1
|
Ripp A, Krämer M, Barth V, Moser P, Haas TM, Singh J, Huck T, Gleue L, Friedland K, Helm M, Jessen HJ. The P(III)-Amidite Based Synthesis of Stable Isotope Labeled mRNA-Cap-Structures Enables their Sensitive Quantitation from Brain Tissue. Angew Chem Int Ed Engl 2025; 64:e202414537. [PMID: 39324525 DOI: 10.1002/anie.202414537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
The 5' cap structure is crucial to mRNA function, with its diverse methylation patterns depending on the cellular state. Sensitive analytical methods are sought after to quantify this cap variety also referred to as cap epitranscriptome. To address a bottleneck for accurate and precise quantitation, we report a facile and fast access to high-quality synthetic standards via a new route, involving P(III)-amidite chemistry. A range of cap nucleotides and their stable heavy isotopic labeled analogues were derived from nucleoside diphosphates, which themselves were directly prepared in a one-step reaction sequence starting from unprotected nucleosides using a triphosphorylating reagent in combination with ethylenediamine. Considering a wider scope, the route also enables direct access to magic spot nucleotides and diphosphates of isoprenyl-alcohols. Stable-isotope labeled cap nucleotides derived from this route paved the way for the development of a highly sensitive LC-MS/MS method, applied to the characterization of mouse brain cap epitranscriptomes, which turned out to be very different from those of cultured cell lines of widespread use in the life sciences.
Collapse
Affiliation(s)
- Alexander Ripp
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| | - Martina Krämer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Vanessa Barth
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| | - Patrick Moser
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Tamara Huck
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Lukas Gleue
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Kristina Friedland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Roy SK, Moser S, Dürr-Mayer T, Hinkelmann R, Jessen HJ. ESIPT fluorescence turn-on sensors for detection of short chain inorganic polyphosphate in water. Org Biomol Chem 2024. [PMID: 39714782 DOI: 10.1039/d4ob01926a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu2+ coordination. Removal of the copper ion through decomplexation by the analyte accesses the on-state. The probes detect polyphosphates over other biologically occurring phosphates, pyrophosphate, and nucleotides such as ATP, ADP, GTP. An optimal fluorescence response is observed with the short-chain polyphosphate polyP8. Furthermore, the probe shows selectivity towards linear polyphosphates over cyclic metaphosphates. The rapid 'turn-off-turn-on' fluorescence responses upon consecutive addition of Cu2+ and polyP8 are reversible, further highlighting sensor performance in an aqueous environment. One of the sensors is then used to monitor polyP digestion by an exopolyphosphatase (PPX).
Collapse
Affiliation(s)
- Subhra Kanti Roy
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
| | - Sandra Moser
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
| | - Tobias Dürr-Mayer
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
| | - Rahel Hinkelmann
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany.
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Qian K, Hanf B, Cummins C, Fiedler D. Monodisperse Chemical Oligophosphorylation of Peptides via Protected Oligophosphorimidazolide Reagents. Angew Chem Int Ed Engl 2024:e202419147. [PMID: 39625829 DOI: 10.1002/anie.202419147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 12/17/2024]
Abstract
Protein poly- and oligophosphorylation are recently discovered post-translational modifications that remain poorly characterized due to (1) the difficulty of extracting endogenously polyphosphorylated species without degradation and (2) the absence of synthetic and analytical tools to prepare and characterize poly- and oligophosphorylated species in biochemical contexts. Herein, we report a methodology for the selective oligophosphorylation of peptides with monodisperse phosphate chain lengths (Pn=3-6). A library of oligophosphorimidazolide (oligoP-imidazolide) reagents featuring benzyl and o-nitrophenylethyl protecting groups was synthesized in moderate-to-good yields (65-93 %). These oligoP-imidazolide reagents enabled the selective and simultaneous conjugation of multiple phosphate units to phosphoryl nucleophiles, circumventing tedious iterative processes. The generalizability of this approach is illustrated by a substrate scope study that includes several biologically relevant phosphopeptide sequences, culminating in the synthesis of >60 examples of peptide oligophosphates (Pn=2-6). Moreover, we report the preparation of oligoP-diimidazolides (Pn=3-5) and discuss their application in generating unique condensed phosphate-peptide conjugates. We also demonstrate that human phospho-ubiquitin (pS65-Ub) is amenable to functionalization by our reagents. Overall, we envision the methods described here will enable future studies that characterize these newly discovered but poorly understood phosphorylation modes.
Collapse
Affiliation(s)
- Kevin Qian
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA-02139, United States of America
| | - Björn Hanf
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Germany, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christopher Cummins
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA-02139, United States of America
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Germany, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
4
|
Pichon M, Hollenstein M. Controlled enzymatic synthesis of oligonucleotides. Commun Chem 2024; 7:138. [PMID: 38890393 PMCID: PMC11189433 DOI: 10.1038/s42004-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Oligonucleotides are advancing as essential materials for the development of new therapeutics, artificial genes, or in storage of information applications. Hitherto, our capacity to write (i.e., synthesize) oligonucleotides is not as efficient as that to read (i.e., sequencing) DNA/RNA. Alternative, biocatalytic methods for the de novo synthesis of natural or modified oligonucleotides are in dire need to circumvent the limitations of traditional synthetic approaches. This Perspective article summarizes recent progress made in controlled enzymatic synthesis, where temporary blocked nucleotides are incorporated into immobilized primers by polymerases. While robust protocols have been established for DNA, RNA or XNA synthesis is more challenging. Nevertheless, using a suitable combination of protected nucleotides and polymerase has shown promises to produce RNA oligonucleotides even though the production of long DNA/RNA/XNA sequences (>1000 nt) remains challenging. We surmise that merging ligase- and polymerase-based synthesis would help to circumvent the current shortcomings of controlled enzymatic synthesis.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
5
|
Neville N, Lehotsky K, Klupt KA, Downey M, Jia Z. Polyphosphate attachment to lysine repeats is a non-covalent protein modification. Mol Cell 2024; 84:1802-1810.e4. [PMID: 38701741 DOI: 10.1016/j.molcel.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024]
Abstract
Polyphosphate (polyP) is a chain of inorganic phosphate that is present in all domains of life and affects diverse cellular phenomena, ranging from blood clotting to cancer. A study by Azevedo et al. described a protein modification whereby polyP is attached to lysine residues within polyacidic serine and lysine (PASK) motifs via what the authors claimed to be covalent phosphoramidate bonding. This was based largely on the remarkable ability of the modification to survive extreme denaturing conditions. Our study demonstrates that lysine polyphosphorylation is non-covalent, based on its sensitivity to ionic strength and lysine protonation and absence of phosphoramidate bond formation, as analyzed via 31P NMR. Ionic interaction with lysine residues alone is sufficient for polyP modification, and we present a new list of non-PASK lysine repeat proteins that undergo polyP modification. This work clarifies the biochemistry of polyP-lysine modification, with important implications for both studying and modulating this phenomenon. This Matters Arising paper is in response to Azevedo et al. (2015), published in Molecular Cell. See also the Matters Arising Response by Azevedo et al. (2024), published in this issue.
Collapse
Affiliation(s)
- Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kody A Klupt
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
6
|
Pichon M, Levi-Acobas F, Kitoun C, Hollenstein M. 2',3'-Protected Nucleotides as Building Blocks for Enzymatic de novo RNA Synthesis. Chemistry 2024; 30:e202400137. [PMID: 38403849 DOI: 10.1002/chem.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Camélia Kitoun
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
7
|
Guo J, Balić P, Borodkin VS, Filippov DV, Codée JDC. Synthesis of Unsymmetrical Difluoromethylene Bisphosphonates. Org Lett 2024; 26:739-744. [PMID: 38215221 PMCID: PMC10825822 DOI: 10.1021/acs.orglett.3c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/14/2024]
Abstract
We demonstrate the use of the symmetrical diethyl(dimethyl)difluoromethylene bisphosphonate reagent for the synthesis of terminal and unsymmetrical difluoromethylene bisphosphonates, close analogues of biologically important molecules. The difference in reactivity of the methyl and ethyl groups in the symmetrical diethyl(dimthyl)difluoromethylene bisphosphonate is exploited in a stepwise demethylation-condensation sequence to functionalize either side of the reagent to allow the generation of a series of close bioisosteres of natural pyrophosphate molecules, including ADPr, CDP-glycerol and CDP-ribitol.
Collapse
Affiliation(s)
- Jianyun Guo
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Pascal Balić
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Vladimir S. Borodkin
- Division
of Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH Dundee, U.K.
| | - Dmitri V. Filippov
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| |
Collapse
|
8
|
Dürr-Mayer T, Schmidt A, Wiesler S, Huck T, Mayer A, Jessen HJ. Non-Hydrolysable Analogues of Cyclic and Branched Condensed Phosphates: Chemistry and Chemical Proteomics. Chemistry 2023; 29:e202302400. [PMID: 37646539 DOI: 10.1002/chem.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Studies into the biology of condensed phosphates almost exclusively cover linear polyphosphates. However, there is evidence for the presence of cyclic polyphosphates (metaphosphates) in organisms and for enzymatic digestion of branched phosphates (ultraphosphates) with alkaline phosphatase. Further research of non-linear condensed phosphates in biology would profit from interactome data of such molecules, however, their stability in biological media is limited. Here we present syntheses of modified, non-hydrolysable analogues of cyclic and branched condensed phosphates, called meta- and ultraphosphonates, and their application in a chemical proteomics approach using yeast cell extracts. We identify putative interactors with overlapping hits for structurally related capture compounds underlining the quality of our results. The datasets serve as starting point to study the biological relevance and functions of meta- and ultraphosphates. In addition, we examine the reactivity of meta- and ultraphosphonates with implications for their "hydrolysable" analogues: Efforts to increase the ring-sizes of meta- or cyclic ultraphosphonates revealed a strong preference to form trimetaphosphate-analogue structures by cyclization and/or ring-contraction. Using carbodiimides for condensation, the so far inaccessible dianhydro product of ultraphosphonate, corresponding to P4 O11 2- , was selectively obtained and then ring-opened by different nucleophiles yielding modified cyclic ultraphosphonates.
Collapse
Affiliation(s)
- Tobias Dürr-Mayer
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Andrea Schmidt
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-CH-1066, Epalinges, Switzerland
| | - Stefan Wiesler
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Tamara Huck
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, CH-CH-1066, Epalinges, Switzerland
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg
| |
Collapse
|
9
|
Bennett RP, Yoluç Y, Salter JD, Ripp A, Jessen HJ, Kaiser SM, Smith HC. Sangivamycin is preferentially incorporated into viral RNA by the SARS-CoV-2 polymerase. Antiviral Res 2023; 218:105716. [PMID: 37690700 DOI: 10.1016/j.antiviral.2023.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Sangivamycin (S) is an adenosine (A) nucleoside analog with low nanomolar antiviral activity against SARS-CoV-2 in vitro. Previously, low nanomolar antiviral efficacy was revealed when tested against multiple viral variants in several cell types. SARS-CoV-2 RNA isolated from live virus infected cells and the virions released from these cells was analyzed by mass spectrometry (MS) for S incorporation. Dose-dependent incorporation occurred up to 1.8 S per 1,000 nucleotides (49 S per genome) throughout the viral genomes isolated from both infected cells and viral particles, but this incorporation did not change the viral mutation rate. In contrast, host mRNA, affinity purified from the same infected and treated cells, contained little or no S. Sangivamycin triphosphate (STP) was synthesized to evaluate its incorporation into RNA by recombinant SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) under defined in vitro conditions. SARS-CoV-2 RdRp showed that S was not a chain terminator and S containing oligonucleotides templated as A. Though the antiviral mechanism remains to be determined, the data suggests that SARS-CoV-2 RdRp incorporates STP into SARS-CoV-2 RNA, which does not significantly impair viral RNA synthesis or the mutation rate.
Collapse
Affiliation(s)
| | - Yasemin Yoluç
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
| | | | - Alexander Ripp
- Institute of Organic Chemistry Albert-Ludwigs-University, Freiburg, Germany.
| | - Henning J Jessen
- Institute of Organic Chemistry Albert-Ludwigs-University, Freiburg, Germany.
| | - Stefanie M Kaiser
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
| | - Harold C Smith
- OyaGen, Inc., Rochester, NY, USA; Department of Biochemistry and Biophysics, Center for RNA Biology, Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
10
|
Neville N, Lehotsky K, Yang Z, Klupt KA, Denoncourt A, Downey M, Jia Z. Modification of histidine repeat proteins by inorganic polyphosphate. Cell Rep 2023; 42:113082. [PMID: 37660293 DOI: 10.1016/j.celrep.2023.113082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of orthophosphate that is present in nearly all organisms studied to date. A remarkable function of polyP involves its attachment to lysine residues via non-enzymatic post-translational modification (PTM), which is presumed to be covalent. Here, we show that proteins containing tracts of consecutive histidine residues exhibit a similar modification by polyP, which confers an electrophoretic mobility shift on NuPAGE gels. Our screen uncovers 30 human and yeast histidine repeat proteins that undergo histidine polyphosphate modification (HPM). This polyP modification is histidine dependent and non-covalent in nature, although remarkably it withstands harsh denaturing conditions-a hallmark of covalent PTMs. Importantly, we show that HPM disrupts phase separation and the phosphorylation activity of the human protein kinase DYRK1A, and inhibits the activity of the transcription factor MafB, highlighting HPM as a potential protein regulatory mechanism.
Collapse
Affiliation(s)
- Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Zhiyun Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kody A Klupt
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
11
|
Hasegawa S, Inagaki M, Kato S, Li Z, Kimura Y, Abe H. Synthesis of nucleoside oligophosphates by electrophilic activation of phosphorothioate. Org Biomol Chem 2023; 21:3997-4001. [PMID: 37186249 DOI: 10.1039/d2ob02260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We herein report a new synthetic method for nucleoside oligophosphates based on electrophilic activation of 5'-phosphorothioate nucleotides. The treatment of phosphorothioate with 2,4-dinitrochlorobenzene (DNCB) efficiently afforded the key activated species, electrophilic thioester nucleotides (EPT-Ns), which were coupled with various phosphate reagents to afford the target nucleoside oligophosphates, including an mRNA cap analog.
Collapse
Affiliation(s)
| | | | - Shunichi Kato
- Graduate School of Science, Nagoya University, Japan.
| | - Zhenmin Li
- Graduate School of Science, Nagoya University, Japan.
| | | | - Hiroshi Abe
- Graduate School of Science, Nagoya University, Japan.
- CREST, Japan Science and Technology Agency, Japan
- Institute for Glyco-core Research (iGCORE), Japan
| |
Collapse
|
12
|
Tellurium-Modified Nucleosides, Nucleotides, and Nucleic Acids with Potential Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238379. [PMID: 36500495 PMCID: PMC9737395 DOI: 10.3390/molecules27238379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2'-MeTe, and 2'-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.
Collapse
|
13
|
Wu KB, Skrodzki CJA, Su Q, Lin J, Niu J. "Click handle"-modified 2'-deoxy-2'-fluoroarabino nucleic acid as a synthetic genetic polymer capable of post-polymerization functionalization. Chem Sci 2022; 13:6873-6881. [PMID: 35774169 PMCID: PMC9200136 DOI: 10.1039/d2sc00679k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023] Open
Abstract
The functions of natural nucleic acids such as DNA and RNA have transcended genetic information carriers and now encompass affinity reagents, molecular catalysts, nanostructures, data storage, and many others. However, the vulnerability of natural nucleic acids to nuclease degradation and the lack of chemical functionality have imposed a significant constraint on their ever-expanding applications. Herein, we report the synthesis and polymerase recognition of a 5-(octa-1,7-diynyl)uracil 2'-deoxy-2'-fluoroarabinonucleic acid (FANA) triphosphate. The DNA-templated, polymerase-mediated primer extension using this "click handle"-modified FANA (cmFANA) triphosphate and other FANA nucleotide triphosphates consisting of canonical nucleobases efficiently generated full-length products. The resulting cmFANA polymers exhibited excellent nuclease resistance and the ability to undergo efficient click conjugation with azide-functionalized molecules, thereby becoming a promising platform for serving as a programmable and evolvable synthetic genetic polymer capable of post-polymerization functionalization.
Collapse
Affiliation(s)
- Kevin B Wu
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | | | - Qiwen Su
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | - Jennifer Lin
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| | - Jia Niu
- Department of Chemistry, Boston College 2609 Beacon Street, Chestnut Hill MA 20467 USA
| |
Collapse
|
14
|
Appy L, Peyrottes S, Roy B. Supported Synthesis of Adenosine Nucleotides and Derivatives on a Benzene‐Centered Tripodal Soluble Support. European J Org Chem 2022. [DOI: 10.1002/ejoc.202100544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lucie Appy
- Nucleosides & Phosphorylated Effectors Team Institute for Biomolecules Max Mousseron (IBMM) UMR 5247 CNRS University of Montpellier, ENSCM Campus Triolet cc 1705, Place Eugène Bataillon 34095 Montpellier France
| | - Suzanne Peyrottes
- Nucleosides & Phosphorylated Effectors Team Institute for Biomolecules Max Mousseron (IBMM) UMR 5247 CNRS University of Montpellier, ENSCM Campus Triolet cc 1705, Place Eugène Bataillon 34095 Montpellier France
| | - Béatrice Roy
- Nucleosides & Phosphorylated Effectors Team Institute for Biomolecules Max Mousseron (IBMM) UMR 5247 CNRS University of Montpellier, ENSCM Campus Triolet cc 1705, Place Eugène Bataillon 34095 Montpellier France
| |
Collapse
|
15
|
Shepard SM, Jessen HJ, Cummins CC. Beyond Triphosphates: Reagents and Methods for Chemical Oligophosphorylation. J Am Chem Soc 2022; 144:7517-7530. [PMID: 35471019 DOI: 10.1021/jacs.1c07990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligophosphates play essential roles in biochemistry, and considerable research has been directed toward the synthesis of both naturally occurring oligophosphates and their synthetic analogues. Greater attention has been given to mono-, di-, and triphosphates, as these are present in higher concentrations biologically and easier to synthesize. However, extended oligophosphates have potent biochemical roles, ranging from blood coagulation to HIV drug resistance. Sporadic reports have slowly built a niche body of literature related to the synthesis and study of extended oligophosphates, but newfound interests and developments have the potential to rapidly expand this field. Here we report on current methods to synthesize oligophosphates longer than triphosphates and comment on the most important future directions for this area of research. The state of the art has provided fairly robust methods for synthesizing nucleoside 5'-tetra- and pentaphosphates as well as dinucleoside 5',5'-oligophosphates. Future research should endeavor to push such syntheses to longer oligophosphates while developing synthetic methodologies for rarer morphologies such as 3'-nucleoside oligophosphates, polyphosphates, and phosphonate/thiophosphate analogues of these species.
Collapse
Affiliation(s)
- Scott M Shepard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg & Cluster of Excellence livMatS, FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| |
Collapse
|
16
|
Haas TM, Wiesler S, Dürr‐Mayer T, Ripp A, Fouka P, Qiu D, Jessen HJ. The Aryne Phosphate Reaction**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thomas M. Haas
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Stefan Wiesler
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Tobias Dürr‐Mayer
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Alexander Ripp
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS) 79110 Freiburg Germany
| | - Paraskevi Fouka
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Danye Qiu
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS) 79110 Freiburg Germany
| |
Collapse
|
17
|
Lin H, Jiménez EI, Arriola JT, Müller UF, Krishnamurthy R. Concurrent Prebiotic Formation of Nucleoside‐Amidophosphates and Nucleoside‐Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huacan Lin
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution Atlanta GA 30332 USA
| | - Eddy I. Jiménez
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Joshua T. Arriola
- Department of Chemistry and Biochemistry UC San Diego 9500 Gilman Drive La Jolla CA 92037 USA
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry UC San Diego 9500 Gilman Drive La Jolla CA 92037 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution Atlanta GA 30332 USA
| |
Collapse
|
18
|
Haas TM, Wiesler S, Dürr‐Mayer T, Ripp A, Fouka P, Qiu D, Jessen HJ. The Aryne Phosphate Reaction. Angew Chem Int Ed Engl 2022; 61:e202113231. [PMID: 34727582 PMCID: PMC9299019 DOI: 10.1002/anie.202113231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/10/2022]
Abstract
Condensed phosphates are a critically important class of molecules in biochemistry. Non-natural analogues are important for various applications, such as single-molecule real-time DNA sequencing. Often, such analogues contain more than three phosphate units in their oligophosphate chain. Consequently, investigations into phosphate reactivity enabling new ways of phosphate functionalization and oligophosphorylation are essential. Here, we scrutinize the potential of phosphates to act as arynophiles, paving the way for follow-up oligophosphorylation reactions. The aryne phosphate reaction is a powerful tool to-depending on the perspective-(oligo)phosphorylate arenes or arylate (oligo-cyclo)phosphates. Based on Kobayashi-type o-silylaryltriflates, the aryne phosphate reaction enables rapid entry into a broad spectrum of arylated products, like monophosphates, diphosphates, phosphodiesters and polyphosphates. The synthetic potential of these new transformations is demonstrated by efficient syntheses of nucleotide analogues and an unprecedented one-flask octaphosphorylation.
Collapse
Affiliation(s)
- Thomas M. Haas
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Stefan Wiesler
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Tobias Dürr‐Mayer
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Alexander Ripp
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
| | - Paraskevi Fouka
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Danye Qiu
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
| |
Collapse
|
19
|
Lin H, Jiménez EI, Arriola JT, Müller UF, Krishnamurthy R. Concurrent Prebiotic Formation of Nucleoside-Amidophosphates and Nucleoside-Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization. Angew Chem Int Ed Engl 2021; 61:e202113625. [PMID: 34738300 DOI: 10.1002/anie.202113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/10/2022]
Abstract
Polymerization of nucleic acids in biology utilizes 5'-nucleoside triphosphates (NTPs) as substrates. The prebiotic availability of NTPs has been unresolved and other derivatives of nucleoside-monophosphates (NMPs) have been studied. However, this latter approach necessitates a change in chemistries when transitioning to biology. Herein we show that diamidophosphate (DAP), in a one-pot amidophosphorylation-hydrolysis setting converts NMPs into the corresponding NTPs via 5'-nucleoside amidophosphates (NaPs). The resulting crude mixture of NTPs are accepted by proteinaceous- and ribozyme-polymerases as substrates for nucleic acid polymerization. This phosphorylation also operates at the level of oligonucleotides enabling ribozyme-mediated ligation. This one-pot protocol for simultaneous generation of NaPs and NTPs suggests that the transition from prebiotic-phosphorylation and oligomerization to an enzymatic processive-polymerization can be more continuous than previously anticipated.
Collapse
Affiliation(s)
- Huacan Lin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF-NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA
| | - Eddy I Jiménez
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joshua T Arriola
- Department of Chemistry and Biochemistry, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF-NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
Jessen HJ, Dürr-Mayer T, Haas TM, Ripp A, Cummins CC. Lost in Condensation: Poly-, Cyclo-, and Ultraphosphates. Acc Chem Res 2021; 54:4036-4050. [PMID: 34648267 DOI: 10.1021/acs.accounts.1c00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Much like linear, branched, and cyclic alkanes, condensed phosphates exist as linear, branched, and cyclic structures. Inasmuch as alkanes are the cornerstone of organic chemistry, generating an inexplorably large chemical space, a comparable richness in structures can be expected for condensed phosphates, as also for them the concepts of isomerism apply. Little of their chemical space has been charted, and only a few different synthesis methods are available to construct isomers of condensed phosphates. Here, we will discuss the application of phosphoramidites with one, two, or three P-N bonds that can be substituted selectively to access different condensed phosphates in a highly controllable manner. Work directed toward the further exploration of this chemical space will contribute to our understanding of the fundamental chemistry of phosphates.In biology, condensed phosphates play important roles in the form of inorganic representatives, such as pyrophosphate, polyphosphate, and cyclophosphate, and also in conjugation with organic molecules, such as esters and amidates. Phosphorus is one of the six biogenic elements; the omnipresence of phosphates in biology points toward their critical involvement in prebiotic chemistry and the emergence of life itself. Indeed, it is hard to imagine any life without phosphate. It is therefore desirable to achieve through synthesis a better understanding of the chemistry of the condensed phosphates to further explore their biology.There is a rich but underexplored chemistry of the family of condensed phosphates per se, which is further diversified by their conjugation to important biomolecules and metabolites. For example, proteins may be polyphosphorylated on lysins, a very recent addition to posttranslational modifications. Adenosine triphosphate, as a representative of the small molecules, on the other hand, is well known as the universal cellular energy currency. In this Account, we will describe our motivations and our approaches to construct, modify, and synthetically apply different representatives of the condensed phosphates. We also describe the generation of hybrids composed of cyclic and linear structures of different oxidation states and develop them into reagents of great utility. A pertinent example is provided in the step-economic synthesis of the magic spot nucleotides (p)ppGpp. Finally, we provide an overview of 31P NMR data collected over the years in our laboratories, helping as a waymarker for not getting lost in condensation.
Collapse
Affiliation(s)
- Henning J. Jessen
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT − Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Tobias Dürr-Mayer
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Thomas M. Haas
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Alexander Ripp
- Department of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT − Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Christopher C. Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| |
Collapse
|
21
|
Sakurada T, Miyahara R, Kawazoe R, Nagata Y, Kikukawa Y, Sasaki S, Taniguchi Y. Simple and Easy Synthesis of γ-Amido-dNTPs in Water and Their Polymerase Reaction Properties. Chem Pharm Bull (Tokyo) 2021; 69:1061-1066. [PMID: 34719587 DOI: 10.1248/cpb.c21-00497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
γ-Amido-modified 2'-deoxynucleoside triphosphates (dNTPs) and nucleoside triphosphates (NTPs) are becoming increasingly important as biological tools. We herein describe the simple and easy synthesis of γ-amido-dNTPs and -NTPs from commercially available corresponding dNTPs and NTPs in a one-pot reaction using water-soluble carbodiimide and ammonia solution. We examined the effects of synthesized γ-amido-dNTPs on the DNA polymerase reaction. The results obtained showed the incorporation of these derivatives into the DNA primer while maintaining nucleobase selectivity; however, their incorporation efficiency by DNA polymerase was lower than that of dNTP. This is the first study to demonstrate the successful synthesis of four sets of γ-amido-dNTPs and clarify their properties.
Collapse
Affiliation(s)
- Takato Sakurada
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Ryo Miyahara
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Ryoji Kawazoe
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yusuke Nagata
- Graduate School of Pharmaceutical Sciences, Kyushu University
| | | | - Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | | |
Collapse
|
22
|
Wang D, Li Y, Cope HA, Li X, He P, Liu C, Li G, Rahman SM, Tooker NB, Bott CB, Onnis-Hayden A, Singh J, Elfick A, Marques R, Jessen HJ, Oehmen A, Gu AZ. Intracellular polyphosphate length characterization in polyphosphate accumulating microorganisms (PAOs): Implications in PAO phenotypic diversity and enhanced biological phosphorus removal performance. WATER RESEARCH 2021; 206:117726. [PMID: 34656820 DOI: 10.1016/j.watres.2021.117726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/31/2021] [Accepted: 09/26/2021] [Indexed: 05/23/2023]
Abstract
Polyphosphate (polyP) accumulating organisms (PAOs) are the key agent to perform enhanced biological phosphorus removal (EBPR) activity, and intracellular polyP plays a key role in this process. Potential associations between EBPR performance and the polyP structure have been suggested, but are yet to be extensively investigated, mainly due to the lack of established methods for polyP characterization in the EBPR system. In this study, we explored and demonstrated that single-cell Raman spectroscopy (SCRS) can be employed for characterizing intracellular polyPs of PAOs in complex environmental samples such as EBPR systems. The results, for the first time, revealed distinct distribution patterns of polyP length (as Raman peak position) in PAOs in lab-scale EBPR reactors that were dominated with different PAO types, as well as among different full-scale EBPR systems with varying configurations. Furthermore, SCRS revealed distinctive polyP composition/features among PAO phenotypic sub-groups, which are likely associated with phylogenetic and/or phenotypic diversity in EBPR communities, highlighting the possible resolving power of SCRS at the microdiversity level. To validate the observed polyP length variations via SCRS, we also performed and compared bulk polyP length characteristics in EBPR biomass using conventional polyacrylamide gel electrophoresis (PAGE) and solution 31P nuclear magnetic resonance (31P-NMR) methods. The results are consistent with the SCRS findings and confirmed the variations in the polyP lengths among different EBPR systems. Compared to conventional methods, SCRS exhibited advantages as compared to conventional methods, including the ability to characterize in situ the intracellular polyPs at subcellular resolution in a label-free and non-destructive way, and the capability to capture subtle and detailed biochemical fingerprints of cells for phenotypic classification. SCRS also has recognized limitations in comparison with 31P-NMR and PAGE, such as the inability to quantitatively detect the average polyP chain length and its distribution. The results provided initial evidence for the potential of SCRS-enabled polyP characterization as an alternative and complementary microbial community phenotyping method to facilitate the phenotype-function (performance) relationship deduction in EBPR systems.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Yueyun Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Black and Veatch, 2999 Oak Road #490, Walnut Creek, CA 94597, United States
| | - Helen A Cope
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Xiaoxiao Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Peisheng He
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Cong Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Sheikh M Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Nicholas B Tooker
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Marston Hall, Amherst, MA 01003, United States
| | - Charles B Bott
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA 23454, United States
| | - Annalisa Onnis-Hayden
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany; Department of Chemistry, University College London, 20 Gordon St, Bloomsbury, London WC1H 0AJ, United Kingdom
| | - Alistair Elfick
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ricardo Marques
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Adrian Oehmen
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States.
| |
Collapse
|
23
|
Ripp A, Singh J, Jessen HJ. Rapid Synthesis of Nucleoside Triphosphates and Analogues. ACTA ACUST UNITED AC 2021; 81:e108. [PMID: 32391982 DOI: 10.1002/cpnc.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nucleoside triphosphates (NTPs) are essential biomolecules involved in almost all biological processes, and their study is therefore critical to understanding cellular biology. Here, we describe a chemical synthesis suitable for obtaining both natural and highly modified NTPs, which can, for example, be used as surrogates to probe biological processes. The approach includes the preparation of a reagent that enables the facile introduction and modification of three phosphate units: cyclic pyrophosphoryl P-amidite (c-PyPA), derived from pyrophosphate (PV ) and a reactive phosphoramidite (PIII ). By using non-hydrolyzable analogues of pyrophosphate, the reagent can be readily modified to obtain a family of non-hydrolyzable analogues containing CH2 , CF2 , CCl2 , and NH that are stable in solution for several weeks if stored appropriately. They enable the synthesis of NTPs by reaction with nucleosides to give deoxycyclotriphosphate esters that are then oxidized to cyclotriphosphate (cyclo-TP) esters. The use of different oxidizing agents provides an opportunity for modification at P-α. Furthermore, terminal modifications at P-γ can be introduced by linearization of the cyclo-TP ester with various nucleophiles. © 2020 The Authors. Basic Protocol 1: Synthesis of cyclic pyrophosphoryl P-amidite (c-PyPA) and derivatives (c-PyNH PA, c-PyCH2 PA, c-PyCCl2 PA, c-PyCF2 PA) Basic Protocol 2: Synthesis of 3'-azidothymidine 5'-γ-P-propargylamido triphosphates and analogues Basic Protocol 3: Synthesis of 2'-deoxythymidine 5'-γ-P-propargylamido triphosphate (15) Basic Protocol 4: Synthesis of adenosine 5'-γ-P-amido triphosphate (19) and adenosine 5'-γ-P-propargylamido triphosphate (20) Basic Protocol 5: Synthesis of d4T 5'-γ-propargylamido β,γ-(difluoromethylene)triphosphate Support Protocol: Synthesis of diisopropylphosphoramidous dichloride.
Collapse
Affiliation(s)
- Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.,Freiburg Research Institute for Advanced Studies, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Shepard SM, Kim H, Bang QX, Alhokbany N, Cummins CC. Synthesis of α,δ-Disubstituted Tetraphosphates and Terminally-Functionalized Nucleoside Pentaphosphates. J Am Chem Soc 2020; 143:463-470. [PMID: 33375782 DOI: 10.1021/jacs.0c11884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The anion [P4O11]2-, employed as its bis(triphenylphosphine)iminium (PPN) salt, is shown herein to be a versatile reagent for nucleophile tetraphosphorylation. Treatment under anhydrous conditions with an alkylamine base and a nucleophile (HNuc1), such as an alcohol (neopentanol, cyclohexanol, 4-methylumbelliferone, and Boc-Tyr-OMe), an amine (propargylamine, diethylamine, morpholine, 3,5-dimethylaniline, and isopropylamine), dihydrogen phosphate, phenylphosphonate, azide ion, or methylidene triphenylphosphorane, results in nucleophile substituted tetrametaphosphates ([P4O11Nuc1]3-) as mixed PPN and alkylammonium salts in 59% to 99% yield. Treatment of the resulting functionalized tetrametaphosphates with a second nucleophile (HNuc2), such as hydroxide, a phenol (4-methylumbelliferone), an amine (propargylamine and ethanolamine), fluoride, or a nucleoside monophosphate (uridine monophosphate, deoxyadenosine monophosphate, and adenosine monophosphate), results in ring opening to linear tetraphosphates bearing one nucleophile on each end ([Nuc1(PO3)3PO2Nuc2]4-). When necessary, these linear tetraphosphates are purified by reverse phase or anion exchange HPLC, yielding triethylammonium or ammonium salts in 32% to 92% yield from [PPN]2[P4O11]. Phosphorylation of methylidene triphenylphosphorane as Nuc1 yields a new tetrametaphosphate-based ylide ([Ph3PCHP4O11]3-, 94% yield). Wittig olefination of 2',3'-O-isopropylidene-5'-deoxy-5'-uridylaldehyde using this ylide results in a 3'-deoxy-3',4'-didehydronucleotide derivative, isolated as the triethylammonium salt in 54% yield.
Collapse
Affiliation(s)
- Scott M Shepard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Hyehwang Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Qing Xin Bang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Norah Alhokbany
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
25
|
Ma J, Ripp A, Wassy D, Dürr T, Qiu D, Häner M, Haas T, Popp C, Bezold D, Richert S, Esser B, Jessen HJ. Thiocoumarin Caged Nucleotides: Synthetic Access and Their Photophysical Properties. Molecules 2020; 25:E5325. [PMID: 33203096 PMCID: PMC7696096 DOI: 10.3390/molecules25225325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
Photocages have been successfully applied in cellular signaling studies for the controlled release of metabolites with high spatio-temporal resolution. Commonly, coumarin photocages are activated by UV light and the quantum yields of uncaging are relatively low, which can limit their applications in vivo. Here, syntheses, the determination of the photophysical properties, and quantum chemical calculations of 7-diethylamino-4-hydroxymethyl-thiocoumarin (thio-DEACM) and caged adenine nucleotides are reported and compared to the widely used 7-diethylamino-4-hydroxymethyl-coumarin (DEACM) caging group. In this comparison, thio-DEACM stands out as a phosphate cage with improved photophysical properties, such as red-shifted absorption and significantly faster photolysis kinetics.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Daniel Wassy
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Tobias Dürr
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Thomas Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Christoph Popp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Dominik Bezold
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany;
| | - Birgit Esser
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
26
|
Haratipour P, Minard C, Nakhjiri M, Negahbani A, Chamberlain BT, Osuna J, Upton TG, Zhao M, Kashemirov BA, McKenna CE. Completing the β,γ-CXY-dNTP Stereochemical Probe Toolkit: Synthetic Access to the dCTP Diastereomers and 31P and 19F NMR Correlations with Absolute Configurations. J Org Chem 2020; 85:14592-14609. [PMID: 33125847 DOI: 10.1021/acs.joc.0c01204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside 5'-triphosphate (dNTP) analogues in which the β,γ-oxygen is mimicked by a CXY group (β,γ-CXY-dNTPs) have provided information about DNA polymerase catalysis and fidelity. Definition of CXY stereochemistry is important to elucidate precise binding modes. We previously reported the (R)- and (S)-β,γ-CHX-dGTP diastereomers (X = F, Cl), prepared via P,C-dimorpholinamide CHCl (6a, 6b) and CHF (7a, 7b) bisphosphonates (BPs) equipped with an (R)-mandelic acid as a chiral auxiliary, with final deprotection using H2/Pd. This method also affords the β,γ-CHCl-dTTP (11a, 11b), β,γ-CHF (12a, 12b), and β,γ-CHCl (13a, 13b) dATP diastereomers as documented here, but the reductive deprotection step is not compatible with dCTP or the bromo substituent in β,γ-CHBr-dNTP analogues. To complete assembly of the toolkit, we describe an alternative synthetic strategy featuring ethylbenzylamine or phenylglycine-derived chiral BP synthons incorporating a photolabile protecting group. After acid-catalyzed removal of the (R)-(+)-α-ethylbenzylamine auxiliary, coupling with activated dCMP and photochemical deprotection, the individual diastereomers of β,γ-CHBr- (33a, 33b), β,γ-CHCl- (34a, 34b), β,γ-CHF-dCTP (35a, 35b) were obtained. The β,γ-CH(CH3)-dATPs (44a, 44b) were obtained using a methyl (R)-(-)-phenylglycinate auxiliary. 31P and 19F NMR Δδ values are correlated with CXY stereochemistry and pKa2-4 values for 13 CXY-bisphosphonic acids and imidodiphosphonic acid are tabulated.
Collapse
Affiliation(s)
- Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Corinne Minard
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Brian T Chamberlain
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Jorge Osuna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Thomas G Upton
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Michelle Zhao
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| |
Collapse
|
27
|
Ganz D, Harijan D, Wagenknecht HA. Labelling of DNA and RNA in the cellular environment by means of bioorthogonal cycloaddition chemistry. RSC Chem Biol 2020; 1:86-97. [PMID: 34458750 PMCID: PMC8341813 DOI: 10.1039/d0cb00047g] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Labelling of nucleic acids as biologically important cellular components is a crucial prerequisite for the visualization and understanding of biological processes. Efficient bioorthogonal chemistry and in particular cycloadditions fullfill the requirements for cellular applications. The broadly applied Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC), however, is limited to labellings in vitro and in fixed cells due to the cytotoxicity of copper salts. Currently, there are three types of copper-free cycloadditions used for nucleic acid labelling in the cellular environment: (i) the ring-strain promoted azide-alkyne cycloaddition (SPAAC), (ii) the "photoclick" 1,3-dipolar cycloadditions, and (iii) the Diels-Alder reactions with inverse electron demand (iEDDA). We review only those building blocks for chemical synthesis on solid phase of DNA and RNA and for enzymatic DNA and RNA preparation, which were applied for labelling of DNA and RNA in situ or in vivo, i.e. in the cellular environment, in fixed or in living cells, by the use of bioorthogonal cycloaddition chemistry. Additionally, we review the current status of orthogonal dual and triple labelling of DNA and RNA in vitro to demonstrate their potential for future applications in situ or in vivo.
Collapse
Affiliation(s)
- Dorothée Ganz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Dennis Harijan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Hans-Achim Wagenknecht
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
28
|
Abstract
The specific non-invasive control of intracellular signaling events requires advanced tools that enter cells by diffusion and are controllable by light. Here, we detail the synthesis and application of membrane-permeant caged inositol pyrophosphates with respect to cell entry and cell distribution. We recently published the synthesis of these tools as well as their effect on PH-domain localization in HeLa cells and oscillations of the intracellular calcium concentration in β-cells, which are known to drive insulin secretion. In this chapter, we discuss the possibilities and limitations when using cell-penetrating inositol pyrophosphates. We provide a detailed protocol for the application in live mouse β-cells and we discuss the image analysis needed for following effects on calcium signaling.
Collapse
|
29
|
Geeson M, Cummins CC. Let's Make White Phosphorus Obsolete. ACS CENTRAL SCIENCE 2020; 6:848-860. [PMID: 32607432 PMCID: PMC7318074 DOI: 10.1021/acscentsci.0c00332] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Indexed: 05/20/2023]
Abstract
Industrial and laboratory methods for incorporating phosphorus atoms into molecules within the framework of Green Chemistry are in their infancy. Current practice requires large inputs of energy, involves toxic intermediates, and generates substantial waste. Furthermore, a negligible fraction of phosphorus-containing waste is recycled which in turn contributes to negative environmental impacts, such as eutrophication. Methods that begin to address some of these drawbacks are reviewed, and some key opportunities to be realized by pursuing organophosphorus chemistry under the principles of Green Chemistry are highlighted. Methods used by nature, or in the chemistry of other elements such as silicon, are discussed as model processes for the future of phosphorus in chemical synthesis.
Collapse
|
30
|
Haas TM, Qiu D, Häner M, Angebauer L, Ripp A, Singh J, Koch HG, Jessen-Trefzer C, Jessen HJ. Four Phosphates at One Blow: Access to Pentaphosphorylated Magic Spot Nucleotides and Their Analysis by Capillary Electrophoresis. J Org Chem 2020; 85:14496-14506. [PMID: 32502348 PMCID: PMC7684580 DOI: 10.1021/acs.joc.0c00841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
complex phosphorylation pattern of natural and modified pentaphosphorylated
magic spot nucleotides is generated in a highly efficient way. A cyclic
pyrophosphoryl phosphoramidite (cPyPA) reagent is used to introduce
four phosphates on nucleosides regioselectively in a one-flask key
transformation. The obtained magic spot nucleotides are used to develop
a capillary electrophoresis UV detection method, enabling nucleotide
assignment in complex bacterial extracts.
Collapse
Affiliation(s)
- Thomas M Haas
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Institute of Pharmaceutical Biology and Biotechnology, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany.,CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
31
|
Bhilare S, Shet H, Sanghvi YS, Kapdi AR. Discovery, Synthesis, and Scale-up of Efficient Palladium Catalysts Useful for the Modification of Nucleosides and Heteroarenes. Molecules 2020; 25:E1645. [PMID: 32260100 PMCID: PMC7181029 DOI: 10.3390/molecules25071645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid derivatives are imperative biomolecules and are involved in life governing processes. The chemical modification of nucleic acid is a fascinating area for researchers due to the potential activity exhibited as antiviral and antitumor agents. In addition, these molecules are also of interest toward conducting useful biochemical, pharmaceutical, and mutagenic study. For accessing such synthetically useful structures and features, transition-metal catalyzed processes have been proven over the years to be an excellent tool for carrying out the various transformations with ease and under mild reaction conditions. Amidst various transition-metal catalyzed processes available for nucleoside modification, Pd-catalyzed cross-coupling reactions have proven to be perhaps the most efficient, successful, and broadly applicable reactions in both academia and industry. Pd-catalyzed C-C and C-heteroatom bond forming reactions have been widely used for the modification of the heterocyclic moiety in the nucleosides, although a single catalyst system that could address all the different requirements for nucleoside modifications isvery rare or non-existent. With this in mind, we present herein a review showcasing the recent developments and improvements from our research groups toward the development of Pd-catalyzed strategies including drug synthesis using a single efficient catalyst system for the modification of nucleosides and other heterocycles. The review also highlights the improvement in conditions or the yield of various bio-active nucleosides or commercial drugs possessing the nucleoside structural core. Scale ups wherever performed (up to 100 g) of molecules of commercial importance have also been disclosed.
Collapse
Affiliation(s)
- Shatrughn Bhilare
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India;
| | - Harshita Shet
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, MouzaSamantpuri, Bhubaneswar 751013, Odisha, India;
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802, Crystal Ridge Road, Encinitas, CA 92024-6615, USA;
| | - Anant R. Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai 400019, India;
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, MouzaSamantpuri, Bhubaneswar 751013, Odisha, India;
| |
Collapse
|
32
|
Krell K, Harijan D, Ganz D, Doll L, Wagenknecht HA. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjug Chem 2020; 31:990-1011. [DOI: 10.1021/acs.bioconjchem.0c00072] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katja Krell
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dennis Harijan
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Dorothée Ganz
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Larissa Doll
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Karlsruhe Institute of Technology (KIT), Institute for Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
33
|
Bezold D, Dürr T, Singh J, Jessen HJ. Cyclotriphosphate: A Brief History, Recent Developments, and Perspectives in Synthesis. Chemistry 2020; 26:2298-2308. [PMID: 31637774 PMCID: PMC7065162 DOI: 10.1002/chem.201904433] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Indexed: 01/08/2023]
Abstract
There has been a recent upsurge in the study and application of approaches utilizing cyclotriphosphate 1 (cyclo-TP, also known as trimetaphosphate, TMP) and/or proceeding through its analogues in synthetic chemistry to access modified oligo- and polyphosphates. This is especially useful in the area of chemical nucleotide synthesis, but by no means restricted to it. Enabled by new high yielding and easy-to-implement methodologies, these approaches promise to open up an area of research that has previously been underappreciated. Additionally, refinements of concepts of prebiotic phosphorylation chemistry have been disclosed that ultimately rely on cyclo-TP 1 as a precursor, placing it as a potentially central compound in the emergence of life. Given the importance of such concepts for our understanding of prebiotic chemistry in combination with the need to readily access modified polyphosphates for structural and biological studies, this paper will discuss selected recent developments in the field of cyclo-TP chemistry, briefly touch on ultraphosphate chemistry, and highlight areas in which further developments can be expected.
Collapse
Affiliation(s)
- Dominik Bezold
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Tobias Dürr
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Jyoti Singh
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryUniversity of Freiburg79104FreiburgGermany
- Freiburg Research Institute for Advanced Studies (FRIAS)University of Freiburg79104FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for, Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|