1
|
Li A, Zhang Y, Wan L, Peng R, Zhang X, Guo Q, Xu S, Qiao D, Zheng P, Li N, Zhu W, Pan Q. Coordination-Driven Self-Assembly of Metal Ion-Antisense Oligonucleotide Nanohybrids for Chronic Bacterial Infection Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28041-28055. [PMID: 38767982 DOI: 10.1021/acsami.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Bacterial infection poses a significant challenge to wound healing and skin regeneration, leading to substantial economic burdens on patients and society. Therefore, it is crucial to promptly explore and develop effective methodologies for bacterial infections. Herein, we propose a novel approach for synthesizing nanostructures based on antisense oligonucleotides (ASOs) through the coordination-driven self-assembly of Zn2+ with ASO molecules. This approach aims to provide effective synergistic therapy for chronic wound infections caused by Staphylococcus aureus (S. aureus). The resulting hybrid nanoparticles successfully preserve the structural integrity and biological functionalities of ASOs, demonstrating excellent ASO encapsulation efficiency and bioaccessibility. In vitro antibacterial experiments reveal that Zn-ASO NPs exhibit antimicrobial properties against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. This antibacterial ability is attributed to the high concentration of metal zinc ions and the generation of high levels of reactive oxygen species. Additionally, the ftsZ-ASO effectively inhibits the expression of the ftsZ gene, further enhancing the antimicrobial effect. In vivo antibacterial assays demonstrate that the Zn-ASO NPs promote optimal skin wound healing and exhibit favorable biocompatibility against S. aureus infections, resulting in a residual infected area of less than 8%. This combined antibacterial strategy, which integrates antisense gene therapy and metal-coordination-directed self-assembly, not only achieves synergistic and augmented antibacterial outcomes but also expands the horizons of ASO coordination chemistry. Moreover, it addresses the gap in the antimicrobial application of metal-coordination ASO self-assembly, thereby advancing the field of ASO-based therapeutic approaches.
Collapse
Affiliation(s)
- Anqi Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Yan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Rujue Peng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Xuan Zhang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qiuyan Guo
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Shan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Na Li
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, Jiangxi, China
| |
Collapse
|
2
|
Yang SL, Zhang X, Wang Q, Wu C, Liu H, Jiang D, Lavendomme R, Zhang D, Gao EQ. Confinement inside MOFs Enables Guest-Modulated Spin Crossover of Otherwise Low-Spin Coordination Cages. JACS AU 2023; 3:2183-2191. [PMID: 37654592 PMCID: PMC10466325 DOI: 10.1021/jacsau.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Confinement of discrete coordination cages within nanoporous lattices is an intriguing strategy to gain unusual properties and functions. We demonstrate here that the confinement of coordination cages within metal-organic frameworks (MOFs) allows the spin state of the cages to be regulated through multilevel host-guest interactions. In particular, the confined in situ self-assembly of an anionic FeII4L6 nanocage within the mesoporous cationic framework of MIL-101 leads to the ionic MOF with an unusual hierarchical host-guest structure. While the nanocage in solution and in the solid state has been known to be invariantly diamagnetic with low-spin FeII, FeII4L6@MIL-101 exhibits spin-crossover (SCO) behavior in response to temperature and release/uptake of water guest within the MOF. The distinct color change concomitant with water-induced SCO enables the use of the material for highly selective colorimetric sensing of humidity. Moreover, the spin state and the SCO behavior can be modulated also by inclusion of a guest into the hydrophobic cavity of the confined cage. This is an essential demonstration of the phenomenon that the confinement within porous solids enables an SCO-inactive cage to show modulable SCO behaviors, opening perspectives for developing functional supramolecular materials through hierarchical host-guest structures.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
| | - Xiang Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
| | - Qing Wang
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P. R. China
| | - Chao Wu
- Department
of EEE, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Haiming Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P. R. China
| | - Dongmei Jiang
- Engineering
Research Center for Nanophotonics and Advanced Instrument, School
of Physics and Electronic Science, East
China Normal University, Shanghai 200241, P. R. China
| | - Roy Lavendomme
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Dawei Zhang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, P. R. China
| | - En-Qing Gao
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes, School of
Chemistry and Molecular Engineering, East
China Normal University, Shanghai 200062, P. R. China
- Institute
of Eco-Chongming, Shanghai 202162, P. R. China
| |
Collapse
|
3
|
Mohammadi Rasooll M, Sepehrmansourie H, Zarei M, Zolfigol MA, Hosseinifard M, Gu Y. Catalytic Application of Functionalized Bimetallic-Organic Frameworks with Phosphorous Acid Tags in the Synthesis of Pyrazolo[4,3- e]pyridines. ACS OMEGA 2023; 8:25303-25315. [PMID: 37483221 PMCID: PMC10357449 DOI: 10.1021/acsomega.3c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
Combining two different metals for the synthesis of a metal-organic framework (MOF) is a smart strategy for the architecture of new porous materials. Herein, a bimetal-organic framework (bimetal-MOFs) based on Fe and Co metals was synthesized. Then, phosphorous acid tags were decorated on bimetal-MOFs via a postmodification method as a new porous acidic functionalized catalyst. This catalyst was used for the synthesis of pyrazolo[4,3-e]pyridine derivatives as suitable drug candidates. The present study provides new insights into the architecture of novel porous heterogeneous catalysts based on a bimetal-organic framework (bimetal-MOFs). The type of final structures of catalyst and pyrazolo[4,3-e]pyridine derivatives were determined using different techniques such as fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), SEM-elemental mapping, N2 adsorption-desorption isotherm, Barrett-Joyner-Halenda (BJH), thermogravimetry/differential thermal analysis (TG/DTA), 1H NMR, and 13C NMR.
Collapse
Affiliation(s)
- Milad Mohammadi Rasooll
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mahmoud Zarei
- Department
of Chemistry, Faculty of Science, University
of Qom, Qom 37185-359, Iran
| | - Mohammad Ali Zolfigol
- Department
of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department
of Energy, Materials and Energy Research
Center, P.O. Box 31787-316, Karaj 401602, Iran
| | - Yanlong Gu
- School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, 1037 Luoyu road, Hongshan District, Wuhan 430074, China
| |
Collapse
|
4
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Shi WX, Ren RZ, Cheng Y, Zeng FG, Guo XW, Zhang ZM. Graphene Oxide-Mediated Synthesis of Ultrathin Co-MOL for CO 2 Photoreduction. Inorg Chem 2023; 62:4476-4484. [PMID: 36893257 DOI: 10.1021/acs.inorgchem.2c04136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Metal-organic framework (MOF) materials have broad application prospects in catalysis because of their ordered structure and molecular adjustability. However, the large volume of bulky MOF usually leads to insufficient exposure of the active sites and the obstruction of charge/mass transfer, which greatly limits their catalytic performance. Herein, we developed a simple graphene oxide (GO) template method to fabricate ultrathin Co-metal-organic layer (2.0 nm) on reduced GO (Co-MOL@r-GO). The as-synthesized hybrid material Co-MOL@r-GO-2 exhibits highly efficient photocatalytic performance for CO2 reduction, and the CO yield can reach as high as 25,442 μmol/gCo-MOL, which is over 20 times higher than that of the bulky Co-MOF. Systematic investigations demonstrate that GO can act as a template for the synthesis of the ultrathin Co-MOL with more active sites and can be used as the electron transport medium between the photosensitizer and the Co-MOL to enhance the catalytic activity for CO2 photoreduction.
Collapse
Affiliation(s)
- Wen-Xiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Ru-Zhen Ren
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yao Cheng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Fu-Gui Zeng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiang-Wei Guo
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
6
|
Liu X, Qian B, Zhang D, Yu M, Chang Z, Bu X. Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Escamilla P, Guerra WD, Leyva-Pérez A, Armentano D, Ferrando-Soria J, Pardo E. Metal-organic frameworks as chemical nanoreactors for the preparation of catalytically active metal compounds. Chem Commun (Camb) 2023; 59:836-851. [PMID: 36598064 DOI: 10.1039/d2cc05686k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the emergence of metal-organic frameworks (MOFs), a myriad of thrilling properties and applications, in a wide range of fields, have been reported for these materials, which mainly arise from their porous nature and rich host-guest chemistry. However, other important features of MOFs that offer great potential rewards have been only barely explored. For instance, despite the fact that MOFs are suitable candidates to be used as chemical nanoreactors for the preparation, stabilization and characterization of unique functional species, that would be hardly accessible outside the functional constrained space offered by MOF channels, only very few examples have been reported so far. In particular, we outline in this feature recent advances in the use of highly robust and crystalline oxamato- and oxamidato-based MOFs as reactors for the in situ preparation of well-defined catalytically active single atom catalysts (SACS), subnanometer metal nanoclusters (SNMCs) and supramolecular coordination complexes (SCCs). The robustness of selected MOFs permits the post-synthetic (PS) in situ preparation of the desired catalytically active metal species, which can be characterised by single-crystal X-ray diffraction (SC-XRD) taking advantage of its high crystallinity. The strategy highlighted here permits the always challenging large-scale preparation of stable and well-defined SACs, SNMCs and SCCs, exhibiting outstanding catalytic activities.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Walter D Guerra
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Antonio Leyva-Pérez
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
8
|
Zhu Y, Yang D, Li J, Yue Z, Zhou J, Wang X. The preparation of ultrathin and porous electrospinning membranes of HKUST-1/PLA with good antibacterial and filtration performances. JOURNAL OF POROUS MATERIALS 2023; 30:1011-1019. [PMCID: PMC9715420 DOI: 10.1007/s10934-022-01394-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 09/01/2023]
Abstract
Developing degradable filter membranes that inhibit bacterial infection for preventing particle matter and infectious disease has been a research hotspot. Here, the fiber membranes of polylactic acid (PLA)/HKUST-1 with porous structure through the entire fiber matrix were prepared by electrospinning method. Due to the HKUST-1 incorporation and the presence of pore through fiber, the hydrophobicity of prepared membranes had been improved. The PLA/HKUST-1 membranes exhibited the good antibacterial activity against Escherichia coli and Staphylococcus aureus , and the antibacterial rate for S. aureus reached 99.99%. The filtration performance of PLA/HKUST-1 membranes was better than that of the melt-blown fabric although their thickness was only about one-third of the thickness of the currently commercial polypropylene melt-blown fabric.
Collapse
Affiliation(s)
- Yanyan Zhu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094 China
| | - Dangsha Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094 China
| | - Jiangen Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094 China
| | - Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094 China
| | - Jingheng Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094 China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094 China
| |
Collapse
|
9
|
Miguel-Casañ E, Darawsheh MD, Fariña-Torres V, Vitórica-Yrezábal IJ, Andres-Garcia E, Fañanás-Mastral M, Mínguez Espallargas G. Heterometallic palladium-iron metal-organic framework as a highly active catalyst for cross-coupling reactions. Chem Sci 2022; 14:179-185. [PMID: 36605746 PMCID: PMC9769104 DOI: 10.1039/d2sc05192c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
Palladium-based metal-organic frameworks (Pd-MOFs) are an emerging class of heterogeneous catalysts extremely challenging to achieve due to the facile leaching of palladium and its tendency to be reduced. Herein, Pd(ii) was successfully incorporated in the framework of a MOF denoted as MUV-22 using a solvent assisted reaction. This stable MOF, with square-octahedron (soc) topology as MIL-127, and a porosity of 710 m2 g-1, is highly active, selective, and recyclable for the Suzuki-Miyaura allylation of aryl and alkyl boronates as exemplified with the coupling between cinnamyl bromide and Me-Bpin, a typically reluctant reagent in cross-coupling reactions.
Collapse
Affiliation(s)
- Eugenia Miguel-Casañ
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Mohanad D. Darawsheh
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Víctor Fariña-Torres
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | | | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), Universidad de ValenciaC/ Catedrático José Beltrán, 246980PaternaSpain
| | - Martín Fañanás-Mastral
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | | |
Collapse
|
10
|
Li J, Li B, Yao X, Duan W, Zhang W, Tian Y, Li D. In Situ Coordination and Confinement of Two-Photon Active Unit Within Metal–Organic Frameworks for High-Order Multiphoton-Excited Fluorescent Performance. Inorg Chem 2022; 61:19282-19288. [DOI: 10.1021/acs.inorgchem.2c03045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jiaqi Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xin Yao
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Wenyao Duan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wen Zhang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
11
|
Dutta D, Baishya T, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Bhattacharyya MK. Supramolecular Assemblies involving Energetically Significant Unconventional π(CN)-π and Anion-π(nitrile) Contacts in Zn(II) Coordination Compounds: Antiproliferative Evaluation and Theoretical Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Li DJ, Tang SL, Ma FJ, Zhang LL, Cheng YZ, Zhang LP. Synthesis, crystal structure, and properties of three lead(II) complexes based on the 1,10-phenanthroline ligand. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Three new lead(II) complexes containing the 1,10-phenanthroline ligand, [Pb(phen)2(3,5-DNB)2] (1), [Pb(phen)2(3,5-DNB)(NO3)]2·H2O (2), and [Pb(phen)(HCOO)(NO3)(H2O)]
n
(3) (phen = 1,10-phenanthroline, 3,5-DNB = 3,5-dinitrobenzoate anion) have been synthesized and characterized by elemental analyses, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), and single-crystal X-ray diffraction. The complexes 1 and 2 are monomeric species, whereas complex 3 is a one-dimensional polymer. In the three complexes, the ligand phen creates a number of π···π stacking interactions and hydrogen bonds, which play an important role in extending complexes 1–3 to supramolecular architectures. The Pb(II) ion of complexes 1 and 2 shows hemidirected geometry with noncovalent Pb···O/C tetrel bonds formed which further stabilize the supramolecular structures.
Collapse
Affiliation(s)
- De-Jun Li
- School of Pharmacy, Weifang Medical University , Weifang 261053 , P. R. China
| | - Shi-Li Tang
- School of Pharmacy, Weifang Medical University , Weifang 261053 , P. R. China
| | - Feng-Jie Ma
- School of Pharmacy, Weifang Medical University , Weifang 261053 , P. R. China
| | - Lu-Lin Zhang
- School of Pharmacy, Weifang Medical University , Weifang 261053 , P. R. China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Weifang Medical University , Weifang 261053 , P. R. China
| | - Li-Ping Zhang
- School of Pharmacy, Weifang Medical University , Weifang 261053 , P. R. China
| |
Collapse
|
13
|
Negro C, Bilanin C, Qu X, Oliver-Meseguer J, Ferrando-Soria J, Leyva-Pérez A, Armentano D, Pardo E. Epoxidation vs. dehydrogenation of allylic alcohols: heterogenization of the VO(acac) 2 catalyst in a metal-organic framework. Chem Commun (Camb) 2022; 58:5578-5581. [PMID: 35436779 DOI: 10.1039/d2cc01137a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allylic alcohol epoxidation and dehydrogenation reactivity is distinguished when VO(acac)2 is used in solution or anchored in a metal-organic framework (MOF). The chemical mechanism depends on the electronic profile of alkene substituents when the vanadyl complex is used in the homogenous phase. However, confinement effects imparted by MOF channels allow gaining control of the chemoselectivity toward the dehydrogenation product.
Collapse
Affiliation(s)
- Cristina Negro
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| | - Cristina Bilanin
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Xiaoni Qu
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain.,College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Judit Oliver-Meseguer
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Jesús Ferrando-Soria
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Cosenza, Italy
| | - Emilio Pardo
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| |
Collapse
|
14
|
Vatsadze SZ, Maximov AL, Bukhtiyarov VI. Supramolecular Effects and Systems in Catalysis. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Negro C, Escamilla P, Bruno R, Ferrando‐Soria J, Armentano D, Pardo E. Metal-Organic Frameworks as Unique Platforms to Gain Insight of σ-Hole Interactions for the Removal of Organic Dyes from Aquatic Ecosystems. Chemistry 2022; 28:e202200034. [PMID: 35188315 PMCID: PMC9314587 DOI: 10.1002/chem.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/08/2022]
Abstract
The combination of high crystallinity and rich host-guest chemistry in metal-organic frameworks (MOFs), have situated them in an advantageous position, with respect to traditional porous materials, to gain insight on specific weak noncovalent supramolecular interactions. In particular, sulfur σ-hole interactions are known to play a key role in the biological activity of living beings as well as on relevant molecular recognitions processes. However, so far, they have been barely explored. Here, we describe both how the combination of the intrinsic features of MOFs, especially the possibility of using single-crystal X-ray crystallography (SCXRD), can be an extremely valuable tool to gain insight on sulfur σ-hole interactions, and how their rational exploitation can be enormously useful in the efficient removal of harmful organic molecules from aquatic ecosystems. Thus, we have used a MOF, prepared from the amino acid L-methionine and possessing channels decorated with -CH2 CH2 SCH3 thioalkyl chains, to remove a family of organic dyes at very low concentrations (10 ppm) from water. This MOF is able to efficiently capture the four dyes in a very fast manner, reaching within five minutes nearly the maximum removal. Remarkably, the crystal structure of the different organic dyes within MOFs channels could be determined by SCXRD. This has enabled us to directly visualize the important role sulfur σ-hole interactions play on the removal of organic dyes from aqueous solutions, representing one of the first studies on the rational exploitation of σ-hole interactions for water remediation.
Collapse
Affiliation(s)
- Cristina Negro
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Paula Escamilla
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Rosaria Bruno
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria87030Rende, CosenzaItaly
| | - Jesus Ferrando‐Soria
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie ChimicheUniversità della Calabria87030Rende, CosenzaItaly
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMOL)Universitat de ValènciaPaterna46980, ValènciaSpain
| |
Collapse
|
16
|
Click amidations, esterifications and one–pot reactions catalyzed by Cu salts and multimetal–organic frameworks (M–MOFs). MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Sarma P, Sharma P, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Baruwa B, Bhattacharyya MK. Charge assisted hydrogen bonded assemblies and unconventional O···O dichalcogen bonding interactions in pyrazole-based isostructural Ni(II) and Mn(II) compounds involving anthraquinone disulfonate: Antiproliferative evaluation and theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
19
|
Ejarque D, Calvet T, Font-Bardia M, Pons J. Influence of a series of pyridine ligands on the structure and photophysical properties of Cd( ii) complexes. CrystEngComm 2022. [DOI: 10.1039/d1ce01584b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Five Cd(ii) complexes based on α-acetamidocinnamic acid (HACA) and a set of N,N^N and N^N^N-pyridine (dPy) yield complexes with diverse nuclearities and enhanced quantum yields, benefiting from the chelation enhanced effect (CHEF) of dPy.
Collapse
Affiliation(s)
- Daniel Ejarque
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| | - Teresa Calvet
- Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| | - Mercè Font-Bardia
- Unitat de Difracció de Raig-X, Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, Solé i Sabarís, 1-3, 08028 Barcelona, Spain
| | - Josefina Pons
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Spain
| |
Collapse
|
20
|
Daliran S, Oveisi AR, Peng Y, López-Magano A, Khajeh M, Mas-Ballesté R, Alemán J, Luque R, Garcia H. Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chem Soc Rev 2022; 51:7810-7882. [DOI: 10.1039/d1cs00976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The review summarizes the state-of-the-art of C–H active transformations over crystalline and amorphous porous materials as new emerging heterogeneous (photo)catalysts.
Collapse
Affiliation(s)
- Saba Daliran
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Yong Peng
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Sciences, Department of Chemistry, University of Zabol, 98615-538 Zabol, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, EdificioMarie Curie (C-3), CtraNnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia
| | - Hermenegildo Garcia
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
21
|
Greco R, Tiburcio-Fortes E, Fernandez A, Marini C, Vidal-Moya A, Oliver-Meseguer J, Armentano D, Pardo E, Ferrando-Soria J, Leyva-Pérez A. MOF-stabilized perfluorinated palladium cages catalyze the additive-free aerobic oxidation of aliphatic alcohols to acids. Chemistry 2021; 28:e202103781. [PMID: 34929061 DOI: 10.1002/chem.202103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/08/2022]
Abstract
Extremely high electrophilic metal complexes, composed by a metal cation and very electron poor σ-donor ancillary ligands, are expected to be privileged catalysts for oxidation reactions in organic chemistry. However, their low lifetime prevents any use in catalysis. Here we show the synthesis of fluorinated pyridine-Pd 2+ coordinate cages within the channels of an anionic tridimensional metal organic framework (MOF), and their use as efficient metal catalysts for the aerobic oxidation of aliphatic alcohols to carboxylic acids without any additive. Mechanistic studies strongly support that the MOF-stabilized coordination cage with perfluorinated ligands unleashes the full electrophilic potential of Pd 2+ to dehydrogenate primary alcohols, without any base, and also to activate O 2 for the radical oxidation to the aldehyde intermediate. This study opens the door to design catalytic perfluorinated complexes for challenging organic transformations, where an extremely high electrophilic metal site is required.
Collapse
Affiliation(s)
- Rossella Greco
- CSIC: Consejo Superior de Investigaciones Cientificas, ITQ, SPAIN
| | | | | | | | | | | | | | | | | | - Antonio Leyva-Pérez
- CSIC, Instituto de Tecnologia Quimica, Avda. de los Naranjos S/N, 46022, Valencia, SPAIN
| |
Collapse
|
22
|
Xia T, Yu ZY, Gong HY. Pb 2+-Containing Metal-Organic Rotaxane Frameworks (MORFs). Molecules 2021; 26:4241. [PMID: 34299516 PMCID: PMC8306753 DOI: 10.3390/molecules26144241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The metal-organic rotaxane framework (MORF) structures with the advantage of mechanically interlocking molecules (MIMs) have attracted intense interest from the chemical community. In this study, a set of MORFs (i.e., MORF-Pb-1 and MORF-Pb-2) are constructed using Pb2+, a tetraimidazolium macrocycle (Texas-sized molecular box; 14+), and aromatic dicarboxylate (p-phthalate dianions (PTADAs; 2) or 2,6-naphthalene dicarboxylate dianions (3)) via a one-pot three-layer diffusion protocol. In particular, an unusual Pb…Pb weak interaction was shown in MORF-Pb-1 (charactered with distance of 3.656 Å).
Collapse
Affiliation(s)
- Ting Xia
- Department of Chemistry, Renmin University of China, No. 59, Zhongguan Street, Beijing 100872, China;
| | - Zhi-Yong Yu
- Department of Chemistry, Renmin University of China, No. 59, Zhongguan Street, Beijing 100872, China;
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, No. 19, Xinwai Street, Beijing 100875, China
| |
Collapse
|
23
|
Tiburcio E, Greco R, Mon M, Ballesteros-Soberanas J, Ferrando-Soria J, López-Haro M, Hernández-Garrido JC, Oliver-Meseguer J, Marini C, Boronat M, Armentano D, Leyva-Pérez A, Pardo E. Soluble/MOF-Supported Palladium Single Atoms Catalyze the Ligand-, Additive-, and Solvent-Free Aerobic Oxidation of Benzyl Alcohols to Benzoic Acids. J Am Chem Soc 2021; 143:2581-2592. [PMID: 33535758 DOI: 10.1021/jacs.0c12367] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal single-atom catalysts (SACs) promise great rewards in terms of metal atom efficiency. However, the requirement of particular conditions and supports for their synthesis, together with the need of solvents and additives for catalytic implementation, often precludes their use under industrially viable conditions. Here, we show that palladium single atoms are spontaneously formed after dissolving tiny amounts of palladium salts in neat benzyl alcohols, to catalyze their direct aerobic oxidation to benzoic acids without ligands, additives, or solvents. With this result in hand, the gram-scale preparation and stabilization of Pd SACs within the functional channels of a novel methyl-cysteine-based metal-organic framework (MOF) was accomplished, to give a robust and crystalline solid catalyst fully characterized with the help of single-crystal X-ray diffraction (SCXRD). These results illustrate the advantages of metal speciation in ligand-free homogeneous organic reactions and the translation into solid catalysts for potential industrial implementation.
Collapse
Affiliation(s)
- Estefanía Tiburcio
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain
| | - Rossella Greco
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Marta Mon
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Jordi Ballesteros-Soberanas
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain
| | - Miguel López-Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.,Instituto Universitario de Investigación en Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain
| | - Juan Carlos Hernández-Garrido
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.,Instituto Universitario de Investigación en Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain
| | - Judit Oliver-Meseguer
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Carlo Marini
- CELLS-ALBA Synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain
| | - Mercedes Boronat
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Cosenza, Italy
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain
| |
Collapse
|
24
|
Novel energetic coordination compounds based on 3,5-dinitro-4-oxylpyrazolate ligand with excellent thermostability and low sensitivity. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Albalad J, Sumby CJ, Maspoch D, Doonan CJ. Elucidating pore chemistry within metal–organic frameworks via single crystal X-ray diffraction; from fundamental understanding to application. CrystEngComm 2021. [DOI: 10.1039/d1ce00067e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The application of metal–organic frameworks (MOFs) to diverse chemical sectors is aided by their crystallinity, which permits the use of X-ray crystallography to characterise their pore chemistry and provides invaluable insight into their properties.
Collapse
Affiliation(s)
- Jorge Albalad
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Christopher J. Sumby
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC
- Barcelona Institute of Science and Technology
- Barcelona
- Spain
| | - Christian J. Doonan
- Department of Chemistry and Centre for Advanced Nanomaterials
- The University of Adelaide
- Adelaide
- Australia
| |
Collapse
|
26
|
Three new cadmium(II) coordination compounds based on 2-(pyridin-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline: syntheses, structures and luminescence. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Three cadmium(II) coordination compounds, [Cd(pyip)2(CH3COO)2] (1), [Cd(pyip)2(cis-OH)2]·H2O (2) and [Cd(pyip)2(trans-OH)2]·3H2O (3), based on 2-(pyridin-3-yl)-1H-imidazo[4,5-f][1,10]phenanthroline (pyip) have been synthesized by a hydrothermal method and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. Compounds 1, 2 and 3 all appear as monomeric entities, which are further assembled into supramolecular networks by hydrogen bonding interactions. The Cd(II) centers in compounds 2 and 3 lie in distinct octahedral environments with the hydroxyl groups in cis- and trans-positions, respectively, leading to the generation of different structures . Photoluminescence studies of compounds 1–3 were also carried out.
Collapse
|
27
|
Wang X, Zhang X, Pandharkar R, Lyu J, Ray D, Yang Y, Kato S, Liu J, Wasson MC, Islamoglu T, Li Z, Hupp JT, Cramer CJ, Gagliardi L, Farha OK. Insights into the Structure–Activity Relationships in Metal–Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01844] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xingjie Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Riddhish Pandharkar
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiafei Lyu
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Debmalya Ray
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ying Yang
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Satoshi Kato
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jian Liu
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Megan C. Wasson
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhong Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Joseph T. Hupp
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher J. Cramer
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Omar K. Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Malinowski J, Zych D, Jacewicz D, Gawdzik B, Drzeżdżon J. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry-A Review. Int J Mol Sci 2020; 21:ijms21155443. [PMID: 32751682 PMCID: PMC7432526 DOI: 10.3390/ijms21155443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
This publication presents the new trends and opportunities for further development of coordination compounds used in the chemical industry. The review describes the influence of various physicochemical factors regarding the coordination relationship (for example, steric hindrance, electron density, complex geometry, ligand), which condition technological processes. Coordination compounds are catalysts in technological processes used during organic synthesis, for example: Oxidation reactions, hydroformylation process, hydrogenation reaction, hydrocyanation process. In this article, we pointed out the possibilities of using complex compounds in catalysis, and we noticed what further research should be undertaken for this purpose.
Collapse
Affiliation(s)
- Jacek Malinowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.M.); (D.Z.); (D.J.); (J.D.)
| | - Dominika Zych
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.M.); (D.Z.); (D.J.); (J.D.)
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.M.); (D.Z.); (D.J.); (J.D.)
| | - Barbara Gawdzik
- Institute of Chemistry, Jan Kochanowski University, Świętokrzyska 15 G, 25-406 Kielce, Poland
- Correspondence: ; Tel.: +48-41-349-70-16
| | - Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (J.M.); (D.Z.); (D.J.); (J.D.)
| |
Collapse
|
29
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
Viciano-Chumillas M, Mon M, Ferrando-Soria J, Corma A, Leyva-Pérez A, Armentano D, Pardo E. Metal-Organic Frameworks as Chemical Nanoreactors: Synthesis and Stabilization of Catalytically Active Metal Species in Confined Spaces. Acc Chem Res 2020; 53:520-531. [PMID: 32027486 DOI: 10.1021/acs.accounts.9b00609] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the advent of the first metal-organic frameworks (MOFs), we have witnessed an explosion of captivating architectures with exciting physicochemical properties and applications in a wide range of fields. This, in part, can be understood under the light of their rich host-guest chemistry and the possibility to use single-crystal X-ray diffraction (SC-XRD) as a basic characterization tool. Moreover, chemistry on preformed MOFs, applying recent developments in template-directed synthesis and postsynthetic methodologies (PSMs), has shown to be a powerful synthetic tool to (i) tailor MOFs channels of known topology via single-crystal to single-crystal (SC-SC) processes, (ii) impart higher degrees of complexity and heterogeneity within them, and most importantly, (iii) improve their capabilities toward applications with respect to the parent MOFs. However, the unique properties of MOFs have been, somehow, limited and underestimated. This is clearly reflected on the use of MOFs as chemical nanoreactors, which has been barely uncovered. In this Account, we bring together our recent advances on the construction of MOFs with appealing properties to act as chemical nanoreactors and be used to synthesize and stabilize, within their channels, catalytically active species that otherwise could be hardly accessible. First, through two relevant examples, we present the potential of the metalloligand approach to build highly robust and crystalline oxamato- and oxamidato-MOFs with tailored channels, in terms of size, charge and functionality. These are initial requisites to have a playground where we can develop and fully take advantage of singular properties of MOFs as well as visualize/understand the processes that take place within MOFs pores and somehow make structure-functionalities correlations and develop more performant MOFs nanoreactors. Then, we describe how to exploit the unique and singular features that offer each of these MOFs confined space for (i) the incorporation and stabilization of metals salts and complexes, (ii) the in situ stepwise synthesis of subnanometric metal clusters (SNMCs), and (iii) the confined-space self-assembly of supramolecular coordination complexes (SCCs), by means of PSMs and underpinned by SC-XRD. The strategy outlined here has led to unique rewards such as the highly challenging gram-scale preparation of stable and well-defined ligand-free SNMCs, exhibiting outstanding catalytic activities, and the preparation of unique SCCs, different to those assembled in solution, with enhanced stabilities, catalytic activities, recyclabilities, and selectivities. The results presented in this Accounts are just a few recent examples, but highly encouraging, of the large potential way of MOFs acting as chemical nanoreactors. More work is needed to found the boundaries and fully understand the chemistry in the confined space. In this sense, mastering the synthetic chemistry of discrete organic molecules and inorganic complexes has basically changed our way of live. Thus, achieving the same degree of control on extended hybrid networks will open new frontiers of knowledge with unforeseen possibilities. We aim to stimulate the interest of researchers working in broadly different fields to fully unleash the host-guest chemistry in MOFs as chemical nanoreactors with exclusive functional species.
Collapse
Affiliation(s)
- Marta Viciano-Chumillas
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain
| | - Marta Mon
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain
| | - Jesus Ferrando-Soria
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Donatella Armentano
- Dipartamento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain
| |
Collapse
|
31
|
Zhang R, Meng DX, Ge FY, Huang JH, Wang LF, Xv YK, Liu XG, Meng MM, Yan H, Lu ZZ, Zheng HG, Huang W. Tetrazole-based porous metal–organic frameworks for selective CO2 adsorption and isomerization studies. Dalton Trans 2020; 49:2145-2150. [DOI: 10.1039/c9dt04068d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tetrazole-based porous MOFs and isomers were synthesized for adsorbing carbon dioxide, showing high selectivity.
Collapse
|
32
|
Santos WG, Budkina DS, Santagneli SH, Tarnovsky AN, Zukerman-Schpector J, Ribeiro SJL. Ion-Pair Complexes of Pyrylium and Tetraarylborate as New Host-Guest Dyes: Photoinduced Electron Transfer Promoting Radical Polymerization. J Phys Chem A 2019; 123:7374-7383. [PMID: 31386369 DOI: 10.1021/acs.jpca.9b03581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrafast transient absorption spectroscopy, NOESY-NMR, and EPR spectroscopy shed light on how π-π stacking interactions combined with electrostatic interactions can be used to form stable ion-pair complexes between pyrylium and tetraarylborate ions in which the interaction of the π-delocalized clouds promotes the observation of new radiative processes and also electron transfer processes excitation using visible light. The results exhibit a striking combination of properties, chemical stability and photophysical and photochemical events, that make these ion-pair complexes as a step toward the realization of chromophore/luminescent materials and also their use as a new monophotoinitiator system in radical polymerization reactions.
Collapse
Affiliation(s)
- Willy G Santos
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil.,Department of Chemistry , Federal University of São Carlos , UFSCar, CP 676, São Carlos , SP 13565-905 , Brazil
| | - Darya S Budkina
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Silvia H Santagneli
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil
| | - Alexander N Tarnovsky
- Center for Photochemical Sciences, Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Julio Zukerman-Schpector
- Department of Chemistry , Federal University of São Carlos , UFSCar, CP 676, São Carlos , SP 13565-905 , Brazil
| | - Sidney J L Ribeiro
- Institute of Chemistry , São Paulo State University - UNESP , CP 355, Araraquara , SP 14801-970 , Brazil
| |
Collapse
|