1
|
Pacheco JA, Candeias NR. Light-Driven Site-Selective Glycosylation of Native Carbohydrates. Angew Chem Int Ed Engl 2024:e202414424. [PMID: 39351668 DOI: 10.1002/anie.202414424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 11/08/2024]
Abstract
Carbohydrates constitute the largest source of biomass on Earth, but their synthetic modification is challenging due to their high content in oxygen functionalities. The site- and stereoselective modification of native sugars is a definite goal of glycochemistry research. Recent efforts to bypass the need for protecting groups, leveraging selective activation through photochemical mechanisms for site-selective C-C bond formation from native sugars, are likely to largely impact all glycochemistry-related areas. Davis, Koh, and co-workers have recently presented their use of photocatalysis to develop a "cap and glycosylate" approach for the site- and stereoselective C-glycosylation of native sugars. A modernized direct radical functionalization of in situ formed thioglycoside using photocatalysis was used in the synthetic manipulation of unprotected carbohydrates. This allowed reaching complex saccharides, and post-translational modification of proteins.
Collapse
Affiliation(s)
- João A Pacheco
- LAQV REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Nuno R Candeias
- LAQV REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33101, Tampere, Finland
| |
Collapse
|
2
|
Xu S, Ping Y, Xu M, Wu G, Ke Y, Miao R, Qi X, Kong W. Stereoselective and site-divergent synthesis of C-glycosides. Nat Chem 2024:10.1038/s41557-024-01629-3. [PMID: 39271916 DOI: 10.1038/s41557-024-01629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Carbohydrates play important roles in medicinal chemistry and biochemistry. However, their synthesis relies on specially designed glycosyl donors, which are often unstable and require multi-step synthesis. Furthermore, the catalytic and stereoselective installation of arylated quaternary stereocentres on sugar rings remains a formidable challenge. Here we report a facile and versatile method for the synthesis of diverse C-R (where R is an aryl, heteroaryl, alkenyl, alkynyl or alkyl) glycosides from readily available and bench-stable 1-deoxyglycosides. The reaction proceeds under mild conditions and exhibits high stereoselectivity across a broad range of glycosyl units. This protocol can be used to synthesize challenging 2-deoxyglycosides, unprotected glycosides, non-classical glycosides and deuterated glycosides. We further developed the catalyst-controlled site-divergent functionalization of carbohydrates for the synthesis of various unexplored carbohydrates containing arylated quaternary stereocentres that are inaccessible by existing methods. The synthetic utility of this strategy is further demonstrated in the synthesis of pharmaceutically relevant molecules and carbohydrates.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Minghao Xu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Guozhen Wu
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Yang Ke
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Rui Miao
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Xiaotian Qi
- State Key Laboratory of Power Grid Environmental Protection, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Wangqing Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, China.
| |
Collapse
|
3
|
Cao S, Zhang H, Chen M, Zhu N, Zhan B, Xu P, Chen X, Yu B, Zhang X. Regiodivergent Functionalization of Protected and Unprotected Carbohydrates using Photoactive 4-Tetrafluoropyridinylthio Fragment as an Adaptive Activating Group. Angew Chem Int Ed Engl 2024:e202412436. [PMID: 39206505 DOI: 10.1002/anie.202412436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The selective functionalization of carbohydrates holds a central position in synthetic carbohydrate chemistry, driving the ongoing quest for ideal approaches to manipulate these compounds. In this study, we introduce a general strategy that enables the regiodivergent functionalization of saccharides. The use of electron-deficient photoactive 4-tetrafluoropyridinylthio (SPyf) fragment as an adaptable activating group, facilitated efficient functionalization across all saccharide sites. More importantly, this activating group can be directly installed at the C1, C5 and C6 positions of biomass-derived carbohydrates in a single step and in a site-selective manner, allowing for the efficient and precision-oriented modification of unprotected saccharides and glycans.
Collapse
Affiliation(s)
- Shen Cao
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Haobo Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Mingshuo Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Niming Zhu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Beibei Zhan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
4
|
Guo H, Tan D, Merten C, Loh CCJ. Enantioconvergent and Site-Selective Etherification of Carbohydrate Polyols through Chiral Copper Radical Catalysis. Angew Chem Int Ed Engl 2024:e202409530. [PMID: 39152096 DOI: 10.1002/anie.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging β-O-glycosides.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Dilber Tan
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Chen J, Gan Z, Zhang Y, Chen Z, Liu S, Cui R, Xue Z, Sun H, Shi L, Jiang WF, Jin Y. Iron-Catalyzed Photoredox Alcohol α-C-H Alkylation and Tandem Intramolecular Cyclization: Facile Access to Multisubstituted 2,3-Dihydrofurans and γ-Butyrolactones. Org Lett 2024; 26:5329-5334. [PMID: 38869223 DOI: 10.1021/acs.orglett.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Multisubstituted furans occupy a pivotal position within the realms of synthetic chemistry and pharmacological science due to their distinctive chemical configurations and inherent properties. We herein introduce a tandem difunctionalization protocol of alcohols for the efficient synthesis of multisubstituted 2,3-dihydrofurans and γ-butyrolactones through the combination of photocatalysis and iron catalysis under mild conditions. Photoredox alcohol α-C(sp3)-H activation and Pinner-type intramolecular cyclization are two key processes. This method features significant convenience, economic benefits, and environmental friendliness.
Collapse
Affiliation(s)
- Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Haoxiang Sun
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Feng Jiang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
6
|
Sato K, Egami H, Hamashima Y. Thiobenzoic Acid-Catalyzed Cα-H Cross Coupling of Benzyl Alcohols with α-Ketoacid Derivatives. Org Lett 2024; 26:5285-5289. [PMID: 38869244 DOI: 10.1021/acs.orglett.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The C-H alkylation of benzyl alcohols with α-ketoacid derivatives was achieved in the presence of thiobenzoic acid with or without Ru or Ir photoredox catalysts. The thiobenzoic acid serves as a photoexcited single-electron reducing reagent and a hydrogen atom transfer catalyst, while addition of the metal photoredox catalyst assists the electron transfer and improves the reaction efficiency. Various functional groups were tolerant of the reaction conditions, and sterically hindered diols were produced in good to high yield.
Collapse
Affiliation(s)
- Kaichi Sato
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiromichi Egami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshitaka Hamashima
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
7
|
Zhao X, Hou YL, Qian BC, Shen GB. Thermodynamic H-Abstraction Abilities of Nitrogen Centered Radical Cations as Potential Hydrogen Atom Transfer Catalysts in Y-H Bond Functionalization. ACS OMEGA 2024; 9:26708-26718. [PMID: 38911737 PMCID: PMC11191127 DOI: 10.1021/acsomega.4c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
Y-H bond functionalization has always been the focus of research interest in the area of organic synthesis. Direct hydrogen atom transfer (HAT) from the Y-H bond is one of the most efficient and practical methods to activate the Y-H bond. Recently, nitrogen centered radical cations were broadly utilized as H-abstraction catalysts to activate Y-H bonds via the HAT process. As a type of HAT catalyst, the H-affinity of nitrogen centered radical cations is a significant thermodynamic parameter to quantitatively evaluate the thermodynamic H-abstraction potentials of nitrogen centered radical cations. In this work, the pK a values of 120 protonated N-containing compounds in acetonitrile (AN) are predicted, and the H-affinities of 120 nitrogen centered radical cations in AN are derived from the reduction potentials of nitrogen centered radical cations and pK a of protonated N-containing compounds using Hess' law. This work focuses on the H-abstraction abilities of 120 nitrogen centered radical cations in AN to enrich the molecule library of novel HAT catalysts or H-abstractors and provides valuable thermodynamic guidelines for the application of nitrogen centered radical cations in Y-H bond functionalization.
Collapse
Affiliation(s)
- Xia Zhao
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yi-Lin Hou
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| |
Collapse
|
8
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Asymmetric Pd/Organoboron-Catalyzed Site-Selective Carbohydrate Functionalization with Alkoxyallenes Involving Noncovalent Stereocontrol. Angew Chem Int Ed Engl 2024; 63:e202400912. [PMID: 38530140 DOI: 10.1002/anie.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Herein, we demonstrate the robustness of a synergistic chiral Pd/organoboron system in tackling a challenging suite of site-, regio-, enantio- and diastereoselectivity issues across a considerable palette of biologically relevant carbohydrate polyols, when prochiral alkoxyallenes were employed as electrophiles. In view of the burgeoning role of noncovalent interactions (NCIs) in stereoselective carbohydrate synthesis, our mechanistic experiments and DFT modeling of the reaction path unexpectedly revealed that NCIs such as hydrogen bonding and CH-π interactions between the resting states of the Pd-π-allyl complex and the borinate saccharide are critically involved in the stereoselectivity control. Our strategy thus illuminates the untapped potential of harnessing NCIs in the context of transition metal catalysis to tackle stereoselectivity challenges in carbohydrate functionalization.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Anorganische Chemie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
9
|
Abstract
Organoboron acids are stable, organic-soluble Lewis acids with potential application as catalysts for a wide variety of chemical reactions. In this review, we summarize the utility of boronic and borinic acids, as well as boric acid, as catalysts for organic transformations. Typically, the catalytic processes exploit the Lewis acidity of trivalent boron, enabling the reversible formation of a covalent bond with oxygen. Our focus is on recent developments in the catalysis of dehydration, carbonyl condensation, acylation, alkylation, and cycloaddition reactions. We conclude that organoboron acids have a highly favorable prospectus as the source of new catalysts.
Collapse
Affiliation(s)
- Brian J Graham
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Archer G, Meyrelles R, Eder I, Kovács N, Maryasin B, Médebielle M, Merad J. Photoredox-Catalyzed α-C-H Monoalkylation of Symmetric Polyols in the Presence of CO 2. Angew Chem Int Ed Engl 2024; 63:e202315329. [PMID: 38091251 DOI: 10.1002/anie.202315329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 12/31/2023]
Abstract
Achieving the selective modification of symmetric poly-hydroxylated compounds presents a significant challenge due to the presence of identical active sites. Herein, we address this challenge through the design of a ternary catalytic system that includes a photoredox catalyst, a hydrogen atom transfer promotor and a carbonation catalyst. This catalytic system enables the reversible carbonation of acyclic polyols under CO2 atmosphere, which modulates the reactivity of its distinct C-H bonds toward hydrogen atom transfers. An exquisite selectivity for the monoalkylation is achieved in a variety of unprotected light polyols, yielding valuable building blocks in short reaction times. Mechanistic and computational studies demonstrate that the formation of an intramolecular hydrogen bond between the transient carbonate and the free alcohol is pivotal for the kinetic and thermodynamic activation of a specific alcohol.
Collapse
Affiliation(s)
- Gaétan Archer
- ICBMS, UMR 5246, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, 1 rue Victor Grignard, 69622, Villeurbanne, France
| | - Ricardo Meyrelles
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Isabel Eder
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Nóra Kovács
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Boris Maryasin
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
- Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Maurice Médebielle
- ICBMS, UMR 5246, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, 1 rue Victor Grignard, 69622, Villeurbanne, France
| | - Jérémy Merad
- ICBMS, UMR 5246, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, 1 rue Victor Grignard, 69622, Villeurbanne, France
| |
Collapse
|
11
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
12
|
Wang G, Ho CC, Zhou Z, Hao YJ, Lv J, Jin J, Jin Z, Chi YR. Site-Selective C-O Bond Editing of Unprotected Saccharides. J Am Chem Soc 2024; 146:824-832. [PMID: 38123470 DOI: 10.1021/jacs.3c10963] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Glucose and its polyhydroxy saccharide analogs are complex molecules that serve as essential structural components in biomacromolecules, natural products, medicines, and agrochemicals. Within the expansive realm of saccharides, a significant area of research revolves around chemically transforming naturally abundant saccharide units to intricate or uncommon molecules such as oligosaccharides or rare sugars. However, partly due to the presence of multiple hydroxyl groups with similar reactivities and the structural complexities arising from stereochemistry, the transformation of unprotected sugars to the desired target molecules remains challenging. One such formidable challenge lies in the efficient and selective activation and modification of the C-O bonds in saccharides. In this study, we disclose a modular 2-fold "tagging-editing" strategy that allows for direct and selective editing of C-O bonds of saccharides, enabling rapid preparation of valuable molecules such as rare sugars and drug derivatives. The first step, referred to as "tagging", involves catalytic site-selective installation of a photoredox active carboxylic ester group to a specific hydroxyl unit of an unprotected sugar. The second step, namely, "editing", features a C-O bond cleavage to form a carbon radical intermediate that undergoes further transformations such as C-H and C-C bond formations. Our strategy constitutes the most effective and shortest route in direct transformation and modification of medicines and other molecules bearing unprotected sugars.
Collapse
Affiliation(s)
- Guanjie Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Chang Chin Ho
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhixu Zhou
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yong-Jia Hao
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jie Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
13
|
Nakamura Y, Irisawa K, Makino K, Shimada N. Boronic Acid/Palladium Hybrid Catalysis for Regioselective O-Allylation of Carbohydrates. J Org Chem 2024. [PMID: 38194418 DOI: 10.1021/acs.joc.3c02445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Novel imidazole-containing boronic acid and palladium hybrid catalysis for regioselective O-allylation of carbohydrates has been developed. This catalytic process enables the introduction of a useful allyl functional group into the equatorial hydroxy group of cis-1,2-diols of various carbohydrates with low catalyst loading and excellent regioselectivities. This is the first report on hybrid catalysis in combination with a Lewis base-containing boronic acid and a transition metal complex.
Collapse
Affiliation(s)
- Yuki Nakamura
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Kazuma Irisawa
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| | - Kazuishi Makino
- Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Naoyuki Shimada
- Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan
| |
Collapse
|
14
|
Yi L, Zhu C, Chen X, Yue H, Ji T, Ma Y, Cao Y, Kancherla R, Rueping M. O-H bond activation of β,γ-unsaturated oximes via hydrogen atom transfer (HAT) and photoredox dual catalysis. Chem Sci 2023; 14:14271-14279. [PMID: 38098711 PMCID: PMC10718179 DOI: 10.1039/d3sc04410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Hydrogen atom transfer (HAT) and photoredox dual catalysis provides a unique opportunity in organic synthesis, enabling the direct activation of C/Si/S-H bonds. However, the activation of O-H bonds of β,γ-unsaturated oximes poses a challenge due to their relatively high redox potential, which exceeds the oxidizing capacity of most currently developed photocatalysts. We here demonstrate that the combination of HAT and photoredox catalysis allows the activation of O-H bond of β,γ-unsaturated oximes. The strategy effectively addresses the oxime's high redox potential and offers a universal pathway for iminoxyl radical formation. Leveraging the versatility of this approach, a diverse array of valuable heterocycles have been synthesized with the use of different radical acceptors. Mechanistic studies confirm a HAT process for the O-H bond activation.
Collapse
Affiliation(s)
- Liang Yi
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xiangyu Chen
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Huifeng Yue
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Tengfei Ji
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Yiqiao Ma
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Yuanyuan Cao
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
15
|
Chikashige Y, Takehara T, Matsuzaki T, Suzuki T, Murai K, Arisawa M, Sako M. Axially Chiral Borinic Acid Catalysts: Design, Synthesis, and Application in Alkylative Desymmetrization of 1,2-Diols. J Org Chem 2023; 88:14178-14183. [PMID: 37715319 DOI: 10.1021/acs.joc.3c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
A novel chiral borinic acid (CBA), an organocatalyst possessing a binaphthyl skeleton, was designed and synthesized. The synthesis of CBA was achieved with a 72% yield in four steps starting with optically pure 1,1'-bi-2-naphthol. The asymmetric catalytic activity was investigated in the desymmetrization of meso-1,2-diol.
Collapse
Affiliation(s)
- Yuta Chikashige
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsunayoshi Takehara
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tsuyoshi Matsuzaki
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makoto Sako
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
17
|
Paul S, Filippini D, Ficarra F, Melnychenko H, Janot C, Silvi M. Oxetane Synthesis via Alcohol C-H Functionalization. J Am Chem Soc 2023; 145:15688-15694. [PMID: 37462721 PMCID: PMC10375527 DOI: 10.1021/jacs.3c04891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Oxetanes are strained heterocycles with unique properties that have triggered significant advances in medicinal chemistry. However, their synthesis still presents significant challenges that limit the use of this class of compounds in practical applications. In this Letter, we present a methodology that introduces a new synthetic disconnection to access oxetanes from native alcohol substrates. The generality of the approach is demonstrated by the application in late-stage functionalization chemistry, which is further exploited to develop a single-step synthesis of a known bioactive synthetic steroid derivative that previously required at least four synthetic steps from available precursors.
Collapse
Affiliation(s)
- Subhasis Paul
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Dario Filippini
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Filippo Ficarra
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Heorhii Melnychenko
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Christopher Janot
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Mattia Silvi
- The GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Nottingham NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
18
|
Yamatsugu K, Kanai M. Catalytic Approaches to Chemo- and Site-Selective Transformation of Carbohydrates. Chem Rev 2023; 123:6793-6838. [PMID: 37126370 DOI: 10.1021/acs.chemrev.2c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbohydrates are a fundamental unit playing pivotal roles in all the biological processes. It is thus essential to develop methods for synthesizing, functionalizing, and manipulating carbohydrates for further understanding of their functions and the creation of sugar-based functional materials. It is, however, not trivial to develop such methods, since carbohydrates are densely decorated with polar and similarly reactive hydroxy groups in a stereodefined manner. New approaches to chemo- and site-selective transformations of carbohydrates are, therefore, of great significance for revolutionizing sugar chemistry to enable easier access to sugars of interest. This review begins with a brief overview of the innate reactivity of hydroxy groups of carbohydrates. It is followed by discussions about catalytic approaches to enhance, override, or be orthogonal to the innate reactivity for the transformation of carbohydrates. This review avoids making a list of chemo- and site-selective reactions, but rather focuses on summarizing the concept behind each reported transformation. The literature references were sorted into sections based on the underlying ideas of the catalytic approaches, which we hope will help readers have a better sense of the current state of chemistry and develop innovative ideas for the field.
Collapse
Affiliation(s)
- Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Nguyen K, Nguyen V, Tran H, Pham P. Organo-photocatalytic C-H bond oxidation: an operationally simple and scalable method to prepare ketones with ambient air. RSC Adv 2023; 13:7168-7178. [PMID: 36891491 PMCID: PMC9986805 DOI: 10.1039/d3ra00332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Oxidative C-H functionalization with O2 is a sustainable strategy to convert feedstock-like chemicals into valuable products. Nevertheless, eco-friendly O2-utilizing chemical processes, which are scalable yet operationally simple, are challenging to develop. Here, we report our efforts, via organo-photocatalysis, in devising such protocols for catalytic C-H bond oxidation of alcohols and alkylbenzenes to ketones using ambient air as the oxidant. The protocols employed tetrabutylammonium anthraquinone-2-sulfonate as the organic photocatalyst which is readily available from a scalable ion exchange of inexpensive salts and is easy to separate from neutral organic products. Cobalt(ii) acetylacetonate was found to be greatly instrumental to oxidation of alcohols and therefore was included as an additive in evaluating the alcohol scope. The protocols employed a nontoxic solvent, could accommodate a variety of functional groups, and were readily scaled to 500 mmol scale in a simple batch setting using round-bottom flasks and ambient air. A preliminary mechanistic study of C-H bond oxidation of alcohols supported the validity of one possible mechanistic pathway, nested in a more complex network of potential pathways, in which the anthraquinone form - the oxidized form - of the photocatalyst activates alcohols and the anthrahydroquinone form - the relevant reduced form of the photocatalyst - activates O2. A detailed mechanism, which reflected such a pathway and was consistent with previously accepted mechanisms, was proposed to account for formation of ketones from aerobic C-H bond oxidation of both alcohols and alkylbenzenes.
Collapse
Affiliation(s)
- Ky Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Van Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Hieu Tran
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| | - Phong Pham
- Faculty of Chemistry, University of Science, Vietnam National University Hanoi Vietnam
| |
Collapse
|
20
|
Kidonakis M, Villotet A, Witte MD, Beil SB, Minnaard AJ. Site-Selective Electrochemical Oxidation of Glycosides. ACS Catal 2023; 13:2335-2340. [PMID: 36846820 PMCID: PMC9942207 DOI: 10.1021/acscatal.2c06318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Indexed: 02/01/2023]
Abstract
Quinuclidine-mediated electrochemical oxidation of glycopyranosides provides C3-ketosaccharides with high selectivity and good yields. The method is a versatile alternative to Pd-catalyzed or photochemical oxidation and is complementary to the 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated C6-selective oxidation. Contrary to the electrochemical oxidation of methylene and methine groups, the reaction proceeds without oxygen.
Collapse
|
21
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
22
|
Merkens K, Sanosa N, Funes-Ardoiz I, Gómez-Suárez A. Accessing α-Amino Ketyl Radicals from β-Amino Alcohols via Chemoselective Hydrogen Atom Transfer Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kay Merkens
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Nil Sanosa
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
23
|
Gillespie J, Fanourakis A, Phipps RJ. Strategies That Utilize Ion Pairing Interactions to Exert Selectivity Control in the Functionalization of C-H Bonds. J Am Chem Soc 2022; 144:18195-18211. [PMID: 36178308 PMCID: PMC9562467 DOI: 10.1021/jacs.2c08752] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Electrostatic attraction between two groups of opposite charge, typically known as ion-pairing, offers unique opportunities for the design of systems to enable selectivity control in chemical reactions. Catalysis using noncovalent interactions is an established and vibrant research area, but it is noticeable that hydrogen bonding interactions are still the main interaction of choice in system design. Opposite charges experience the powerful force of Coulombic attraction and have the ability to exert fundamental influence on the outcome of reactions that involve charged reagents, intermediates or catalysts. In this Perspective, we will examine how ion-pairing interactions have been used to control selectivity in C-H bond functionalization processes. This broad class of reactions provides an interesting and thought-provoking lens through which to examine the application of ion-pairing design strategies because it is one that encompasses great mechanistic diversity, poses significant selectivity challenges, and perhaps most importantly is of immense interest to synthetic chemists in both industry and academia. We survey reactions that proceed via radical and ionic mechanisms alongside those that involve transition metal catalysis and will deal with control of site-selectivity and enantioselectivity. We anticipate that as this emerging area develops, it will become an ever-more important design strategy for selectivity control.
Collapse
Affiliation(s)
| | | | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
24
|
Sun T, Jin R, Yang Y, Jia Y, Hu S, Jin Y, Wang Q, Li Z, Zhang Y, Wu J, Jiang Y, Lv X, Liu S. Direct α-C-H Alkylation of Structurally Diverse Alcohols via Combined Tavaborole and Photoredox Catalysis. Org Lett 2022; 24:7637-7642. [PMID: 36218287 DOI: 10.1021/acs.orglett.2c03117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a method that uses antifungal tavaborole as a co-catalyst for direct α-C-H alkylation of structurally diverse alcohols through photoredox catalysis. The protocol features mild conditions, remarkable scope, and wide functional group tolerance, which allows for the construction of a wide array of highly functionalized alcohols, including homoserine derivatives and C-glycosyl amino acids. We also demonstrate the synthetic applications of this methodology to the late-stage functionalization of pharmaceuticals and natural products.
Collapse
Affiliation(s)
- Tianyi Sun
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Ruyi Jin
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yan Yang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yuqi Jia
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Shuxu Hu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yanqi Jin
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Qin Wang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Ziyu Li
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yifan Zhang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Jiming Wu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Yuxin Jiang
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Xiaoqing Lv
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| | - Shihui Liu
- College of Medicine, Jiaxing University, 118 Jiahang Road, Jiaxing, Zhejiang 314001, People's Republic of China
| |
Collapse
|
25
|
Witte MD, Minnaard AJ. Site-Selective Modification of (Oligo)Saccharides. ACS Catal 2022; 12:12195-12205. [PMID: 36249871 PMCID: PMC9552177 DOI: 10.1021/acscatal.2c03876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Oligosaccharides, either as such or as part of glycolipids, glycopeptides, or glycoproteins, are ubiquitous in nature and fulfill important roles in the living cell. Also in medicine and to some extent in materials, oligosaccharides play an important role. In order to study their function, modifying naturally occurring oligosaccharides, and building in reactive groups and reporter groups in oligosaccharides, are key strategies. The development of oligosaccharides as drugs, or vaccines, requires the introduction of subtle modifications in the structure of oligosaccharides to optimize efficacy and, in the case of antibiotics, circumvent bacterial resistance. Provided the natural oligosaccharide is available, site-selective modification is an attractive approach as total synthesis of the target is often very laborious. Researchers in catalysis areas, such as transition-metal catalysis, enzyme catalysis, organocatalysis, and photoredox catalysis, have made considerable progress in the development of site-selective and late-stage modification methods for mono- and oligosaccharides. It is foreseen that the fields of enzymatic modification of glycans and the chemical modification of (oligo)saccharides will approach and potentially meet each other, but there is a lot to learn and discover before this will be the case.
Collapse
Affiliation(s)
- Martin D. Witte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG Groningen, The Netherlands
| |
Collapse
|
26
|
Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 2022; 6:782-805. [PMID: 37118094 DOI: 10.1038/s41570-022-00422-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C-H and C-C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C-H and C-C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.
Collapse
|
27
|
Cao H, Guo T, Deng X, Huo X, Tang S, Liu J, Wang X. Site-selective C-H alkylation of myo-inositol via organic photoredox catalysis. Chem Commun (Camb) 2022; 58:9934-9937. [PMID: 35983711 DOI: 10.1039/d2cc03569c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Site-selective photoredox reactions with aromatic olefins enable direct alkylation of unprotected myo-inositol at C4. The efficacy of these reactions can be finely tuned by modifying the structures of HAT reagents. These reactions open the possibility of selective C-H alkylations of myo-inositol without the need for multi-step protection-deprotection strategies.
Collapse
Affiliation(s)
- Haonan Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Tianyun Guo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xuemei Deng
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xing Huo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Shouchu Tang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jian Liu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaolei Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
28
|
Vorobjov F, De Smet G, Daems N, Vincent Ching H, Leveque P, Maes BU, Breugelmans T. Electrochemical quinuclidine-mediated C-H activation: intermediates and mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
30
|
Gatin‐Fraudet B, Pucher M, Le Saux T, Doisneau G, Bourdreux Y, Jullien L, Vauzeilles B, Guianvarc'h D, Urban D. Hydrogen Peroxide‐Responsive Triggers Based on Borinic Acids: Molecular Insights into the Control of Oxidative Rearrangement. Chemistry 2022; 28:e202201543. [DOI: 10.1002/chem.202201543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 01/06/2023]
Affiliation(s)
- Blaise Gatin‐Fraudet
- Université Paris-Saclay, CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182 91405 Orsay France
- Université Paris-Saclay, CNRS Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| | - Mathilde Pucher
- Université Paris-Saclay, CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182 91405 Orsay France
| | - Thomas Le Saux
- PASTEUR, Département de chimie École Normale Supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Gilles Doisneau
- Université Paris-Saclay, CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182 91405 Orsay France
| | - Yann Bourdreux
- Université Paris-Saclay, CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182 91405 Orsay France
| | - Ludovic Jullien
- PASTEUR, Département de chimie École Normale Supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Boris Vauzeilles
- Université Paris-Saclay, CNRS Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| | - Dominique Guianvarc'h
- Université Paris-Saclay, CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182 91405 Orsay France
| | - Dominique Urban
- Université Paris-Saclay, CNRS Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182 91405 Orsay France
| |
Collapse
|
31
|
Wang B, Ascenzi Pettenuzzo C, Singh J, Mccabe GE, Clark L, Young R, Pu J, Deng Y. Photoinduced Site-Selective Functionalization of Aliphatic C–H Bonds by Pyridine N-oxide Based HAT Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ban Wang
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Cristina Ascenzi Pettenuzzo
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Gavin E. Mccabe
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Logan Clark
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Ryan Young
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Jingzhi Pu
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University−Purdue University Indianapolis, 402 N Blackford St., Indianapolis, Indiana 46202, United States
| |
Collapse
|
32
|
Nakao H, Mitsunuma H, Kanai M. Site-Selective α-Alkylation of 1,3-Butanediol Using a Thiophosphoric Acid Hydrogen Atom Transfer Catalyst. Chem Pharm Bull (Tokyo) 2022; 70:540-543. [DOI: 10.1248/cpb.c22-00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyasu Nakao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
33
|
Li KJ, Bennett CS. New chemical processes to streamline carbohydrate synthesis. Curr Opin Chem Biol 2022; 70:102184. [PMID: 35863085 DOI: 10.1016/j.cbpa.2022.102184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Carbohydrates hold potential for the future of therapeutic development due to their important role in essential biological processes. However, it is still challenging to produce homogenous materials, especially for non-mammalian sugars that are considered rare. Recent developments in this field have focused on catalytic methods, including organometallic and organocatalytic approaches to regioselective functionalization. Many approaches to glycosylations also utilize catalysts, increasingly in combination with photoredox conditions, to achieve stereoselectivity. Additionally, there have been significant advancements in the automation of glycosylation to synthesize oligosaccharides in less time and with fewer manually conducted steps by the user.
Collapse
Affiliation(s)
- Karen J Li
- Department of Chemistry, Tufts University, 62 Talbot Ave. Medford, MA 02155, USA
| | - Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Ave. Medford, MA 02155, USA.
| |
Collapse
|
34
|
DeHovitz JS, Hyster TK. Photoinduced Dynamic Radical Processes for Isomerizations, Deracemizations, and Dynamic Kinetic Resolutions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jacob S. DeHovitz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
35
|
Yoshida M, Sawamura M, Masuda Y. Photoinduced Alcoholic α‐C–H Bond Anti‐Markovnikov Addition to Vinylphosphonium Bromides Followed by Wittig Olefination: Two‐step Protocol for α‐C–H Allylic Alkylation of Alcohols. ChemCatChem 2022. [DOI: 10.1002/cctc.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Masaki Yoshida
- Hokkaido University: Hokkaido Daigaku Faculty of Science Kita-ku Kita10 Nishi86-608 060-0810 Sapporo JAPAN
| | - Masaya Sawamura
- Hokkaido University: Hokkaido Daigaku Faculty of Science Kita-ku Kita10 Nishi86-605 060-0810 Sapporo JAPAN
| | - Yusuke Masuda
- Hokkaido University: Hokkaido Daigaku Faculty of Science Kita-ku Kita10 Nishi86-608 060-0810 Sapporo JAPAN
| |
Collapse
|
36
|
Carder HM, Wang Y, Wendlandt AE. Selective Axial-to-Equatorial Epimerization of Carbohydrates. J Am Chem Soc 2022; 144:11870-11877. [PMID: 35731921 DOI: 10.1021/jacs.2c04743] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radical-mediated transformations have emerged as powerful methods for the synthesis of rare and unnatural branched, deoxygenated, and isomeric sugars. Here, we describe a radical-mediated axial-to-equatorial alcohol epimerization method to transform abundant glycans into rare isomers. The method delivers highly predictable and selective reaction outcomes that are complementary to other sugar isomerization methods. The synthetic utility of isomer interconversion is showcased through expedient glycan synthesis, including one-step glycodiversification. Mechanistic studies reveal that both site- and diastereoselectivities are achieved by highly selective H atom abstraction of equatorially disposed α-hydroxy C-H bonds.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Minnaard AJ, Mouthaan MLMC, Pouwer K, Borst MLG, Witte MD. α-C–H Photoalkylation of a Glucose Derivative in Continuous Flow. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1840-5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractSite-selective photoalkylation is a powerful strategy to extend the carbon framework of carbohydrates, otherwise often attainable only through laborious syntheses. This work describes the adaptation and upscaling of the photoalkylation of a glucose derivative as a continuous flow process. The reported iridium catalyst is replaced by an organic sensitizer and the reaction has been carried out on 40-gram scale.
Collapse
Affiliation(s)
- Adriaan J. Minnaard
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen
| | - Marc L. M. C. Mouthaan
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen
| | | | | | - Martin D. Witte
- Department of Chemical Biology, Stratingh Institute for Chemistry, University of Groningen
| |
Collapse
|
38
|
Demeter F, Bereczki I, Borbás A, Herczeg M. Synthesis of Four Orthogonally Protected Rare l-Hexose Thioglycosides from d-Mannose by C-5 and C-4 Epimerization. Molecules 2022; 27:3422. [PMID: 35684360 PMCID: PMC9182441 DOI: 10.3390/molecules27113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/30/2023] Open
Abstract
l-Hexoses are important components of biologically relevant compounds and precursors of some therapeuticals. However, they typically cannot be obtained from natural sources and due to the complexity of their synthesis, their commercially available derivatives are also very expensive. Starting from one of the cheapest d-hexoses, d-mannose, using inexpensive and readily available chemicals, we developed a reaction pathway to obtain two orthogonally protected l-hexose thioglycoside derivatives, l-gulose and l-galactose, through the corresponding 5,6-unsaturated thioglycosides by C-5 epimerization. From these derivatives, the orthogonally protected thioglycosides of further two l-hexoses (l-allose and l-glucose) were synthesized by C-4 epimerization. The preparation of the key intermediates, the 5,6-unsaturated derivatives, was systematically studied using various protecting groups. By the method developed, we are able to produce highly functionalized l-gulose derivatives in 9 steps (total yields: 21-23%) and l-galactose derivatives in 12 steps (total yields: 6-8%) starting from d-mannose.
Collapse
Affiliation(s)
- Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
- Research Group for Oligosaccharide Chemistry of Hungarian Academy of Sciences, ELKH, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
39
|
Sakai K, Oisaki K, Kanai M. A Germanium Catalyst Accelerates the Photoredox α-C(sp 3)-H Alkylation of Primary Amines. Org Lett 2022; 24:3325-3330. [PMID: 35486160 DOI: 10.1021/acs.orglett.2c00871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-selective C(sp3)-H functionalizations using photoredox catalysis (PC) and hydrogen atom transfer (HAT) catalysis have received increasing attention. Here, we report a Ph2GeCl2 cocatalyst that greatly improves the yield of α-C(sp3)-H alkylation of primary amines catalyzed by a PC-HAT hybrid system. The α-position of the amino group selectively reacted even when weaker C-H bonds existed in the substrates. This finding may help the design of a novel site-selective hybrid catalysis.
Collapse
Affiliation(s)
- Kentaro Sakai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kounosuke Oisaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Desai SP, Zambri MT, Taylor MS. Borinic Acid Catalyzed Regioselective N-Alkylation of Azoles. J Org Chem 2022; 87:5385-5394. [PMID: 35385283 DOI: 10.1021/acs.joc.2c00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method for regioselective N-alkylation of ambident, azole-type heterocycles with alkene or epoxide electrophiles is described. In the presence of diphenylborinic acid (Ph2BOH) and an amine cocatalyst, heterocyclic nucleophiles such as 1,2,3- and 1,2,4-triazoles, substituted tetrazoles, and purine are activated toward selective N-functionalization. The scope of electrophilic partners includes enones, 2-vinylpyridine, phenyl vinyl sulfone, a dehydroalanine derivative, and epoxides. Mechanistic studies, including in situ 11B NMR spectroscopy and kinetic analysis, are discussed.
Collapse
Affiliation(s)
- Shrey P Desai
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Matthew T Zambri
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
41
|
Yumura T, Nanjo T, Takemoto Y. Boronic Acid‐Mediated Photocatalysis Enables the Intramolecular Hydroacylation of Olefins Using Carboxylic Acids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taichi Yumura
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
42
|
Liu C, Li K, Shang R. Arenethiolate as a Dual Function Catalyst for Photocatalytic Defluoroalkylation and Hydrodefluorination of Trifluoromethyls. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Can Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kang Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Rui Shang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of β-Aryl-Ketones. Catalysts 2022. [DOI: 10.3390/catal12030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Electrochemical synthesis has been rapidly developing over the past few years. Here, we report a practical and eco-friendly electrocatalytic isomerization of allylic alcohols to their corresponding carbonyl compounds. This reaction can be carried out in undivided cells without the addition of external chemical oxidants and metal catalysts. Moreover, this reaction features a broad substrate scope including challenging allylic alcohols bearing tri- and tetra-substituted olefins and affords straightforward access to diverse β-aryl-ketones. Mechanistic investigations suggest that the reactions proceed through a radical process. This study represents a unique example in which electrochemistry enables hydrogen atom transfer in organic allylic alcohol substrates using a simple organocatalyst.
Collapse
|
44
|
Wu J, Kopp A, Ackermann L. Synthesis of C-Oligosaccharides through Versatile C(sp 3 )-H Glycosylation of Glycosides. Angew Chem Int Ed Engl 2022; 61:e202114993. [PMID: 35015329 PMCID: PMC9306939 DOI: 10.1002/anie.202114993] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Indexed: 12/12/2022]
Abstract
C-oligosaccharides are pharmacologically relevant because they are more hydrolysis-resistant than O-oligosaccharides. Despite indisputable advances, C-oligosaccharides continue to be underdeveloped, likely due to a lack of efficient and selective strategies for the assembly of the interglycosidic C-C linkages. In contrast, we, herein, report a versatile and robust strategy for the synthesis of structurally complex C-oligosaccharides via catalyzed C(sp3 )-H activations. Thus, a wealth of complex interglycosidic (2→1)- and (1→1)-C-oligosaccharides becomes readily available by palladium-catalyzed C(sp3 )-H glycoside glycosylation. The isolation of key palladacycle intermediates and experiments with isotopically-labeled compounds identified a trans-stereoselectivity for the C(sp3 )-H glycosylation. The glycoside C(sp3 )-H activation manifold was likewise exploited for the diversification of furanoses, pyranoses and disaccharides.
Collapse
Affiliation(s)
- Jun Wu
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Adelina Kopp
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
- DZHK (German Centre for Cardiovascular Research)Potsdamer Straße 5810785BerlinGermany
| |
Collapse
|
45
|
Abstract
The fields of C-H functionalization and photoredox catalysis have garnered enormous interest and utility in the past several decades. Many different scientific disciplines have relied on C-H functionalization and photoredox strategies including natural product synthesis, drug discovery, radiolabeling, bioconjugation, materials, and fine chemical synthesis. In this Review, we highlight the use of photoredox catalysis in C-H functionalization reactions. We separate the review into inorganic/organometallic photoredox catalysts and organic-based photoredox catalytic systems. Further subdivision by reaction class─either sp2 or sp3 C-H functionalization─lends perspective and tactical strategies for use of these methods in synthetic applications.
Collapse
Affiliation(s)
- Natalie Holmberg-Douglas
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
46
|
Matsumoto A, Yamamoto M, Maruoka K. Cationic DABCO-Based Catalyst for Site-Selective C–H Alkylation via Photoinduced Hydrogen-Atom Transfer. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akira Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masanori Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiji Maruoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
47
|
Oswood CJ, MacMillan DWC. Selective Isomerization via Transient Thermodynamic Control: Dynamic Epimerization of trans to cis Diols. J Am Chem Soc 2022; 144:93-98. [PMID: 34933555 PMCID: PMC9676085 DOI: 10.1021/jacs.1c11552] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Traditional approaches to stereoselective synthesis require high levels of enantio- and diastereocontrol in every step that forms a new stereocenter. Here, we report an alternative approach, in which the stereochemistry of organic substrates is selectively edited without further structural modification, a strategy with the potential to allow new classes of late-stage stereochemical manipulation and provide access to rare or valuable stereochemical configurations. In this work, we describe a selective epimerization of cyclic diols enabled by hydrogen atom transfer photocatalysis and boronic acid mediated transient thermodynamic control, selectively generating less stable cis products from the otherwise favored trans isomers. A range of substitution patterns and ring sizes are amenable to selective isomerization, including stereochemically complex polyols such as estriol, as well as syn to anti epimerization of acyclic vicinal diols. Moreover, this strategy has enabled the divergent epimerization of saccharide anomers, providing access to distinct sugar isomers from α- or β-configured glycosides.
Collapse
Affiliation(s)
- Christian J Oswood
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
48
|
Marino C, Bordoni AV. Deoxy sugars. General methods for carbohydrate deoxygenation and glycosidation. Org Biomol Chem 2022; 20:934-962. [PMID: 35014646 DOI: 10.1039/d1ob02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deoxy sugars represent an important class of carbohydrates, present in a large number of biomolecules involved in multiple biological processes. In various antibiotics, antimicrobials, and therapeutic agents the presence of deoxygenated units has been recognized as responsible for biological roles, such as adhesion or great affinity to receptors, or improved efficacy. The characterization of glycosidases and glycosyltranferases requires substrates, inhibitors and analogous compounds. Deoxygenated sugars are useful for carrying out specific studies for these enzymes. Deoxy sugars, analogs of natural substrates, may behave as substrates or inhibitors, or may not interact with the enzyme. They are also important for glycodiversification studies of bioactive natural products and glycobiological processes, which could contribute to discovering new therapeutic agents with greater efficacy by modification or replacement of sugar units. Deoxygenation of carbohydrates is, thus, of great interest and numerous efforts have been dedicated to the development of methods for the reduction of sugar hydroxyl groups. Given that carbohydrates are the most important renewable chemicals and are more oxidized than fossil raw materials, it is also important to have methods to selectively remove oxygen from certain atoms of these renewable raw materials. The different methods for removal of OH groups of carbohydrates and representative or recent applications of them are presented in this chapter. Glycosidic bonds in general, and 2-deoxy glycosidic linkages, are included. It is not the scope of this survey to cover all reports for each specific technique.
Collapse
Affiliation(s)
- Carla Marino
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química & Instituto de Nanociencia y Nanotecnología - Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina
| |
Collapse
|
49
|
Synthesis of C‐Oligosaccharides through Versatile C(sp3)–H Glycosylation of Glycosides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Li LH, Wei HZ, Wei Y, Shi M. The Morita–Baylis–Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis. Chem Sci 2022; 13:1478-1483. [PMID: 35222932 PMCID: PMC8809420 DOI: 10.1039/d1sc06784b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
A strategy for overcoming the limitation of the Morita–Baylis–Hillman (MBH) reaction, which is only applicable to electron-deficient olefins, has been achieved via visible-light induced photoredox catalysis in this report.
Collapse
Affiliation(s)
- Long-Hai Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hao-Zhao Wei
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|