1
|
Belotti M, Hurtado C, Kelly S, MacGregor M, Darwish N, Ciampi S. Toward the Electrostatic Catalysis of Nucleophilic Substitutions: A Surface Chemistry Study of the Menshutkin Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26633-26639. [PMID: 39630487 DOI: 10.1021/acs.langmuir.4c03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The catalysis of nonredox reactions by external electric fields is one of the most rapidly expanding areas of chemistry. The Menshutkin reaction, a classic example of bimolecular nucleophilic substitution (SN2), involves the conversion of a tertiary amine to a quaternary ammonium salt by coupling it with an alkyl halide. The reaction barrier of the Menshutkin reaction is theoretically predicted to be highly sensitive to the magnitude and direction of an external electric field experienced by the transition state. In this study, we investigate how near-surface electric fields can drive this prototypical nucleophilic substitution by examining the coupling of a diffusive redox-tagged tertiary amine with an electrode-tethered alkyl bromide under a variable external bias. Our findings reveal a competition between electrostatically assisted reactions, solvent effects, and electrochemically triggered side reactions involving radical intermediates. We estimate that only about 5% of the coupling events are attributable to the external field, while the majority of the reaction products originate from electrochemically generated radical intermediates.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Sophia Kelly
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Melanie MacGregor
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
2
|
Xie Y, Li M, Ma Y, Lin F, Zhu H, Li W, Jiang S, Shen C, Jia Z, Zhang K. Azopyridine Aqueous Electrochemistry Enables Superior Organic AZIBs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60132-60141. [PMID: 39441671 DOI: 10.1021/acsami.4c09801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Azo compounds (AZO), such as azobenzene, are classic organic electrode materials featuring a redox potential close to Zn/Zn2+. Recent studies show that azobenzene could work as a cathode in aqueous zinc-ion batteries (AZIBs), providing a voltage output of around 0.7 V. However, the energy storage mechanism of AZO cathodes in AZIBs remains unclear, and their practical usage in AZIBs is hindered by the low voltage. In this study, azopyridine isomers, the hydrophilic analogues of azobenzene, were adopted as cathodes for AZIBs, and the energy storage mechanism was unveiled through aqueous electrochemical studies. Through in situ electrochemical characterizations and theoretical computations, we reveal that both the electron-withdrawing effect of the pyridyl group and the H+-involved -N = N-/-NH-NH- redox reaction uplift the redox potential of the azopyridine cathodes. These findings led to the first AZO-based AZIB, providing a voltage output of 1.4 V. The proposed air-stable AZIBs deliver a high energy/power density and a capacity of around 200 mAh g-1. This work discovers different azopyridine electrochemistry in aqueous and organic electrolytes and enabling AZIBs to outperform its competitors from the AZO family.
Collapse
Affiliation(s)
- Yihui Xie
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Ming Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Yijian Ma
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Fakun Lin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Hongbiao Zhu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Wenbiao Li
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Shangxu Jiang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Kai Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310000, P. R. China
- Shengzhou Innovation Research Institute, Zhejiang Sci-Tech University, Shengzhou 312400, P. R. China
| |
Collapse
|
3
|
Yoo JU, Kim DH, Choi TM, Jung ES, Lee HR, Lee CY, Pyo SG. Advancements in Flexible Nanogenerators: Polyvinylidene Fluoride-Based Nanofiber Utilizing Electrospinning. Molecules 2024; 29:3576. [PMID: 39124980 PMCID: PMC11313764 DOI: 10.3390/molecules29153576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
With the gradual miniaturization of electronic devices and the increasing interest in wearable devices, flexible microelectronics is being actively studied. Owing to the limitations of existing battery systems corresponding to miniaturization, there is a need for flexible alternative power sources. Accordingly, energy harvesting from surrounding environmental systems using fluorinated polymers with piezoelectric properties has received significant attention. Among them, polyvinylidene fluoride (PVDF) and PVDF co-polymers have been researched as representative organo-piezoelectric materials because of their excellent piezoelectric properties, mechanical flexibility, thermal stability, and light weight. Electrospinning is an effective method for fabricating nanofibrous meshes with superior surface-to-volume ratios from polymer solutions. During electrospinning, the polymer solution is subjected to mechanical stretching and in situ poling, corresponding to an external strong electric field. Consequently, the fraction of the piezoelectric β-phase in PVDF can be improved by the electrospinning process, and enhanced harvesting output can be realized. An overview of electrospun piezoelectric fibrous meshes composed of PVDF or PVDF co-polymers to be utilized is presented, and the recent progress in enhancement methods for harvesting output, such as fiber alignment, doping with various nanofillers, and coaxial fibers, is discussed. Additionally, other applications of these meshes as sensors are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sung-Gyu Pyo
- School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (J.-U.Y.); (D.-H.K.); (T.-M.C.); (E.-S.J.); (H.-R.L.); (C.-Y.L.)
| |
Collapse
|
4
|
Su Y, Berbille A, Li XF, Zhang J, PourhosseiniAsl M, Li H, Liu Z, Li S, Liu J, Zhu L, Wang ZL. Reduction of precious metal ions in aqueous solutions by contact-electro-catalysis. Nat Commun 2024; 15:4196. [PMID: 38760357 PMCID: PMC11101412 DOI: 10.1038/s41467-024-48407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Precious metals are core assets for the development of modern technologies in various fields. Their scarcity poses the question of their cost, life cycle and reuse. Recently, an emerging catalysis employing contact-electrification (CE) at water-solid interfaces to drive redox reaction, called contact-electro-catalysis (CEC), has been used to develop metal free mechano-catalytic methods to efficiently degrade refractory organic compounds, produce hydrogen peroxide, or leach metals from spent Li-Ion batteries. Here, we show ultrasonic CEC can successfully drive the reduction of Ag(ac), Rh3+, [PtCl4]2-, Ag+, Hg2+, Pd2+, [AuCl4]-, and Ir3+, in both anaerobic and aerobic conditions. The effect of oxygen on the reaction is studied by electron paramagnetic resonance (EPR) spectroscopy and ab-initio simulation. Combining measurements of charge transfers during water-solid CE, EPR spectroscopy and gold extraction experiments help show the link between CE and CEC. What's more, this method based on water-solid CE is capable of extracting gold from synthetic solutions with concentrations ranging from as low as 0.196 ppm up to 196 ppm, reaching in 3 h extraction capacities ranging from 0.756 to 722.5 mg g-1 in 3 h. Finally, we showed CEC is employed to design a metal-free, selective, and recyclable catalytic gold extraction methods from e-waste aqueous leachates.
Collapse
Affiliation(s)
- Yusen Su
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andy Berbille
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Fen Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jinyang Zhang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - MohammadJavad PourhosseiniAsl
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Department of Materials Science and Engineering, College of Engineering, Peking University, 100871, Beijing, China
| | - Huifan Li
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhanqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Shunning Li
- School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Jianbo Liu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Laipan Zhu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
5
|
Zhang J, Wang X, Zhang L, Lin S, Ciampi S, Wang ZL. Triboelectric Spectroscopy for In Situ Chemical Analysis of Liquids. J Am Chem Soc 2024; 146:6125-6133. [PMID: 38323980 PMCID: PMC10921404 DOI: 10.1021/jacs.3c13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Chemical analysis of ions and small organic molecules in liquid samples is crucial for applications in chemistry, biology, environmental sciences, and health monitoring. Mainstream electrochemical and chromatographic techniques often suffer from complex and lengthy sample preparation and testing procedures and require either bulky or expensive instrumentation. Here, we combine triboelectrification and charge transfer on the surface of electrical insulators to demonstrate the concept of triboelectric spectroscopy (TES) for chemical analysis. As a drop of the liquid sample slides along an insulating reclined plane, the local triboelectrification of the surface is recorded, and the charge pattern along the sample trajectory is used to build a fingerprinting of the charge transfer spectroscopy. Chemical information extracted from the charge transfer pattern enables a new nondestructive and ultrafast (<1 s) tool for chemical analysis. TES profiles are unique, and through an automated identification, it is possible to match against standard and hence detect over 30 types of common salts, acids, bases and organic molecules. The qualitative and quantitative accuracies of the TES methodology is close to 93%, and the detection limit is as low as ppb levels. Instruments for TES chemical analysis are portable and can be further miniaturized, opening a path to in situ and rapid chemical detection relying on inexpensive, portable low-tech instrumentation.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuejiao Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Long Zhang
- Institute
of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shiquan Lin
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Simone Ciampi
- School
of Molecular and Life Sciences, Curtin University,
Bentley, Western, Australia 6102, Australia
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Yonsei Frontier
Lab, Yonsei University, Seoul 03722, Republic of Korea
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
6
|
Mosquera-Ortega M, Rodrigues de Sousa L, Susmel S, Cortón E, Figueredo F. When microplastics meet electroanalysis: future analytical trends for an emerging threat. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5978-5999. [PMID: 37921647 DOI: 10.1039/d3ay01448g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Microplastics are a major modern challenge that must be addressed to protect the environment, particularly the marine environment. Microplastics, defined as particles ≤5 mm, are ubiquitous in the environment. Their small size for a relatively large surface area, high persistence and easy distribution in water, soil and air require the development of new analytical methods to monitor their presence. At present, the availability of analytical techniques that are easy to use, automated, inexpensive and based on new approaches to improve detection remains an open challenge. This review aims to outline the evolution and novelties of classical and advanced methods, in particular the recently reported electroanalytical detectors, methods and devices. Among all the studies reviewed here, we highlight the great advantages of electroanalytical tools over spectroscopic and thermal analysis, especially for the rapid and accurate detection of microplastics in the sub-micron range. Finally, the challenges faced in the development of automated analytical methods are discussed, highlighting recent trends in artificial intelligence (AI) in microplastics analysis.
Collapse
Affiliation(s)
- Mónica Mosquera-Ortega
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Basic Science Department, Faculty Regional General Pacheco, National Technological University, Argentina
| | - Lucas Rodrigues de Sousa
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiania, Brazil
| | - Sabina Susmel
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, Via Sondrio 2/A, 33100 Udine, Italy
| | - Eduardo Cortón
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
- Department of Biosciences and Bioengineering, Indian Institute of Technology at Guwahati, Assam, India
| | - Federico Figueredo
- Laboratory of Biosensors and Bioanalysis (LABB), Department of Biological Chemistry and IQUIBICEN, Faculty of Sciences, University of Buenos Aires and CONICET, Ciudad Universitaria, Buenos Aires (1428), Argentina.
| |
Collapse
|
7
|
Zhu C, Pham LN, Yuan X, Ouyang H, Coote ML, Zhang X. High Electric Fields on Water Microdroplets Catalyze Spontaneous and Fast Reactions in Halogen-Bond Complexes. J Am Chem Soc 2023; 145:21207-21212. [PMID: 37724917 DOI: 10.1021/jacs.3c08818] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The use of external electric fields as green and efficient catalysts in synthetic chemistry has recently received significant attention for their ability to deliver remarkable control of reaction selectivity and acceleration of reaction rates. Technically, methods of generating high electric fields in the range of 1-10 V/nm are limited, as in-vacuo techniques have obvious scalability issues. The spontaneous high fields at various interfaces promise to solve this problem. In this study, we take advantage of the spontaneous high electric field at the air-water interface of sprayed water microdroplets in the reactions of several halogen bond systems: Nu:--X-X, where Nu: is pyridine or quinuclidine and X is bromine or iodine. The field facilitates ultrafast electron transfer from Nu:, yielding a Nu-X covalent bond and causing the X-X bond to cleave. This reaction occurs in microseconds in microdroplets but takes days to weeks in bulk solution. Density functional theory calculations predict that the reaction becomes barrier-free in the presence of oriented external electric fields, supporting the notion that the electric fields in the water droplets are responsible for the catalysis. We anticipate that microdroplet chemistry will be an avenue rich in opportunities in the reactions facilitated by high electric fields and provides an alternative way to tackle the scalability problem.
Collapse
Affiliation(s)
- Chenghui Zhu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Le Nhan Pham
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Haoran Ouyang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Jimidar ISM, Kwiecinski W, Roozendaal G, Kooij ES, Gardeniers HJGE, Desmet G, Sotthewes K. Influence of Wettability and Geometry on Contact Electrification between Nonionic Insulators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42004-42014. [PMID: 37389550 PMCID: PMC10485807 DOI: 10.1021/acsami.3c05729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Contact electrification is an interfacial process in which two surfaces exchange electrical charges when they are in contact with one another. Consequently, the surfaces may gain opposite polarity, inducing an electrostatic attraction. Therefore, this principle can be exploited to generate electricity, which has been precisely done in triboelectric nanogenerators (TENGs) over the last decades. The details of the underlying mechanisms are still ill-understood, especially the influence of relative humidity (RH). Using the colloidal probe technique, we convincingly show that water plays an important role in the charge exchange process when two distinct insulators with different wettability are contacted and separated in <1 s at ambient conditions. The charging process is faster, and more charge is acquired with increasing relative humidity, also beyond RH = 40% (at which TENGs have their maximum power generation), due to the geometrical asymmetry (curved colloid surface vs planar substrate) introduced in the system. In addition, the charging time constant is determined, which is found to decrease with increasing relative humidity. Altogether, the current study adds to our understanding of how humidity levels affect the charging process between two solid surfaces, which is even enhanced up to RH = 90% as long as the curved surface is hydrophilic, paving the way for designing novel and more efficient TENGs, eco-energy harvesting devices which utilize water and solid charge interaction mechanism, self-powered sensors, and tribotronics.
Collapse
Affiliation(s)
- Ignaas S. M. Jimidar
- Department
of Chemical Engineering, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Mesoscale
Chemical Systems, MESA+ Institute for Nanotechnology and Faculty of
Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wojciech Kwiecinski
- Physics
of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Gijs Roozendaal
- Physics
of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Han J. G. E. Gardeniers
- Mesoscale
Chemical Systems, MESA+ Institute for Nanotechnology and Faculty of
Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Gert Desmet
- Department
of Chemical Engineering, Vrije Universiteit
Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Kai Sotthewes
- Physics
of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Yuan X, Zhang D, Liang C, Zhang X. Spontaneous Reduction of Transition Metal Ions by One Electron in Water Microdroplets and the Atmospheric Implications. J Am Chem Soc 2023; 145:2800-2805. [PMID: 36705987 DOI: 10.1021/jacs.3c00037] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Freshman chemistry teaches that Fe3+ and Cu2+ ions are stable in water solutions, but their reduced forms, Fe2+ and Cu+, cannot exist in water as the major oxidation state due to the fast oxidation by O2 and/or disproportionation. Contrary to these well-known facts, significant fractions of dissolved Fe and Cu species exist in their reduced oxidation states in atmospheric water such as deliquesced aerosols, clouds, and fog droplets. Current knowledge attributes these phenomena to the stabilization of the lower oxidation states by the complexation of ligands and the various photochemical or thermal pathways that can reduce the higher oxidation states. In this study, by spraying the water solutions of transition metal ions into microdroplets, we show the results of the spontaneous reduction of ligated Fe(III) and Cu(II) species into Fe(II) and Cu(I) species, presenting a previously unknown source of reduced transition metal ions in atmospheric water. It is the spontaneously generated electrons in water microdroplets that are responsible for the reduction. Control experiments in the atmosphere and in a glove box filled with precisely controlled gaseous contents reveal that O2, CO2, and NO2 are the major competitors for the electrons, forming O2-, HCO2-, and NO2-, respectively. Taking these findings together, we opine that microdroplet chemistry might play significant but previously underestimated roles in atmospheric redox chemistry.
Collapse
Affiliation(s)
- Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chiyu Liang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
10
|
Zhang J, Lin S, Wang ZL. Triboelectric Nanogenerator Array as a Probe for In Situ Dynamic Mapping of Interface Charge Transfer at a Liquid-Solid Contacting. ACS NANO 2023; 17:1646-1652. [PMID: 36602519 DOI: 10.1021/acsnano.2c11633] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Contact between water droplets with hydrophobic surfaces is a common phenomenon at functional interfaces, and it has been extensively studied. However, quantifying the charge transfer between the liquid-solid interfacial contacting, especially for the charge density distribution throughout the movement of liquid droplet on a dielectric surface, remains to be investigated. Here, we developed a pixeled droplet triboelectric nanogenerator (pixeled droplet-TENG) array with high-density electrode array as a probe for measuring the charge transfer at a liquid-solid interface when a water drop moves on the hydrophobic surface. To intuitively observe the charge transfer between the liquid-solid interface, we "imaged" the transferred charges along movement trajectory of a water droplet as it slides along a tilted solid surface at a spatial resolution of 0.4 mm and time sensitivity of 0.02 s. Our study shows that the transferred charges are not uniformly distributed along the path, which is possibly due to the two-step model of electron transfer and ion adsorbed on the solid surface, and thus the formation of an electric double layer will inevitably shield the net surface on the solid surface. Our study presents a probe technology with potential applications in surface chemistry, physics, material science, and cell biology.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
11
|
Feng M, Ma S, Liu Y, Zheng Y, Feng Y, Wang H, Cheng J, Wang D. Control of triboelectrification on Al-metal surfaces through microstructural design. NANOSCALE 2022; 14:15129-15140. [PMID: 36205557 DOI: 10.1039/d2nr03445j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The instantaneous discharge of accumulated static charge due to contact electrification can cause irreversible damage to electrostatic-sensitive systems. Despite major advances in reducing tribo-charges, the problem remains intractable. Here, four alumina microstructures are fabricated on aluminum (Al) by combining chemical etching and anodic oxidation, and the effects of surface composition and structure on the triboelectric performance are studied by assembling them with a polytetrafluoroethylene membrane into a solid-solid triboelectric nanogenerator. The results show that the short-circuit current of the hierarchical nanoporous anodic aluminum oxide (micro/nano-AAO) modified Al is 8.77 times smaller than that of pristine Al, which is attributed to the reduced contact area and presence of an oxide film on the surface of the modified metal. By regulating the diameter of alumina nanotubes, a positive correlation between the contact area and the measured charge density is theoretically demonstrated, which establishes the size of the contact area as the main factor affecting triboelectric outputs. In addition, the micro/nano-AAO based phone shell could provide more effective electrostatic protection than that based on an acrylic coating. This novel regulation of the triboelectric output by microstructural design provides a new direction for the development of antistatic materials in a vacuum and non-grounded environment.
Collapse
Affiliation(s)
- Min Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Center of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shaochen Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Liu
- Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Youbin Zheng
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Yange Feng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Hanchao Wang
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Jiahui Cheng
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| | - Daoai Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
- Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
| |
Collapse
|
12
|
Lyu X, Ciampi S. Improving the performances of direct-current triboelectric nanogenerators with surface chemistry. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Huang X, Zhang C, Pang H, Zhao Z, Zhang Q, Li X, Wang X, Lin F, Li B, Pan X. Ultra-Wide Range Vibration Frequency Detection Sensors Based on Elastic Steel Triboelectric Nanogenerators for Intelligent Machinery Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2790. [PMID: 36014655 PMCID: PMC9415981 DOI: 10.3390/nano12162790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Vibration measurement and analysis play an important role in diagnosing mechanical faults, but existing vibration sensors are limited by issues such as dependence on external power sources and high costs. To overcome these challenges, the use of triboelectric nanogenerator (TENG)-based vibration sensors has recently attracted attention. These vibration sensors measure a small range of vibration frequencies and are not suitable for measuring high-frequency vibrations. Herein, a self-powered vibration sensor based on an elastic steel triboelectric nanogenerator (ES-TENG) is proposed. By optimizing the elastic steel sheet structure and combining time-frequency transformation and filtering processing methods, the measurement of medium- and high-frequency vibrations is achieved. These results demonstrate that the ES-TENG can perform vibration measurements in the range of 2-10,000 Hz, with a small average error (~0.42%) between the measured frequency and external vibration frequency values. Therefore, the ES-TENG can be used as a self-powered, highly-accurate vibration sensor for intelligent machinery monitoring.
Collapse
Affiliation(s)
- Xili Huang
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cheng Zhang
- School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongchen Pang
- School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiqiang Zhao
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qianxi Zhang
- School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoning Li
- School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xianzhang Wang
- School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fang Lin
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bo Li
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinxiang Pan
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
14
|
Zhang J, Lin S, Wang ZL. Electrostatic Charges Regulate Chemiluminescence by Electron Transfer at the Liquid-Solid Interface. J Phys Chem B 2022; 126:2754-2760. [PMID: 35362971 DOI: 10.1021/acs.jpcb.1c09402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of the electrostatic environment in chemical reactions has long been an important research field, but most studies have focused on the influence of external electric fields on chemical processes, while the effect from the intrinsic electrostatic charges on the solution itself has been ignored. How an electrostatic field generated by contact electrification affects the solvent environment in a chemical reaction and then the chemical reactivity is still ambiguous. Here, based on the inspiration of the droplet triboelectric nanogenerator, electrostatic interactions between a statically charged luminol droplet and the surrounding directional electrostatic field were analyzed, and we demonstrate a relationship between the sign of the luminol sample (negatively or positively charged) and its effect on the reaction reactivity. Our results show that the increased reaction activity and the enhanced chemiluminescence (CL) only occurred when the luminol droplet yields positive charges, while a negatively charged luminol, on the contrary, tends to inhibit the CL, which brings direct evidence of the charge carriers of triboelectricity being electrons at the liquid-solid interface. This work provides a strategy for electrostatically regulating CL by simply statically charging a reaction solution with a dielectric solid and also carries a cautionary message on what to consider when preparing a sample for a chemical reaction.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
15
|
What Role Does the Electric Double Layer Play in Redox Reactions at Planar Electrostatically Charged Insulating Surfaces? Top Catal 2022. [DOI: 10.1007/s11244-021-01418-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Benner M, Yang R, Lin L, Liu M, Li H, Liu J. Mechanism of In-Plane and Out-of-Plane Tribovoltaic Direct-Current Transport with a Metal/Oxide/Metal Dynamic Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2968-2978. [PMID: 34990542 DOI: 10.1021/acsami.1c22438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interfacial layer engineering has been demonstrated as an effective strategy for boosting power output in semiconductor-based dynamic direct-current (DC) generators, although the underlying mechanism of power enhancement remains obscure. Here, such ambiguity has been elucidated by comparing fundamental tribovoltaic DC output characteristics of prototypical metal-oxide-metal heterojunctions prepared by atomic-layer deposition (ALD) with a vertical (out-of-plane carrier transport through the interfacial layer) and a horizontal (in-plane carrier transport along the interfacial layer) configuration such that the influences from nonequilibrium electronic excitation and interfacial capacitive amplification can be individually tuned and investigated. It is found in the case of Al/TiO2/Ti vertical configurations that the open-circuit voltage (VOC) increases linearly from -0.03 to -0.52 V as the thickness of titanium oxide (tTiO2) increases from 0 to 200 nm with a linear amplification coefficient of -2.31 mV nm-1, which is validated by a parallel-capacitor theoretical model with tribovoltaic electronic excitation. In contrast, the VOC output with the horizontal configuration is ∼55 mV, where the potential difference is merely associated with the accumulation of surface charges and the subsequent charge rearrangement in the depletion region. Meanwhile, it is measured that the short-circuit current density (JSC) shows an initial increasing trend when tTiO2 increases, reaches its peak value at 0.21 A m-2 at tTiO2 = 20 nm, and then decreases as tTiO2 increases further. From current-voltage (I-V) characterization, it is proposed that such DC output variation with an optimal interfacial layer thickness stems from the competition of amplified voltage and increased resistance with increasing interfacial layer thickness, with the main charge transport mechanism switching from quantum tunneling to thermionic emission/trap-assisted transport. In contrast, tribovoltaic excitation is proven to be significantly weaker when a wide band-gap insulator (Al2O3) is involved. The elucidation of the fundamental mechanism of power enhancement by the interfacial layer in this work is of great significance in providing instructional direction for the development and optimization of high-performance DC nanogenerators.
Collapse
Affiliation(s)
- Matthew Benner
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ruizhe Yang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Leqi Lin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Maomao Liu
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Huamin Li
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- RENEW (Research and Education in Energy, Environment and Water) Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
17
|
Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat Commun 2022; 13:130. [PMID: 35013271 PMCID: PMC8748705 DOI: 10.1038/s41467-021-27789-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Mechanochemistry has been studied for some time, but research on the reactivity of charges exchanged by contact-electrification (CE) during mechanical stimulation remains scarce. Here, we demonstrate that electrons transferred during the CE between pristine dielectric powders and water can be utilized to directly catalyze reactions without the use of conventional catalysts. Specifically, frequent CE at Fluorinated Ethylene Propylene (FEP) - water interface induces electron-exchanges, thus forming reactive oxygen species for the degradation of an aqueous methyl orange solution. Contact-electro-catalysis, by conjunction of CE, mechanochemistry and catalysis, has been proposed as a general mechanism, which has been demonstrated to be effective for various dielectric materials, such as Teflon, Nylon-6,6 and rubber. This original catalytic principle not only expands the range of catalytic materials, but also enables us to envisage catalytic processes through mechano-induced contact-electrification.
Collapse
|
18
|
Zhang J, Lin S, Zheng M, Wang ZL. Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces. ACS NANO 2021; 15:14830-14837. [PMID: 34415141 DOI: 10.1021/acsnano.1c04903] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phenomenon of triboelectricity involves the flow of charged species across an interface, but conclusively establishing the nature of the charge transfer has proven extremely difficult, especially for the liquid-solid cases. Herein, we developed a self-powered droplet triboelectric nanogenerator (droplet-TENG) with spatially arranged electrodes as a probe for measuring the charge transfer process between liquid and solid interfaces. The information on the electric signal on spatially arranged electrodes shows that the charge transfer between droplets and the solid is an accumulation process during the dropping and that the electron is the dominant charge-transfer species. Such a droplet-TENG showed a high sensitivity to the ratio of solvents in the mixed organic solution, and we postulated this is due to the possibility of generation of a hydrogen bond, affecting the electric signal on the spatially arranged electrodes. This work demonstrated a chemical sensing application based on the self-powered droplet triboelectric nanogenerator.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Mingli Zheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P.R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
19
|
Wei X, Zhao Z, Zhang C, Yuan W, Wu Z, Wang J, Wang ZL. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. ACS NANO 2021; 15:13200-13208. [PMID: 34327988 DOI: 10.1021/acsnano.1c02790] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The liquid-solid triboelectric nanogenerator (LS-TENG) has been demonstrated to harvest energy efficiently through the contact electrification effect between liquid and solid triboelectric materials, which can avoid the wear issue in solid-solid TENG. However, the droplet-based LS-TENG reveals the problems that it generally works with the continuous falling droplets or needs to be fully packaged, which greatly limit its practical application. Here, a droplet-based triboelectric nanogenerator (DB-TENG) with a simple open structure is designed to effectively solve these problems. The nonpackaged DB-TENG can work stably under extreme conditions with high humidity or high concentrations of salt, acid, or alkali solutions, showing the DB-TENGs can be flexibly utilized in all types of working environments with better reliability and lower maintenance costs. It is of great significance that the integrated DB-TENG network array can realize the all-weather ocean energy harvesting. Furthermore, under the simulated ocean wave, a scaled-up DB-TENG with considerable output performance can charge capacitors and drive electrical devices. Overall, the DB-TENG shows many advantages: simple open structure, all-weather working ability, timely supplement of water loss, no tight packaging, wear resistance, suitable for extreme working environments. This work provides a convenient and feasible way toward all-weather wave energy harvesting in real marine environments.
Collapse
Affiliation(s)
- Xuelian Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhihao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Chuguo Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Yuan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
20
|
Venugopal K, Panchatcharam P, Chandrasekhar A, Shanmugasundaram V. Comprehensive Review on Triboelectric Nanogenerator Based Wrist Pulse Measurement: Sensor Fabrication and Diagnosis of Arterial Pressure. ACS Sens 2021; 6:1681-1694. [PMID: 33969980 DOI: 10.1021/acssensors.0c02324] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As the world is marching into the era of the Internet of things (IoTs) and artificial intelligence (AI), the most vital requirement for reliable hardware development is an ultrafast response time and no performance degradation. As a reliable indicator of human physiological health, blood pressure measurement is vital in humans' daily lives, which creates a huge demand in monitoring and diagnosing blood pressure problems. The triboelectric nanogenerator (TENG) is one of the best energy devices and healthcare applications in the new era since triboelectrification is a universal and ubiquitous effect with an abundant choice of materials. TENG is reliable in physiological monitoring applications and has many benefits, including being inexpensive, easy to manufacture, and lightweight, having self-powered properties, and being available in a wide range of materials. In this review, triboelectric nanogenerator based wrist pulse measurement was summarized for blood pressure monitoring and diagnosis applications. As per the Ayurveda, imbalance in three essential components of the wrist pulse implies the human health status and reveals symptoms for diseases. The design of different TENG-based blood pressure sensors, sensing mechanisms, performance, merits, and demerits of each method are discussed.
Collapse
Affiliation(s)
- Karthikeyan Venugopal
- Teachning cum Research Associate (TRA), Department of Instrumentation, School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| | - Parthasarathy Panchatcharam
- Department of Instrumentation, School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| | - Arunkumar Chandrasekhar
- Nanosensors and Nanoenergy Lab, Department of Sensors and Biomedical Technology, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Vivekanandan Shanmugasundaram
- Department of Instrumentation, School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
21
|
Zhang J, Coote ML, Ciampi S. Electrostatics and Electrochemistry: Mechanism and Scope of Charge-Transfer Reactions on the Surface of Tribocharged Insulators. J Am Chem Soc 2021; 143:3019-3032. [DOI: 10.1021/jacs.0c11006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinyang Zhang
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
22
|
Zhang J, Ciampi S. Shape and Charge: Faraday's Ice Pail Experiment Revisited. ACS CENTRAL SCIENCE 2020; 6:611-612. [PMID: 32490177 PMCID: PMC7256939 DOI: 10.1021/acscentsci.0c00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Jinyang Zhang
- School of Molecular and Life Sciences,
Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences,
Curtin Institute of Functional Molecules and Interfaces, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
23
|
Pandey R, Ao CK, Lim W, Sun Y, Di X, Nakanishi H, Soh S. The Relationship between Static Charge and Shape. ACS CENTRAL SCIENCE 2020; 6:704-714. [PMID: 32490187 PMCID: PMC7256945 DOI: 10.1021/acscentsci.9b01108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Indexed: 06/11/2023]
Abstract
The amount of charge of a material has always been regarded as a property (or state) of materials and can be measured precisely and specifically. This study describes for the first time a fundamental physical-chemical phenomenon in which the amount of charge of a material is actually a variable-it depends on the shape of the material. Materials are shown to have continuously variable and reversible ranges of charge states by changing their shapes. The phenomenon was general for different shapes, transformations, materials, atmospheric conditions, and methods of charging. The change in charge was probably due to a dynamic exchange of charge from the material to the surrounding atmosphere as the shape changed via the reversible ionization and deposition of air molecules. Similar changes in charge were observed for self-actuating materials that changed their shapes autonomously. This fundamental relationship between geometry and electrostatics via chemistry is important for the broad range of applications related to the charge of flexible materials.
Collapse
Affiliation(s)
- Rakesh
K. Pandey
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Department
of Macromolecular Science and Engineering, Graduate School of Science
and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Weichun Lim
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yajuan Sun
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xin Di
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Hideyuki Nakanishi
- Department
of Macromolecular Science and Engineering, Graduate School of Science
and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
24
|
Zhang J, Su C, Rogers FJM, Darwish N, Coote ML, Ciampi S. Irreproducibility in the triboelectric charging of insulators: evidence of a non-monotonic charge versus contact time relationship. Phys Chem Chem Phys 2020; 22:11671-11677. [DOI: 10.1039/d0cp01317j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contact electrification: irreproducibility of triboelectric charging magnitudes. Using Faraday pail measurements we show that a monotonous charging slope holds only left or right of a material-specific charge-peak point.
Collapse
Affiliation(s)
- Jinyang Zhang
- School of Molecular and Life Sciences
- Curtin Institute of Functional Molecules and Interfaces
- Curtin University
- Bentley
- Australia
| | - Chao Su
- School of Energy and Power Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Fergus J. M. Rogers
- ARC Centre of Excellence for Electromaterials Science
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences
- Curtin Institute of Functional Molecules and Interfaces
- Curtin University
- Bentley
- Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences
- Curtin Institute of Functional Molecules and Interfaces
- Curtin University
- Bentley
- Australia
| |
Collapse
|
25
|
Abstract
The process of releasing liquid carbon dioxide from a fire extinguisher is accompanied by a strong static charging of the plastic material making up the extinguisher discharge horn. Firefighters often report an electric shock when operating CO2 extinguishers, but the origin of this electrostatic hazard is largely unknown. Here, we begin to investigate this phenomenon, and test the hypothesis of plastic samples being tribocharged on contact with rapidly flowing solid CO2. Using Faraday pail measurements, we show that non-conductive polymers gain a net static charge when brought in and out of contact with dry ice (solid CO2). These measurements of charge sign and magnitude give indirect evidence helping to place solid CO2 for the first time on the triboelectric series. Polydimethylsiloxane (PDMS), polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC) samples acquire a negative charge when rubbed against dry ice, whereas poly(methyl methacrylate) (PMMA), glass, and nylon surfaces become positively charged. Therefore, we suggest the position of dry ice in the triboelectric series to be close to that of materials with stable cations and unstable anions, possibly locating it between PMMA and PVC.
Collapse
|