |
Collapse
|