1
|
van Trijp JP, Hribernik N, Lim JH, Dal Colle MCS, Mena YV, Ogawa Y, Delbianco M. Enzyme-Triggered Assembly of Glycan Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202410634. [PMID: 39008635 DOI: 10.1002/anie.202410634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well-defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation-assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme-triggered assembly (ETA) for the on-demand formation of well-defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo-electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non-natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures.
Collapse
Affiliation(s)
- Jacobus P van Trijp
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nives Hribernik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jia Hui Lim
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Marlene C S Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yadiel Vázquez Mena
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Yu Ogawa
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
2
|
Wang G, Chen A, Aryal P, Bietsch J. Synthetic approaches of carbohydrate based self-assembling systems. Org Biomol Chem 2024; 22:5470-5510. [PMID: 38904076 DOI: 10.1039/d4ob00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Carbohydrate-based self-assembling systems are essential for the formation of advanced biocompatible materials via a bottom-up approach. The self-assembling of sugar-based small molecules has applications encompassing many research fields and has been studied extensively. In this focused review, we will discuss the synthetic approaches for carbohydrate-based self-assembling (SA) systems, the mechanisms of the assembly, as well as the main properties and applications. This review will mainly cover recent publications in the last four years from January 2020 to December 2023. We will essentially focus on small molecule self-assembly, excluding polymer-based systems, which include various derivatives of monosaccharides, disaccharides, and oligosaccharides. Glycolipids, glycopeptides, and some glycoconjugate-based systems are discussed. Typically, in each category of systems, the system that can function as low molecular weight gelators (LMWGs) will be discussed first, followed by self-assembling systems that produce micelles and aggregates. The last section of the review discusses stimulus-responsive self-assembling systems, especially those forming gels, including dynamic covalent assemblies, chemical-triggered systems, and photoresponsive systems. The review will be organized based on the sugar structures, and in each category, the synthesis of representative molecular systems will be discussed next, followed by the properties of the resulting molecular assemblies.
Collapse
Affiliation(s)
- Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Pramod Aryal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| | - Jonathan Bietsch
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
3
|
Min J, Rong X, Zhang J, Su R, Wang Y, Qi W. Computational Design of Peptide Assemblies. J Chem Theory Comput 2024; 20:532-550. [PMID: 38206800 DOI: 10.1021/acs.jctc.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.
Collapse
Affiliation(s)
- Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Song Q, Li Y, Jin Z, Liu H, Creyer MN, Yim W, Huang Y, Hu X, He T, Li Y, Kelley SO, Shi L, Zhou J, Jokerst JV. Self-Assembled Homopolymeric Spherulites from Small Molecules in Solution. J Am Chem Soc 2023; 145:25664-25672. [PMID: 37921495 DOI: 10.1021/jacs.3c08356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Polymeric spherulites are typically formed by melt crystallization: spherulitic growth in solution is rare and requires complex polymers and dilute solutions. Here, we report the mild and unique formation of luminescent spherulites at room temperature via the simple molecule benzene-1,4-dithiol (BDT). Specifically, BDT polymerized into oligomers (PBDT) via disulfide bonds and assembled into uniform supramolecular nanoparticles in aqueous buffer; these nanoparticles were then dissolved back into PBDT in a good solvent (i.e., dimethylformamide) and underwent chain elongation to form spherulites (rPBDT) in 10 min. The spherulite geometry was modulated by changing the PBDT concentration and reaction time. Due to the step-growth polymerization and reorganization of PBDT, these spherulites not only exhibited robust structure but also showed broad clusterization-triggered emission. The biocompatibility and efficient cellular uptake of the spherulites further underscore their value as traceable drug carriers. This system provides a new pathway for designing versatile superstructures with value for hierarchical assembly of small molecules into a complicated biological system.
Collapse
Affiliation(s)
- Qiantao Song
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yi Li
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhicheng Jin
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Matthew N Creyer
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yanping Huang
- Center of Engineering Experimental Teaching, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaobing Hu
- The NUANCE Center, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yajuan Li
- Shu Chien─Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lingyan Shi
- Shu Chien─Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
5
|
Hribernik N, Vargová D, Dal Colle MCS, Lim JH, Fittolani G, Yu Y, Fujihara J, Ludwig K, Seeberger PH, Ogawa Y, Delbianco M. Controlling the Assembly of Cellulose-Based Oligosaccharides through Sequence Modifications. Angew Chem Int Ed Engl 2023; 62:e202310357. [PMID: 37823670 DOI: 10.1002/anie.202310357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Peptides and nucleic acids with programmable sequences are widely explored for the production of tunable, self-assembling functional materials. Herein we demonstrate that the primary sequence of oligosaccharides can be designed to access materials with tunable shapes and properties. Synthetic cellulose-based oligomers were assembled into 2D or 3D rod-like crystallites. Sequence modifications within the oligosaccharide core influenced the molecular packing and led to the formation of square-like assemblies based on the rare cellulose IVII allomorph. In contrast, modifications at the termini generated elongated aggregates with tunable surfaces, resulting in self-healing supramolecular hydrogels.
Collapse
Affiliation(s)
- Nives Hribernik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Marlene C S Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jia Hui Lim
- Univ. Grenoble Alpes CNRS, CERMAV, 38000, Grenoble, France
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yang Yu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Junki Fujihara
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kai Ludwig
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yu Ogawa
- Univ. Grenoble Alpes CNRS, CERMAV, 38000, Grenoble, France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
6
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
7
|
Zhang S, Yu M, Zhang G, He G, Ji Y, Dong J, Zheng H, Qian L. Revealing the Control Mechanisms of pH on the Solution Properties of Chitin via Single-Molecule Studies. Molecules 2023; 28:6769. [PMID: 37836611 PMCID: PMC10574145 DOI: 10.3390/molecules28196769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Guanmei He
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Yunxu Ji
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Juan Dong
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
8
|
Yao Y, Meng X, Li C, Bernaerts KV, Zhang K. Tuning the Chiral Structures from Self-Assembled Carbohydrate Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208286. [PMID: 36918751 DOI: 10.1002/smll.202208286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Carbohydrates have been regarded as one of the most ideally suited candidates for chirality study via self-assembly owning to their unique chemical structures, abundance, and sustainability. Much efforts have been devoted to design and synthesize diverse carbohydrate derivatives and self-assemble them into various supermolecular morphologies. Nevertheless, still inadequate attention is paid to deeply and comprehensively understand how the carbohydrate structures and self-assembly approaches affect the final morphologies and properties for future demands. Herein, to fulfill the need, a range of recently published studies relating to the chirality of carbohydrates is reviewed and discussed. Furthermore, to tune the chirality of carbohydrate-based structures on both molecular and superstructural levels via chirality transfer and chirality expression, the designing of the molecules and choosing of the proper approaches for self-assembly are elucidated.
Collapse
Affiliation(s)
- Yawen Yao
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
- Sustainable Polymer Synthesis, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| | - Xintong Meng
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Cheng Li
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Katrien V Bernaerts
- Sustainable Polymer Synthesis, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, Geleen, 6167 RD, Netherlands
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-Based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
9
|
Kataki-Anastasakou A, Jia S, Axtell JC, Sletten EM. A Fluorescent Unnatural Mannosamine Derivative with Enhanced Emission Upon Complexation with Cucurbit[7]uril. Isr J Chem 2023; 63:e202200069. [PMID: 37636996 PMCID: PMC10457038 DOI: 10.1002/ijch.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 12/28/2022]
Abstract
Metabolic incorporation of unnatural functionality on glycans has allowed chemical biologists to observe and affect cellular processes. Recent work has resulted in glycan-fluorophore structures that allow for direct visualization of glycan-mediated processes, shining light on their role in living systems. This work describes the serendipitous discovery of a small chemical reporter-fluorophore. Investigations into the mechanism of fluorescence arising from (trimethylsilyl)methylglycine appended on mannosamine suggest rigidity and restriction of lone pair geometry contribute to the fluorescent behaviour. In fact, in situ cyclization and encapsulation in cucurbit[7]uril enhance fluorescence to levels that can be observed in live cells. While the reported unnatural mannosamine does not traverse the sialic acid biosynthetic pathway, this discovery may lead to small, "turn-on" chemical reporters for incorporation in living systems.
Collapse
Affiliation(s)
- Anna Kataki-Anastasakou
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA
| | - Shang Jia
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA
| | - Jonathan C Axtell
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Ge M, Liu S, Li J, Li M, Li S, James TD, Chen Z. Luminescent materials derived from biomass resources. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Li Q, Wang X, Huang Q, Li Z, Tang BZ, Mao S. Molecular-level enhanced clusterization-triggered emission of nonconventional luminophores in dilute aqueous solution. Nat Commun 2023; 14:409. [PMID: 36697406 PMCID: PMC9876902 DOI: 10.1038/s41467-023-36115-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Nonconjugated and nonaromatic luminophores based on clustering-triggered emission derived from through-space conjugation have drawn emerging attention in recent years. The reported nonconventional luminophores are emissive in concentrated solution and/or in the solid state, but they tend to be nonluminescent in dilute solution, which greatly limits their sensing and imaging applications. Herein, we design unique clusteroluminogens through modification of cyclodextrin (CD) with amino acids to enable the intermolecular and intramolecular clusterization of chromophores in CD-based confined space. The resulted through-space interactions along with conformation rigidification originated from hydrogen bond interaction and complexation interaction generate blue to cyan fluorescence even in the dilute solution (0.035 wt.%, quantum yield of 40.70%). Moreover, the prepared histidine-modified CD (CDHis) is demonstrated for fluorescent detection of chlortetracycline with high sensitivity and selectivity. This work provides a new and universal strategy to synthesize nonconventional luminophores with bright fluorescence in dilute aqueous solution through molecular-level enhanced clusterization-triggered emission.
Collapse
Affiliation(s)
- Qiuju Li
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| | - Xingyi Wang
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| | - Qisu Huang
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| | - Zhuo Li
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| | - Ben Zhong Tang
- grid.10784.3a0000 0004 1937 0482School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen City, Guangdong 518172 PR China
| | - Shun Mao
- grid.24516.340000000123704535College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092 PR China
| |
Collapse
|
12
|
Aizen R, Arnon ZA, Berger O, Ruggiero A, Zaguri D, Brown N, Shirshin E, Slutsky I, Gazit E. Intrinsic fluorescence of nucleobase crystals. NANOSCALE ADVANCES 2023; 5:344-348. [PMID: 36756258 PMCID: PMC9846435 DOI: 10.1039/d2na00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Nucleobase crystals demonstrate unique intrinsic fluorescence properties in the visible spectral range. This is in contrast to their monomeric counterparts. Moreover, some nucleobases were found to exhibit red edge excitation shift. This behavior is uncommon in the field of organic supramolecular materials and could have implications in fields such as therapeutics of metabolic disorders and materials science.
Collapse
Affiliation(s)
- Ruth Aizen
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University Tel Aviv 6997801 Israel
| | - Zohar A Arnon
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University Tel Aviv 6997801 Israel
| | - Or Berger
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University Tel Aviv 6997801 Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv 6997801 Israel
| | - Dor Zaguri
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University Tel Aviv 6997801 Israel
| | - Noam Brown
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University Tel Aviv 6997801 Israel
| | - Evgeny Shirshin
- Faculty of Physics, M. V. Lomonosov Moscow State University Moscow 119991 Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I. M. Sechenov First Moscow State Medical University (Sechenov University) 119991 Moscow Russia
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv 6997801 Israel
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, Tel Aviv University Tel Aviv 6997801 Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
13
|
Fowler WC. Intrinsic Fluorescence in Peptide Amphiphile Micelles with Protein-Inspired Phosphate Sensing. Biomacromolecules 2022; 23:4804-4813. [PMID: 36223894 PMCID: PMC9667461 DOI: 10.1021/acs.biomac.2c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Although peptide amphiphile micelles (PAMs) have been
widely studied
since they were developed in the late 1990s, to the author’s
knowledge, there have been no reports that PAMs intrinsically fluoresce
without a fluorescent tag, according to the aggregation-induced emission
(AIE) effect. This unexpected fluorescence behavior adds noteworthy
value to both the peptide amphiphile and AIE communities. For PAMs,
intrinsic fluorescence becomes another highly useful feature to add
to this well-studied material platform that features precise synthetic
control, tunable self-assembly, and straightforward functionalization,
with clear potential applications in bioinspired materials for bioimaging
and fluorescent sensing. For AIE, it is extremely rare and highly
desirable for one platform to exhibit precise tunability on multiple
length scales in aqeuous solutions, positioning PAMs as uniquely well-suited
for systematic AIE mechanistic study and sequence-specific functionalization
for bioinspired AIE applications. In this work, the author proposes
that AIE occurs across intermolecular emissive pathways created by
the closely packed peptide amide bonds in the micelle corona upon
self-assembly, with maximum excitation and emission wavelengths of
355 and 430 nm, respectively. Of the three PAMs evaluated here, the
PAM with tightly packed random coil peptide conformation and maximum
peptide length had the largest quantum yield, indicating that tuning
molecular design can further optimize the intrinsic emissive properties
of PAMs. To probe the sensing capabilities of AIE PAMs, a PAM was
designed to incorporate a protein-derived phosphate-binding sequence.
It detected phosphate down to 1 ppm through AIE-enhanced second-order
aggregation, demonstrating that AIE in PAMs leverages tunable biomimicry
to perform protein-inspired sensing.
Collapse
Affiliation(s)
- Whitney C Fowler
- Department of Engineering, Harvey Mudd College, Claremont, California 91711, United States
| |
Collapse
|
14
|
Morzan UN, Díaz Mirón G, Grisanti L, González Lebrero MC, Kaminski Schierle GS, Hassanali A. Non-Aromatic Fluorescence in Biological Matter: The Exception or the Rule? J Phys Chem B 2022; 126:7203-7211. [PMID: 36128666 DOI: 10.1021/acs.jpcb.2c04280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While in the vast majority of cases fluorescence in biological matter has been attributed to aromatic or conjugated groups, peptides associated with neurodegenerative diseases, such as Alzheimer's, Parkinson's, or Huntington's, have been recently shown to display an intrinsic visible fluorescence even in the absence of aromatic residues. This has called the attention of researchers from many different fields, trying to understand the origin of this peculiar behavior and, at the same time, motivating the search for novel strategies to control the optical properties of new biophotonic materials. Today, after nearly 15 years of its discovery, there is a growing consensus about the mechanism underlying this phenomenon, namely, that electronic interactions between non-optically active molecules can result in supramolecular assemblies that are fluorescent. Despite this progress, many aspects of this phenomenon remain uncharted territory. In this Perspective, we lay down the state-of-the-art in the field highlighting the open questions from both experimental and theoretical fronts in this fascinating emerging area of non-aromatic fluorescence.
Collapse
Affiliation(s)
- Uriel N Morzan
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Gonzalo Díaz Mirón
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | - Luca Grisanti
- Division of Theoretical Physics, Ruđer Bos̆cković Institute, Bijenic̆ka cesta 54, 10000 Zagreb, Croatia
| | - Mariano C González Lebrero
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
| | | | - Ali Hassanali
- International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
15
|
Tyrikos-Ergas T, Gim S, Huang JY, Pinzón Martín S, Varón Silva D, Seeberger PH, Delbianco M. Synthetic phosphoethanolamine-modified oligosaccharides reveal the importance of glycan length and substitution in biofilm-inspired assemblies. Nat Commun 2022; 13:3954. [PMID: 35804023 PMCID: PMC9270332 DOI: 10.1038/s41467-022-31633-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with remarkable mechanical properties. Efforts understanding and tuning the protein component have been extensive, whereas the polysaccharide part remained mostly overlooked. The discovery of phosphoethanolamine (pEtN) modified cellulose in E. coli biofilms revealed that polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN cellulose and its mode of interactions with proteins remains elusive. Herein, we report a model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a representative peptide, triggering the formation of fibers in a length dependent manner. We discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the assembly morphology, revealing interesting targets for polysaccharide engineering to develop tunable bio-inspired materials.
Collapse
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jhih-Yi Huang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sandra Pinzón Martín
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Daniel Varón Silva
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.,Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
16
|
Maruyama H, Shioda Y, Maeda M, Fujimori A. Control of phase-separated morphology in mixed monolayers of amphiphilic comb polymers containing diamino-s-triazine and non-amphiphilic s-triazine derivatives with fluorocarbons. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Shebis Y, Fallik E, Rodov V, Sagiri SS, Poverenov E. Oligomers of Carboxymethyl Cellulose for Postharvest Treatment of Fresh Produce: The Effect on Fresh-Cut Strawberry in Combination with Natural Active Agents. Foods 2022; 11:1117. [PMID: 35454704 PMCID: PMC9032414 DOI: 10.3390/foods11081117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, oligomers of carboxymethyl cellulose (O-CMC) were used as a new postharvest treatment for fresh produce. The oligomers were prepared by green and cost-effective enzymatic hydrolysis and applied to prevent spoilage and improve storability of fresh-cut strawberries. The produce quality was improved by all formulations containing O-CMC in comparison to the control, as indicated by the decrease in decay incidence, weight loss (min ~2-5 times less), higher firmness, microbial load decrease, better appearance, and sensorial quality of the fruits. Natural resources: ascorbic acid, gallic acid, and vanillin were further added to enhance the beneficial effect. O-CMC with vanillin was most efficient in all of the tested parameters, exhibiting the full prevention of fruit decay during all 7 days of refrigerated storage. In addition, fruits coated with O-CMC vanillin have the smallest weight loss (%), minimum browning, and highest antimicrobial effect preventing bacterial (~3 log, 2 log) and yeast/mold contaminations. Based on the obtained positive results, O-CMC may provide a new, safe, and effective tool for the postharvest treatment of fresh produce that can be used alone or in combination with other active agents.
Collapse
Affiliation(s)
- Yevgenia Shebis
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel; (Y.S.); (S.S.S.)
- The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elazar Fallik
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel; (E.F.); (V.R.)
| | - Victor Rodov
- Department of Postharvest Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel; (E.F.); (V.R.)
| | - Sai Sateesh Sagiri
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel; (Y.S.); (S.S.S.)
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Research Center, Department of Food Science, Agricultural Research Organization, The Volcani Institute, Rishon Lezion 7505101, Israel; (Y.S.); (S.S.S.)
| |
Collapse
|
18
|
Tang S, Yang T, Zhao Z, Zhu T, Zhang Q, Hou W, Yuan WZ. Nonconventional luminophores: characteristics, advancements and perspectives. Chem Soc Rev 2021; 50:12616-12655. [PMID: 34610056 DOI: 10.1039/d0cs01087a] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonconventional luminophores devoid of remarkable conjugates have attracted considerable attention due to their unique luminescence behaviors, updated luminescence mechanism of organics and promising applications in optoelectronic, biological and medical fields. Unlike classic luminogens consisting of molecular segments with greatly extended electron delocalization, these unorthodox luminophores generally possess nonconjugated structures based on subgroups such as ether (-O-), hydroxyl (-OH), halogens, carbonyl (CO), carboxyl (-COOH), cyano (CN), thioether (-S-), sulfoxide (SO), sulfone (OSO), phosphate, and aliphatic amine, as well as their grouped functionalities like amide, imide, anhydride and ureido. They can exhibit intriguing intrinsic luminescence, generally featuring concentration-enhanced emission, aggregation-induced emission, excitation-dependent luminescence and prevailing phosphorescence. Herein, we review the recent progress in exploring these nonconventional luminophores and discuss the current challenges and future perspectives. Notably, different mechanisms are reviewed and the clustering-triggered emission (CTE) mechanism is highlighted, which emphasizes the clustering of the above mentioned electron rich moieties and consequent electron delocalization along with conformation rigidification. The CTE mechanism seems widely applicable for diversified natural, synthetic and supramolecular systems.
Collapse
Affiliation(s)
- Saixing Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wubeiwen Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
19
|
Gim S, Fittolani G, Yu Y, Zhu Y, Seeberger PH, Ogawa Y, Delbianco M. Targeted Chemical Modifications Identify Key Features of Carbohydrate Assemblies and Generate Tailored Carbohydrate Materials. Chemistry 2021; 27:13139-13143. [PMID: 34251709 PMCID: PMC8518775 DOI: 10.1002/chem.202102164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 12/11/2022]
Abstract
The molecular level description of carbohydrate assemblies is hampered by their structural complexity and the lack of suitable analytical methods. Here, we employed systematic chemical modifications to identify key non-covalent interactions that triggered the supramolecular assembly of a disaccharide model. While some modifications disrupted the supramolecular organization, others were tolerated, delivering important information on the aggregation process. The screening identified new geometries, including nanotubes, and twisted ribbons that were characterized with electron tomography and electron diffraction (ED) methods. This work demonstrates that the combination of synthetic chemistry and ED methods is a powerful tool to draw correlations between the molecular structure and the nanoscale architecture of carbohydrate assemblies.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yang Yu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Simpson Querrey InstituteNorthwestern University2145 Sheridan RoadEvanstonIL 60208USA
| | - Yuntao Zhu
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yu Ogawa
- Univ. Grenoble AlpesCNRS, CERMAV38000GrenobleFrance
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
20
|
Hata Y, Serizawa T. Self-assembly of cellulose for creating green materials with tailor-made nanostructures. J Mater Chem B 2021; 9:3944-3966. [PMID: 33908581 DOI: 10.1039/d1tb00339a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Inspired by living systems, biomolecules have been employed in vitro as building blocks for creating advanced nanostructured materials. In regard to nucleic acids, peptides, and lipids, their self-assembly pathways and resulting assembled structures are mostly encoded in their molecular structures. On the other hand, outside of its chain length, cellulose, a polysaccharide, lacks structural diversity; therefore, it is challenging to direct this homopolymer to controllably assemble into ordered nanostructures. Nevertheless, the properties of cellulose assemblies are outstanding in terms of their robustness and inertness, and these assemblies are attractive for constructing versatile materials. In this review article, we summarize recent research progress on the self-assembly of cellulose and the applications of assembled cellulose materials, especially for biomedical use. Given that cellulose is the most abundant biopolymer on Earth, gaining control over cellulose assembly represents a promising route for producing green materials with tailor-made nanostructures.
Collapse
Affiliation(s)
- Yuuki Hata
- Division of Biomedical Engineering, National Defense Medical College Research Institute, 3-2 Namiki, Tokorozawa-shi, Saitama 359-8513, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
21
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
22
|
Nigmatullin R, de Andrade P, Harniman R, Field RA, Eichhorn SJ. Postsynthesis Self- And Coassembly of Enzymatically Produced Fluorinated Cellodextrins and Cellulose Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9215-9221. [PMID: 34297578 DOI: 10.1021/acs.langmuir.1c01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of new functional materials and devices substantially relies on self-assembly of hierarchical structures. Formation of 2D platelets is known in the enzymatic synthesis of cellulose-like polymers. Here we demonstrate the feasibility of postsynthesis assembly of novel fluorinated cellodextrins. Highly ordered 2D structures of large lateral dimensions, unattainable in the polymerization process, can be formed because of postsynthesis assembly of the cellodextrins. These cellodextrins were also involved in coassembly with cellulose nanocrystals (CNCs) leading to hybrid systems. The hybrid architectures obtained depend on the content of fluorine atoms in the fluorinated cellodextrins. Monofluorinated cellodextrins coassemble with CNCs into a nanoweb, while multifluorinated cellodextrins assemble around the CNCs.
Collapse
Affiliation(s)
- Rinat Nigmatullin
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| | - Peterson de Andrade
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TH, U.K
| | - Robert Harniman
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7TH, U.K
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom
| |
Collapse
|
23
|
Abstract
![]()
Polysaccharides are
Nature’s most abundant biomaterials
essential for plant cell wall construction and energy storage. Seemingly
minor structural differences result in entirely different functions:
cellulose, a β (1–4) linked glucose polymer, forms fibrils
that can support large trees, while amylose, an α (1–4)
linked glucose polymer forms soft hollow fibers used for energy storage.
A detailed understanding of polysaccharide structures requires pure
materials that cannot be isolated from natural sources. Automated
Glycan Assembly provides quick access to trans-linked
glycans analogues of cellulose, but the stereoselective installation
of multiple cis-glycosidic linkages present in amylose
has not been possible to date. Here, we identify thioglycoside building
blocks with different protecting group patterns that, in concert with
temperature and solvent control, achieve excellent stereoselectivity
during the synthesis of linear and branched α-glucan polymers
with up to 20 cis-glycosidic linkages. The molecules
prepared with the new method will serve as probes to understand the
biosynthesis and the structure of α-glucans.
Collapse
Affiliation(s)
- Yuntao Zhu
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
24
|
Su W, Yin J, Wang R, Shi M, Liu P, Qin Z, Xing R, Jiao T. Self-assembled natural biomacromolecular fluorescent hydrogels with tunable red edge effects. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125993] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
de Andrade P, Muñoz‐García JC, Pergolizzi G, Gabrielli V, Nepogodiev SA, Iuga D, Fábián L, Nigmatullin R, Johns MA, Harniman R, Eichhorn SJ, Angulo J, Khimyak YZ, Field RA. Chemoenzymatic Synthesis of Fluorinated Cellodextrins Identifies a New Allomorph for Cellulose-Like Materials*. Chemistry 2021; 27:1374-1382. [PMID: 32990374 PMCID: PMC7898601 DOI: 10.1002/chem.202003604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/24/2020] [Indexed: 12/12/2022]
Abstract
Understanding the fine details of the self-assembly of building blocks into complex hierarchical structures represents a major challenge en route to the design and preparation of soft-matter materials with specific properties. Enzymatically synthesised cellodextrins are known to have limited water solubility beyond DP9, a point at which they self-assemble into particles resembling the antiparallel cellulose II crystalline packing. We have prepared and characterised a series of site-selectively fluorinated cellodextrins with different degrees of fluorination and substitution patterns by chemoenzymatic synthesis. Bearing in mind the potential disruption of the hydrogen-bond network of cellulose II, we have prepared and characterised a multiply 6-fluorinated cellodextrin. In addition, a series of single site-selectively fluorinated cellodextrins was synthesised to assess the structural impact upon the addition of one fluorine atom per chain. The structural characterisation of these materials at different length scales, combining advanced NMR spectroscopy and microscopy methods, showed that a 6-fluorinated donor substrate yielded multiply 6-fluorinated cellodextrin chains that assembled into particles presenting morphological and crystallinity features, and intermolecular interactions, that are unprecedented for cellulose-like materials.
Collapse
Affiliation(s)
- Peterson de Andrade
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Present address: Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| | - Juan C. Muñoz‐García
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Giulia Pergolizzi
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Iceni Diagnostics Ltd.Norwich Research Park Innovation CentreColney LaneNorwichNorfolkNR4 7GJUK
| | - Valeria Gabrielli
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | | | - Dinu Iuga
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUK
| | - László Fábián
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Rinat Nigmatullin
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Marcus A. Johns
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | | | - Stephen J. Eichhorn
- Bristol Composites InstituteCAME School of EngineeringUniversity of BristolBristolBS8 1TRUK
| | - Jesús Angulo
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Yaroslav Z. Khimyak
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Robert A. Field
- Department of Biological ChemistryJohn Innes CentreNorwichNR4 7UHUK
- Iceni Diagnostics Ltd.Norwich Research Park Innovation CentreColney LaneNorwichNorfolkNR4 7GJUK
- Present address: Department of Chemistry and Manchester Institute of BiotechnologyUniversity of ManchesterManchesterM1 7DNUK
| |
Collapse
|
26
|
Kshtriya V, Koshti B, Gangrade A, Haque A, Singh R, Joshi KB, Bhatia D, Gour N. Self-assembly of a benzothiazolone conjugate into panchromatic fluorescent fibres and their application in cellular imaging. NEW J CHEM 2021. [DOI: 10.1039/d1nj03269k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report self assembly of a benzothiazolone conjugate (CBT) into fluorescent panchromatic fibres and their application as a panchromatic dye in bioimaging.
Collapse
Affiliation(s)
- Vivekshinh Kshtriya
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Bharti Koshti
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ankit Gangrade
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ashadul Haque
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Ramesh Singh
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline and Center for Biomedical Research, Indian Institute of Technology Gandhinagar, Palaj 382355, Gandhinagar, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| |
Collapse
|
27
|
Gim S, Fittolani G, Nishiyama Y, Seeberger PH, Ogawa Y, Delbianco M. Supramolecular Assembly and Chirality of Synthetic Carbohydrate Materials. Angew Chem Int Ed Engl 2020; 59:22577-22583. [PMID: 32881205 PMCID: PMC7756587 DOI: 10.1002/anie.202008153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Indexed: 11/12/2022]
Abstract
Hierarchical carbohydrate architectures serve multiple roles in nature. Hardly any correlations between the carbohydrate chemical structures and the material properties are available due to the lack of standards and suitable analytic techniques. Therefore, designer carbohydrate materials remain highly unexplored, as compared to peptides and nucleic acids. A synthetic D-glucose disaccharide, DD, was chosen as a model to explore carbohydrate materials. Microcrystal electron diffraction (MicroED), optimized for oligosaccharides, revealed that DD assembled into highly crystalline left-handed helical fibers. The supramolecular architecture was correlated to the local crystal organization, allowing for the design of the enantiomeric right-handed fibers, based on the L-glucose disaccharide, LL, or flat lamellae, based on the racemic mixture. Tunable morphologies and mechanical properties suggest the potential of carbohydrate materials for nanotechnology applications.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | | | - Peter H. Seeberger
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Yu Ogawa
- Univ. Grenoble AlpesCNRSCERMAV38000GrenobleFrance
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
28
|
Huo Z, Xia L, Li G, Xiao X. A "Polymer Template" Strategy for Carbonized Polymer Dots with Controllable Properties. Chemistry 2020; 26:14754-14764. [PMID: 32841406 DOI: 10.1002/chem.202003379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 01/07/2023]
Abstract
Limited avenues are available for property control of carbonized polymer dots (PDs) owing to the unsatisfactory understanding of PDs" formation. Herein, a de novo "polymer template" strategy is presented for PDs with customizable functional surface groups (FSG), size, and underlying fluorescence, with a detailed mechanism. The strategy relies on novel di-active site polymers (DASPs) prepared from alkenyl azides via [3+2] cycloaddition and guanidino hydrolysis. Benefiting from these specific reactions, the DASPs were convenient for mass production and stable for storage, and could be transformed to PDs upon addition of nucleophilic agents through nucleophilic addition and substitution at 70 °C. By regulating the types of alkenyl azides, nucleophilic agents, and reaction conditions, the as-prepare PDs could be tailored with controlled types of core, FSG, and particle size, as well as fluorescence properties of quantum yield from 8.2-55.6 %, and emission maximum from 380-500 nm. These specialties make this "polymer template" strategy a promising start for building PDs-based sensor platforms. Moreover, the strategy could further our understanding towards PDs' formation, and open up a new way to customize PDs for specific needs in the fields of analysis, catalysis, images, etc.
Collapse
Affiliation(s)
- Zhiming Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
29
|
Maiti S, Manna S, Banahene N, Pham L, Liang Z, Wang J, Xu Y, Bettinger R, Zientko J, Esser‐Kahn AP, Du W. From Glucose to Polymers: A Continuous Chemoenzymatic Process. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sampa Maiti
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
| | - Saikat Manna
- Pritzker School of Molecular Engineering The University of Chicago Chicago IL 60637 USA
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
| | - Lucynda Pham
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
| | - Zhijie Liang
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
- Current address: Department of Wound Repair Surgery The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning Nanning 530000 China
| | - Jun Wang
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
| | - Yi Xu
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
| | - Reuben Bettinger
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
| | - John Zientko
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
| | - Aaron P. Esser‐Kahn
- Pritzker School of Molecular Engineering The University of Chicago Chicago IL 60637 USA
| | - Wenjun Du
- Department of Chemistry and Biochemistry Science of Advanced Materials Central Michigan University Mount Pleasant MI 48859 USA
| |
Collapse
|
30
|
Gim S, Fittolani G, Nishiyama Y, Seeberger PH, Ogawa Y, Delbianco M. Supramolecular Assembly and Chirality of Synthetic Carbohydrate Materials. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems Max-Planck-Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Giulio Fittolani
- Department of Biomolecular Systems Max-Planck-Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | | | - Peter H. Seeberger
- Department of Biomolecular Systems Max-Planck-Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Yu Ogawa
- Univ. Grenoble Alpes CNRS CERMAV 38000 Grenoble France
| | - Martina Delbianco
- Department of Biomolecular Systems Max-Planck-Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
31
|
Maiti S, Manna S, Banahene N, Pham L, Liang Z, Wang J, Xu Y, Bettinger R, Zientko J, Esser-Kahn AP, Du W. From Glucose to Polymers: A Continuous Chemoenzymatic Process. Angew Chem Int Ed Engl 2020; 59:18943-18947. [PMID: 33448568 DOI: 10.1002/anie.202006468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Indexed: 11/10/2022]
Abstract
Efforts to synthesize degradable polymers from renewable resources are deterred by technical and economic challenges; especially, the conversion of natural building blocks into polymerizable monomers is inefficient, requiring multistep synthesis and chromatographic purification. Herein we report a chemoenzymatic process to address these challenges. An enzymatic reaction system was designed that allows for regioselective functional group transformation, efficiently converting glucose into a polymerizable monomer in quantitative yield, thus removing the need for chromatographic purification. With this key success, we further designed a continuous, three-step process, which enabled the synthesis of a sugar polymer, sugar poly(orthoester), directly from glucose in high yield (73 % from glucose). This work may provide a proof-of-concept in developing technically and economically viable approaches to address the many issues associated with current petroleum-based polymers.
Collapse
Affiliation(s)
- Sampa Maiti
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Saikat Manna
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas Banahene
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Lucynda Pham
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Zhijie Liang
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA.,Current address: Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, 530000, China
| | - Jun Wang
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Yi Xu
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Reuben Bettinger
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - John Zientko
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Aaron P Esser-Kahn
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenjun Du
- Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
32
|
Fujiki M, Wang L, Ogata N, Asanoma F, Okubo A, Okazaki S, Kamite H, Jalilah AJ. Chirogenesis and Pfeiffer Effect in Optically Inactive Eu III and Tb III Tris(β-diketonate) Upon Intermolecular Chirality Transfer From Poly- and Monosaccharide Alkyl Esters and α-Pinene: Emerging Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD). Front Chem 2020; 8:685. [PMID: 32903703 PMCID: PMC7438854 DOI: 10.3389/fchem.2020.00685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
We report emerging circularly polarized luminescence (CPL) at 4f-4f transitions when lanthanide (EuIII and TbIII) tris(β-diketonate) embedded to cellulose triacetate (CTA), cellulose acetate butyrate (CABu), D-/L-glucose pentamethyl esters (D-/L-Glu), and D-/L-arabinose tetramethyl esters (D-/L-Ara) are in film states. Herein, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate (fod) and 2,2,6,6-tetramethyl-3,5-heptanedione (dpm) were chosen as the β-diketonates. The glum value of Eu(fod)3 in CABu are +0.0671 at 593 nm (5D0→7F1) and −0.0059 at 613 nm (5D0→7F2), respectively, while those in CTA are +0.0463 and −0.0040 at these transitions, respectively. The glum value of Tb(fod)3 in CABu are −0.0029 at 490 nm (5D4→7F6), +0.0078 at 540 nm (5D4→7F5), and −0.0018 at 552 nm (5D4→7F5), respectively, while those in CTA are −0.0053, +0.0037, and −0.0059 at these transitions, respectively. D-/L-Glu and D-/L-Ara induced weaker glum values at 4f-4f transitions of Eu(fod)3, Tb(fod)3, and Tb(dpm)3. For comparison, Tb(dpm)3 in α-pinene showed clear CPL characteristics, though Eu(dpm)3 did not. A surplus charge neutralization hypothesis was applied to the origin of attractive intermolecular interactions between the ligands and saccharides. This idea was supported from the concomitant opposite tendency in upfield 19F-NMR and downfield 1H-NMR chemical shifts of Eu(fod)3 and the opposite Mulliken charges between F-C bonds (fod) and H-C bonds (CTA and D-/L-Glu). An analysis of CPL excitation (CPLE) and CPL spectra suggests that (+)- and (–)-sign CPL signals of EuIII and TbIII at different 4f-4f transitions in the visible region are the same with the (+)-and (–)-sign exhibited by CPLE bands at high energy levels of EuIII and TbIII in the near-UV region.
Collapse
Affiliation(s)
- Michiya Fujiki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Laibing Wang
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Nanami Ogata
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fumio Asanoma
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Asuka Okubo
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Shun Okazaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroki Kamite
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Abd Jalil Jalilah
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,School of Materials Engineering, Universiti Malaysia Perlis, Jejawi, Malaysia.,Centre of Excellence Frontier Materials Research, Universiti Malaysia Perlis, Kangar, Malaysia
| |
Collapse
|
33
|
Basavalingappa V, Bera S, Xue B, O’Donnell J, Guerin S, Cazade PA, Yuan H, Haq EU, Silien C, Tao K, Shimon LJW, Tofail SAM, Thompson D, Kolusheva S, Yang R, Cao Y, Gazit E. Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity. ACS NANO 2020; 14:7025-7037. [PMID: 32441511 PMCID: PMC7315635 DOI: 10.1021/acsnano.0c01654] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/21/2020] [Indexed: 05/27/2023]
Abstract
Diphenylalanine (FF) represents the simplest peptide building block that self-assembles into ordered nanostructures with interesting physical properties. Among self-assembled peptide structures, FF nanotubes display notable stiffness and piezoelectric parameters (Young's modulus = 19-27 GPa, strain coefficient d33 = 18 pC/N). Yet, inorganic alternatives remain the major materials of choice for many applications due to higher stiffness and piezoelectricity. Here, aiming to broaden the applications of the FF motif in materials chemistry, we designed three phenyl-rich dipeptides based on the β,β-diphenyl-Ala-OH (Dip) unit: Dip-Dip, cyclo-Dip-Dip, and tert-butyloxycarbonyl (Boc)-Dip-Dip. The doubled number of aromatic groups per unit, compared to FF, produced a dense aromatic zipper network with a dramatically improved Young's modulus of ∼70 GPa, which is comparable to aluminum. The piezoelectric strain coefficient d33 of ∼73 pC/N of such assembly exceeds that of poled polyvinylidene-fluoride (PVDF) polymers and compares well to that of lead zirconium titanate (PZT) thin films and ribbons. The rationally designed π-π assemblies show a voltage coefficient of 2-3 Vm/N, an order of magnitude higher than PVDF, improved thermal stability up to 360 °C (∼60 °C higher than FF), and useful photoluminescence with wide-range excitation-dependent emission in the visible region. Our data demonstrate that aromatic groups improve the rigidity and piezoelectricity of organic self-assembled materials for numerous applications.
Collapse
Affiliation(s)
- Vasantha Basavalingappa
- Department of Molecular
Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Santu Bera
- Department of Molecular
Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bin Xue
- Collaborative Innovation Centre of Advanced Microstructures,
National Laboratory of Solid State Microstructure, Key Laboratory
of Intelligent Optical Sensing and Manipulation, Ministry of Education,
Department of Physics, Nanjing University, Nanjing 210093, PR China
| | - Joseph O’Donnell
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sarah Guerin
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Pierre-Andre Cazade
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Hui Yuan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, PR China
| | - Ehtsham ul Haq
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Christophe Silien
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Kai Tao
- Department of Molecular
Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- State Key Lab of Fluid Power Transmission and Control,
Department of Mechanical Engineering, Zhejiang
University, Hangzhou, Zhejiang 310027, PR China
| | - Linda J. W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Syed A. M. Tofail
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Damien Thompson
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, PR China
| | - Yi Cao
- Collaborative Innovation Centre of Advanced Microstructures,
National Laboratory of Solid State Microstructure, Key Laboratory
of Intelligent Optical Sensing and Manipulation, Ministry of Education,
Department of Physics, Nanjing University, Nanjing 210093, PR China
| | - Ehud Gazit
- Department of Molecular
Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Bakhatan Y, Alshanski I, Grunhaus D, Hurevich M. The breaking beads approach for photocleavage from solid support. Org Biomol Chem 2020; 18:4183-4188. [PMID: 32441723 DOI: 10.1039/d0ob00821d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocleavage from polystyrene beads is a pivotal reaction for solid phase synthesis that relies on photolabile linkers. Photocleavage from intact porous polystyrene beads is not optimal because light cannot penetrate into the beads and the surface area exposed to irradiation is limited. Thus, hazardous, technically challenging and expensive setups are used for photocleavage from intact beads. We developed a new concept in which grinding the beads during or prior to irradiation is employed as an essential part of the photocleavage process. By grinding the beads we are exposing more surface area to the light source, hence, photocleavage can be performed even using a simple benchtop LED setup. This approach proved very efficient for photocleavage of various model compounds including fully protected oligosaccharides.
Collapse
Affiliation(s)
- Yasmeen Bakhatan
- Institute of Chemistry; Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Israel Alshanski
- Institute of Chemistry; Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Dana Grunhaus
- Institute of Chemistry; Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Mattan Hurevich
- Institute of Chemistry; Harvey M. Kreuger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
35
|
Mende M, Bordoni V, Tsouka A, Loeffler FF, Delbianco M, Seeberger PH. Multivalent glycan arrays. Faraday Discuss 2020; 219:9-32. [PMID: 31298252 DOI: 10.1039/c9fd00080a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycan microarrays have become a powerful technology to study biological processes, such as cell-cell interaction, inflammation, and infections. Yet, several challenges, especially in multivalent display, remain. In this introductory lecture we discuss the state-of-the-art glycan microarray technology, with emphasis on novel approaches to access collections of pure glycans and their immobilization on surfaces. Future directions to mimic the natural glycan presentation on an array format, as well as in situ generation of combinatorial glycan collections, are discussed.
Collapse
Affiliation(s)
- Marco Mende
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Serizawa T, Maeda T, Sawada T. Neutralization-Induced Self-Assembly of Cellulose Oligomers into Antibiofouling Crystalline Nanoribbon Networks in Complex Mixtures. ACS Macro Lett 2020; 9:301-305. [PMID: 35648536 DOI: 10.1021/acsmacrolett.9b01008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular self-assembly in solutions is a powerful strategy for fabricating functional architectures. Various bio(macro)molecules have been used as self-assembly components. However, structural polysaccharides, such as cellulose and chitin, have rarely been a research focus for molecular self-assembly, even though their crystalline assemblies potentially have robust physicochemical properties. Herein, we demonstrated the neutralization-induced self-assembly of cellulose oligomers into antibiofouling crystalline nanoribbon networks to produce physically cross-linked hydrogels. The self-assembly proceeded even in versatile complex mixtures, such as serum-containing cell culture media, in a controlled manner for 3D cell culture. The cultured cells grew into cell aggregates (spheroids), which were simply collected through natural filtration due to the mechanically crushable property of the crystalline nanoribbons through water flow by pipetting. We will show the potential of cellulose oligomers for biocompatible, crystalline soft materials.
Collapse
Affiliation(s)
- Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tohru Maeda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Toshiki Sawada
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1-H121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
37
|
Vangala M, Yousf S, Chugh J, Hotha S. Solid‐Phase Synthesis of Clickable Psicofuranose Glycocarbamates and Application of Their Self‐Assembled Nanovesicles for Curcumin Encapsulation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Madhuri Vangala
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Saleem Yousf
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Jeetender Chugh
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| | - Srinivas Hotha
- Department of ChemistryIndian Institute of Science Education and Research Pune 411008 India
| |
Collapse
|
38
|
Johns MA, Lewandowska AE, Green E, Eichhorn SJ. Employing photoluminescence to rapidly follow aggregation and dispersion of cellulose nanofibrils. Analyst 2020; 145:4836-4843. [DOI: 10.1039/d0an00868k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multichannel confocal spectroscopy enables tracking of time dependent, spatially resolved changes in the physicochemical environment of cellulose nanofibrils due to variation in emission intensity ratios.
Collapse
Affiliation(s)
- Marcus A. Johns
- Department of Aerospace Engineering
- Bristol Composites Institute (ACCIS)
- University of Bristol
- Bristol BS8 1TR
- UK
| | - Anna E. Lewandowska
- Department of Aerospace Engineering
- Bristol Composites Institute (ACCIS)
- University of Bristol
- Bristol BS8 1TR
- UK
| | - Ellen Green
- College of Engineering
- Mathematics and Physical Sciences
- University of Exeter
- Exeter EX4 4QL
- UK
| | - Stephen J. Eichhorn
- Department of Aerospace Engineering
- Bristol Composites Institute (ACCIS)
- University of Bristol
- Bristol BS8 1TR
- UK
| |
Collapse
|
39
|
Villa AM, Doglia SM, De Gioia L, Bertini L, Natalello A. Anomalous Intrinsic Fluorescence of HCl and NaOH Aqueous Solutions. J Phys Chem Lett 2019; 10:7230-7236. [PMID: 31689111 DOI: 10.1021/acs.jpclett.9b02163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The unique properties of liquid water mainly arise from its hydrogen bond network. The geometry and dynamics of this network play a key role in shaping the characteristics of soft matter, from simple solutions to biosystems. Here we report an anomalous intrinsic fluorescence of HCl and NaOH aqueous solutions at room temperature that shows important differences in the excitation and emission bands between the two solutes. From ab initio time-dependent density functional theory modeling we propose that fluorescence emission could originate from hydrated ion species contained in transient cavities of the bulk solvent. These cavities, which are characterized by a stiff surface, could provide an environment that, upon trapping the excited state, suppresses the fast nonradiative decay and allows the slower radiative channel to become a possible decay pathway.
Collapse
Affiliation(s)
- Anna Maria Villa
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences , University of Milano-Bicocca , Piazza della Scienza 2 , 20126 Milan , Italy
| |
Collapse
|
40
|
Tyrikos-Ergas T, Fittolani G, Seeberger PH, Delbianco M. Structural Studies Using Unnatural Oligosaccharides: Toward Sugar Foldamers. Biomacromolecules 2019; 21:18-29. [DOI: 10.1021/acs.biomac.9b01090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
41
|
Guberman M, Bräutigam M, Seeberger PH. Automated glycan assembly of Lewis type I and II oligosaccharide antigens. Chem Sci 2019; 10:5634-5640. [PMID: 31293748 PMCID: PMC6552968 DOI: 10.1039/c9sc00768g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Human blood group related glycan antigens are fucosylated (neo-)lactoseries oligosaccharides that play crucial roles in pathogenic processes. Lewis type-II-chain antigens mark the surface of cancer cells, but are also mediators of bacterial infections. To investigate the biological roles of Lewis type glycans a host of synthetic approaches has been developed. Here, we illustrate how automated glycan assembly (AGA) using a set of six monosaccharide building blocks provides quick access to a series of more than ten defined Lewis type-I and type-II antigens, including Lex, Ley, Lea, Leb and KH-1. Glycans with up to three α-fucose branches were assembled following a strictly linear approach and obtained in excellent stereoselectivity and purity.
Collapse
Affiliation(s)
- Mónica Guberman
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| | - Maria Bräutigam
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany .
- Department of Chemistry and Biochemistry , Freie Universität Berlin , Arnimalle 22 , 14195 Berlin , Germany
| |
Collapse
|
42
|
Lopez-Blanco R, Fernandez-Villamarin M, Jatunov S, Novoa-Carballal R, Fernandez-Megia E. Polysaccharides meet dendrimers to fine-tune the stability and release properties of polyion complex micelles. Polym Chem 2019. [DOI: 10.1039/c9py00727j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dendritic-polysaccharide PIC micelles represent promising delivery systems where dendritic rigidity and polysaccharide stiffness synchronize to determine the stability of the micelles, their kinetics of intracellular drug release, and cytotoxicity.
Collapse
Affiliation(s)
- Roi Lopez-Blanco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Marcos Fernandez-Villamarin
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Sorel Jatunov
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Ramon Novoa-Carballal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | - Eduardo Fernandez-Megia
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| |
Collapse
|