1
|
Grotjahn S, König B. Common ground and divergence: OLED emitters as photocatalysts. Chem Commun (Camb) 2024; 60:12951-12963. [PMID: 39404669 DOI: 10.1039/d4cc04409f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Many photocatalysts were initially developed or used as emitters for organic light emitting diodes (OLEDs). This feature article summarizes the different generations of OLED emitters and connects the photophysical processes with those relevant for photocatalysis. The focus is on the general properties OLED emitters and photocatalysts are designed for and how photocatalysis has benefitted from OLED research. Sometimes optimization of an OLED emitter leads to a better photocatalyst while some properties are optimized into opposite directions. To discover new classes of photocatalysts in the future it is important to consider what good OLED emitters and good photocatalyst have in common and where they diverge. Within recent years, fully organic thermally activated delayed fluorescence (TADF) emitters had the most significant impact in both fields and thus are discussed with specific focus.
Collapse
Affiliation(s)
- Sascha Grotjahn
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
2
|
Liu Y, Xue GH, He Z, Yue JP, Pan M, Song L, Zhang W, Ye JH, Yu DG. Visible-Light Photoredox-Catalyzed Direct Carboxylation of Tertiary C(sp 3)-H Bonds with CO 2: Facile Synthesis of All-Carbon Quaternary Carboxylic Acids. J Am Chem Soc 2024. [PMID: 39374105 DOI: 10.1021/jacs.4c09558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Direct carboxylation of C-H bonds with CO2 represents an attractive strategy to synthesize valuable carboxylic acids with high atom, step, and redox economy. Although great progress has been achieved in this field, catalytic carboxylation of tertiary C(sp3)-H bonds still remains challenging due to their inherent inertness and significant steric hindrance. Herein, we report a direct carboxylation of tertiary benzylic C(sp3)-H bonds with CO2 via visible-light photoredox catalysis. Various all-carbon quaternary carboxylic acids, which are of significant importance in medicinal chemistry, are successfully obtained with high yields. This direct carboxylation is characterized by good functional group tolerance, broad substrate scope, and mild operational conditions. Furthermore, our methodology enables the efficient and rapid synthesis of key drug or bioactive molecules, such as carbetapentane, caramiphen, and PRE-084 (σ1 receptor agonist), and facilitates various functionalizations of C(sp2)-H bonds using the directing ability of target carboxylic acids, thus highlighting its practical applications. Mechanistic studies indicate that a carbanion, which serves as the key intermediate to react with CO2, is catalytically generated via a single electron reduction of a benzylic radical through a consecutive photoinduced electron transfer process.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Guan-Hua Xue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhen He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Min Pan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Song
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
3
|
Liu D, Hazra A, Liu X, Maity R, Tan T, Luo L. CdS Quantum Dot Gels as a Direct Hydrogen Atom Transfer Photocatalyst for C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202403186. [PMID: 38900647 DOI: 10.1002/anie.202403186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024]
Abstract
Here, we report CdS quantum dot (QD) gels, a three-dimensional network of interconnected CdS QDs, as a new type of direct hydrogen atom transfer (d-HAT) photocatalyst for C-H activation. We discovered that the photoexcited CdS QD gel could generate various neutral radicals, including α-amido, heterocyclic, acyl, and benzylic radicals, from their corresponding stable molecular substrates, including amides, thio/ethers, aldehydes, and benzylic compounds. Its C-H activation ability imparts a broad substrate and reaction scope. The mechanistic study reveals that this reactivity is intrinsic to CdS materials, and the neutral radical generation did not proceed via the conventional sequential electron transfer and proton transfer pathway. Instead, the C-H bonds are activated by the photoexcited CdS QD gel via a d-HAT mechanism. This d-HAT mechanism is supported by the linear correlation between the logarithm of the C-H bond activation rate constant and the C-H bond dissociation energy (BDE) with a Brønsted slope α=0.5. Our findings expand the currently limited direct hydrogen atom transfer photocatalysis toolbox and provide new possibilities for photocatalytic C-H activation.
Collapse
Affiliation(s)
- Daohua Liu
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Atanu Hazra
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rajendra Maity
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Long Luo
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202
| |
Collapse
|
4
|
Min H, Kwon Y, Shin S, Choi M, Mehra MK, Jeon W, Kwon MS, Lee CW. Tailoring the Degradation of Cyanoarene-Based Photocatalysts for Enhanced Visible-Light-Driven Halogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202406880. [PMID: 38842479 DOI: 10.1002/anie.202406880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
We present the strategic design of donor-acceptor cyanoarene-based photocatalysts (PCs) aiming to augment beneficial PC degradation for halogen atom transfer (XAT)-induced dehalogenation reactions. Our investigation reveals a competitive nature between the catalytic cycle and the degradation pathway, with the degradation becoming dominant, particularly for less activated alkyl halides. The degradation behavior of PCs significantly impacts the efficiency of the XAT process, leading to exploration into manipulating the degradation behavior in a desirable direction. Recognizing the variation in the nature and rate of PC degradation, as well as its influence on the reaction across the range of PC structures, we carefully engineered the PCs to develop a pre-catalyst, named 3DP-DCDP-IPN. This pre-catalyst undergoes rapid degradation into an active form, 3DP-DCDP-Me-BN, exhibited an enhanced reducing ability in its radical anion form to induce better PC regeneration and consequently effectively catalyzes the XAT reaction, even with a challenging substrate.
Collapse
Affiliation(s)
- Hyunji Min
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sukhyun Shin
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Miseon Choi
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Manish Kumar Mehra
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
- Present address, The Wistar Institute, Philadelphia, 19104, PA, United States
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chung Whan Lee
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| |
Collapse
|
5
|
Watanabe T, Lorwongkamol P, Saga Y, Kosugi K, Kambe T, Kondo M, Masaoka S. Photocatalytic Three-Component Acylcarboxylation of Alkenes with CO 2. Org Lett 2024; 26:6491-6496. [PMID: 39023907 DOI: 10.1021/acs.orglett.4c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
γ-Keto acid is a valuable chemical motif in a wide range of fields including organic, biological, and medicinal chemistry. However, its single-step synthesis is challenging because of the mismatch of the carbonyl polarity and low tolerance of carboxylic acids. Herein, we report the single-step syntheses of γ-keto acids using alkenes and CO2. Our photocatalytic system enabled the transformation of alkenes under mild conditions in high yields (up to 95%) with broad substrate generality (35 examples).
Collapse
Affiliation(s)
- Taito Watanabe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Phurinat Lorwongkamol
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kento Kosugi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuya Kambe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center For Future Innovation (CFi), Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Ning J, Du B, Cao S, Liu X, Kong D. Combining Umpolung and Carbon Isotope Exchange Strategies for Accessing Isotopically Labeled α-Keto Acids. Org Lett 2024; 26:5966-5971. [PMID: 38958587 DOI: 10.1021/acs.orglett.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The integration of umpolung and carbon isotope exchange for accessing isotopically labeled α-keto acids through photoredox catalysis is elucidated. This process involves the carbonyl umpolung of C(sp2)-α-keto acids to yield C(sp3)-α-thioketal acids, followed by the carbon isotope exchange of C(sp3)-α-thioketal acids, and ultimately, deprotection to generate carbon-labeled α-keto acids.
Collapse
Affiliation(s)
- Jingran Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoyang Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shilong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Weindl C, Hintermann L. Synthesis of Indolines via Base-Mediated C-H Activation and Defluorinative C-N Coupling, with no Need for Transition-Metals. Chemistry 2024; 30:e202401034. [PMID: 38693605 DOI: 10.1002/chem.202401034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Syntheses of (partially) aromatic nitrogen heterocycles increasingly rely on transition-metal catalyzed C-C- and C-N-cross-coupling reactions. Here we describe a different approach to the synthesis of indolines by a domino C(sp3)-H activation, 1,2-addition, and defluorinative SNAr-cyclization sequence to provide the target 1,2-diarylindolines (1,2-diaryl-2,3-dihydroindoles) from ortho-fluorinated methyl-arenes and N-aryl imines (benzylidene anilines) in a cyclocondensation that is mediated by potassium hexamethyldisilazide (KHMDS) as base exclusively. This transition-metal-free process via C-H and C-F bond activation provides a one-step entry into a wide array of indoline scaffolds (43 examples, up to 96 % yield). This privileged substructure is common in natural products and pharmaceuticals alike, and cannot be accessed by traditional condensation reactions.
Collapse
Affiliation(s)
- Christian Weindl
- School of Natural Science, Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching bei München, 85748, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, Garching bei München, 85748, Germany
| | - Lukas Hintermann
- School of Natural Science, Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching bei München, 85748, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, Garching bei München, 85748, Germany
| |
Collapse
|
8
|
Carré V, Godard P, Méreau R, Jacquot de Rouville HP, Jonusauskas G, McClenaghan N, Tassaing T, Vincent JM. Photogeneration of Chlorine Radical from a Self-Assembled Fluorous 4CzIPN•Chloride Complex: Application in C-H Bond Functionalization. Angew Chem Int Ed Engl 2024; 63:e202402964. [PMID: 38634355 DOI: 10.1002/anie.202402964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
The chlorine radical is a strong HAT (Hydrogen Atom Transfer) agent that is very useful for the functionalization of C(sp3)-H bonds. Albeit highly attractive, its generation from the poorly oxidizable chloride ion mediated by an excited photoredox catalyst is a difficult task. We now report that 8Rf8-4CzIPN, an electron-deficient fluorous derivative of the benchmark 4CzIPN photoredox catalyst belonging to the donor-acceptor carbazole-cyanoarene family, is not only a better photooxidant than 4CzIPN, but also becomes an excellent host for the chloride ion. Combining these two properties ultimately makes the self-assembled 8Rf8-4CzIPN•Cl- dual catalyst highly reactive in redox-neutral Giese-type C(sp3)-H bond alkylation reactions promoted by the chlorine radical. Additionally, because of its fluorous character, the efficient separation/recovery of 8Rf8-4CzIPN could be envisioned.
Collapse
Affiliation(s)
- Victor Carré
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Pascale Godard
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | | | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, CNRS UMR 5798, Univ. Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Nathan McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| |
Collapse
|
9
|
Pillitteri S, Walia R, Van der Eycken EV, Sharma UK. Hydroalkylation of styrenes enabled by boryl radical mediated halogen atom transfer. Chem Sci 2024; 15:8813-8819. [PMID: 38873058 PMCID: PMC11168110 DOI: 10.1039/d4sc01731e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
In this study, we present an inexpensive, stable, and easily available boryl radical source (BPh4Na) employed in a Halogen Atom Transfer (XAT) methodology. This mild and convenient strategy unlocks the use of not only alkyl iodides as radical precursors but also of the more challenging alkyl and aryl bromides to generate C-centered radicals. The generated radicals were further engaged in the anti-Markovnikov hydroalkylation of electronically diverse styrenes, therefore achieving the formation of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds. A series of experimental and computational studies revealed the prominent role of BPh4Na in the halogen abstraction step.
Collapse
Affiliation(s)
- Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| | - Rajat Walia
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 117198 Moscow Russia
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven) Celestijnenlaan 200F B-3001 Leuven Belgium
| |
Collapse
|
10
|
Munch M, Mair BA, Adi M, Rotstein BH. Photocatalyzed radiosynthesis of 11C-phenylacetic acids. J Labelled Comp Radiopharm 2024; 67:211-216. [PMID: 37941130 DOI: 10.1002/jlcr.4073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Fast and straightforward incorporation of radionuclides into pharmaceutically relevant molecules is one of the main barriers to preclinical and clinical tracer research. Late-stage direct incorporation of cyclotron-produced [11C]CO2 to afford carbon-11-labeled radiopharmaceuticals has the potential to provide ready-to-inject positron emission tomography agents in less than an hour. The present work describes photocatalyzed carboxylation of alkylbenzene derivatives to afford 11C-phenylacetic acids. Reaction conditions and scope are investigated followed by application of this methodology to the preparative radiosynthesis of [11C]fenoprofen, a nonsteroidal anti-inflammatory drug.
Collapse
Affiliation(s)
- Maxime Munch
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Braeden A Mair
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Myriam Adi
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Zhang Z, Lv X, Mu X, Zhao M, Wang S, Ke C, Ding S, Zhou D, Wang M, Zeng R. In-situ noncovalent interaction of ammonium ion enabled C-H bond functionalization of polyethylene glycols. Nat Commun 2024; 15:4445. [PMID: 38789453 PMCID: PMC11126569 DOI: 10.1038/s41467-024-48584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The noncovalent interactions of ammonium ion with multidentate oxygen-based host has never been reported as a reacting center in catalytic reactions. In this work, we report a reactivity enhancement process enabled by non-covalent interaction of ammonium ion, achieving the C-H functionalization of polyethylene glycols with acrylates by utilizing photoinduced co-catalysis of iridium and quinuclidine. A broad scope of alkenes can be tolerated without observing significant degradation. Moreover, this cyano-free condition respectively allows the incorporation of bioactive molecules and the PEGylation of dithiothreitol-treated bovine serum albumin, showing great potentials in drug delivery and protein modification. DFT calculations disclose that the formed α-carbon radical adjacent to oxygen-atom is reduced directly by iridium before acrylate addition. And preliminary mechanistic experiments reveal that the noncovalent interaction of PEG chain with the formed quinuclidinium species plays a unique role as a catalytic site by facilitating the proton transfer and ultimately enabling the transformation efficiently.
Collapse
Affiliation(s)
- Zongnan Zhang
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xueli Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Mu
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyao Zhao
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Shujiang Ding
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Dezhong Zhou
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.
| | - Rong Zeng
- School of Chemistry & School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
12
|
Liu C, Ma Y, Lian R, Chen J, Yang M, Cheng J. Regulation of Photogenerated Redox Species through High Crystallinity Carbon Nitride for Improved C-S Coupling Reactions. CHEMSUSCHEM 2024; 17:e202301882. [PMID: 38242851 DOI: 10.1002/cssc.202301882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
A novel and efficient approach for the synthesis of α, β-unsaturated sulfones through heterogeneous photocatalyzed C-S coupling reactions have been developed. The use of molten-salt method derived carbon nitride (MCN), a transition metal-free polymeric photocatalyst, combined with enhanced crystallinity and potassium iodide as an additive, effectively modulates photogenerated reactive redox species, markedly increasing the overall reaction selectivity. This method achieves the shortest reaction time (2 h) with high yield (up to 95 %) among the reported heterogeneous catalytic C-S bond formation reactions, matching the efficiency of the homogeneous photocatalysts. Furthermore, the application to challenging alkyne substrates has been demonstrated, underscoring the potential for a broad range of applications in pharmaceutical research and synthetic chemistry.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Yukun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Ronghong Lian
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiayin Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
13
|
Li S, Huber N, Huang W, Wei W, Landfester K, Ferguson CTJ, Zhao Y, Zhang KAI. Triazine Frameworks for the Photocatalytic Selective Oxidation of Toluene. Angew Chem Int Ed Engl 2024; 63:e202400101. [PMID: 38407424 DOI: 10.1002/anie.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Investigations into the selective oxidation of inert sp3 C-H bonds using polymer photocatalysts under mild conditions have been limited. Additionally, the structure-activity relationship of photocatalysts often remains insufficiently explored. Here, a series of thiophene-based covalent triazine frameworks (CTFs) are used for the efficient and selective oxidation of hydrocarbons to aldehydes or ketones under ambient aerobic conditions. Spectroscopic methods conducted in situ and density functional theory (DFT) calculations revealed that the sulfur atoms within the thiophene units play a pivotal role as oxidation sites due to the generation of photogenerated holes. The effect of photogenerated holes on photocatalytic toluene oxidation was investigated by varying the length of the spacer in a CTF donor-acceptor based photocatalyst. Furthermore, the manipulation of reactive oxygen species was employed to enhance selectivity by weakening the peroxidative capacity. As an illustrative example, this study successfully demonstrated the synthesis of a precursor of the neurological drug AMG-579 using a photocatalytic protocol.
Collapse
Affiliation(s)
- Sizhe Li
- Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
| | - Niklas Huber
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Wei Huang
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Wenxin Wei
- Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
| | | | | | - Yan Zhao
- Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, 200433, Shanghai, P. R. China
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| |
Collapse
|
14
|
Grotjahn S, Graf C, Zelenka J, Pattanaik A, Müller L, Kutta RJ, Rehbein J, Roithová J, Gschwind RM, Nuernberger P, König B. Reactivity of Superbasic Carbanions Generated via Reductive Radical-Polar Crossover in the Context of Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400815. [PMID: 38408163 DOI: 10.1002/anie.202400815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Photocatalytic reactions involving a reductive radical-polar crossover (RRPCO) generate intermediates with carbanionic reactivity. Many of these proposed intermediates resemble highly reactive organometallic compounds. However, conditions of their formation are generally not tolerated by their isolated organometallic versions and often a different reactivity is observed. Our investigations on their nature and reactivity under commonly used photocatalytic conditions demonstrate that these intermediates are indeed best described as free, superbasic carbanions capable of deprotonating common polar solvents usually assumed to be inert such as acetonitrile, dimethylformamide, and dimethylsulfoxide. Their basicity not only towards solvents but also towards electrophiles, such as aldehydes, ketones, and esters, is comparable to the reactivity of isolated carbanions in the gas-phase. Previously unsuccessful transformations thought to result from a lack of reactivity are explained by their high reactivity towards the solvent and weakly acidic protons of reaction partners. An intuitive explanation for the mode of action of photocatalytically generated carbanions is provided, which enables methods to verify reaction mechanisms proposed to involve an RRPCO step and to identify the reasons for the limitations of current methods.
Collapse
Affiliation(s)
- Sascha Grotjahn
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christina Graf
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jan Zelenka
- Department of Spectroscopy and Catalysis, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Aryaman Pattanaik
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lea Müller
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Roger Jan Kutta
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Julia Rehbein
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Ruth M Gschwind
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Patrick Nuernberger
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
15
|
Zhu Q, Long J, Song X, Wang K, Zeng J, Fan Y. KO tBu/DMF-Mediated Hydroalkylation of Alkenes via Benzylic C-H Bond Activation. J Org Chem 2024; 89:3726-3731. [PMID: 38417109 DOI: 10.1021/acs.joc.3c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Catalytic hydroalkylation reaction of alkenes with benzylic hydrocarbons involving t-BuOK/DMF-mediated benzylic C-H bond activation is demonstrated. This direct and operational simple protocol affords a rapid and reliable access to a wide scope of benzylic compounds in good-to-excellent yields. The benzylic C-H's of either activated diarylmethanes (pKa ∼ 32.2) and benzyl thioethers (pKa ∼ 30.8) or inert alkylbenzenes could all act as useful synthetic platforms to be conveniently alkylated under mild reaction conditions.
Collapse
Affiliation(s)
- Qiming Zhu
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Jiajia Long
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Xianchen Song
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Kaifang Wang
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Jingkai Zeng
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Yuyuan Fan
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| |
Collapse
|
16
|
Li W, Sun B, Zhang L, Mo F. Visible-Light-Induced Transition-Metal-Free Redox-Neutral Carboxylation of Remote Benzylic C(sp 3)-H Bonds via 1,5-Hydrogen Atom Transfer. J Org Chem 2024; 89:521-526. [PMID: 38088918 DOI: 10.1021/acs.joc.3c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The direct carboxylation of the benzylic C-H bonds under mild conditions is of great importance and is quite challenging. Herein, we report an approach for the carboxylation of remote benzylic C(sp3)-H bonds by integrating the redox-neutral visible-light photoredox catalysis and the nitrogen-centered 1,5-hydrogen atom transfer. The chemical transformation progresses via consecutive single electron transfer, 1,5-hydrogen atom transfer, formation of benzylic carbanion, and nucleophilic attack on the CO2 steps, thereby enabling access to the desired carboxylation products with moderate to high yields. We also endeavor to recover the CO2 groups generated in situ intramolecularly to achieve carboxylation under a nitrogen atmosphere, resulting in moderate yields of corresponding carboxylation.
Collapse
Affiliation(s)
- Wenke Li
- College of Engineering, Peking University, Beijing 100871, China
| | - Beiqi Sun
- College of Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- College of Engineering, Peking University, Beijing 100871, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Hu W, Diao X, Yuan J, Liang W, Yang W, Yang L, Ma J, Zhang S. Photoredox-Catalyzed Tandem Cyclization of Enaminones with N-Sulfonylaminopyridinium Salts toward the Synthesis of 3-Sulfonaminated Chromones. J Org Chem 2024; 89:644-655. [PMID: 38088130 DOI: 10.1021/acs.joc.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A photoredox-catalyzed intermolecular tandem sulfonamination/cyclization of enaminones was realized by using N-aminopyridinium salts as the sulfonaminated reagents without transition-metal catalysts or bases. The reaction exhibits a broad scope and good functional group tolerance, good yields, and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Wenyu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ji Ma
- Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P.R. China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| |
Collapse
|
18
|
Yuan PF, Yang Z, Zhang SS, Zhu CM, Yang XL, Meng QY. Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide. Angew Chem Int Ed Engl 2023:e202313030. [PMID: 38072915 DOI: 10.1002/anie.202313030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 12/22/2023]
Abstract
Carboxylation with carbon dioxide (CO2 ) represents one notable methodology to produce carboxylic acids. In contrast to carbon-heteroatom bonds, carbon-carbon bond cleavage for carboxylation with CO2 is far more challenging due to their inherent and less favorable orbital directionality for interacting with transition metals. Here we report a photocatalytic protocol for the deconstructive carboxylation of alkenes with CO2 to generate carboxylic acids in the absence of transition metals. It is emphasized that our protocol provides carboxylic acids with obviously unchanged carbon numbers when terminal alkenes were used. To show the power of this strategy, a variety of pharmaceutically relevant applications including the modular synthesis of propionate nonsteroidal anti-inflammatory drugs and the late-stage carboxylation of bioactive molecule derivatives are demonstrated.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
| | - Zhao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Shan-Shan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Can-Ming Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Qing-Yuan Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Qin Y, Cauwenbergh R, Pradhan S, Maiti R, Franck P, Das S. Straightforward synthesis of functionalized γ-Lactams using impure CO 2 stream as the carbon source. Nat Commun 2023; 14:7604. [PMID: 37989749 PMCID: PMC10663487 DOI: 10.1038/s41467-023-43289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023] Open
Abstract
Direct utilization of CO2 into organic synthesis finds enormous applications to synthesize pharmaceuticals and fine chemicals. However, pure CO2 gas is essential to achieve these transformations, and the purification of CO2 is highly cost and energy intensive. Considering this, we describe a straightforward synthetic route for the synthesis of γ-lactams, a pivotal core structure of bioactive molecules, by using commercially available starting materials (alkenes and amines) and impure CO2 stream (exhaust gas is collected from the car) as the carbon source. This blueprint features a broad scope, excellent functional group compatibility and application to the late-stage transformation of existing pharmaceuticals and natural products to synthesize functionalized γ-lactams. We believe that our strategy will provide direct access to γ-lactams in a very sustainable way and will also enhance the Carbon Capture and Utilization (CCU) strategy.
Collapse
Affiliation(s)
- Yuman Qin
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
- Department of Chemistry, Universiteit Antwerpen, 2020, Antwerpen, Belgium
| | - Robin Cauwenbergh
- Department of Chemistry, Universiteit Antwerpen, 2020, Antwerpen, Belgium
| | - Suman Pradhan
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
- Department of Chemistry, Universiteit Antwerpen, 2020, Antwerpen, Belgium
| | - Rakesh Maiti
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany
- Department of Chemistry, Universiteit Antwerpen, 2020, Antwerpen, Belgium
| | - Philippe Franck
- Department of Chemistry, Universiteit Antwerpen, 2020, Antwerpen, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth, 95447, Bayreuth, Germany.
- Department of Chemistry, Universiteit Antwerpen, 2020, Antwerpen, Belgium.
| |
Collapse
|
20
|
Gupta A, Laha JK. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. CHEM REC 2023; 23:e202300207. [PMID: 37565381 DOI: 10.1002/tcr.202300207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Indexed: 08/12/2023]
Abstract
Our current unhealthy lifestyle and the exponential surge in the population getting affected by a variety of diseases have made pharmaceuticals or drugs an imperative part of life, making the development of innovative strategies for drug discovery or the introduction of refined, cost-effective and modern technologies for the synthesis of clinically used drugs, a need of the hour. Ever since their discovery, free radicals and radical cations or anions as reactive intermediates have captivated the chemists, resulting in an exceptional utilization of these moieties throughout the field of chemical synthesis, owing to their unprecedented and widespread reactivity. Sticking with the idea of not judging the book by its cover, despite the conventional thought process of radicals being unstable and difficult to control entities, scientists and academicians around the globe have done an appreciable amount of work utilizing both persistent as well as transient radicals for a variety of organic transformations, exemplifying them with the synthesis of significant biologically active pharmaceutical ingredients. This review truly accounts for the organic radical transformations including radical addition, radical cascade cyclization, radical/radical cross-coupling, coupling with metal-complexes and radical cations coupling with nucleophiles, that offers fascinating and unconventional approaches towards the construction of intricate structural frameworks of marketed APIs with high atom- and step-economy; complementing the otherwise employed traditional methods. This tutorial review presents a comprehensive package of diverse methods utilized for radical generation, featuring their reactivity to form critical bonds in pharmaceutical total synthesis or in building key starting materials or intermediates of their synthetic journey, acknowledging their excellence, downsides and underlying mechanisms, which are otherwise poorly highlighted in the literature. Despite great achievements over the past few decades in this area, many challenges and obstacles are yet to be unraveled to shorten the distance between the academics and the industry, which are all discussed in summary and outlook.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education & Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, Mohali, 160062, India
| |
Collapse
|
21
|
Li Y, Guo S, Li QH, Zheng K. Metal-free photoinduced C(sp 3)-H/C(sp 3)-H cross-coupling to access α‑tertiary amino acid derivatives. Nat Commun 2023; 14:6225. [PMID: 37802984 PMCID: PMC10558569 DOI: 10.1038/s41467-023-41956-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
The cross-dehydrogenative coupling (CDC) reaction is the most direct and efficient method for constructing α-tertiary amino acids (ATAAs), which avoids the pre-activation of C(sp3)-H substrates. However, the use of transition metals and harsh reaction conditions are still significant challenges for these reactions that urgently require solutions. This paper presents a mild, metal-free CDC reaction for the construction of ATAAs, which is compatible with various benzyl C-H substrates, functionalized C-H substrates, and alkyl substrates, with good regioselectivity. Notably, our method exhibits excellent functional group tolerance and late-stage applicability. According to mechanistic studies, the one-step synthesized and bench-stable N-alkoxyphtalimide generates a highly electrophilic trifluoro ethoxy radical that serves as a key intermediate in the reaction process and acts as a hydrogen atom transfer reagent. Therefore, our metal-free and additive-free method offers a promising strategy for the synthesis of ATAAs under mild conditions.
Collapse
Affiliation(s)
- Yujun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Shaopeng Guo
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Qing-Han Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
| |
Collapse
|
22
|
Labiche A, Malandain A, Molins M, Taran F, Audisio D. Modern Strategies for Carbon Isotope Exchange. Angew Chem Int Ed Engl 2023; 62:e202303535. [PMID: 37074841 DOI: 10.1002/anie.202303535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
In contrast to stable and natural abundant carbon-12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C-labeled building blocks. For long time, multi-step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C-C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late-stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1-building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal-catalyzed and biocatalytic processes.
Collapse
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Molins
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
23
|
Lepori M, Schmid S, Barham JP. Photoredox catalysis harvesting multiple photon or electrochemical energies. Beilstein J Org Chem 2023; 19:1055-1145. [PMID: 37533877 PMCID: PMC10390843 DOI: 10.3762/bjoc.19.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Photoredox catalysis (PRC) is a cutting-edge frontier for single electron-transfer (SET) reactions, enabling the generation of reactive intermediates for both oxidative and reductive processes via photon activation of a catalyst. Although this represents a significant step towards chemoselective and, more generally, sustainable chemistry, its efficacy is limited by the energy of visible light photons. Nowadays, excellent alternative conditions are available to overcome these limitations, harvesting two different but correlated concepts: the use of multi-photon processes such as consecutive photoinduced electron transfer (conPET) and the combination of photo- and electrochemistry in synthetic photoelectrochemistry (PEC). Herein, we review the most recent contributions to these fields in both oxidative and reductive activations of organic functional groups. New opportunities for organic chemists are captured, such as selective reactions employing super-oxidants and super-reductants to engage unactivated chemical feedstocks, and scalability up to gram scales in continuous flow. This review provides comparisons between the two techniques (multi-photon photoredox catalysis and PEC) to help the reader to fully understand their similarities, differences and potential applications and to therefore choose which method is the most appropriate for a given reaction, scale and purpose of a project.
Collapse
Affiliation(s)
- Mattia Lepori
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Simon Schmid
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitatsstraße 31, 93040 Regensburg, Germany
| |
Collapse
|
24
|
Wu M, Lian N, Wu C, Wu X, Chen H, Lin C, Zhou S, Ke F. Metal-free visible-induced C(sp 2)-C(sp 2) coupling of quinoxalin-2( H)-ones via oxidative cleavage of the C-N bond. RSC Adv 2023; 13:18328-18331. [PMID: 37333794 PMCID: PMC10274563 DOI: 10.1039/d3ra03479h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023] Open
Abstract
A C(sp2)-C(sp2) reaction between aromatic hydrazines and quinoxalines has been developed through a photocatalytic system. The protocol is established for C(sp2)-N bond cleavage and direct C(sp2)-H functionalization for the coupling of C(sp2)-C(sp2) via photocatalysis under mild and ideal air conditions without the presence of a strong base and metal. The mechanistic studies reveal that the generation of a benzene radical via the oxidative cleavage of aromatic hydrazines for the cross-coupling of C(sp2)-C(sp2) with the assistance of a photocatalyst is essential. The process exhibits excellent compatibility with functional groups and provides convenient access to various 3-arylquinoxalin-2(1H)-ones in good to excellent yields.
Collapse
Affiliation(s)
- Mei Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Nancheng Lian
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University Fuzhou 350005 China
| | - Cuimin Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Xinyao Wu
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Houzheng Chen
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Chen Lin
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Sunying Zhou
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| | - Fang Ke
- Institute of Materia Medica, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University Fuzhou 350122 China
| |
Collapse
|
25
|
Xu Y, Li Q, Ye R, Xu B, Zhou X. Electrochemical Oxidative C-H Amination through a Ritter-Type Reaction. J Org Chem 2023. [PMID: 37262003 DOI: 10.1021/acs.joc.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A straightforward strategy for direct benzylic C-H bond amination via an electrochemical Ritter-type reaction is developed. The reaction demonstrates simpler and milder reaction conditions over the existing methods without extra mediator. Moderate to excellent yields up to 94% of the desired amide products were obtained with a broad substrate scope. The removal of the Ac group by a simple step can afford NH-free benzylic amines, providing a suitable approach for the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Yiwen Xu
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Qiang Li
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Runyou Ye
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, 36 Yunling Road, Chengdu, Sichuan 610200, P.R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| |
Collapse
|
26
|
Alektiar SN, Han J, Dang Y, Rubel CZ, Wickens ZK. Radical Hydrocarboxylation of Unactivated Alkenes via Photocatalytic Formate Activation. J Am Chem Soc 2023; 145:10991-10997. [PMID: 37186951 PMCID: PMC10636750 DOI: 10.1021/jacs.3c03671] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Herein we disclose a strategy to promote the hydrocarboxylation of unactivated alkenes using photochemical activation of formate salts. We illustrate that an alternative initiation mechanism circumvents the limitations of prior approaches and enables hydrocarboxylation of this challenging substrate class. Specifically, we found that accessing the requisite thiyl radical initiator without an exogenous chromophore eliminates major byproducts that have plagued attempts to exploit similar reactivity for unactivated alkene substrates. This redox-neutral method is technically simple to execute and effective across a broad range of alkene substrates. Feedstock alkenes, such as ethylene, are hydrocarboxylated at ambient temperature and pressure. A series of radical cyclization experiments indicate how the reactivity described in this report can be diverted by more complex radical processes.
Collapse
Affiliation(s)
- Sara N. Alektiar
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jimin Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Y Dang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Camille Z. Rubel
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Venditto NJ, Boerth JA. Photoredox-Catalyzed Multicomponent Synthesis of Functionalized γ-Amino Butyric Acids via Reductive Radical Polar Crossover. Org Lett 2023; 25:3429-3434. [PMID: 37163325 DOI: 10.1021/acs.orglett.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multicomponent radical polar crossover (RPC) reactions are useful for leveraging both radical and polar bond-forming steps to rapidly build molecular complexity in a single transformation. However, multicomponent RPC reactions that utilize carbonyl π-bond electrophiles are underrepresented in the literature. Herein, we describe a mild, photoredox-catalyzed decarboxylative multicomponent RPC reaction that couples carboxylic acids, Michael acceptors, and carbonyl electrophiles for the formation of diversely functionalized γ-amino butyric acid derivatives. This transformation also facilitates the synthesis of complex and biologically relevant γ-lactam compounds.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
28
|
Zhou J, Zhao Z, Jiang B, Yamamoto K, Sumii Y, Shibata N. Synthesis of triarylmethanes by silyl radical-mediated cross-coupling of aryl fluorides and arylmethanes. Chem Sci 2023; 14:4248-4256. [PMID: 37123196 PMCID: PMC10132141 DOI: 10.1039/d3sc00154g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Although the cross-couplings of aryl halides with diarylmethanes are mostly achieved by transition-metal catalysis, aryl fluorides are rarely used as coupling partners owing to the high inertness of C-F bonds. Herein, we describe the efficient silylboronate-mediated cross-coupling reaction of aryl fluorides with arylalkanes under transition-metal-free, room-temperature conditions. The combination of silylboronate and KO t Bu is critical for driving a radical process via the cleavage of C-F and C-H bonds in two appropriate coupling precursors, resulting in a cross-coupling product. This practical cross-coupling protocol is applicable to a wide variety of aryl fluorides with a C(sp2)-F bond. This method can be extended to other coupling partners with a C(sp3)-H bond, including diarylmethanes, diarylethanes, and monoarylalkanes. Many di- and triarylalkanes with tertiary or quaternary carbon centers can be obtained easily in moderate to high yields. We believe that the developed silylboronate-mediated cross-coupling method is a valuable contribution to C-F and C-H activation chemistry.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Zhengyu Zhao
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Bingyao Jiang
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology Gokiso, Showa-ku Nagoya 466-8555 Japan
| |
Collapse
|
29
|
Meng Y, Gnanamani E, Zare RN. One-Step Formation of Pharmaceuticals Having a Phenylacetic Acid Core Using Water Microdroplets. J Am Chem Soc 2023; 145:7724-7728. [PMID: 37011129 DOI: 10.1021/jacs.3c00773] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The properties of water microdroplets strikingly differ from bulk water. Using room-temperature water microdroplets, we find that toluene can react with CO2 to form phenylacetic acid in one step without any catalyst with negative high voltage applied at the sprayer source. The chemical components of these microdroplets are identified by mass spectrometry, and product structures are confirmed by tandem mass spectrometry. In this manner, we generate three drug molecules in a single step: 4-aminophenylacetic acid (epithelial peptide transporter PepT1 inhibitor), 3,4-dihydroxyphenylacetic acid (dopamine metabolite neurotransmitter), and phenylacetic acid (sodium salt form; treatment of urea cycle disorder). Mechanistic studies show that benzyl radicals formed from hydroxyl radicals at the water microdroplet interface drive these carboxylation reactions. This water microdroplet chemistry is general, allowing activation and subsequent carboxylation of aryl α-C-H groups.
Collapse
Affiliation(s)
- Yifan Meng
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Elumalai Gnanamani
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
30
|
Weindl C, Helmbrecht SL, Hintermann L. Rapid C-H Transformation: Addition of Diarylmethanes to Imines in Seconds by Catalytic Use of Base. J Org Chem 2023; 88:4155-4161. [PMID: 36972371 DOI: 10.1021/acs.joc.2c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The addition of diarylmethanes or methylarenes via activation of benzylic C(sp3)-H bonds to N-aryl imines proceeds under catalysis by alkali hexamethyldisilazide (HMDS) base to give N-(1,2,2-triarylethyl)anilines or N-(1,2-diarylethyl)anilines, respectively. In the presence of 10 mol % of LiHMDS at room temperature, the diarylmethane addition equilibrates within 20-30 s and is driven to near completion by cooling the reaction mixture to -25 °C, providing N-(1,2,2-triarylethyl)aniline in a >90% yield.
Collapse
Affiliation(s)
- Christian Weindl
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| | - Sebastian L Helmbrecht
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| | - Lukas Hintermann
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| |
Collapse
|
31
|
Shigeno M, Kajima A, Toyama E, Korenaga T, Yamakoshi H, Nozawa-Kumada K, Kondo Y. LiHMDS-Mediated Deprotonative Coupling of Toluenes with Ketones. Chemistry 2023; 29:e202203549. [PMID: 36479733 DOI: 10.1002/chem.202203549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
We demonstrate that lithium hexamethyldisilazide (LiHMDS) acts as an effective base for deprotonative coupling reactions of toluenes with ketones to afford stilbenes. Various functionalities (halogen, OCF3 , amide, Me, aryl, alkenyl, alkynyl, SMe, and SPh) are allowed on the toluenes. Notably, this system proved successful with low-reactive toluenes bearing a large pKa value compared to that of the conjugate acid of LiHMDS (hexamethyldisilazane, 25.8, THF), as demonstrated by 4-phenyltoluene (38.57, THF) and toluene itself (∼43, DMSO).
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihisa Kajima
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Eito Toyama
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering, Iwate University Ueda, Morioka, 020-8551, Japan.,Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka, 020-8551, Japan
| | - Hiroyuki Yamakoshi
- Central Analytical Center, Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
32
|
Chen L, Qu Q, Ran CK, Wang W, Zhang W, He Y, Liao LL, Ye JH, Yu DG. Photocatalytic Carboxylation of C-N Bonds in Cyclic Amines with CO 2 by Consecutive Visible-Light-Induced Electron Transfer. Angew Chem Int Ed Engl 2023; 62:e202217918. [PMID: 36680762 DOI: 10.1002/anie.202217918] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Visible-light photocatalytic carboxylation with CO2 is highly important. However, it still remains challenging for reluctant substrates with low reduction potentials. Herein, we report a novel photocatalytic carboxylation of C-N bonds in cyclic amines with CO2 via consecutive photo-induced electron transfer (ConPET). It is also the first photocatalytic reductive ring-opening reaction of azetidines, pyrrolidines and piperidines. This strategy is practical to transform a variety of easily available cyclic amines to valuable β-, γ-, δ- and ϵ-amino acids in moderate-to-excellent yields. Moreover, the method also features mild and transition-metal-free conditions, high selectivity, good functional-group tolerance, facile scalability and product derivations. Mechanistic studies indicate that the ConPET might be the key to generating highly reactive photocatalysts, which enable the reductive activation of cyclic amines to generate carbon radicals and carbanions as the key intermediates.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Quan Qu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Chuan-Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Wei Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yi He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
33
|
Franceschi P, Rossin E, Goti G, Scopano A, Vega-Peñaloza A, Natali M, Singh D, Sartorel A, Dell'Amico L. A Proton-Coupled Electron Transfer Strategy to the Redox-Neutral Photocatalytic CO 2 Fixation. J Org Chem 2023; 88:6454-6464. [PMID: 36760023 DOI: 10.1021/acs.joc.2c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Herein, we report our study on the design and development of a novel photocarboxylation method. We have used an organic photoredox catalyst (PC, 4CzIPN) and differently substituted dihydropyridines (DHPs) in combination with an organic base (1,5,7-triazabicyclodec-5-ene, TBD) to access a proton-coupled electron transfer (PCET) based manifold. In depth mechanistic investigations merging experimental analysis (NMR, IR, cyclic voltammetry) and density-functional theory (DFT) calculations reveal the key activity of a H-bonding complex between the DHP and the base. The thermodynamic and kinetic benefits of the PCET mechanism allowed the implementation of a redox-neutral fixation process leading to synthetically relevant carboxylic acids (18 examples with isolated yields up to 75%) under very mild reaction conditions. Finally, diverse product manipulations were performed to demonstrate the synthetic versatility of the obtained products.
Collapse
Affiliation(s)
- Pietro Franceschi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elena Rossin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giulio Goti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Angelo Scopano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Alberto Vega-Peñaloza
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Mirco Natali
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Deepak Singh
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
34
|
Abstract
The emergence of modern photocatalysis, characterized by mildness and selectivity, has significantly spurred innovative late-stage C-H functionalization approaches that make use of low energy photons as a controllable energy source. Compared to traditional late-stage functionalization strategies, photocatalysis paves the way toward complementary and/or previously unattainable regio- and chemoselectivities. Merging the compelling benefits of photocatalysis with the late-stage functionalization workflow offers a potentially unmatched arsenal to tackle drug development campaigns and beyond. This Review highlights the photocatalytic late-stage C-H functionalization strategies of small-molecule drugs, agrochemicals, and natural products, classified according to the targeted C-H bond and the newly formed one. Emphasis is devoted to identifying, describing, and comparing the main mechanistic scenarios. The Review draws a critical comparison between established ionic chemistry and photocatalyzed radical-based manifolds. The Review aims to establish the current state-of-the-art and illustrate the key unsolved challenges to be addressed in the future. The authors aim to introduce the general readership to the main approaches toward photocatalytic late-stage C-H functionalization, and specialist practitioners to the critical evaluation of the current methodologies, potential for improvement, and future uncharted directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Huan-Ming Huang
- School of Physical Science and Technology, ShanghaiTech University, 201210Shanghai, China
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149Münster, Germany
| |
Collapse
|
35
|
Kwon Y, Lee J, Noh Y, Kim D, Lee Y, Yu C, Roldao JC, Feng S, Gierschner J, Wannemacher R, Kwon MS. Formation and degradation of strongly reducing cyanoarene-based radical anions towards efficient radical anion-mediated photoredox catalysis. Nat Commun 2023; 14:92. [PMID: 36609499 PMCID: PMC9822901 DOI: 10.1038/s41467-022-35774-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Cyanoarene-based photocatalysts (PCs) have attracted significant interest owing to their superior catalytic performance for radical anion mediated photoredox catalysis. However, the factors affecting the formation and degradation of cyanoarene-based PC radical anion (PC•‒) are still insufficiently understood. Herein, we therefore investigate the formation and degradation of cyanoarene-based PC•‒ under widely-used photoredox-mediated reaction conditions. By screening various cyanoarene-based PCs, we elucidate strategies to efficiently generate PC•‒ with adequate excited-state reduction potentials (Ered*) via supra-efficient generation of long-lived triplet excited states (T1). To thoroughly investigate the behavior of PC•‒ in actual photoredox-mediated reactions, a reductive dehalogenation is carried out as a model reaction and identified the dominant photodegradation pathways of the PC•‒. Dehalogenation and photodegradation of PC•‒ are coexistent depending on the rate of electron transfer (ET) to the substrate and the photodegradation strongly depends on the electronic and steric properties of the PCs. Based on the understanding of both the formation and photodegradation of PC•‒, we demonstrate that the efficient generation of highly reducing PC•‒ allows for the highly efficient photoredox catalyzed dehalogenation of aryl/alkyl halides at a PC loading as low as 0.001 mol% with a high oxygen tolerance. The present work provides new insights into the reactions of cyanoarene-based PC•‒ in photoredox-mediated reactions.
Collapse
Affiliation(s)
- Yonghwan Kwon
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Jungwook Lee
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yeonjin Noh
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Doyon Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Yungyeong Lee
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Changhoon Yu
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Juan Carlos Roldao
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain ,grid.452382.a0000 0004 1768 3100Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, San Sebastián, 20018 Spain
| | - Siyang Feng
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Johannes Gierschner
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Reinhold Wannemacher
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Min Sang Kwon
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
36
|
Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Nickel-Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2'-Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202213943. [PMID: 36300599 DOI: 10.1002/anie.202213943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
In contrast to previous approaches to chiral α-aryl carboxylic acids that based on reactions using hazardous gases, pressurized setup and mostly noble metal catalysts, in this work, a nickel-catalyzed general, efficient and highly enantioselective carboxylation reaction of racemic benzylic (pseudo)halides under mild conditions using atmospheric CO2 has been developed. A unique chiral 2,2'-bipyridine ligand named Me-SBpy featuring compact polycyclic skeleton enabled both high reactivity and stereoselectivity. The utility of this method has been demonstrated by synthesis of various chiral α-aryl carboxylic acids (30 examples, up to 95 % yield and 99 : 1 er), including profen family anti-inflammatory drugs and transformations using the acids as key intermediates. Based on mechanistic experimental results, a plausible catalytic cycle involving Ni-complex/radical equilibrium and Lewis acid-assisted CO2 activation has been proposed.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tao Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Saima Perveen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
37
|
Jin Y, Caner J, Nishikawa S, Toriumi N, Iwasawa N. Catalytic direct hydrocarboxylation of styrenes with CO 2 and H 2. Nat Commun 2022; 13:7584. [PMID: 36481654 PMCID: PMC9732006 DOI: 10.1038/s41467-022-35293-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
A three-component hydrocarboxylation of an olefin with CO2 and H2 could be regarded as a dream reaction, since it would provide a straightforward approach for the synthesis of aliphatic carboxylic acids in perfect atom economy. However, this transformation has not been realized in a direct manner under mild conditions, because boosting the carboxylation with thermodynamically stable CO2 while suppressing the rapid hydrogenation of olefin remains a challenging task. Here, we report a rhodium-catalysed reductive hydrocarboxylation of styrene derivatives with CO2 and H2 under mild conditions, in which H2 served as the terminal reductant. In this approach, the carboxylation process was largely accelerated by visible light irradiation, which was proved both experimentally and by computational studies. Hydrocarboxylation of various kinds of styrene derivatives was achieved in good yields without additional base under ambient pressure of CO2/H2 at room temperature. Mechanistic investigations revealed that use of a cationic rhodium complex was critical to achieve high hydrocarboxylation selectivity.
Collapse
Affiliation(s)
- Yushu Jin
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Joaquim Caner
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Shintaro Nishikawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
38
|
Noto N, Saito S. Arylamines as More Strongly Reducing Organic Photoredox Catalysts than fac-[Ir(ppy) 3]. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naoki Noto
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Susumu Saito
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
39
|
Selective functionalization of benzylic C(sp3)–H bonds to synthesize complex molecules. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Ding Y, Huang R, Zhang W, Huang H. Nickel-Catalyzed Oxidative Carbonylation of Alkylarenes to Arylacetic Acids. Org Lett 2022; 24:7972-7977. [DOI: 10.1021/acs.orglett.2c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongzheng Ding
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Renbin Huang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Zhang
- Research Institute of Yanchang Petroleum (Group) Company, Ltd, Xi’an 710075, P. R. China
| | - Hanmin Huang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
- Center for Excellence in Molecular Synthesis, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
41
|
Wang H, Tian YM, König B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 2022; 6:745-755. [PMID: 37117495 DOI: 10.1038/s41570-022-00421-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.
Collapse
|
42
|
Sun W, Wang Y, Wen Z, Yao J, Li H. Mechanistic insights on base-DMSO mediated aerobic oxidation of (hetero)benzylic C-H bonds. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
43
|
Schlegel M, Qian S, Nicewicz DA. Aliphatic C-H Functionalization Using Pyridine N-Oxides as H-Atom Abstraction Agents. ACS Catal 2022; 12:10499-10505. [PMID: 37727583 PMCID: PMC10508875 DOI: 10.1021/acscatal.2c02997] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The alkylation and heteroarylation of unactivated tertiary, secondary, and primary C(sp3)-H bonds was achieved by employing an acridinium photoredox catalyst along with readily available pyridine Noxides as hydrogen atom transfer (HAT) precursors under visible light. Oxygen-centered radicals, generated by single-electron oxidation of the Noxides, are the proposed key intermediates whose reactivity can be easily modified by structural adjustments. A broad range of aliphatic C-H substrates with electron-donating or -withdrawing groups as well as various olefinic radical acceptors and heteroarenes were well tolerated.
Collapse
Affiliation(s)
- Marcel Schlegel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Siran Qian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David A Nicewicz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
44
|
Nandi S, Jana R. Toward Sustainable Photo‐/Electrocatalytic Carboxylation of Organic Substrates with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shantanu Nandi
- Indian Institute of Chemical Biology CSIR Organic and Medicinal Chemistry Division 4 Raja S C Mullick RoadJadavpur 700032 Kolkata INDIA
| | - Ranjan Jana
- Indian Institute of Chemical Biology CSIR Chemistry Division 4, Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
45
|
Shigeno M, Tohara I, Sasaki K, Nozawa-Kumada K, Kondo Y. Combined Brønsted Base-Promoted CO 2 Fixation into Benzylic C-H Bonds of Alkylarenes. Org Lett 2022; 24:4825-4830. [PMID: 35763616 DOI: 10.1021/acs.orglett.2c01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in developing methods for direct CO2 fixation into readily available unfunctionalized C-H bonds in organic substances has recently surged. In contrast to the well-studied carboxylations of alkynyl C(sp)-H and aromatic C(sp2)-H bonds, carboxylation of benzylic C(sp3)-H bonds to produce 2-arylacetic acids is limited to photoirradiation reactions and continues to be a challenging issue because of the low chemical reactivity. We herein describe that a combined Brønsted base (i.e., LiO-t-Bu/CsF and LiOCEt3/CsF) achieves benzylic carboxylation of electron-deficient, -neutral, and -rich alkylarenes and enables various functionalities, including fragile ones such as bromide, alkene, alkyne, and carbonyl moieties. Dicarboxylation at the benzylic position is also established. Cs-alkoxide generated in situ acts as a reactive base, as demonstrated in experiments with independently prepared CsO-t-Bu and by 133Cs nuclear magnetic resonance studies.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Itsuki Tohara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Keita Sasaki
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
46
|
Kazerouni AM, Brandes DS, Davies CC, Cotter LF, Mayer JM, Chen S, Ellman JA. Visible Light-Mediated, Highly Diastereoselective Epimerization of Lactams from the Most Accessible to the More Stable Stereoisomer. ACS Catal 2022; 12:7798-7803. [DOI: 10.1021/acscatal.2c02232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amaan M. Kazerouni
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Daniel S. Brandes
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Cassondra C. Davies
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Laura F. Cotter
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
47
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
48
|
Zheng S, Zhang T, Maekawa H. Magnesium-Promoted Reductive Carboxylation of Aryl Vinyl Ketones: Synthesis of γ-Keto Carboxylic Acids. J Org Chem 2022; 87:7342-7349. [PMID: 35608163 DOI: 10.1021/acs.joc.2c00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct reductive carboxylation of easily prepared aryl vinyl ketones under the atmosphere of carbon dioxide led to the selective formation of γ-keto carboxylic acids in 38-86% yields. The reaction is characterized by the carbon-carbon bond formation of carbon dioxide at the β-position of enone, with the use of magnesium turnings that can be easily handled as the reducing agent and the eco-friendly reaction conditions such as no pressuring, no lower or higher reaction temperature, and short reaction time. This protocol showed a wide substrate scope and provided a useful and convenient alternative to access biologically important γ-keto carboxylic acids.
Collapse
Affiliation(s)
- Suhua Zheng
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| | - Tianyuan Zhang
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| | - Hirofumi Maekawa
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
49
|
Fan Z, Yi Y, Xi C. Recent Advances in Light‐Induced Carboxylation of Organic (Pseudo)Halides with CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yaping Yi
- Tsinghua University Chemistry 100084 Beijing CHINA
| | - Chanjuan Xi
- Tsinghua University Department of Chemistry zhongguancui 100084 Beijing CHINA
| |
Collapse
|
50
|
Luo N, Nie W, Mu J, Liu S, Li M, Zhang J, Gao Z, Fan F, Wang F. Low-Work Function Metals Boost Selective and Fast Scission of Methanol C–H Bonds. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nengchao Luo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junju Mu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shiyang Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuyan Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|