1
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Guo J, Tan W, Xu B. Enzymatic self-assembly of short peptides for cell spheroid formation. J Mater Chem B 2024. [PMID: 39370899 DOI: 10.1039/d4tb01154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Cell spheroids, including organoids, serve as a valuable link between in vitro systems and in vivo animal models, offering powerful tools for studying cell biology in a three-dimensional environment. However, existing methods for generating cell spheroids are time consuming or difficult to scale up for large-scale production. Our recent study has revealed that transcytotic peptide assemblies, which transform from nanoparticles to nanofibers by enzymatic reactions, can create an intercellular fibril/gel, accelerating cell spheroid formation from a 2D cell culture or a cell suspension. While this finding presents an alternative approach for generating cell spheroids, the specific structural features required for efficient cell spheroid formation remain unclear. Based on our observation that a phosphotetrapeptide with a biphenyl cap at its N-terminus enables cell spheroid formation, we produced 10 variants of the original peptide. The variants explored modifications to the peptide backbone, length, electronic properties of the biphenyl capping group, and the type of phosphorylated amino acid residue. We then evaluated their ability for inducing cell spheroid formation. Our analysis revealed that, among the tested molecules, peptides with C-terminal phosphotyrosine, low critical micelle concentration, and dephosphorylation-guided nanoparticle to nanofiber morphological transition were the most effective in inducing the formation of cell spheroids. This work represents the first example to correlate the thermodynamic properties (e.g., self-assembling ability) and kinetic behavior (e.g., enzymatic dephosphorylation) of peptides with the efficacy of controlling intercellular interaction, thus offering valuable insights into using enzymatic self-assembly to generate peptide assemblies for biological applications.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA.
| |
Collapse
|
3
|
Guo P, Zhang X, Chen J, Chen X, Jiang YB, Jiang T. On-Demand Elongation of Peptide Nanofibrils at Cellular Interfaces to Modulate Cell-Cell Interactions. NANO LETTERS 2024; 24:11194-11201. [PMID: 39213611 DOI: 10.1021/acs.nanolett.4c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Natural cells can achieve specific cell-cell interactions by enriching nonspecific binding molecules on demand at intercellular contact faces, a pathway currently beyond synthetic capabilities. We are inspired to construct responsive peptide fibrils on cell surfaces, which elongate upon encountering target cells while maintaining a short length when contacting competing cells, as directed by a strand-displacement reaction arranged on target cell surfaces. With the display of ligands that bind to both target and competing cells, the contact-induced, region-selective fibril elongation selectively promotes host-target cell interactions via the accumulation of nonspecific ligands between matched cells. This approach is effective in guiding natural killer cells, the broad-spectrum effector lymphocytes, to eliminate specific cancer cells. In contrast to conventional methods relying on target cell-specific binding molecules for the desired cellular interactions, this dynamic scaffold-based approach would broaden the scope of cell combinations for manipulation and enhance the adjustability of cell behaviors for future applications.
Collapse
Affiliation(s)
- Pan Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Xingjing Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Jingsheng Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Xiaoyong Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| |
Collapse
|
4
|
Tan W, Zhang Q, Lee M, Lau W, Xu B. Enzymatic control of intermolecular interactions for generating synthetic nanoarchitectures in cellular environment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2373045. [PMID: 39011064 PMCID: PMC11249168 DOI: 10.1080/14686996.2024.2373045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
Nanoarchitectonics, as a technology to arrange nano-sized structural units such as molecules in a desired configuration, requires nano-organization, which usually relies on intermolecular interactions. This review briefly introduces the development of using enzymatic reactions to control intermolecular interactions for generating artificial nanoarchitectures in a cellular environment. We begin the discussion with the early examples and uniqueness of enzymatically controlled self-assembly. Then, we describe examples of generating intracellular nanostructures and their relevant applications. Subsequently, we discuss cases of forming nanostructures on the cell surface via enzymatic reactions. Following that, we highlight the use of enzymatic reactions for creating intercellular nanostructures. Finally, we provide a summary and outlook on the promises and future direction of this strategy. Our aim is to give an updated introduction to the use of enzymatic reaction in regulating intermolecular interactions, a phenomenon ubiquitous in biology but relatively less explored by chemists and materials scientists. Our goal is to stimulate new developments in this simple and versatile approach for addressing societal needs.
Collapse
Affiliation(s)
- Weiyi Tan
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Mikki Lee
- Department of Chemistry, Brandeis University, Waltham, MA, USA
- Department of Pharmacy and Pharmaceutical Sciences, National University ofSingapore, Singapore
| | - William Lau
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| |
Collapse
|
5
|
Ding Y, Zhang S, Li W, Chen X, Li J, Zhang X, Zhang Z, Hu Y, Yang Z, Hu ZW, Shen X. Enzyme-Instructed Photoactivatable Supramolecular Antigens on Cancer Cell Membranes for Precision-Controlled T-Cell-Based Cancer Immunotherapy. NANO LETTERS 2024. [PMID: 38838340 DOI: 10.1021/acs.nanolett.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Cancer immunotherapies based on cytotoxic CD8+ T lymphocytes (CTLs) are highly promising for cancer treatment. The specific interaction between T-cell receptors and peptide-MHC-I complexes (pMHC-I) on cancer cell membranes critically determines their therapeutic outcomes. However, the lack of appropriate endogenous antigens for MHC-I presentation disables tumor recognition by CTLs. By devising three antigen-loaded self-assembling peptides of pY-K(Ag)-ERGD, pY-K(Ag)-E, and Y-K(Ag)-ERGD to noncovalently generate light-activatable supramolecular antigens at tumor sites in different manners, we report pY-K(Ag)-ERGD as a promising candidate to endow tumor cells with pMHC-I targets on demand. Specifically, pY-K(Ag)-ERGD first generates low-antigenic supramolecular antigens on cancer cell membranes, and a successive light pulse allows antigen payloads to efficiently release from the supramolecular scaffold, directly producing antigenic pMHC-I. Intravenous administration of pY-K(Ag)-ERGD enables light-controlled tumor inhibition when combined with adoptively transferred antigen-specific CTLs. Our strategy is feasible for broadening tumor antigen repertoires for T-cell immunotherapies and advancing precision-controlled T-cell immunotherapies.
Collapse
Affiliation(s)
- Yinghao Ding
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Shengyi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Wei Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiaodong Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Jun Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhenghao Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yuanbo Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xian Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Buckenmeyer MJ, Brooks EA, Taylor MS, Yang L, Holewinski RJ, Meyer TJ, Galloux M, Garmendia-Cedillos M, Pohida TJ, Andresson T, Croix B, Wolf MT. Engineering Tumor Stroma Morphogenesis Using Dynamic Cell-Matrix Spheroid Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585805. [PMID: 38903106 PMCID: PMC11188064 DOI: 10.1101/2024.03.19.585805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The tumor microenvironment consists of resident tumor cells organized within a compositionally diverse, three-dimensional (3D) extracellular matrix (ECM) network that cannot be replicated in vitro using bottom-up synthesis. We report a new self-assembly system to engineer ECM-rich 3D MatriSpheres wherein tumor cells actively organize and concentrate microgram quantities of decellularized ECM dispersions which modulate cell phenotype. 3D colorectal cancer (CRC) MatriSpheres were created using decellularized small intestine submucosa (SIS) as an orthotopic ECM source that had greater proteomic homology to CRC tumor ECM than traditional ECM formulations such as Matrigel. SIS ECM was rapidly concentrated from its environment and assembled into ECM-rich 3D stroma-like regions by mouse and human CRC cell lines within 4-5 days via a mechanism that was rheologically distinct from bulk hydrogel formation. Both ECM organization and transcriptional regulation by 3D ECM cues affected programs of malignancy, lipid metabolism, and immunoregulation that corresponded with an in vivo MC38 tumor cell subpopulation identified via single cell RNA sequencing. This 3D modeling approach stimulates tumor specific tissue morphogenesis that incorporates the complexities of both cancer cell and ECM compartments in a scalable, spontaneous assembly process that may further facilitate precision medicine.
Collapse
Affiliation(s)
- Michael J. Buckenmeyer
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Elizabeth A. Brooks
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Madison S. Taylor
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ronald J. Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mélissa Galloux
- Independent Bioinformatician, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas J. Pohida
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Brad Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew T. Wolf
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
7
|
Gan S, Yang L, Heng Y, Chen Q, Wang D, Zhang J, Wei W, Liu Z, Njoku DI, Chen JL, Hu Y, Sun H. Enzyme-Directed and Organelle-Specific Sphere-to-Fiber Nanotransformation Enhances Photodynamic Therapy in Cancer Cells. SMALL METHODS 2024:e2301551. [PMID: 38369941 DOI: 10.1002/smtd.202301551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Indexed: 02/20/2024]
Abstract
Employing responsive nanoplatforms as carriers for photosensitizers represents an effective strategy to overcome the challenges associated with photodynamic therapy (PDT), including poor solubility, low bioavailability, and high systemic toxicity. Drawing inspiration from the morphology transitions in biological systems, a general approach to enhance PDT that utilizes enzyme-responsive nanoplatforms is developed. The transformation of phosphopeptide/photosensitizer co-assembled nanoparticles is first demonstrated into nanofibers when exposed to cytoplasmic enzyme alkaline phosphatase. This transition is primarily driven by alkaline phosphatase-induced changes of the nanoparticles in the hydrophilic and hydrophobic balance, and intermolecular electrostatic interactions within the nanoparticles. The resulting nanofibers exhibit improved ability of generating reactive oxygen species (ROS), intracellular accumulation, and retention in cancer cells. Furthermore, the enzyme-responsive nanoplatform is expanded to selectively target mitochondria by mitochondria-specific enzyme sirtuin 5 (SIRT5). Under the catalysis of SIRT5, the succinylated peptide/photosensitizer co-assembled nanoparticles can be transformed into nanofibers specifically within the mitochondria. The resulting nanofibers exhibit excellent capability of modulating mitochondrial activity, enhanced ROS formation, and significant anticancer efficacy via PDT. Consequently, the enzyme-instructed in situ fibrillar transformation of peptide/photosensitizers co-assembled nanoparticles provides an efficient pathway to address the challenges associated with photosensitizers. It is envisaged that this approach will further expand the toolbox for enzyme-responsive biomaterials for cancer therapy.
Collapse
Affiliation(s)
- Shenglong Gan
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) City University of Hong Kong, Hong Kong, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yiyuan Heng
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) City University of Hong Kong, Hong Kong, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Qingxin Chen
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) City University of Hong Kong, Hong Kong, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Dongqing Wang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) City University of Hong Kong, Hong Kong, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jie Zhang
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) City University of Hong Kong, Hong Kong, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Wenyu Wei
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) City University of Hong Kong, Hong Kong, 999077, China
| | - Zhiyang Liu
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) City University of Hong Kong, Hong Kong, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Demian Ifeanyi Njoku
- Department of Applied Science, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong, 999077, China
| | - Jian Lin Chen
- Department of Applied Science, Hong Kong Metropolitan University, Ho Man Tin, Kowloon, Hong Kong, 999077, China
| | - Yi Hu
- State Key Laboratory of Complex, Severe, and Rare Diseases, Biomedical Engineering Facility of National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films) City University of Hong Kong, Hong Kong, 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
8
|
Tiwari P, Gupta A, Shivhare V, Ahuja R, Mandloi AS, Mishra A, Basu A, Konar AD. Stereogenic Harmony Fabricated Mechanoresponsive Homochiral Triphenylalanine Analogues with Synergistic Antibacterial Performances: A Potential Weapon for Dermal Wound Management. ACS APPLIED BIO MATERIALS 2024; 7:332-343. [PMID: 38116621 DOI: 10.1021/acsabm.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The wound recovery phenomenon remains as one of the long challenging concerns worldwide. In search of user-friendly dressing materials, in this report, we fabricated a rational combinatorial strategy utilizing stereogenic harmony in a triphenylalanine fragment and appending it to δ-amino valeric acid at the N-terminus (hydrogelators I-VII) such that a potential scaffold could be fished out from the design. Our investigations revealed that all the hydrogelators displayed not only excellent self-healing performance as well as high mechanical strength at physiological pH but also mechanical stress-triggered gel-sol-gel transition properties. The structural and morphological investigation confirmed the presence of β-sheet-like assemblies stabilized by intermolecular H-bonding and π-π interactions. Moreover, these scaffolds showed substantial antibacterial as well as antifungal efficacy against common wound pathogens, i.e, four Gram-positive bacteria (Staphylococcus aureus, Streptococcus mutans, B. subtilis, E. fecalis), four Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, P. aerugonosa, Proteus spp.), and two fungal strains (C. albicans and A. niger). The manifestation of consistent antioxidant properties might be due to the enhancement of amphiphilicity in hydrogelators, which has led to the generation of reactive oxygen species (ROS) in a facile manner, a probable mechanism to damage the microbial membrane, the driving force behind the antimicrobial efficacy. Also, the constructs exhibited proteolytic resistance and remarkable biocompatibility toward mammalian cells. Thus, based on the above benchmarks, the homochiral hydrogelator IV was seived out from a pool of seven, and we proceeded toward its in vivo evaluation using full-thickness excisional wounds in Wister rats. The scaffolds also accentuated the re-epithelialization as well in comparison to the negative control, thereby facilitating the wound closure process in a very short span of time (10 days). Overall, our in vitro and in vivo analysis certifies hydrogelator IV as an ideal dressing material that might hold immense promise for future wound care management.
Collapse
Affiliation(s)
- Priyanka Tiwari
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh 462033, India
| | - Arindam Gupta
- Department of Chemistry, IISER, Bhopal 462066, India
| | - Vaibhav Shivhare
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh 462033, India
| | - Rishabh Ahuja
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh 462033, India
| | - Avinash Singh Mandloi
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, Madhya Pradesh 462044, India
| | - Ankit Mishra
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, Madhya Pradesh 462044, India
| | - Anindya Basu
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal 462036, India
- University Grants Commission, New Delhi, New Delhi 110002, India
| | - Anita Dutt Konar
- Department of Applied Chemistry, Rajiv Gandhi Technological University, Bhopal, Madhya Pradesh 462033, India
- School of Pharmaceutical Sciences, Rajiv Gandhi Technological University, Bhopal 462036, India
- University Grants Commission, New Delhi, New Delhi 110002, India
| |
Collapse
|
9
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
10
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
11
|
Abstract
Higher-order or supramolecular protein assemblies, usually regulated by enzymatic reactions, are ubiquitous and essential for cellular functions. This evolutionary fact has provided a rigorous scientific foundation, as well as an inspiring blueprint, for exploring supramolecular assemblies of man-made molecules that are responsive to biological cues as a novel class of therapeutics for biomedicine. Among the emerging man-made supramolecular structures, peptide assemblies, formed by enzyme reactions or other stimuli, have received most of the research attention and advanced most rapidly.In this Account, we will review works that apply enzyme-instructed self-assembly (EISA) to generate intracellular peptide assemblies for developing a new kind of biomedicine, especially in the field of novel cancer nanomedicines and modulating cell morphogenesis. As a versatile and cell-compatible approach, EISA can generate nondiffusive peptide assemblies locally; thus, it provides a unique approach to target subcellular organelles with exceptional cell selectivity. We have arranged this Account in the following way: after introducing the concept, simplicity, and uniqueness of EISA, we discuss the EISA-formed intracellular peptide assemblies, including artificial filaments, in the cell cytosol. Then, we describe the representative examples targeting subcellular organelles, such as mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, and the nucleus, by enzyme-instructed intracellular peptide assemblies for potential cancer therapeutics. After that, we highlight the recent exploration of the transcytosis of peptide assemblies for controlling cell morphogenesis. Finally, we provide a brief outlook of enzyme-instructed intracellular peptide assemblies. This Account aims to illustrate the promise of EISA-generated intracellular peptide assemblies in understanding diseases, controlling cell behaviors, and developing new therapeutics from a class of less explored molecular entities, which are substrates of enzymes and become building blocks of self-assembly after the enzymatic reactions.
Collapse
Affiliation(s)
- Zhiyu Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
12
|
Guo J, Wang F, Huang Y, He H, Tan W, Yi M, Egelman EH, Xu B. Cell spheroid creation by transcytotic intercellular gelation. NATURE NANOTECHNOLOGY 2023; 18:1094-1104. [PMID: 37217766 PMCID: PMC10525029 DOI: 10.1038/s41565-023-01401-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/14/2023] [Indexed: 05/24/2023]
Abstract
Cell spheroids bridge the discontinuity between in vitro systems and in vivo animal models. However, inducing cell spheroids by nanomaterials remains an inefficient and poorly understood process. Here we use cryogenic electron microscopy to determine the atomic structure of helical nanofibres self-assembled from enzyme-responsive D-peptides and fluorescent imaging to show that the transcytosis of D-peptides induces intercellular nanofibres/gels that potentially interact with fibronectin to enable cell spheroid formation. Specifically, D-phosphopeptides, being protease resistant, undergo endocytosis and endosomal dephosphorylation to generate helical nanofibres. On secretion to the cell surface, these nanofibres form intercellular gels that act as artificial matrices and facilitate the fibrillogenesis of fibronectins to induce cell spheroids. No spheroid formation occurs without endo- or exocytosis, phosphate triggers or shape switching of the peptide assemblies. This study-coupling transcytosis and morphological transformation of peptide assemblies-demonstrates a potential approach for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yimeng Huang
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, Waltham, MA, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
13
|
Qiao Y, Xu B. Peptide Assemblies for Cancer Therapy. ChemMedChem 2023; 18:e202300258. [PMID: 37380607 PMCID: PMC10613339 DOI: 10.1002/cmdc.202300258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Supramolecular assemblies made by the self-assembly of peptides are finding an increasing number of applications in various fields. While the early exploration of peptide assemblies centered on tissue engineering or regenerative medicine, the recent development has shown that peptide assemblies can act as supramolecular medicine for cancer therapy. This review covers the progress of applying peptide assemblies for cancer therapy, with the emphasis on the works appeared over the last five years. We start with the introduction of a few seminal works on peptide assemblies, then discuss the combination of peptide assemblies with anticancer drugs. Next, we highlight the use of enzyme-controlled transformation or shapeshifting of peptide assemblies for inhibiting cancer cells and tumors. After that, we provide the outlook for this exciting field that promises new kind of therapeutics for cancer therapy.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
14
|
Guo P, Wang D, Zhang S, Cheng D, Wu S, Zuo X, Jiang YB, Jiang T. Reassembly of Peptide Nanofibrils on Live Cell Surfaces Promotes Cell-Cell Interactions. NANO LETTERS 2023. [PMID: 37399537 DOI: 10.1021/acs.nanolett.3c01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Nature regulates cellular interactions through the cell-surface molecules and plasma membranes. Despite advances in cell-surface engineering with diverse ligands and reactive groups, modulating cell-cell interactions through scaffolds of the cell-binding cues remains a challenging endeavor. Here, we assembled peptide nanofibrils on live cell surfaces to present the ligands that bind to the target cells. Surprisingly, with the same ligands, reducing the thermal stability of the nanofibrils promoted cellular interactions. Characterizations of the system revealed a thermally induced fibril disassembly and reassembly pathway that facilitated the complexation of the fibrils with the cells. Using the nanofibrils of varied stabilities, the cell-cell interaction was promoted to different extents with free-to-bound cell conversion ratios achieved at low (31%), medium (54%), and high (93%) levels. This study expands the toolbox to generate desired cell behaviors for applications in many areas and highlights the merits of thermally less stable nanoassemblies in designing functional materials.
Collapse
Affiliation(s)
- Pan Guo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Di Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Shumin Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Dan Cheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
| | - Siyu Wu
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
15
|
Sun Y, Lyu B, Yang C, He B, Zhang H, Wang X, Zhang Q, Dai W. An enzyme-responsive and transformable PD-L1 blocking peptide-photosensitizer conjugate enables efficient photothermal immunotherapy for breast cancer. Bioact Mater 2023; 22:47-59. [PMID: 36203955 PMCID: PMC9519467 DOI: 10.1016/j.bioactmat.2022.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 12/07/2022] Open
Abstract
Mild photothermal therapy combined with immune checkpoint blockade has received increasing attention for the treatment of advanced or metastatic cancers due to its good therapeutic efficacy. However, it remains a challenge to facilely integrate the two therapies and make it potential for clinical translation. This work designed a peptide-photosensitizer conjugate (PPC), which consisted of a PD-L1 antagonist peptide (CVRARTR), an MMP-2 specific cleavable sequence, a self-assembling motif, and the photosensitizer Purpurin 18. The single-component PPC can self-assemble into nanospheres which is suitable for intravenous injection. The PPC nanosphere is cleaved by MMP-2 when it accumulates in tumor sites, thereby initiating the cancer-specific release of the antagonist peptide. Simultaneously, the nanospheres gradually transform into co-assembled nanofibers, which promotes the retention of the remaining parts within the tumor. In vivo studies demonstrated that PPC nanospheres under laser irradiation promote the infiltration of cytotoxic T lymphocytes and maturation of DCs, which sensitize 4T1 tumor cells to immune checkpoint blockade therapy. Therefore, PPC nanospheres inhibit tumor growth efficiently both in situ and distally and blocked the formation of lung metastases. The present study provides a simple and efficient integrated strategy for breast cancer photoimmunotherapy. A peptide-photosensitizer conjugate (PPC) with self-assembled ability. Self-assembled PPC realized enzyme-responsive PD-L1 blocking peptide release. Shape transformation from nanospheres to co-assembled nanofibers. Efficient integrated strategy for breast cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Yanan Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Bochen Lyu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Chang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Corresponding author.
| |
Collapse
|
16
|
Kaur H, Sharma P, Pal VK, Sen S, Roy S. Exploring Supramolecular Interactions between the Extracellular-Matrix-Derived Minimalist Bioactive Peptide and Nanofibrillar Cellulose for the Development of an Advanced Biomolecular Scaffold. ACS Biomater Sci Eng 2023; 9:1422-1436. [PMID: 36826412 DOI: 10.1021/acsbiomaterials.3c00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
It has been increasingly evident over the last few years that bioactive peptide hydrogels in conjugation with polymer hydrogels are emerging as a new class of supramolecular materials suitable for various biomedical applications owing to their specificity, tunability, and nontoxicity toward the biological system. Despite their unique biocompatible features, both polymer- and peptide-based scaffolds suffer from certain limitations, which restrict their use toward developing efficient matrices for controlling cellular behavior. The peptide hydrogels usually form soft matrices with low mechanical strength, whereas most of the polymer hydrogels lack biofunctionality. In this direction, combining polymers with peptides to develop a conjugate hydrogel can be explored as an emergent approach to overcome the limitations of the individual components. The polymer will provide high mechanical strength, whereas the biofunctionality of the material can be induced by the bioactive peptide sequence. In this study, we utilized TEMPO-oxidized nanofibrillar cellulose as the polymer counterpart, which was co-assembled with a short N-cadherin mimetic bioactive peptide sequence, Nap-HAVDI, to fabricate an NFC-peptide conjugate hydrogel. Interestingly, the mechanical strength of the peptide hydrogel was found to be significantly improved by combining the peptide with the NFC in the conjugate hydrogel. The addition of the peptide into the NFC also reduced the pore size within NFC matrices, which further helped in improving cellular adhesion, survival, and proliferation. Furthermore, the cells grown on the NFC and NFC-peptide hybrid hydrogel demonstrated normal expression of cytoskeleton proteins, i.e., β-tubulin in C6 cells and actin in L929 cells, respectively. The selective response of neuronal cells toward the specific bioactive peptide was further observed through a protein expression study. Thus, our study demonstrated the collective role of the cellulose-peptide composite material that revealed superior physical properties and biological response of this composite scaffold, which may open up a new platform for biomedical applications.
Collapse
Affiliation(s)
- Harsimran Kaur
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Pooja Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Vijay K Pal
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Sourav Sen
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab 140306, India
| |
Collapse
|
17
|
Hamley IW. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS APPLIED BIO MATERIALS 2023; 6:384-409. [PMID: 36735801 PMCID: PMC9945136 DOI: 10.1021/acsabm.2c01041] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The self-assembly and structural and functional properties of peptide conjugates containing bulky terminal aromatic substituents are reviewed with a particular focus on bioactivity. Terminal moieties include Fmoc [fluorenylmethyloxycarbonyl], naphthalene, pyrene, naproxen, diimides of naphthalene or pyrene, and others. These provide a driving force for self-assembly due to π-stacking and hydrophobic interactions, in addition to the hydrogen bonding, electrostatic, and other forces between short peptides. The balance of these interactions leads to a propensity to self-assembly, even for conjugates to single amino acids. The hybrid molecules often form hydrogels built from a network of β-sheet fibrils. The properties of these as biomaterials to support cell culture, or in the development of molecules that can assemble in cells (in response to cellular enzymes, or otherwise) with a range of fascinating bioactivities such as anticancer or antimicrobial activity, are highlighted. In addition, applications of hydrogels as slow-release drug delivery systems and in catalysis and other applications are discussed. The aromatic nature of the substituents also provides a diversity of interesting optoelectronic properties that have been demonstrated in the literature, and an overview of this is also provided. Also discussed are coassembly and enzyme-instructed self-assembly which enable precise tuning and (stimulus-responsive) functionalization of peptide nanostructures.
Collapse
|
18
|
ZHAO Y, XU W, JIA Q. [Application of smart responsive materials in phosphopeptide and glycopeptide enrichment]. Se Pu 2022; 40:862-871. [PMID: 36222249 PMCID: PMC9577696 DOI: 10.3724/sp.j.1123.2022.06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
Phosphorylation and glycosylation of proteins, two of the most widely studied post-translational modifications (PTMs), have shown increasing potential in the early non-invasive diagnosis, prognosis, and therapeutic evaluation of diseases. Besides regulating the function of cell membranes and intracellular signal transduction, protein phosphorylation participates in mitochondrial function and cellular and transcriptional metabolism. Protein glycosylation plays an important role in both intracellular and extracellular signal transduction and intracellular endocytosis. Aberrant phosphorylation and glycosylation of proteins are frequently observed in clinical proteomic studies and in the discovery of disease-related biomarkers. There are generally three methods for detecting protein phosphorylation/glycosylation: isotope radiolabeling, western blotting, and mass spectrometry. Mass spectrometry has become the most important and advantageous detection method due to its high throughput and time- and labor-efficiency. However, phosphopeptides and glycopeptides have low stoichiometry and ionization efficiency, and a large number of non-phosphopeptides and -glycopeptides interference. These issues make it difficult to directly detect phosphopeptides and glycopeptides by mass spectrometry. Therefore, the enrichment of phosphopeptides and glycopeptides before mass spectrometry detection is a key step. At present, a variety of materials have been developed for enrichment studies of phosphopeptides and glycopeptides. For example, immobilized metal affinity (IMAC) and metal oxide affinity chromatography (MOAC) methods are mostly used for the enrichment of phosphopeptides. The IMAC mainly uses positively charged metal ions and negatively charged phosphate groups to attract each other for the purpose of enriching phosphopeptides. MOAC materials rely on the chelation of metal atoms and phosphate oxygens to capture phosphopeptides. IMAC and MOAC materials rely on strong interactions between metals and phosphate groups, which often lead to difficult elution. The enrichment method for glycopeptides is mainly based on the difference in hydrophilicity between glycopeptides and non-glycopeptides, which are mainly enriched by hydrophilic interaction chromatography (HILIC). In addition, materials containing compounds such as boronic acid and lectin materials are also widely used for the separation and enrichment of glycopeptides. Smart responsive materials have also been successively reported for the enrichment of phosphopeptides and glycopeptides due to their unique responsiveness and reversibility. Smart responsive materials can respond to external stimuli; undergo structural and property changes; and convert signals such as optical, electrical, thermal, and mechanical into biochemical signals. Responsive molecules are a prerequisite for determining the response properties of smart responsive materials, and their reversible isomerization under different stimuli (such as temperature, pH, light, mechanical stress, and electromagnetic field) will lead to dynamic changes in the physical and chemical properties of materials. Compared with traditional materials, smart responsive materials can be reversibly "turned on" and "off" with better controllability. Exogenous stimuli, including temperature, light, ultrasound, electromagnetic field, and mechanical stress, can be implemented in a specific time and space. Exogenous responsive materials do not depend on changes in the reaction system itself and are non-invasive. Enzymes, pH, redox, solution polarity, and ionic strength are endogenous stimuli. Endogenous responsive materials depend on changes in the reaction system itself, and sometimes the regulation process requires the introduction of other chemicals into the reaction system. The identification, capture, and release of phosphopeptides or glycopeptides can be achieved by modulating the interactions between smart responsive materials and phosphopeptides or glycopeptides (such as hydrogen bonds, and electrostatic and hydrophobic interactions). This review classifies smart responsive materials according to the types of stimuli, which are specifically divided into exogenous and endogenous responsive materials. The enrichment of phosphopeptides and glycopeptides of exogenous/endogenous responsive materials and endogenous/exogenous co-responsive materials are summarized. In addition, we discuss the development prospects of smart responsive materials in the enrichment of phosphopeptides and glycopeptides, and also raised the challenges existing in the application of smart responsive materials in other protein post-translational modifications.
Collapse
|
19
|
Qi J, Jia S, Kang X, Wu X, Hong Y, Shan K, Kong X, Wang Z, Ding D. Semiconducting Polymer Nanoparticles with Surface-Mimicking Protein Secondary Structure as Lysosome-Targeting Chimaeras for Self-Synergistic Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203309. [PMID: 35704513 DOI: 10.1002/adma.202203309] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Immunotherapy has received tremendous attention for tumor treatment, but the efficacy is greatly hindered by insufficient tumor-infiltration of immune cells and immunosuppressive tumor microenvironment. The strategy that can efficiently activate cytotoxic T lymphocytes and inhibit negative immune regulators will greatly amplify immunotherapy outcome, which is however very rare. Herein, a new kind of semiconducting polymer (SP) nanoparticles is developed, featured with surface-mimicking protein secondary structure (SPSS NPs) for self-synergistic cancer immunotherapy by combining immunogenic cell death (ICD) and immune checkpoint blockade therapy. The SPs with excellent photodynamic property are synthesized by rational fluorination, which can massively induce ICD. Additionally, the peptide antagonists are introduced and self-assembled into β-sheet protein secondary structures on the photodynamic NP surface via preparation process optimization, which function as efficient lysosome-targeting chimaeras (LYTACs) to mediate the degradation of programmed cell death ligand-1 (PD-L1) in lysosome. In vivo experiments demonstrate that SPSS NPs can not only elicit strong antitumor immunity to suppress both primary tumor and distant tumor, but also evoke long-term immunological memory against tumor rechallenge. This work introduces a new kind of robust immunotherapy agents by combining well-designed photosensitizer-based ICD induction and protein secondary structures-mediated LYTAC-like multivalence PD-L1 blockade, rendering great promise for synergistic immunotherapy.
Collapse
Affiliation(s)
- Ji Qi
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shaorui Jia
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoying Kang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinying Wu
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Ke Shan
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Xianglong Kong
- Shandong Artificial intelligence Institute and Shandong Computer Science Center, Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Zhiming Wang
- AIE Institute, Center for Aggregation-Induced Emission, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
20
|
Song J, Zhang Q, Li G, Zhang Y. Constructing ECM-like Structure on the Plasma Membrane via Peptide Assembly to Regulate the Cellular Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8733-8747. [PMID: 35839338 DOI: 10.1021/acs.langmuir.2c00711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This feature article introduces the design of self-assembling peptides that serve as the basic building blocks for the construction of extracellular matrix (ECM)-like structure in the vicinity of the plasma membrane. By covalently conjugating a bioactive motif, such as membrane protein binding ligand or enzymatic responsive building block, with a self-assembling motif, especially the aromatic peptide, a self-assembling peptide that retains bioactivity is obtained. Instructed by the target membrane protein or enzyme, the bioactive peptides self-assemble into ECM-like structure exerting various stimuli to regulate the cellular response via intracellular signaling, especially mechanotransduction. By briefly summarizing the properties and applications (e.g., wound healing, controlling cell motility and cell fate) of these peptides, we intend to illustrate the basic requirements and promises of the peptide assembly as a true bottom-up approach in the construction of artificial ECM.
Collapse
Affiliation(s)
- Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Qizheng Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi'an Jiaotong University, Shaanxi 710061, P. R. China
| | - Ye Zhang
- Active Soft Matter Group, CAS Songshan Lake Materials Laboratory, Dongguan 523808, China
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
21
|
Wu B, Zhong Y, Chen J, Pan X, Fan X, Chen P, Fu C, Ou C, Chen M. A dual-targeting peptide facilitates targeting anti-inflammation to attenuate atherosclerosis in ApoE -/- mice. Chem Commun (Camb) 2022; 58:8690-8693. [PMID: 35833251 DOI: 10.1039/d2cc01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a peptidic dual-targeting drug delivery platform (integrins targeting and self-assembly instructed by matrix metalloproteinases) towards inflamed endothelial cells, which improved the anti-inflammatory ability of the loaded drug (i.e., puerarin) in vitro and thus improved the antiatherogenic effect of the loaded drug (i.e., puerarin) in vivo.
Collapse
Affiliation(s)
- Bo Wu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Yuanzhi Zhong
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Jinmin Chen
- Cardiovascular Department of The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xianmei Pan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Xianglin Fan
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Peier Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Chenxing Fu
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), 523059, P. R. China
| | - Minsheng Chen
- Department of Cardiology, Zhujiang Hospital of Southern Medical University, and Guangdong Provincial Center of Biomedical Engineering for Cardiovascular Diseases, Guangzhou, 510280, P. R. China.
| |
Collapse
|
22
|
Li S, Li Q, Chen W, Song Z, An Y, Chen P, Wu Y, Wang G, He Y, Miao Q. A Renal-Clearable Activatable Molecular Probe for Fluoro-Photacoustic and Radioactive Imaging of Cancer Biomarkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201334. [PMID: 35723177 DOI: 10.1002/smll.202201334] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In vivo simultaneous visualization of multiple biomarkers is critical to accurately diagnose disease and decipher fundamental processes at a certain pathological evolution, which however is rarely exploited. Herein, a multimodal activatable imaging probe (P-125 I) is reported with activatable fluoro-photoacoustic and radioactive signal for in vivo imaging of biomarkers (i.e., hepsin and prostate-specific membrane antigen (PSMA)) associated with prostate cancer diagnosis and prognosis. P-125 I contains a near-infrared (NIR) dye that is caged with a hepsin-cleavable peptide sequence and linked with a radiolabeled PSMA-targeted ligand (PSMAL). After systemic administration, P-125 I actively targets the tumor site via specific recognition between PSMA and PSMAL moiety and in-situ generates of activated fluoro-photoacoustic signal after reacting with hepsin to release the free dye (uncaged state). P-125 I achieves precisely early detection of prostate cancer and renal clearance to alleviate toxicity issues. In addition, the accumulated radioactive and activated photoacoustic signal of probe correlates well with the respective expression level of PSMA and hepsin, which provides valuable foreseeability for cancer progression and prognosis. Thus, this study presents a multimodal activatable probe for early detection and in-depth deciphering of prostate cancer.
Collapse
Affiliation(s)
- Shenhua Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhuorun Song
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
23
|
Duan X, Zhang GQ, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging-Modality Transformable Characteristics for Improved Biological Applications. Angew Chem Int Ed Engl 2022; 61:e202116174. [PMID: 35030286 DOI: 10.1002/anie.202116174] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 12/22/2022]
Abstract
Persistent luminescence without excitation light and tissue autofluorescence interference holds great promise for biological applications, but is limited by available materials with long-wavelength emission and excellent clinical potential. Here, we report that porphyrin derivatives can emit near-infrared persistent luminescence over 60 min after cessation of excitation light or on interaction with peroxynitrite. A plausible mechanism of the successive oxidation of vinylene bonds was demonstrated. A supramolecular probe with a β-sheet structure was constructed to enhance the tumor targeting ability and the photoacoustic and persistent luminescence signals. Such probes featuring light-triggered function transformation from photoacoustic imaging to persistent luminescence imaging permit advanced image-guided cancer surgery. Furthermore, peroxynitrite-activated persistent luminescence of the supramolecular probe also enables rapid and precise screening of immunogenic cell death drugs.
Collapse
Affiliation(s)
- Xingchen Duan
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guo-Qiang Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shenglu Ji
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yiming Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, 300041, China
| |
Collapse
|
24
|
de Mello LR, Carrascosa V, Rebelato E, Juliano MA, Hamley IW, Castelletto V, Vassiliades SV, Alves WA, Nakaie CR, da Silva ER. Nanostructure Formation and Cell Spheroid Morphogenesis of a Peptide Supramolecular Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3434-3445. [PMID: 35274959 DOI: 10.1021/acs.langmuir.1c03215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.
Collapse
Affiliation(s)
- Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Vinicius Carrascosa
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Eduardo Rebelato
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Maria A Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RGD 6AD, U.K
| | | | - Sandra V Vassiliades
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Clovis R Nakaie
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
25
|
Kim BJ. Enzyme-Instructed Self-Assembly of Peptides: From Concept to Representative Applications. Chem Asian J 2022; 17:e202200094. [PMID: 35213091 DOI: 10.1002/asia.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Indexed: 11/11/2022]
Abstract
Enzyme-instructed self-assembly, integrating enzymatic reaction and molecular self-assembly, has drawn noticeable attention over the last decade with the intension of being used in valuable applications. Recent advances in the field allow it possible to spatiotemporally control peptide self-assembly in cellular milieu, broadening the potential applications of peptide assemblies to cancer therapy and subcellular delivery. In this minireview, the concept of enzyme-instructed self-assembly of peptide, containing enzymatic trigger and spatiotemporal control, is described. Representative applications in cells are also discussed, followed by outlook on the field of enzyme-instructed self-assembly.
Collapse
Affiliation(s)
- Beom Jin Kim
- University of Ulsan, Chemistry, 12, Techno Industrial Complex-ro, 55 beon-gil, 4776, Ulsan, KOREA, REPUBLIC OF
| |
Collapse
|
26
|
Duan X, Zhang G, Ji S, Zhang Y, Li J, Ou H, Gao Z, Feng G, Ding D. Activatable Persistent Luminescence from Porphyrin Derivatives and Supramolecular Probes with Imaging‐Modality Transformable Characteristics for Improved Biological Applications**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xingchen Duan
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Guo‐Qiang Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Shenglu Ji
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Yiming Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Jun Li
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
| | - Guangxue Feng
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates School of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Dan Ding
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences Nankai University Tianjin 300071 China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction Tianjin Stomatological Hospital The Affiliated Stomatological Hospital of Nankai University Tianjin 300041 China
| |
Collapse
|
27
|
Zhang Q, Tan W, Xu B. Synthesis and bioactivity of pyrrole-conjugated phosphopeptides. Beilstein J Org Chem 2022; 18:159-166. [PMID: 35186152 PMCID: PMC8822458 DOI: 10.3762/bjoc.18.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/21/2022] [Indexed: 01/07/2023] Open
Abstract
Here we report the synthesis and effect on the cell viability of pyrrole-conjugated phosphopeptides. Encouraged by the selective inhibition of cancer cells by a naphthyl-capped phosphopeptide (Nap-ffpy, 1), we conjugated the heteroaromatic dipyrrole or tripyrrole motif at the N-terminal of short peptides containing phosphotyrosine or phosphoserine and examined the bioactivity of the resulting phosphopeptides (2-10). Although most of the phosphopeptides exhibit comparable activities with that of 1 against HeLa cells at 200 μM, they, differing from 1, are largely compatible with HeLa cells at 400 μM. Enzymatic dephosphorylation of 2-10, at 400 μM is unable to induce a dramatic morphological transition of the peptide assemblies observed in the case of 1. These results suggest that a heteroaromatic motif at the N-terminal of peptides likely disfavors the formation of extensive nanofibers or morphological changes during enzymatic self-assembly, thus provide useful insights for the development of phosphopeptides as substrates of phosphatases for controlling cell fate.
Collapse
Affiliation(s)
- Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
28
|
Ado G, Noda N, Vu HT, Perron A, Mahapatra AD, Arista KP, Yoshimura H, Packwood DM, Ishidate F, Sato SI, Ozawa T, Uesugi M. Discovery of a Phase-Separating Small Molecule That Selectively Sequesters Tubulin in Cells. Chem Sci 2022; 13:5760-5766. [PMID: 35694339 PMCID: PMC9116451 DOI: 10.1039/d1sc07151c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Phase-separated membraneless organelles or biomolecular condensates play diverse functions in cells, however recapturing their characteristics using small organic molecules has been a challenge. In the present study, cell-lysate-based screening of 843 self-assembling small molecules led to the discovery of a simple organic molecule, named huezole, that forms liquid droplets to selectively sequester tubulin. Remarkably, this small molecule enters cultured human cells and prevents cell mitosis by forming tubulin-concentrating condensates in cells. The present study demonstrates the feasibility of producing a synthetic condensate out of non-peptidic small molecules for exogenous control of cellular processes. The modular structure of huezole provides a framework for designing a class of organelle-emulating small molecules. A non-peptidic small molecule, R-huezole, phase separates to selectively sequester tubulin proteins to control the cell cycle. Its modular structure provides a framework for designing bioactive molecules to mimic membraneless organelles in cells.![]()
Collapse
Affiliation(s)
- Genyir Ado
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School of Medicine, Kyoto University Uji Kyoto 611-0011 Japan
| | - Naotaka Noda
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School of Medicine, Kyoto University Uji Kyoto 611-0011 Japan
| | - Hue T Vu
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School of Medicine, Kyoto University Uji Kyoto 611-0011 Japan
| | - Amelie Perron
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Kyoto 606-8501 Japan
| | | | - Karla Pineda Arista
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Graduate School of Medicine, Kyoto University Uji Kyoto 611-0011 Japan
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Daniel M Packwood
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Kyoto 606-8501 Japan
| | - Fumiyoshi Ishidate
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Kyoto 606-8501 Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Motonari Uesugi
- Institute for Chemical Research, Kyoto University Uji Kyoto 611-0011 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Kyoto 606-8501 Japan
- School of Pharmacy, Fudan University Shanghai 201203 China
| |
Collapse
|
29
|
Yi M, Tan W, Guo J, Xu B. Enzymatic noncovalent synthesis of peptide assemblies generates multimolecular crowding in cells for biomedical applications. Chem Commun (Camb) 2021; 57:12870-12879. [PMID: 34817487 PMCID: PMC8711086 DOI: 10.1039/d1cc05565h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymatic noncovalent synthesis enables the spatiotemporal control of multimolecular crowding in cells, thus offering a unique opportunity for modulating cellular functions. This article introduces some representative enzymes and molecular building blocks for generating peptide assemblies as multimolecular crowding in cells, highlights the relevant biomedical applications, such as anticancer therapy, molecular imaging, trafficking proteins, genetic engineering, artificial intracellular filaments, cell morphogenesis, and antibacterial, and briefly discusses the promises of ENS as a multistep molecular process in biology and medicine.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.
| |
Collapse
|
30
|
Zhang Y, Ding Y, Li X, Zhang Z, Zhang X, Chen Y, Yang Z, Shi Y, Hu ZW. Enzyme-instructed self-assembly enabled fluorescence light-up for alkaline phosphatase detection. Talanta 2021; 239:123078. [PMID: 34823863 DOI: 10.1016/j.talanta.2021.123078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022]
Abstract
Alkaline phosphatase (ALP) exists in both normal and pathological tissues. Spatiotemporal variations in ALP levels can reveal its potential physiological functions and changes that occur during pathological conditions. However, it is still challenging to exploit fluorescent probes that can measure ALP activity under good spatial and temporal resolutions. Herein, enzyme-instructed self-assembly (EISA) was used to construct a high-performing analytical tool (MN-pY) to probe ALP activity. MN-pY alone (free state) showed negligible fluorescence but presented an almost 13-fold increase in fluorescence intensity in the presence of ALP (assembly state). Mechanism study indicated the increase in fluorescence intensity was due to hydrogelation and formation of supramolecular fibrils, mainly consisting of dephosphorylated MN-Y. The dephosphorylation and further fibrillation of MN-pY could induce the formation of a "hydrophobic pocket", leading to a further increase in fluorescence intensity. Moreover, MN-pY could selectively illuminate HeLa cells with a higher ALP expression but not LO2 cells with lower ALP levels, promising a potential application in cancer diagnosis.
Collapse
Affiliation(s)
- Yiming Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Xinxin Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Zhenghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Xiangyang Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yumiao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| | - Zhi-Wen Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, And Collaboration Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
31
|
Li RS, Liu J, Shi H, Hu PP, Wang Y, Gao PF, Wang J, Jia M, Li H, Li YF, Mao C, Li N, Huang CZ. Transformable Helical Self-Assembly for Cancerous Golgi Apparatus Disruption. NANO LETTERS 2021; 21:8455-8465. [PMID: 34569805 DOI: 10.1021/acs.nanolett.1c03112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Golgi apparatus is a major subcellular organelle responsible for drug resistance. Golgi apparatus-targeted nanomechanical disruption provides an attractive approach for killing cancer cells by multimodal mechanism and avoiding drug resistance. Inspired by the poisonous twisted fibrils in Alzheimer's brain tissue and enhanced rigidity of helical structure in nature, we designed transformable peptide C6RVRRF4KY that can self-assemble into nontoxic nanoparticles in aqueous medium but transformed into left-handed helical fibrils (L-HFs) after targeting and furin cleavage in the Golgi apparatus of cancer cells. The L-HFs can mechanically disrupt the Golgi apparatus membrane, resulting in inhibition of cytokine secretion, collapse of the cellular structure, and eventually death of cancer cells. Repeated stimulation of the cancers by the precursors causes no acquired drug resistance, showing that mechanical disruption of subcellular organelle is an excellent strategy for cancer therapy without drug resistance. This nanomechanical disruption concept should also be applicable to multidrug-resistant bacteria and viruses.
Collapse
Affiliation(s)
- Rong Sheng Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Jiahui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Hu Shi
- School of Chemistry and Chemical Engineering and Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P.R. China
| | - Yao Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Jian Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| | - Moye Jia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence and Real-Time Analytical System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 United States
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
32
|
Liu S, Zhang Q, Shy AN, Yi M, He H, Lu S, Xu B. Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. J Am Chem Soc 2021; 143:15852-15862. [PMID: 34528792 DOI: 10.1021/jacs.1c07923] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumorigenic risk of undifferentiated human induced pluripotent stem cells (iPSCs), being a major obstacle for clinical application of iPSCs, requires novel approaches for selectively eliminating undifferentiated iPSCs. Here, we show that an l-phosphopentapeptide, upon the dephosphorylation catalyzed by alkaline phosphatase (ALP) overexpressed by iPSCs, rapidly forms intranuclear peptide assemblies made of α-helices to selectively kill iPSCs. The phosphopentapeptide, consisting of four l-leucine residues and a C-terminal l-phosphotyrosine, self-assembles to form micelles/nanoparticles, which transform into peptide nanofibers/nanoribbons after enzymatic dephosphorylation removes the phosphate group from the l-phosphotyrosine. The concentration of ALP and incubation time dictates the morphology of the peptide assemblies. Circular dichroism and FTIR indicate that the l-pentapeptide in the assemblies contains a mixture of an α-helix and aggregated strands. Incubating the l-phosphopentapeptide with human iPSCs results in rapid killing of the iPSCs (=<2 h) due to the significant accumulation of the peptide assemblies in the nuclei of iPSCs. The phosphopentapeptide is innocuous to normal cells (e.g., HEK293 and hematopoietic progenitor cell (HPC)) because normal cells hardly overexpress ALP. Inhibiting ALP, mutating the l-phosphotyrosine from the C-terminal to the middle of the phosphopentapeptides, or replacing l-leucine to d-leucine in the phosphopentapeptide abolishes the intranuclear assemblies of the pentapeptides. Treating the l-phosphopentapeptide with cell lysate of normal cells (e.g., HS-5) confirms the proteolysis of the l-pentapeptide. This work, as the first case of intranuclear assemblies of peptides, not only illustrates the application of enzymatic noncovalent synthesis for selectively targeting nuclei of cells but also may lead to a new way to eliminate other pathological cells that express a high level of certain enzymes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States.,School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Shijiang Lu
- HebeCell, 21 Strathmore Road, Natick, Massachusetts 01760, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
33
|
Liu N, Zhu L, Li Z, Liu W, Sun M, Zhou Z. In situ self-assembled peptide nanofibers for cancer theranostics. Biomater Sci 2021; 9:5427-5436. [PMID: 34319316 DOI: 10.1039/d1bm00782c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembled nanofibers hold tremendous promise for cancer theranostics owing to their in situ assembly, spatiotemporal responsiveness, and diverse bioactivity. Herein, this review summarizes the recent advances of self-assembled peptide nanofibers and their applications in biological systems, focusing on the dynamic process of capturing cancer cells from the outside-in. (1) In situ self-assembly in response to pathological or physiological changes. (2) Diverse functions at different locations of tumors, such as forming thrombus in tumor vasculature, constructing a barrier on the cancer cell membrane, and disrupting the cancer organelles. Of note, with the assembly/aggregation induced residence (AIR) effect, the nanofibers could form a drug depot in situ for sustained release of chemotherapeutic drugs to increase their local concentration and prolong the residence time. Finally, perspectives toward future directions and challenges are presented to further understand and expand this exciting field.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Lianghan Zhu
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Zhaoting Li
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Wenlong Liu
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Minjie Sun
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | - Zhanwei Zhou
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China.
| |
Collapse
|
34
|
Yang X, Cao Z, Lu H, Wang H. In Situ Construction of Functional Assemblies in Living Cells for Cancer Therapy. Adv Healthc Mater 2021; 10:e2100381. [PMID: 34050607 DOI: 10.1002/adhm.202100381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Peptide-based materials hold great promise for various biomedical applications and have drawn increasing attention over the past five years. Despite the progress in fabrication and handling peptide materials in vitro, manipulating assemblies of peptides in living cells (or animals) is still in its infancy. In this contributing review, recent work is summarized using endogenous triggers to construct functional assemblies of peptides in vivo. After introducing the triggers for inducing peptide assemblies, the recent progress is highlighted of the in situ construction of assemblies for biomedical applications with emphasis on cancer therapy. Finally, a brief perspective is provided to discuss the future promises and challenges of this emerging area of supramolecular chemistry.
Collapse
Affiliation(s)
- Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Zeyuan Cao
- Department of Bioinformatics Boston University Boston MA 02215 USA
| | - Honglei Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| |
Collapse
|
35
|
Li J, Fang Y, Zhang Y, Wang H, Yang Z, Ding D. Supramolecular Self-Assembly-Facilitated Aggregation of Tumor-Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008518. [PMID: 33734518 DOI: 10.1002/adma.202008518] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Indexed: 05/05/2023]
Abstract
Supramolecular self-assembling peptide systems are attracting increasing interest in the field of cancer theranostics. Additionally, transformation of the immunologically cold tumor microenvironment into hot is of great importance for obtaining high antitumor responses for most immunotherapies. However, as far as it is known, there are nearly no studies on self-assembling peptides reported to be able to convert cold to hot tumors. Herein, a self-assembling peptide-based cancer theranostic agent (named DBT-2FFGYSA) is designed and synthesized, which can target tumor-specific transmembrane Eph receptor A2 (EphA2) receptors selectively and make the receptors form large aggregates. Such aggregate formation promotes the cross-phosphorylations among EphA2 receptors, leading to signal transduction of antitumor pathway. As a consequence, DBT-2FFGYSA can not only visualize EphA2 receptors in a fluorescence turn-on manner, but also specifically suppress the EphA2 receptor-overexpressed cancer cell proliferation and tumor growth. What is more, DBT-2FFGYSA also serves as an effective agent to convert immunologically cold tumors to hot by inducing the immunogenic cell death of EphA2 receptor-overexpressed cancer cells and recruiting massive tumor-infiltrating T cells. This study, thus, introduces a new category of agents capable of converting cold to hot tumors by pure supramolecular self-assembly without any aid of known anticancer drugs.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yufan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang, 310024, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| |
Collapse
|
36
|
Zhong Y, Zhan J, Xu G, Chen Y, Qin Q, Liao X, Ma S, Yang Z, Cai Y. Enzyme‐Instructed Self‐Assembly Enabled Monomer–Excimer Transition to Construct Higher Ordered Luminescent Supramolecular Assembly for Activity‐based Bioimaging. Angew Chem Int Ed Engl 2021; 60:8121-8129. [PMID: 33410570 DOI: 10.1002/anie.202014278] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/20/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yuanzhi Zhong
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Jie Zhan
- Shunde Hospital (The First People's Hospital of Shunde, Foshan) Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou 510515 China
| | - Guanghui Xu
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Yumiao Chen
- Key Laboratory of Bioactive Materials Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin 300071 China
| | - Qin Qin
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Xu Liao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Shaodan Ma
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Zhimou Yang
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
- Key Laboratory of Bioactive Materials Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin 300071 China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| |
Collapse
|
37
|
Zhong Y, Zhan J, Xu G, Chen Y, Qin Q, Liao X, Ma S, Yang Z, Cai Y. Enzyme‐Instructed Self‐Assembly Enabled Monomer–Excimer Transition to Construct Higher Ordered Luminescent Supramolecular Assembly for Activity‐based Bioimaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuanzhi Zhong
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Jie Zhan
- Shunde Hospital (The First People's Hospital of Shunde, Foshan) Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou 510515 China
| | - Guanghui Xu
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Yumiao Chen
- Key Laboratory of Bioactive Materials Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin 300071 China
| | - Qin Qin
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Xu Liao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Shaodan Ma
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| | - Zhimou Yang
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
- Key Laboratory of Bioactive Materials Ministry of Education State Key Laboratory of Medicinal Chemical Biology College of Life Sciences Nankai University Tianjin 300071 China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases Department of Cardiology and Laboratory of Heart Center Zhujiang Hospital Southern Medical University Guangzhou 510280 China
| |
Collapse
|
38
|
Chen J, Zhao Y, Yao Q, Gao Y. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomed Mater 2021; 16:022011. [PMID: 33630754 DOI: 10.1088/1748-605x/abc2e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptidic self-assembly provides a powerful method to build biomedical materials with integrated functions. In particular, pathological environment instructed peptidic supramolecular have gained great progress in treating various diseases. Typically, certain pathology related factors convert hydrophilic precursors to corresponding more hydrophobic motifs to assemble into supramolecular structures. Herein, we would like to review the recent progress of nanomedicines based on the development of instructed self-assembly against several specific disease models. Firstly we introduce the cancer instructed self-assembly. These assemblies have exhibited great inhibition efficacy, as well as enhanced imaging contrast, against cancer models both in vitro and in vivo. Then we discuss the infection instructed peptidic self-assembly. A number of different molecular designs have demonstrated the potential antibacterial application with satisfied efficiency for peptidic supramolecular assemblies. Further, we discuss the application of instructed peptidic self-assembly for other diseases including neurodegenerative disease and vaccine. The assemblies have succeeded in down-regulating abnormal Aβ aggregates and immunotherapy. In summary, the self-assembly precursors are typical two-component molecules with (1) a self-assembling motif and (2) a cleavable trigger responsive to the pathological environment. Upon cleavage, the self-assembly occurs selectively in pathological loci whose targeting capability is independent from active targeting. Bearing the novel targeting regime, we envision that the pathological conditions instructed peptidic self-assembly will lead a paradigm shift on biomedical materials.
Collapse
Affiliation(s)
- Jiali Chen
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Zhao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
39
|
Zhou XR, Liu Y, Huang Z, Yao Q, He F, Gao Y. Gag Protein Oriented Supramolecular Nets as Potential HIV Traps. Bioconjug Chem 2021; 32:106-110. [PMID: 33405891 DOI: 10.1021/acs.bioconjchem.0c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For HIV/AIDS treatment, the cocktail therapy which uses a combination of anti-retroviral drugs remains the most widely accepted practice. However, the potential drug toxicity, patient tolerability, and emerging drug resistance have limited its long-term efficiency. Here, we design a HIV Gag protein-targeting redox supramolecular assembly (ROSA) system for potential HIV inhibition. An assembling precursor was constructed through conjugation of an oxidation-activatable fluorogenic compound BQA with a selected tetrapeptide GGFF. Since BQA shares a similar structure with the known Gag inhibitor, the precursor could bind to HIV Gag protein with moderate affinity. Moreover, after oxidation, the corresponding nanofibers could bind to Gag protein and trap HIV to realize virus control, thus providing a potential anti-HIV strategy.
Collapse
Affiliation(s)
- Xi-Rui Zhou
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650031, China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fangfei He
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
40
|
Ye S, Cui C, Cheng X, Zhao M, Mao Q, Zhang Y, Wang A, Fang J, Zhao Y, Shi H. Red Light-Initiated Cross-Linking of NIR Probes to Cytoplasmic RNA: An Innovative Strategy for Prolonged Imaging and Unexpected Tumor Suppression. J Am Chem Soc 2020; 142:21502-21512. [PMID: 33306393 DOI: 10.1021/jacs.0c10755] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Improving the enrichment of drugs or theranostic agents within tumors is very vital to achieve effective cancer diagnosis and therapy while greatly reducing the dosage and damage to normal tissues. Herein, as a proof of concept, we for the first time report a red light-initiated probe-RNA cross-linking (RLIPRC) strategy that can not only robustly promote the accumulation and retention of the probe in the tumor for prolonged imaging but also significantly inhibits the tumor growth. A near-infrared (NIR) fluorescent probe f-CR consisting of a NIR dye (Cyanine 7) as a signal reporter, a cyclic-(arginine-glycine-aspartic acid) (cRGD) peptide for tumor targeting, and a singlet oxygen (1O2)-sensitive furan moiety for RNA cross-linking was rationally designed and synthesized. This probe possessed both passive and active tumor targeting abilities and emitted intense NIR/photoacoustic (PA) signals, allowing for specific and sensitive dual-modality imaging of tumors in vivo. Notably, probe f-CR could be specifically and covalently cross-linked to cytoplasmic RNAs via the cycloaddition reaction between furan and adenine, cytosine, or guanine under the oxidation of 1O2 generated in situ by irradiation of methylene blue (MB) with 660 nm laser light, which effectively blocks the exocytosis of the probes resulting in enhanced tumor accumulation and retention. More excitingly, for the first time, we revealed that the covalent cross-linking of probe f-CR to cytoplasmic RNAs could induce severe apoptosis of cancer cells leading to remarkable tumor suppression. This study thus represents the first red light-initiated RNA cross-linking system with high potential to improve the diagnostic and therapeutic outcomes of tumors in vivo.
Collapse
Affiliation(s)
- Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Xiaju Cheng
- Jiangsu Key Laboratory of Infection & Immunity, Institutes of Biology & Medical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Meng Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
41
|
Tan X, Chen H, Gu C, Zang J, Zhang T, Wang H, Zhao G. Converting histidine-induced 3D protein arrays in crystals into their 3D analogues in solution by metal coordination cross-linking. Commun Chem 2020; 3:151. [PMID: 36703383 PMCID: PMC9814774 DOI: 10.1038/s42004-020-00394-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/06/2020] [Indexed: 01/29/2023] Open
Abstract
Histidine (His) residues represent versatile motifs for designing protein-protein interactions because the protonation state of the imidazole group of His is the only moiety in protein to be significantly pH dependent under physiological conditions. Here we show that, by the designed His motifs nearby the C4 axes, ferritin nanocages arrange in crystals with a simple cubic stacking pattern. The X-ray crystal structures obtained at pH 4.0, 7.0, and 9.0 in conjunction with thermostability analyses reveal the strength of the π-π interactions between two adjacent protein nanocages can be fine-tuned by pH. By using the crystal structural information as a guide, we constructed 3D protein frameworks in solution by a combination of the relatively weak His-His interaction and Ni2+-participated metal coordination with Glu residues from two adjacent protein nanocages. These findings open up a new way of organizing protein building blocks into 3D protein crystalline frameworks.
Collapse
Affiliation(s)
- Xiaoyi Tan
- grid.419897.a0000 0004 0369 313XCollege of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, 100083 Beijing, China
| | - Hai Chen
- grid.419897.a0000 0004 0369 313XCollege of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, 100083 Beijing, China
| | - Chunkai Gu
- grid.419897.a0000 0004 0369 313XCollege of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, 100083 Beijing, China
| | - Jiachen Zang
- grid.419897.a0000 0004 0369 313XCollege of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, 100083 Beijing, China
| | - Tuo Zhang
- grid.419897.a0000 0004 0369 313XCollege of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, 100083 Beijing, China
| | - Hongfei Wang
- grid.163032.50000 0004 1760 2008Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, 030006 Taiyuan, China
| | - Guanghua Zhao
- grid.419897.a0000 0004 0369 313XCollege of Food Science and Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, 100083 Beijing, China
| |
Collapse
|
42
|
Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. Int J Mol Sci 2020; 21:ijms21218052. [PMID: 33126770 PMCID: PMC7663094 DOI: 10.3390/ijms21218052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/17/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cellular communications play pivotal roles in multi-cellular species, but they do so also in uni-cellular species. Moreover, cells communicate with each other not only within the same individual, but also with cells in other individuals belonging to the same or other species. These communications occur between two unicellular species, two multicellular species, or between unicellular and multicellular species. The molecular mechanisms involved exhibit diversity and specificity, but they share common basic features, which allow common pathways of communication between different species, often phylogenetically very distant. These interactions are possible by the high degree of conservation of the basic molecular mechanisms of interaction of many ligand-receptor pairs in evolutionary remote species. These inter-species cellular communications played crucial roles during Evolution and must have been positively selected, particularly when collectively beneficial in hostile environments. It is likely that communications between cells did not arise after their emergence, but were part of the very nature of the first cells. Synchronization of populations of non-living protocells through chemical communications may have been a mandatory step towards their emergence as populations of living cells and explain the large commonality of cell communication mechanisms among microorganisms, plants, and animals.
Collapse
|
43
|
Guo J, Tian C, Xu B. Biomaterials based on noncovalent interactions of small molecules. EXCLI JOURNAL 2020; 19:1124-1140. [PMID: 33088250 PMCID: PMC7573174 DOI: 10.17179/excli2020-2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
Unlike conventional materials that covalent bonds connecting atoms as the major force to hold the materials together, supramolecular biomaterials rely on noncovalent intermolecular interactions to assemble. The reversibility and biocompatibility of supramolecular biomaterials render them with diverse range of functions and lead to rapid development in the past two decades. This review focuses on the noncovalent and enzymatic control of supramolecular biomaterials, with the introduction to various triggering mechanism to initiate self-assembly. Representative applications of supramolecular biomaterials are highlighted in four categories: tissue engineering, cancer therapy, drug delivery, and molecular imaging. By introducing various applications, we intend to show enzymatic control and noncovalent interactions as a powerful tool for achieving spatiotemporal control of biomaterials both invitro and in vivo for biomedicine.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Changhao Tian
- Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| |
Collapse
|
44
|
Makukhin N, Ciulli A. Recent advances in synthetic and medicinal chemistry of phosphotyrosine and phosphonate-based phosphotyrosine analogues. RSC Med Chem 2020; 12:8-23. [PMID: 34041480 PMCID: PMC8130623 DOI: 10.1039/d0md00272k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphotyrosine-containing compounds attract significant attention due to their potential to modulate signalling pathways by binding to phospho-writers, erasers and readers such as SH2 and PTB domain containing proteins. Phosphotyrosine derivatives provide useful chemical tools to study protein phosphorylation/dephosphorylation, and as such represent attractive starting points for the development of binding ligands and chemical probes to study biology, and for inhibitor and degrader drug design. To overcome enzymatic lability of the phosphate group, physiologically stable phosphonate-based phosphotyrosine analogues find utility in a wide range of applications. This review covers advances over the last decade in the design of phosphotyrosine and its phosphonate-based derivatives, highlights the improved and expanded synthetic toolbox, and illustrates applications in medicinal chemistry.
Collapse
Affiliation(s)
- Nikolai Makukhin
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| |
Collapse
|
45
|
Li Y, Lock LL, Mills J, Ou BS, Morrow M, Stern D, Wang H, Anderson CF, Xu X, Ghose S, Li ZJ, Cui H. Selective Capture and Recovery of Monoclonal Antibodies by Self-Assembling Supramolecular Polymers of High Affinity for Protein Binding. NANO LETTERS 2020; 20:6957-6965. [PMID: 32852220 DOI: 10.1021/acs.nanolett.0c01297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The separation and purification of therapeutic proteins from their biological resources pose a great limitation for industrial manufacturing of biologics in an efficient and cost-effective manner. We report here a supramolecular polymeric system that can undergo multiple reversible processes for efficient capture, precipitation, and recovery of monoclonal antibodies (mAbs). These supramolecular polymers, namely immunofibers (IFs), are formed by coassembly of a mAb-binding peptide amphiphile with a rationally designed filler molecule of varying stoichiometric ratios. Under the optimized conditions, IFs can specifically capture mAbs with a precipitation yield greater than 99%, leading to an overall mAb recovery yield of 94%. We also demonstrated the feasibility of capturing and recovering two mAbs from clarified cell culture harvest. These results showcase the promising potential of peptide-based supramolecular polymers as reversible affinity precipitants for mAb purification.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Ben S Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
46
|
Liu D, Yin J, Liang S, Shi W, Jiang X, Gao Y. Enzyme-Regulated Peptide-Liquid Metal Hybrid Hydrogels as Cell Amber for Single-Cell Manipulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45807-45813. [PMID: 32951417 DOI: 10.1021/acsami.0c13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current strategies to construct cell-based bioartificial tissues largely remain on a multicell level. Taking cell diversity into account, single-cell manipulation is urgently needed for delicate bioartificial tissue construction. Current single-cell isolation and profiling techniques involve invasive processes and thus are not applicable for single-cell manipulation. Here, we managed to fabricate peptide-liquid metal hybrid hydrogels as "cell ambers" which were suitable for single-cell isolation as well as further handling. The successful preparation of uniform liquid metal nanoparticles allowed the fabrication of peptide-liquid metal hydrogel with excellent recovery property upon mechanical destruction. The alkaline phosphatase-instructed supramolecular self-assembly process allowed the formation of microhydrogel post-filling in the PDMS template. The co-culture of the hydrogel precursor and mammalian cells realized the embedding of cells into elastic hydrogels which were the so-called cell ambers. The cell ambers turned out to be biocompatible and capable of supporting cell survival. Aided with the micro-operating system and a laser scanning confocal microscope, we could arrange these as-prepared 3D single-cell ambers into various patterns as desired. Our strategy provided the possibility to manipulate a single cell, which served as a prototype of cell architecture toward cell-based bioartificial tissue construction.
Collapse
Affiliation(s)
- Dongdong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxiang Yin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Sen Liang
- The Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- The Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, Beijing 100190, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Biomedical Engineering, Southern University of Science & Technology, Shenzhen, Guangdong 518055, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
48
|
He H, Liu S, Wu D, Xu B. Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells. Angew Chem Int Ed Engl 2020; 59:16445-16450. [PMID: 32521103 PMCID: PMC7844580 DOI: 10.1002/anie.202006290] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/24/2022]
Abstract
Herein, we show that an enzymatic reaction can generate peptide assemblies that sequestrate proteins to selectively kill cancer cells. A phosphopeptide bearing the antagonistic motif (AVPI) to the inhibitors of apoptotic proteins (IAPs) enters cancer cells and normal cells by caveolin-dependent endocytosis and macropinocytosis, respectively. The AVPI-bearing peptide assemblies sequestrates IAPs and releases bortezomib (BTZ), a proteasome inhibitor, in the cytosol of cancer cells, but rescues the normal cells (namely, HS-5 cells) by trafficking the BTZ into lysosomes. Alkaline phosphatase (ALP) acts as a context-dependent signal for trafficking the peptide/BTZ assemblies and selectively induces the death of the cancer cells. The assemblies of AVPI exhibit enhanced proteolytic resistance. This work, which utilizes the difference in endocytic uptake of enzymatically formed peptide assemblies to selectively kill cancer cells, promises a new way to develop selective cancer therapeutics.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
49
|
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Construction of Organelle‐Like Architecture by Dynamic DNA Assembly in Living Cells. Angew Chem Int Ed Engl 2020; 59:20651-20658. [DOI: 10.1002/anie.202009387] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaocui Guo
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dan Luo
- Department of Biological &Environmental Engineering Cornell University Ithaca NY 14853 USA
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics College of Chemistry & Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
50
|
Guo X, Li F, Liu C, Zhu Y, Xiao N, Gu Z, Luo D, Jiang J, Yang D. Construction of Organelle‐Like Architecture by Dynamic DNA Assembly in Living Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaocui Guo
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| | - Nannan Xiao
- State Key Laboratory of Medicinal Chemical Biology Nankai University Tianjin 300350 P. R. China
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine University of New South Wales Sydney NSW 2052 Australia
| | - Dan Luo
- Department of Biological &Environmental Engineering Cornell University Ithaca NY 14853 USA
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Biosensing & Chemometrics College of Chemistry & Chemical Engineering Hunan University Changsha 410082 P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology Key Laboratory of Systems Bioengineering (MOE) School of Chemical Engineering and Technology Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|