1
|
Aich S, Saha M, Ghosh D, Molla SA, Sarkar AK, Bag D, Rahaman R, Khamarui S, Maiti DK. Ru(III)-PhI(OAc) 2─A Combination for Generation of Isocyanate Intermediate from Benzimidate through a Rearrangement: Synthesis of Unsymmetrical Urea, Carbamate, and Chiral Analogues. Org Lett 2024; 26:10970-10975. [PMID: 39632083 DOI: 10.1021/acs.orglett.4c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ru(III)-PhI(OAc)2, an unprecedented combination, is a highly efficient reagent system for the in situ generation of a valuable isocyanate intermediate from benzimidate synthons through a rearrangement. It unlocks a powerful platform for forming diverse C-N bonds, enabling the one-pot synthesis of an expansive array of valuable unsymmetrical ureas, carbamates, and their chiral analogues toward complex molecular structures with high selectivity and excellent yields. This new strategy not only exemplifies efficiency but also serves as a versatile tool for the construction of valuable molecular architectures, enhancing the scope and impact of modern synthetic chemistry.
Collapse
Affiliation(s)
- Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Mriganka Saha
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debasish Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Sabir Ali Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Ankan Kumar Sarkar
- School of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Saikat Khamarui
- Department of Chemistry, Government General Degree College at Kalna-1, Purba Bardhhaman-713405, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
2
|
Vargas JAM, Mandrekar KS, Echemendía R, Burtoloso ACB. Innovations in isocyanate synthesis for a sustainable future. Org Biomol Chem 2024. [PMID: 39564673 DOI: 10.1039/d4ob01598c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Isocyanates play a crucial role as key building blocks in the production of thermoplastic foams, elastomers, adhesives, agrochemicals, and pharmaceuticals. These compounds are essential in the manufacture of various polymeric products, such as polyurethane foams, synthetic rubbers, and surface coatings. Given their significance, and the fact that many isocyanates are highly reactive and toxic, there is an increasing demand for innovative and sustainable methods for their synthesis and detection that emphasize safety, efficiency, and selectivity. Developing processes for isocyanate production that avoid hazardous reagents like phosgene is particularly critical. While several methods exist for the in situ generation of isocyanates, the search for an eco-friendly and sustainable approach for their direct synthesis and isolation continues. Recent advances in isocyanate synthesis promise innovative and efficient strategies with broad industrial and environmental benefits. This review highlights various methods for synthesizing di- and monoisocyanates, emphasizing their isolation and conversion into ureas and carbamates in line with the principles of sustainable and green chemistry.
Collapse
Affiliation(s)
- Jorge Andrés Mora Vargas
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, CEP SP-13563-120, São Carlos, Brazil.
| | - Ketan S Mandrekar
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, CEP SP-13563-120, São Carlos, Brazil.
| | - Radell Echemendía
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, CEP SP-13563-120, São Carlos, Brazil.
| | - Antonio C B Burtoloso
- Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, CEP SP-13563-120, São Carlos, Brazil.
| |
Collapse
|
3
|
Mukhopadhyay S, Sahoo RK, Patro AG, Khuntia AP, Nembenna S. Low-valent germanium and tin hydrides as catalysts for hydroboration, hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) of heterocumulenes. Dalton Trans 2024; 53:18207-18216. [PMID: 39466610 DOI: 10.1039/d3dt04080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The low-valent germanium and tin hydrides, [LMH; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3}; M = Ge; (Ge-1), Sn (Sn-2)] bearing bis-guanidinato anions are employed as catalysts for chemoselective reduction of heterocumulenes via hydroboration reactions. This protocol demonstrates that a wide range of carbodiimides (CDI), isocyanates, isothiocyanates, and isoselenocyanates undergo partial reduction, yielding the corresponding N-boryl formamidine, N-boryl formamide, N-boryl thioformamide, and N-boryl selenoformamide products, respectively. Isocyanates and isothiocyanates are further converted into N-boryl methyl amines through hydrodeoxygenation (HDO) and hydrodesulfurization (HDS) reactions in the presence of catalyst Ge-1. Additionally, catalyst Sn-2 exhibits excellent inter and intra-molecular chemoselectivity over other functional groups. Based on stoichiometric experiments, a plausible catalytic cycle for chemoselective hydroboration of heterocumulenes is proposed.
Collapse
Affiliation(s)
- Sayantan Mukhopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Anwesh Prasad Khuntia
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
4
|
Krátký M, Houngbedji NH, Vinšová J. Hidden potential of hydrazinecarboxamides (semicarbazides) as potential antimicrobial agents: A review. Biomed Pharmacother 2024; 180:117556. [PMID: 39405901 DOI: 10.1016/j.biopha.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Hydrazinecarboxamides (semicarbazides) are increasingly recognized as a versatile scaffold in developing potential antimicrobial agents. In addition to a brief overview of the synthetic methods to prepare them, this review comprehensively analyses their antimicrobial properties. These derivatives have demonstrated potent activity against a broad spectrum of mycobacteria, bacterial and fungal pathogens, highlighting their potential to address critical human health challenges, including neglected diseases, and to combat growing antimicrobial resistance. They have also been investigated for their antiviral and antiparasitic properties. The review also summarizes structure-activity relationships, known mechanisms of action and emphasizes the crucial role of the hydrazinecarboxamide moiety in facilitating interactions with biological targets. The combination of hydrazinecarboxamides with other bioactive scaffolds (primaquine, isoniazid, etc.) has led to an identification of promising drug candidates, including those active against resistant strains, offering a promising approach for future innovations in the field of antimicrobial therapy. Attention is also drawn to limitations of hydrazinecarboxamides (poor physicochemical properties, cytotoxicity to human cells, and insufficient target selectivity), which may hinder their clinical application.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic.
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Iwasaki T, Yamada Y, Naito N, Nozaki K. Chemoselective Hydrogenolysis of Urethanes to Formamides and Alcohols in the Presence of More Electrophilic Carbonyl Compounds. J Am Chem Soc 2024; 146:25562-25568. [PMID: 39116369 DOI: 10.1021/jacs.4c06553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The development of methods for the chemical recycling of polyurethanes is recognized as an urgent issue. Herein, we report the Ir-catalyzed hydrogenolysis of the urethane C-O bond to produce formamides and alcohols, where both formamides and ester and amide functionalities are tolerated. The chemoselectivity observed is counterintuitive to the generally accepted electrophilicity order of carbonyl compounds. Hydrogenolysis of urea and isocyanurate, potential byproducts in the polycondensation process of polyurethanes, is also achieved alongside the selective degradation of polyurethanes themselves, which affords diformamides and diols. The time-course of the hydrogenative polyurethane degradation reveals that the bond cleavage occurs not from the terminal, but from any part of the polymer chain. The present catalysis offers a novel method for the recycling of polyurethane-containing polymer waste.
Collapse
Affiliation(s)
- Takanori Iwasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuto Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Naito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Luk J, Goodfellow AS, More ND, Bühl M, Kumar A. Exploiting decarbonylation and dehydrogenation of formamides for the synthesis of ureas, polyureas, and poly(urea-urethanes). Chem Sci 2024:d4sc03948c. [PMID: 39309078 PMCID: PMC11411599 DOI: 10.1039/d4sc03948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Urea derivatives, polyureas, and poly(urea-urethanes) are materials of great interest. However, their current methods of synthesis involve toxic feedstocks - isocyanate and phosgene gas. There is significant interest in developing alternative methodologies for their synthesis from safer feedstocks. We report here new methods for the synthesis of urea derivatives, polyureas, and poly(urea-urethane) using a ruthenium pincer catalyst. In this approach, urea derivatives and polyureas are synthesized from the self-coupling of formamides and diformamides, respectively, whereas poly(urea-urethanes) are synthesized from the coupling of diformamides and diols. CO and H2 gases are eliminated in all these processes. Decarbonylation of formamides using such organometallic catalysts has not been reported before and therefore mechanistic insights have been provided using experiments and DFT computation to shed light on pathways of these processes.
Collapse
Affiliation(s)
- James Luk
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Nachiket Deepak More
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| |
Collapse
|
7
|
Kulyabin P, Magdysyuk OV, Naden AB, Dawson DM, Pancholi K, Walker M, Vassalli M, Kumar A. Manganese-Catalyzed Synthesis of Polyketones Using Hydrogen-Borrowing Approach. ACS Catal 2024; 14:10624-10634. [PMID: 39050896 PMCID: PMC11264210 DOI: 10.1021/acscatal.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
We report here a method of making polyketones from the coupling of diketones and diols using a manganese pincer complex. The methodology allows us to access various polyketones (polyarylalkylketone) containing aryl, alkyl, and ether functionalities, bridging the gap between the two classes of commercially available polyketones: aliphatic polyketones and polyaryletherketones. Using this methodology, 12 polyketones have been synthesized and characterized using various analytical techniques to understand their chemical, physical, morphological, and mechanical properties. Based on previous reports and our studies, we suggest that the polymerization occurs via a hydrogen-borrowing mechanism that involves the dehydrogenation of diols to dialdehyde followed by aldol condensation of dialdehyde with diketones to form chalcone derivatives and their subsequent hydrogenation to form polyarylalkylketones.
Collapse
Affiliation(s)
- Pavel
S. Kulyabin
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Oxana V. Magdysyuk
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Aaron B. Naden
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Daniel M. Dawson
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Ketan Pancholi
- The
Sir Ian Wood Building, Robert Gordon University, Garthdee Rd, Garthdee, Aberdeen AB10 7GE, U.K.
| | - Matthew Walker
- Centre
for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow G116EW, U.K.
| | - Massimo Vassalli
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Amit Kumar
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
8
|
Kang X, Wang Z, Shi X, Jiang X, Liu Z, Zhao B. Effective Reduction of CO 2 with Aromatic Amines into N-Formamides Triggered by Noble-Free Metal-Organic Framework Catalysts Under Mild Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311511. [PMID: 38319022 DOI: 10.1002/smll.202311511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Indexed: 02/07/2024]
Abstract
The reductive transformation of carbon dioxide (CO2) into high-valued N‑formamides matches well with the atom economy and the sustainable development intention. Nevertheless, developing a noble-free metal catalyst under mild reaction conditions is desirable and challenging. Herein, a caged metal-organic framework (MOFs) [H2N(CH3)2]2{[Ni3(µ3-O)(XN)(BDC)3]·6DMF}n (1) (XN = 6″-(pyridin-4-yl)-4,2″:4″,4″'-terpyridine), H2BDC = terephthalic acid) is harvested, presenting high thermal and chemical stabilities. Catalytic investigation reveals that 1 as a renewable noble-free MOFs catalyst can catalyze the CO2 reduction conversion with aromatic amines tolerated by broad functional groups at least ten times, resulting in various formamides in excellent yields and selectivity under the mildest reaction system (room temperature and 1 bar CO2). Density functional theory (DFT) theoretical studies disclose the applicable reaction path, in which the CO2 hydrosilylation process is initiated by the [Ni3] cluster interaction with CO2 via η2-C, O coordination mode. This work may open up an avenue to seek high-efficiency noble-free catalysts in CO2 chemical reduction into high value-added chemicals.
Collapse
Affiliation(s)
- Xiaomin Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhiqiang Wang
- Department of Basic Courses, Shanxi Agricultural University, Taigu, Shanxi, 030801, P. R. China
| | - Xinlei Shi
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiaolei Jiang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Bin Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Kim SY, Lim HN. Methyl Pyruvate Oxime as a Carbonyl Synthon: Synthesis of Ureas, Carbamates, Thiocarbamates, and Anilides. Org Lett 2024; 26:3850-3854. [PMID: 38683648 DOI: 10.1021/acs.orglett.4c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A new strategy for the synthesis of unsymmetrical ureas, carbamates, thiocarbamates, and anilides was developed with methyl pyruvate oxime as the carbonyl synthon. The intrinsic reactivity of the reagent enabled consecutive disubstitution involving direct amidation and one-pot deoximative substitution with various nucleophiles. The utility of the method was demonstrated with the synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
10
|
Gulyaeva ES, Buhaibeh R, Boundor M, Azouzi K, Willot J, Bastin S, Duhayon C, Lugan N, Filippov OA, Sortais JB, Valyaev DA, Canac Y. Impact of the Methylene Bridge Substitution in Chelating NHC-Phosphine Mn(I) Catalyst for Ketone Hydrogenation. Chemistry 2024; 30:e202304201. [PMID: 38314964 DOI: 10.1002/chem.202304201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Systematic modification of the chelating NHC-phosphine ligand (NHC = N-heterocyclic carbene) in highly efficient ketone hydrogenation Mn(I) catalyst fac-[(Ph2PCH2NHC)Mn(CO)3Br] has been performed and the catalytic activity of the resulting complexes was evaluated using acetophenone as a benchmark substrate. While the variation of phosphine and NHC moieties led to inferior results than for a parent system, the incorporation of a phenyl substituent into the ligand methylene bridge improved catalytic performance by ca. 3 times providing maximal TON values in the range of 15000-20000. Mechanistic investigation combining experimental and computational studies allowed to rationalize this beneficial effect as an enhanced stabilization of reaction intermediates including anionic hydride species fac-[(Ph2PC(Ph)NHC)Mn(CO)3H]- playing a crucial role in the hydrogenation process. These results highlight the interest of such carbon bridge substitution strategy being rarely employed in the design of chemically non-innocent ligands.
Collapse
Affiliation(s)
- Ekaterina S Gulyaeva
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia
| | - Ruqaya Buhaibeh
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Mohamed Boundor
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Karim Azouzi
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jérémy Willot
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Stéphanie Bastin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Carine Duhayon
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Noël Lugan
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Oleg A Filippov
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS), Russian Academy of Sciences, 28/1 Vavilov str., GSP-1, B-334, Moscow, 119334, Russia
| | - Jean-Baptiste Sortais
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 5, France
| | - Dmitry A Valyaev
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| |
Collapse
|
11
|
Zhang Y, Yang X, Liu S, Liu J, Pang S. Catalytic dehydrogenative coupling and reversal of methanol-amines: advances and prospects. Chem Commun (Camb) 2024; 60:4121-4139. [PMID: 38533605 DOI: 10.1039/d4cc00653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The development of efficient hydrogen release and storage processes to provide environmentally friendly hydrogen solutions for mobile energy storage systems (MESS) stands as one of the most challenging tasks in addressing the energy crisis and environmental degradation. The catalytic dehydrogenative coupling of methanol and amines (DCMA) and its reverse are featured by high capacity for hydrogen release and storage, enhanced capability to purify the produced hydrogen, avoidance of carbon emissions and singular product composition, offering the environmentally and operationally benign strategy of overcoming the challenges associated with MESS. Particularly, the cycle between these two processes within the same catalytic system eliminates the need for collecting and transporting spent fuel back to a central facility, significantly facilitating easy recharging. Despite the promising attributes of the above strategy for environmentally friendly hydrogen solutions, challenges persist, primarily due to the high thermodynamic barriers encountered in methanol dehydrogenation and amide hydrogenation. By systematically summarizing various reaction mechanisms and pathways involving Ru-, Mn-, Fe-, and Mo-based catalytic systems in the development of catalytic DCMA and its reverse and the cycling between the two, this review highlights the current research landscape, identifies gaps, and suggests directions for future investigations to overcome these challenges. Additionally, the critical importance of developing efficient catalytic systems that operate under milder conditions, thereby facilitating the practical application of DCMA in MESS, is also underscored.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Xiaomei Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Shimin Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Jiacheng Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Shaofeng Pang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| |
Collapse
|
12
|
Kaboudin B, Esfandiari H, Kakavand M, Sohrabi M, Yousefian Amirkhiz E, Neshat A, Kawazoe T, Fukaya H, Yanai H. Phosphite-imidazole catalyzed N-formylation and N-acylation of amines. Org Biomol Chem 2023; 21:8182-8189. [PMID: 37786924 DOI: 10.1039/d3ob01306e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A novel and convenient method for the N-formylation reaction of amines with DMF as a formylating agent has been developed, utilizing a catalytic amount of diethyl phosphite/imidazole. Diethyl phosphite, as a nucleophilic catalyst, plays a significant role in this conversion. The presented method has a broad substrate scope, and various N-formyl products were obtained in good to excellent yields. Moreover, by using DMA instead of DMF, the N-acetylation reaction was also successful. The reaction of o-phenylenediamines with DMF afforded the corresponding benzimidazoles. Furthermore, N-sulfonyl amidines were obtained in good to excellent yields by the reaction of sulfonamides with DMF under similar conditions.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Hesam Esfandiari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Meysam Kakavand
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Masoumeh Sohrabi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Elahe Yousefian Amirkhiz
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Abdollah Neshat
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Teru Kawazoe
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Haruhiko Fukaya
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
13
|
McLuskie A, Brodie CN, Tricarico M, Gao C, Peters G, Naden AB, Mackay CL, Tan JC, Kumar A. Manganese catalysed dehydrogenative synthesis of polyureas from diformamide and diamines. Catal Sci Technol 2023; 13:3551-3557. [PMID: 37342794 PMCID: PMC10278093 DOI: 10.1039/d3cy00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
We report here the synthesis of polyureas from the dehydrogenative coupling of diamines and diformamides. The reaction is catalysed by a manganese pincer complex and releases H2 gas as the only by-product making the process atom-economic and sustainable. The reported method is greener in comparison to the current state-of-the-art production routes that involve diisocyanate and phosgene feedstock. We also report here the physical, morphological, and mechanical properties of synthesized polyureas. Based on our mechanistic studies, we suggest that the reaction proceeds via isocyanate intermediates formed by the manganese catalysed dehydrogenation of formamides.
Collapse
Affiliation(s)
- Angus McLuskie
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Claire N Brodie
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Michele Tricarico
- Department of Engineering Science, University of Oxford Parks Road Oxford OX13PJ UK
| | - Chang Gao
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Gavin Peters
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Aaron B Naden
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | | | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford Parks Road Oxford OX13PJ UK
| | - Amit Kumar
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| |
Collapse
|
14
|
Kopcsik E, Mucsi Z, Kontra B, Vanyorek L, Váradi C, Viskolcz B, Nagy M. Preparation and Optical Study of 1-Formamido-5-Isocyanonaphthalene, the Hydrolysis Product of the Potent Antifungal 1,5-Diisocyanonaphthalene. Int J Mol Sci 2023; 24:ijms24097780. [PMID: 37175485 PMCID: PMC10177923 DOI: 10.3390/ijms24097780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Aromatic isocyanides have gained a lot of attention lately as promising antifungal and anticancer drugs, as well as high-performance fluorescent analytical probes for the detection of toxic metals, such as mercury, even in vivo. Since this topic is relatively new and aromatic isocyanides possess unique photophysical properties, the understanding of structure-behavior relationships and the preparation of novel potentially biologically active derivatives are of paramount importance. Here, we report the photophysical characterization of 1,5-diisocyanonaphthalene (DIN) backed by quantum chemical calculations. It was discovered that DIN undergoes hydrolysis in certain solvents in the presence of oxonium ions. By the careful control of the reaction conditions for the first time, the nonsymmetric product 1-formamido-5-isocyanonaphthalene (ICNF) could be prepared. Contrary to expectations, the monoformamido derivative showed a significant solvatochromic behavior with a ~50 nm range from hexane to water. This behavior was explained by the enhanced H-bond-forming ability of the formamide group. The significance of the hydrolysis reaction is that the isocyano group is converted to formamide in living organisms. Therefore, ICNF could be a potential drug (for example, antifungal) and the reaction can be used as a model for the preparation of other nonsymmetric formamido-isocyanoarenes. In contrast to its relative 1-amino-5-iscyanonaphthalene (ICAN), ICNF is highly fluorescent in water, enabling the development of a fluorescent turnoff probe.
Collapse
Affiliation(s)
- Erika Kopcsik
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515 Miskolc, Hungary
| | - Zoltán Mucsi
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515 Miskolc, Hungary
- Department of Chemistry, Brain Vision Center, Liliom utca 43-45, 1094 Budapest, Hungary
| | - Bence Kontra
- Department of Chemistry, Brain Vision Center, Liliom utca 43-45, 1094 Budapest, Hungary
- Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7, 1092 Budapest, Hungary
| | - László Vanyorek
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515 Miskolc, Hungary
| | - Csaba Váradi
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515 Miskolc, Hungary
- Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc-Egyetemváros, 3515 Miskolc, Hungary
| | - Miklós Nagy
- Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, 3515 Miskolc, Hungary
| |
Collapse
|
15
|
Bresciani G, Zacchini S, Pampaloni G, Bortoluzzi M, Marchetti F. Diiron Aminocarbyne Complexes with NCE− Ligands (E = O, S, Se). Molecules 2023; 28:molecules28073251. [PMID: 37050013 PMCID: PMC10096932 DOI: 10.3390/molecules28073251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
Diiron μ-aminocarbyne complexes [Fe2Cp2(NCMe)(CO)(μ-CO){μ-CN(Me)(R)}]CF3SO3 (R = Xyl, [1aNCMe]CF3SO3; R = Me, [1bNCMe]CF3SO3; R = Cy, [1cNCMe]CF3SO3; R = CH2Ph, [1dNCMe]CF3SO3), freshly prepared from tricarbonyl precursors [1a–d]CF3SO3, reacted with NaOCN (in acetone) and NBu4SCN (in dichloromethane) to give [Fe2Cp2(kN-NCO)(CO)(μ-CO){μ-CN(Me)(R)}] (R = Xyl, 2a; Me, 2b; Cy, 2c) and [Fe2Cp2(kN-NCS)(CO)(μ-CO){μ-CN(Me)(CH2Ph)}], 3 in 67–81% yields via substitution of the acetonitrile ligand. The reaction of [1aNCMe–1cNCMe]CF3SO3 with KSeCN in THF at reflux temperature led to the cyanide complexes [Fe2Cp2(CN)(CO)(μ-CO){μ-CNMe(R)}], 6a–c (45–67%). When the reaction of [1aNCMe]CF3SO3 with KSeCN was performed in acetone at room temperature, subsequent careful chromatography allowed the separation of moderate amounts of [Fe2Cp2(kSe-SeCN)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 4a, and [Fe2Cp2(kN-NCSe)(CO)(μ-CO){μ-CN(Me)(Xyl)}], 5a. All products were fully characterized by elemental analysis, IR, and multinuclear NMR spectroscopy; moreover, the molecular structure of trans-6b was ascertained by single crystal X-ray diffraction. DFT calculations were carried out to shed light on the coordination mode and stability of the {NCSe-} fragment.
Collapse
Affiliation(s)
- Giulio Bresciani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Stefano Zacchini
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy
| | - Guido Pampaloni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| | - Marco Bortoluzzi
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
- Department of Molecular Science and Nanosystems, University of Venezia “Ca’ Foscari”, Via Torino 155, I-30170 Mestre, Italy
| | - Fabio Marchetti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- Interuniversity Consortium for Chemical Reactivity and Catalysis, CIRCC, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
16
|
Kumar R, Sharma V, Banerjee S, Vanka K, Sen SS. Controlled reduction of isocyanates to formamides using monomeric magnesium. Chem Commun (Camb) 2023; 59:2255-2258. [PMID: 36748261 DOI: 10.1039/d3cc00036b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work describes a transition metal-free methodology involving an efficient and controlled reduction of isocyanates to only formamide derivatives using pinacolborane (HBpin) as the hydrogenating agent and a bis(phosphino)carbazole ligand stabilized magnesium methyl complex (1) as the catalyst. A large number of substrates undergo selective hydroboration and give exclusively N-boryl formamides.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Subhrashis Banerjee
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
17
|
Lee K, Kim N, Cho KB, Lee Y. Electronic Effect on Phenoxide Migration at a Nickel(II) Center Supported by a Tridentate Bis(phosphinophenyl)phosphido Ligand. Inorg Chem 2023; 62:3007-3017. [PMID: 36753609 DOI: 10.1021/acs.inorgchem.2c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A phosphide nickel(II) phenoxide pincer complex (2) reacts with CO(g) to give a pseudo-tetrahedral nickel(0) monocarbonyl complex (3) possessing a phosphinite moiety. This metal-ligand cooperative (MLC) transformation occurs with a (PPP)Ni scaffold (PPP- = P[2-PiPr2-C6H4]2-), which can accommodate both square planar and tetrahedral geometries. The 2-electron reduction of a nickel(II) species induced by CO coordination involves group transfer to generate a P-O bond. For better mechanistic understanding, a series of nickel(II) phenolate complexes (2a-2e, XC6H4O- (X = OMe, Me, H, and CF3) and pentafluorophenolate) were prepared. Kinetic experimental data reveal that a phenolate species with an electron-withdrawing group reacts faster than those with electron-donating groups. The reaction kinetic experiments were conducted in pseudo-first order conditions at room temperature monitored by UV-vis spectroscopy. A pentafluorophenolate nickel(II) complex (2e) reveals instantaneous reactions even at -40 °C to give a nickel(0) monocarbonyl species (3e) and the reverse reaction is also possible. According to kinetic experiments, the rate determining step (RDS) would be the formation of a 5-coordinate intermediate 4 with a negative entropy value (ΔS‡ < 0), and a positive ρ value based on the Hammett plot indicates that the electron-deficient phenolate leads to a faster CO association. Furthermore, scramble experiments suggest that phenolate de-coordinates from the intermediate 4, which gives a (PPP)Ni-CO species 6. The cationic nickel monocarbonyl intermediate can possess a P--Ni(II), P•-Ni(I), or even a P+-Ni(0) character. Such an inner-sphere electron transfer is suggested when a π-acidic ligand such as CO coordinates to a metal ion. Another possible reaction is homolysis of a Ni-O bond to give P--Ni(I) or P•-Ni(0), when a phenoxyl radical is liberated. Considering the P-O bond formation, closed-shell nucleophilic and open-shell radical pathways are suggested. A phenolate pathway reveals a lower energy state for 2e relative to other complexes (2c and 2d), while its radical pathway undergoes via a higher energy state. Therefore, the formation of a P-O bond may occur with the binding of a closed-shell phenolate to the electron-deficient P center.
Collapse
Affiliation(s)
- Kunwoo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Nara Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Ni C, Ma X, Yang Z, Roesky HW. Chemoselective Hydroboration of Isocyanates Catalyzed by Commercially Available NaH. ChemistrySelect 2022. [DOI: 10.1002/slct.202202878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congjian Ni
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Herbert W. Roesky
- Institute of Inorganic Chemistry Georg-August-Universität Tammannstrasse 4 D-37077 Göttingen Germany
| |
Collapse
|
19
|
Guo J, Tang J, Xi H, Zhao SY, Liu W. Manganese catalyzed urea and polyurea synthesis using methanol as C1 source. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Owen AE, Preiss A, McLuskie A, Gao C, Peters G, Bühl M, Kumar A. Manganese-Catalyzed Dehydrogenative Synthesis of Urea Derivatives and Polyureas. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Annika Preiss
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Angus McLuskie
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Chang Gao
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Gavin Peters
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Michael Bühl
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Amit Kumar
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| |
Collapse
|
21
|
Langsted CR, Paulson SW, Bomann BH, Suhail S, Aguirre JA, Saumer EJ, Baclasky AR, Salmon KH, Law AC, Farmer RJ, Furchtenicht CJ, Stankowski DS, Johnson ML, Corcoran LG, Dolan CC, Carney MJ, Robertson NJ. Isocyanate‐free
synthesis of ureas and polyureas via ruthenium catalyzed dehydrogenation of amines and formamides. J Appl Polym Sci 2021. [DOI: 10.1002/app.52088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Blake H. Bomann
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | - Shanzay Suhail
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | | | | | | | | | | | | | | | | | | | | | - Connor C. Dolan
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | - Michael J. Carney
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | | |
Collapse
|
22
|
Zhang LY, Wang NX, Wu YH, Yan Z, Gao XW, Feng K, Xu BC, Xing Y, Wang PJ, Zhang Y, Gao LL. Copper-Catalyzed Aldehyde Exchanged Amidation. Org Lett 2021; 24:658-662. [PMID: 34968066 DOI: 10.1021/acs.orglett.1c04107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of bioactive amides has been the pursuit of chemists. Herein secondary amides incorporated with an aldehyde group were first generated using aldehydes and secondary amines. Various (hetero)aryl aldehydes and even aliphatic aldehydes (>40 examples) were converted into the desired products in moderate to excellent yields (up to 89%). A plausible mechanism involving a Cu(I/II/III) catalytic cycle combined with radical rearrangement was proposed and confirmed with four key intermediates detected by high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Lei-Yang Zhang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Nai-Xing Wang
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yue-Hua Wu
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhan Yan
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue-Wang Gao
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Feng
- Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Bao-Cai Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yalan Xing
- Department of Chemistry, William Paterson University of New Jersey,Wayne, New Jersey 07470, United States
| | - Pei-Jia Wang
- Baotou Rare Earth Research and Development Center, Chinese Academy of Sciences, Baotou 014010, China
| | - Yao Zhang
- Baotou Rare Earth Research and Development Center, Chinese Academy of Sciences, Baotou 014010, China
| | - Le-Le Gao
- Baotou Rare Earth Research and Development Center, Chinese Academy of Sciences, Baotou 014010, China
| |
Collapse
|
23
|
Pérez JM, Postolache R, Castiñeira Reis M, Sinnema EG, Vargová D, de Vries F, Otten E, Ge L, Harutyunyan SR. Manganese(I)-Catalyzed H-P Bond Activation via Metal-Ligand Cooperation. J Am Chem Soc 2021; 143:20071-20076. [PMID: 34797634 PMCID: PMC8662621 DOI: 10.1021/jacs.1c10756] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Here we report that
chiral Mn(I) complexes are capable of H–P
bond activation. This activation mode enables a general method for
the hydrophosphination of internal and terminal α,β-unsaturated
nitriles. Metal−ligand cooperation, a strategy previously not
considered for catalytic H–P bond activation, is at the base
of the mechanistic action of the Mn(I)-based catalyst. Our computational
studies support a stepwise mechanism for the hydrophosphination and
provide insight into the origin of the enantioselectivity.
Collapse
Affiliation(s)
- Juana M Pérez
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Roxana Postolache
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marta Castiñeira Reis
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Esther G Sinnema
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Denisa Vargová
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Folkert de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luo Ge
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
24
|
Liang Q, Song D. Syntheses and Reactivity of Piano-Stool Iron Complexes of Picolyl-Functionalized N-Heterocyclic Carbene Ligands. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
25
|
Klimochkin YN, Ivleva EA. N-Substituted S-Alkyl Carbamothioates in the Synthesis of Nitrogen-containing Functional Derivatives of the Adamantane Series. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [PMCID: PMC8473989 DOI: 10.1134/s1070428021080078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of new asymmetric ureas, urethanes, and other derivatives of the framework structure have been synthesized by the reactions of adamantan-1-yl isocyanate generated in situ by the thermolysis of carbamothioates with nitrogen-containing nucleophiles and alcohols.
Collapse
Affiliation(s)
| | - E. A. Ivleva
- Samara State Technical University, 443100 Samara, Russia
| |
Collapse
|
26
|
Townsend TM, Bernskoetter WH, Hazari N, Mercado BQ. Dehydrogenative Synthesis of Carbamates from Formamides and Alcohols Using a Pincer-Supported Iron Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tanya M. Townsend
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
27
|
Catalyst-free hierarchical reduction of CO2 with BH3N(C2H5)3 for selective N-methylation and N-formylation of amines. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Kumar A, Sharma P, Sharma N, Kumar Y, Mahajan D. Catalyst free N-formylation of aromatic and aliphatic amines exploiting reductive formylation of CO 2 using NaBH 4. RSC Adv 2021; 11:25777-25787. [PMID: 35478907 PMCID: PMC9037105 DOI: 10.1039/d1ra04848a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we report a sustainable approach for N-formylation of aromatic as well as aliphatic amines using sodium borohydride and carbon dioxide gas. The developed approach is catalyst free, and does not need pressure or a specialized reaction assembly. The reductive formylation of CO2 with sodium borohydride generates formoxy borohydride species in situ, as confirmed by 1H and 11B NMR spectroscopy. The in situ formation of formoxy borohydride species is prominent in formamide based solvents and is critical for the success of the N-formylation reactions. The formoxy borohydride is also found to promote transamidation reactions as a competitive pathway along with reductive functionalization of CO2 with amine leading to N-formylation of amines.
Collapse
Affiliation(s)
- Arun Kumar
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Pankaj Sharma
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Nidhi Sharma
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Yashwant Kumar
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| | - Dinesh Mahajan
- Medicinal Chemistry and Pharmacology Lab, Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon Expressway Faridabad-121001 India
| |
Collapse
|
29
|
Kumar A, Armstrong D, Peters G, Nagala M, Shirran S. Direct synthesis of polyureas from the dehydrogenative coupling of diamines and methanol. Chem Commun (Camb) 2021; 57:6153-6156. [PMID: 34042925 DOI: 10.1039/d1cc01121a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report here the first example of the direct synthesis of polyureas from the dehydrogenative coupling of diamines and methanol using a ruthenium pincer catalyst. The present methodology replaces the use of toxic diisocyanates, conventionally used for the production of polyureas, with methanol, which is renewable, less toxic, and cheaper, making the overall process safer and more sustainable. Further advantages of the current method have been demonstrated by the synthesis of a renewable, a chiral, and the first 13C-labelled polyurea.
Collapse
Affiliation(s)
- Amit Kumar
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK.
| | - Daniel Armstrong
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK.
| | - Gavin Peters
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK.
| | - Manjula Nagala
- BSRC Mass Spectrometry and Proteomics Facility, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK
| | - Sally Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK
| |
Collapse
|
30
|
Kalita T, Dev D, Mondal S, Giri RS, Mandal B. Ethyl‐2‐Cyano‐2‐(2‐Nitrophenylsulfonyloximino)Acetate (
ortho
‐NosylOXY) Mediated One‐Pot Racemization Free Synthesis of Ureas, Carbamates, and Thiocarbamates via Curtius Rearrangement. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tapasi Kalita
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Dharm Dev
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Sandip Mondal
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Rajat Subhra Giri
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Bhubaneswar Mandal
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| |
Collapse
|
31
|
Sahoo RK, Sarkar N, Nembenna S. Zinc Hydride Catalyzed Chemoselective Hydroboration of Isocyanates: Amide Bond Formation and C=O Bond Cleavage. Angew Chem Int Ed Engl 2021; 60:11991-12000. [PMID: 33638314 DOI: 10.1002/anie.202100375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/16/2021] [Indexed: 12/15/2022]
Abstract
Herein, a remarkable conjugated bis-guanidinate (CBG) supported zinc hydride, [{LZnH}2 ; L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr); Ar=2,6-Et2 -C6 H3 }] (I) catalyzed partial reduction of heteroallenes via hydroboration is reported. A large number of aryl and alkyl isocyanates, including electron-donating and withdrawing groups, undergo reduction to obtain selectively N-boryl formamide, bis(boryl) hemiaminal and N-boryl methyl amine products. The compound I effectively catalyzes the chemoselective reduction of various isocyanates, in which the construction of the amide bond occurs. Isocyanates undergo a deoxygenation hydroboration reaction, in which the C=O bond cleaves, leading to N-boryl methyl amines. Several functionalities such as nitro, cyano, halide, and alkene groups are well-tolerated. Furthermore, a series of kinetic, control experiments and structurally characterized intermediates suggest that the zinc hydride species are responsible for all reduction steps and breaking the C=O bond.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
32
|
Zinc Hydride Catalyzed Chemoselective Hydroboration of Isocyanates: Amide Bond Formation and C=O Bond Cleavage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Watson RB, Butler TW, DeForest JC. Preparation of Carbamates, Esters, Amides, and Unsymmetrical Ureas via Brønsted Acid-Activated N-Acyl Imidazoliums. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca B. Watson
- Groton Laboratories, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Todd W. Butler
- Groton Laboratories, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jacob C. DeForest
- Groton Laboratories, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
34
|
Kar S, Rauch M, Leitus G, Ben-David Y, Milstein D. Highly efficient additive-free dehydrogenation of neat formic acid. Nat Catal 2021; 4:193-201. [PMID: 37152186 PMCID: PMC7614505 DOI: 10.1038/s41929-021-00575-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Formic acid (FA) is a promising hydrogen carrier which can play an instrumental role in the overall implementation of a hydrogen economy. In this regard, it is important to generate H2 gas from neat FA without any solvent/additive, for which existing systems are scarce. Here we report the remarkable catalytic activity of a ruthenium 9H-acridine pincer complex for this process. The catalyst is unusually stable and robust in FA even at high temperatures and can catalyse neat FA dehydrogenation for over a month, with a total turnover number of 1,701,150, while also generating high H2/CO2 gas pressures (tested up to 100 bars). Mechanistic investigations and DFT studies are conducted to fully understand the molecular mechanism to the process. Overall, the high activity, stability, selectivity, simplicity and versatility of the system to generate a CO-free H2/CO2 gas stream and high pressure from neat FA makes it promising for large-scale implementation.
Collapse
|
35
|
Wu C, Wang J, Zhang X, Zhang R, Ma B. Highly chemoselective hydrogenation of cyclic imides to ω-hydroxylactams or ω-hydroxyamides catalyzed by iridium catalysts. Org Chem Front 2021. [DOI: 10.1039/d1qo01100f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several novel ferrocene-based PNN ligands were prepared, which were found to be highly effective catalysts (TON up to 50 000) for the homogeneous hydrogenation of cyclic imides with iridium.
Collapse
Affiliation(s)
- Chao Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Jiang Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Runtong Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Baode Ma
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
36
|
Huang L, Wang Y, Liu J, Li S, Zhang W, Lan Y. Mechanistic Study of Cu-Catalyzed Addition Reaction of lsocyanates. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Clerc A, Marelli E, Adet N, Monot J, Martín-Vaca B, Bourissou D. Metal-ligand-Lewis acid multi-cooperative catalysis: a step forward in the Conia-ene reaction. Chem Sci 2020; 12:435-441. [PMID: 34163606 PMCID: PMC8178805 DOI: 10.1039/d0sc05036a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation. The [(SCS)Pd]2 complex featuring a non-innocent indenediide-based ligand was found to be a very efficient and versatile catalyst for the Conia-ene reaction, when associated with Mg(OTf)2. The reaction operates at low catalytic loadings under mild conditions with HFIP as a co-solvent. It works with a variety of substrates, including those bearing internal alkynes. It displays complete 5-exo vs. 6-endo regio-selectivity. In addition, except for the highly congested tBu-substituent, the reaction occurs with high Z vs. E stereo-selectivity, making it synthetically useful and complementary to known catalysts. An original multi-cooperative catalytic approach was developed by combining metal–ligand cooperation and Lewis acid activation.![]()
Collapse
Affiliation(s)
- Arnaud Clerc
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Enrico Marelli
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Nicolas Adet
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Julien Monot
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Blanca Martín-Vaca
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| | - Didier Bourissou
- Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS 118 route de Narbonne F-31062 Toulouse France
| |
Collapse
|
38
|
Ebner F, Sigmund LM, Greb L. Metal–Ligand Cooperativity of the Calix[4]pyrrolato Aluminate: Triggerable C−C Bond Formation and Rate Control in Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Fabian Ebner
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lukas Maximilian Sigmund
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz Greb
- Anorganisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
39
|
Ebner F, Sigmund LM, Greb L. Metal-Ligand Cooperativity of the Calix[4]pyrrolato Aluminate: Triggerable C-C Bond Formation and Rate Control in Catalysis. Angew Chem Int Ed Engl 2020; 59:17118-17124. [PMID: 32573936 PMCID: PMC7540271 DOI: 10.1002/anie.202007717] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 11/06/2022]
Abstract
Metal-ligand cooperativity (MLC) had a remarkable impact on transition metal chemistry and catalysis. By use of the calix[4]pyrrolato aluminate, [1]- , which features a square-planar AlIII , we transfer this concept into the p-block and fully elucidate its mechanisms by experiment and theory. Complementary to transition metal-based MLC (aromatization upon substrate binding), substrate binding in [1]- occurs by dearomatization of the ligand. The aluminate trapps carbonyls by the formation of C-C and Al-O bonds, but the products maintain full reversibility and outstanding dynamic exchange rates. Remarkably, the C-C bonds can be formed or cleaved by the addition or removal of lithium cations, permitting unprecedented control over the system's constitutional state. Moreover, the metal-ligand cooperative substrate interaction allows to twist the kinetics of catalytic hydroboration reactions in a unique sense. Ultimately, this work describes the evolution of an anti-van't Hoff/Le Bel species from their being as a structural curiosity to their application as a reagent and catalyst.
Collapse
Affiliation(s)
- Fabian Ebner
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lukas Maximilian Sigmund
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lutz Greb
- Anorganisch-Chemisches InstitutRuprecht-Karls-Universität HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
40
|
Dindarloo Inaloo I, Esmaeilpour M, Majnooni S, Reza Oveisi A. Nickel‐Catalyzed Synthesis of
N
‐(Hetero)aryl Carbamates from Cyanate Salts and Phenols Activated with Cyanuric Chloride. ChemCatChem 2020. [DOI: 10.1002/cctc.202000876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Mohsen Esmaeilpour
- Chemistry Department College of Sciences Shiraz University Shiraz 71946 84795 Iran
- Chemistry and Process Engineering Department Niroo Research Institute Tehran 1468617151 Iran
| | - Sahar Majnooni
- Chemistry Department University of Isfahan Isfahan 81746-73441 Iran
| | - Ali Reza Oveisi
- Department of Chemistry Faculty of Sciences University of Zabol Zabol 98615-538 Iran
| |
Collapse
|
41
|
Kumar A, von Wolff N, Rauch M, Zou YQ, Shmul G, Ben-David Y, Leitus G, Avram L, Milstein D. Hydrogenative Depolymerization of Nylons. J Am Chem Soc 2020; 142:14267-14275. [PMID: 32706584 PMCID: PMC7441490 DOI: 10.1021/jacs.0c05675] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The
widespread crisis of plastic pollution demands discovery of new and
sustainable approaches to degrade robust plastics such as nylons.
Using a green and sustainable approach based on hydrogenation, in
the presence of a ruthenium pincer catalyst at 150 °C and 70
bar H2, we report here the first example of hydrogenative
depolymerization of conventional, widely used nylons and polyamides,
in general. Under the same catalytic conditions, we also demonstrate
the hydrogenation of a polyurethane to produce diol, diamine, and
methanol. Additionally, we demonstrate an example where monomers (and
oligomers) obtained from the hydrogenation process can be dehydrogenated
back to a poly(oligo)amide of approximately similar molecular weight,
thus completing a closed loop cycle for recycling of polyamides. Based
on the experimental and density functional theory studies, we propose
a catalytic cycle for the process that is facilitated by metal–ligand
cooperativity. Overall, this unprecedented transformation, albeit
at the proof of concept level, offers a new approach toward a cleaner
route to recycling nylons.
Collapse
Affiliation(s)
| | - Niklas von Wolff
- Laboratoire d'Electrochimie Moléculaire, UMR 7591, CNRS/University of Paris, 75013 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Recent Advances in Homogeneous Catalysis via Metal–Ligand Cooperation Involving Aromatization and Dearomatization. Catalysts 2020. [DOI: 10.3390/catal10060635] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently, an increasing number of metal complex catalysts have been developed to achieve the activation or transformation of substrates based on cooperation between the metal atom and its ligands. In such “cooperative catalysis,” the ligand not only is bound to the metal, where it exerts steric and electronic effects, but also functionally varies its structure during the elementary processes of the catalytic reaction. In this review article, we focus on metal–ligand cooperation involving aromatization and dearomatization of the ligand, thus introducing the newest developments and examples of homogeneous catalytic reactions.
Collapse
|
43
|
Merz LS, Ballmann J, Gade LH. Phosphines and
N
‐Heterocycles Joining Forces: an Emerging Structural Motif in PNP‐Pincer Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
44
|
Fiorito D, Liu Y, Besnard C, Mazet C. Direct Access to Chiral Secondary Amides by Copper-Catalyzed Borylative Carboxamidation of Vinylarenes with Isocyanates. J Am Chem Soc 2019; 142:623-632. [DOI: 10.1021/jacs.9b12297] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniele Fiorito
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Yangbin Liu
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, 24 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|