1
|
Wang P, Li J, Zhang Y, Xiao D, Zhou C. Blue emission-dominated NaYbF 4@NaYF 4:2%Ho@NaYF 4 upconversion nanoparticles for detecting ascorbic acid. NANOSCALE 2024; 16:18910-18917. [PMID: 39253955 DOI: 10.1039/d4nr02439g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The blue emission-dominated NaYbF4@NaYF4:2%Ho@NaYF4 (CSS) upconversion nanoparticles (UCNPs) were designed to detect ascorbic acid (AA). The blue emission of CSS was increased, ∼34 and ∼8 times higher than that of NaYF4:2%Ho@NaYbF4@NaYF4 (CSS (I)) and NaYbF4@NaYF4:20%Yb,2%Ho@ NaYF4 (CSS (II)), respectively. The dominant blue emission of CSS might be attributed to three aspects: (1) the protected NaYbF4 core for high near-infrared absorption, (2) the spatial separation of Yb3+ and Ho3+ preventing back energy transfer, and (3) their inert shell inhibiting surface quenching. It is worth noting that the fluorescence resonance energy transfer (FRET) of the CSS (donor) to MnO2 nanosheets (acceptor) was developed to trace AA. The detection limit is 0.75 μM and the detection range is 0.5-100 μM. In summary, our work not only explored the blue emission mechanism of Ho3+, but also constructed a CSS/MnO2-based nanosensing platform for the rapid and sensitive detection of AA. The blue emission of Ho3+ has promising applications in the field of sensing and detection.
Collapse
Affiliation(s)
- Pengli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jiaxin Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
2
|
Habermann S, Gerken LRH, Kociak M, Monachon C, Kissling VM, Gogos A, Herrmann IK. Cathodoluminescent and Characteristic X-Ray-Emissive Rare-Earth-Doped Core/Shell Protein Labels for Spectromicroscopic Analysis of Cell Surface Receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404309. [PMID: 39246186 DOI: 10.1002/smll.202404309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Understanding the localization and the interactions of biomolecules at the nanoscale and in the cellular context remains challenging. Electron microscopy (EM), unlike light-based microscopy, gives access to the cellular ultrastructure yet results in grey-scale images and averts unambiguous (co-)localization of biomolecules. Multimodal nanoparticle-based protein labels for correlative cathodoluminescence electron microscopy (CCLEM) and energy-dispersive X-ray spectromicroscopy (EDX-SM) are presented. The single-particle STEM-cathodoluminescence (CL) and characteristic X-ray emissivity of sub-20 nm lanthanide-doped nanoparticles are exploited as unique spectral fingerprints for precise label localization and identification. To maximize the nanoparticle brightness, lanthanides are incorporated in a low-phonon host lattice and separated from the environment using a passivating shell. The core/shell nanoparticles are then functionalized with either folic (terbium-doped) or caffeic acid (europium-doped). Their potential for (protein-)labeling is successfully demonstrated using HeLa cells expressing different surface receptors that bind to folic or caffeic acid, respectively. Both particle populations show single-particle CL emission along with a distinctive energy-dispersive X-ray signal, with the latter enabling color-based localization of receptors within swift imaging times well below 2 min perμ m $\umu\text{m}$ 2 while offering high resolution with a pixel size of 2.78 nm. Taken together, these results open a route to multi-color labeling based on electron spectromicroscopy.
Collapse
Affiliation(s)
- Sebastian Habermann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay, 91405, France
| | | | - Vera M Kissling
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, Balgrist Campus, Forchstrasse 340, 8008, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 74, 8006, Zurich, Switzerland
| |
Collapse
|
3
|
Wu J, Wu J, Wei W, Zhang Y, Chen Q. Upconversion Nanoparticles Based Sensing: From Design to Point-of-Care Testing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311729. [PMID: 38415811 DOI: 10.1002/smll.202311729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Rare earth-doped upconversion nanoparticles (UCNPs) have achieved a wide range of applications in the sensing field due to their unique anti-Stokes luminescence property, minimized background interference, excellent biocompatibility, and stable physicochemical properties. However, UCNPs-based sensing platforms still face several challenges, including inherent limitations from UCNPs such as low quantum yields and narrow absorption cross-sections, as well as constraints related to energy transfer efficiencies in sensing systems. Therefore, the construction of high-performance UCNPs-based sensing platforms is an important cornerstone for conducting relevant research. This work begins by providing a brief overview of the upconversion luminescence mechanism in UCNPs. Subsequently, it offers a comprehensive summary of the sensors' types, design principles, and optimized design strategies for UCNPs sensing platforms. More cost-effective and promising point-of-care testing applications implemented based on UCNPs sensing systems are also summarized. Finally, this work addresses the future challenges and prospects for UCNPs-based sensing platforms.
Collapse
Affiliation(s)
- Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Jiaxi Wu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583
| | - Wenya Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| | - Yong Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, P.R. China
| |
Collapse
|
4
|
Li H, Wang T, Han J, Xu Y, Kang X, Li X, Zhu M. Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement. Nat Commun 2024; 15:5351. [PMID: 38914548 PMCID: PMC11196639 DOI: 10.1038/s41467-024-49735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 230601, Hefei, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA
| | - Jiaojiao Han
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Ying Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| |
Collapse
|
5
|
Li J, Wang P, Zhang Y, Xiao D, Zhou C. Tm 3+ mediated multicolor luminescence of NaYbF 4:Er,Tm@NaYF 4 for advanced anti-counterfeiting. Dalton Trans 2024; 53:9380-9386. [PMID: 38757515 DOI: 10.1039/d4dt00540f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Lanthanide doped multicolor luminescent materials have attracted extensive attention due to their advanced anti-counterfeiting properties. However, designing a simple, hard-to-copy and multicolor anti-counterfeiting strategy based on upconversion nanoparticles (UCNPs) remains a huge challenge. Herein, a strategy to modulate luminescence color by altering the mediating action of Tm3+ was proposed. As a proof of concept, the mediating action of Tm3+ was explored in NaYbF4:30%Er,1%Tm@NaYF4 by changing the doping ratio of Yb3+/Er3+/Tm3+, and red, yellow and blue luminescence was successfully obtained. Then, NaYbF4:x%Er,1%Tm@NaYF4 (x = 2, 10, 30, 50, 99), NaYbF4:x%Er@NaYF4 (x = 2, 10, 30, 50, 100) and NaYbF4:1%Tm@NaYF4:x%Er@NaYF4 (x = 2, 10, 30, 50, 100) were synthesized to further identify that the mediating action of Tm3+ was related to the doping ratio and distance between dopant ions. In addition, the luminescence color of NaYbF4:30%Er,1%Tm@NaYF4 changed from red to yellow with the increase of excitation power density. Based on the above, NaYbF4:Er,Tm@NaYF4 UCNPs show excellent performance in anti-counterfeiting of paintings, thus revealing their great potential in advanced anti-counterfeiting applications.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Pengli Wang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
6
|
Ling H, Guan D, Wen R, Hu J, Zhang Y, Zhao F, Zhang Y, Liu Q. Effect of Surface Modification on the Luminescence of Individual Upconversion Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309035. [PMID: 38234137 DOI: 10.1002/smll.202309035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) hold promise for single-molecule imaging owing to their excellent photostability and minimal autofluorescence. However, their limited water dispersibility, often from the hydrophobic oleic acid ligand during synthesis, is a challenge. To address this, various surface modification strategies' impact on single-particle upconversion luminescence are studied. UCNPs are made hydrophilic through methods like ligand exchange with dye IR806, HCl or NOBF4 treatment, silica coating (SiO2 or mesoporous mSiO2), and self-assembly with polymer of DSPE-PEG or F127. The studies revealed that UCNPs modified with NOBF4 and DSPE-PEG exhibited notably higher single-particle brightness with minimal quenching (3% and 8%, respectively), followed by SiO2, F127, IR806, mSiO2, and HCl (84% quenching). HCl disrupted UCNPs's crystal lattice, weakening luminescence, while mSiO2 absorbed solvent molecules, causing luminescence quenching. Energy transfer to IR806 also reduced the brightness. Additionally, a prevalence of upconversion red emission over green is observed, with the red-to-green ratio increasing with irradiance. UCNPs coated with DSPE-PEG exhibited the brightest single-particle luminescence in water, retaining 48% of its original emission due to a lower critical micelle concentration and superior water protection. In summary, the investigation provides valuable insights into the role of surface chemistry on UCNPs at the single-particle level.
Collapse
Affiliation(s)
- Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Rongrong Wen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Jialing Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yanxin Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Fei Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
7
|
Hu J, Zhao F, Ling H, Zhang Y, Liu Q. Single-particle Förster resonance energy transfer from upconversion nanoparticles to organic dyes. NANOSCALE ADVANCES 2024; 6:2945-2953. [PMID: 38817426 PMCID: PMC11134271 DOI: 10.1039/d4na00198b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
Single-particle detection and sensing, powered by Förster resonance energy transfer (FRET), offers precise monitoring of molecular interactions and environmental stimuli at a nanometric resolution. Despite its potential, the widespread use of FRET has been curtailed by the rapid photobleaching of traditional fluorophores. This study presents a robust single-particle FRET platform utilizing upconversion nanoparticles (UCNPs), which stand out for their remarkable photostability, making them superior to conventional organic donors for energy transfer-based assays. Our comprehensive research demonstrates the influence of UCNPs' size, architecture, and dye selection on the efficiency of FRET. We discovered that small particles (∼14 nm) with a Yb3+-enriched outermost shell exhibit a significant boost in FRET efficiency, a benefit not observed in larger particles (∼25 nm). 25 nm UCNPs with an inert NaLuF4 shell demonstrated a comparable level of emission enhancement via FRET as those with a Yb3+-enriched outermost shell. At the single-particle level, these FRET-enhanced UCNPs manifested an upconversion green emission intensity that was 8.3 times greater than that of their unmodified counterparts, while maintaining notable luminescence stability. Our upconversion FRET system opens up new possibilities for developing more effective high-brightness, high-sensitivity single-particle detection, and sensing modalities.
Collapse
Affiliation(s)
- Jialing Hu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Fei Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Huan Ling
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200438 China
| |
Collapse
|
8
|
Bahari HR, Mousavi Khaneghah A, Eş I. Upconversion nanoparticles-modified aptasensors for highly sensitive mycotoxin detection for food quality and safety. Compr Rev Food Sci Food Saf 2024; 23:e13369. [PMID: 38767851 DOI: 10.1111/1541-4337.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.
Collapse
Affiliation(s)
- Hamid-Reza Bahari
- Center of Innovation for Green and High Technologies, Tehran, Iran
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | | | - Ismail Eş
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Alzahrani YA, Alessa AM, Almosaind MK, Alarifi RS, Alromaeh A, Alkahtani M. Preparation and Characterization of Uniform and Controlled Silica Encapsulating on Lithium Yttrium Fluoride-Based Upconversion Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:685. [PMID: 38668180 PMCID: PMC11054348 DOI: 10.3390/nano14080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
In this work, we present an advancement in the encapsulation of lithium yttrium fluoride-based (YLiF4:Yb,Er) upconversion nanocrystals (UCNPs) with silica (SiO2) shells through a reverse microemulsion technique, achieving UCNPs@SiO2 core/shell structures. Key parameters of this approach were optimized to eliminate the occurrence of core-free silica particles and ensure a controlled silica shell thickness growth on the UCNPs. The optimal conditions for this method were using 6 mg of UCNPs, 1.5 mL of Igepal CO-520, 0.25 mL of ammonia, and 50 μL of tetraethyl orthosilicate (TEOS), resulting in a uniform silica shell around UCNPs with a thickness of 8 nm. The optical characteristics of the silica-encased UCNPs were examined, confirming the retention of their intrinsic upconversion luminescence (UC). Furthermore, we developed a reliable strategy to avoid the coencapsulation of multiple UCNPs within a single silica shell. This approach led to a tenfold increase in the UC luminescence of the annealed particles compared to their nonannealed counterparts, under identical silica shell thickness and excitation conditions. This significant improvement addresses a critical challenge and amplifies the applicability of the resulting UCNPs@SiO2 core/shell structures in various fields.
Collapse
Affiliation(s)
- Yahya A. Alzahrani
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (Y.A.A.); (M.K.A.); (R.S.A.)
| | - Abdulmalik M. Alessa
- Refining Technologies and Petrochemicals Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Mona K. Almosaind
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (Y.A.A.); (M.K.A.); (R.S.A.)
| | - Rahaf S. Alarifi
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (Y.A.A.); (M.K.A.); (R.S.A.)
| | - Abdulaziz Alromaeh
- Microelectronics and Semiconductors Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Masfer Alkahtani
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (Y.A.A.); (M.K.A.); (R.S.A.)
| |
Collapse
|
10
|
F Shida J, Ma K, Toll HW, Salinas O, Ma X, Peng CS. Multicolor Long-Term Single-Particle Tracking Using 10 nm Upconverting Nanoparticles. NANO LETTERS 2024; 24:4194-4201. [PMID: 38497588 DOI: 10.1021/acs.nanolett.4c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Single-particle tracking (SPT) is a powerful technique to unveil molecular behaviors crucial to the understanding of many biological processes, but it is limited by factors such as probe photostability and spectral orthogonality. To overcome these limitations, we develop upconverting nanoparticles (UCNPs), which are photostable over several hours at the single-particle level, enabling long-term multicolor SPT. We investigate the brightness of core-shell UCNPs as a function of inert shell thickness to minimize particle size while maintaining sufficient signal for SPT. We explore different rare-earth dopants to optimize for the brightest probes and find that UCNPs doped with 2% Tm3+/30% Yb3+, 10% Er3+/90% Yb3+, and 15% Tm3+/85% Yb3+ represent the optimal probes for blue, green, and near-infrared emission, respectively. The multiplexed 10 nm probes enable three-color single-particle tracking on live HeLa cells for tens of minutes using a single, near-infrared excitation source. These photostable and multiplexed probes open new avenues for numerous biological applications.
Collapse
Affiliation(s)
- João F Shida
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Kaibo Ma
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Harrison W Toll
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Omar Salinas
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Xiaojie Ma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Chunte Sam Peng
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Lee HC, Bootharaju MS, Lee K, Chang H, Kim SY, Ahn E, Li S, Kim BH, Ahn H, Hyeon T, Yang J. Revealing Two Distinct Formation Pathways of 2D Wurtzite-CdSe Nanocrystals Using In Situ X-Ray Scattering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307600. [PMID: 38072639 PMCID: PMC10853705 DOI: 10.1002/advs.202307600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/21/2023] [Indexed: 02/10/2024]
Abstract
Understanding the mechanism underlying the formation of quantum-sized semiconductor nanocrystals is crucial for controlling their synthesis for a wide array of applications. However, most studies of 2D CdSe nanocrystals have relied predominantly on ex situ analyses, obscuring key intermediate stages and raising fundamental questions regarding their lateral shapes. Herein, the formation pathways of two distinct quantum-sized 2D wurtzite-CdSe nanocrystals - nanoribbons and nanosheets - by employing a comprehensive approach, combining in situ small-angle X-ray scattering techniques with various ex situ characterization methods is studied. Although both nanostructures share the same thickness of ≈1.4 nm, they display contrasting lateral dimensions. The findings reveal the pivotal role of Se precursor reactivity in determining two distinct synthesis pathways. Specifically, highly reactive precursors promote the formation of the nanocluster-lamellar assemblies, leading to the synthesis of 2D nanoribbons with elongated shapes. In contrast, mild precursors produce nanosheets from a tiny seed of 2D nuclei, and the lateral growth is regulated by chloride ions, rather than relying on nanocluster-lamellar assemblies or Cd(halide)2 -alkylamine templates, resulting in 2D nanocrystals with relatively shorter lengths. These findings significantly advance the understanding of the growth mechanism governing quantum-sized 2D semiconductor nanocrystals and offer valuable guidelines for their rational synthesis.
Collapse
Affiliation(s)
- Hyo Cheol Lee
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Megalamane S. Bootharaju
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Kyunghoon Lee
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Samsung Advanced Institute of TechnologySamsung ElectronicsSuwon16678Republic of Korea
| | - Seo Young Kim
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Eonhyoung Ahn
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Shi Li
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- Department of Material Science and EngineeringSoongsil UniversitySeoul06978Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator LaboratoryPohang37673Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
- Energy Science and Engineering Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| |
Collapse
|
12
|
Li H, Sheng W, Haruna SA, Hassan MM, Chen Q. Recent advances in rare earth ion-doped upconversion nanomaterials: From design to their applications in food safety analysis. Compr Rev Food Sci Food Saf 2023; 22:3732-3764. [PMID: 37548602 DOI: 10.1111/1541-4337.13218] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
The misuse of chemicals in agricultural systems and food production leads to an increase in contaminants in food, which ultimately has adverse effects on human health. This situation has prompted a demand for sophisticated detection technologies with rapid and sensitive features, as concerns over food safety and quality have grown around the globe. The rare earth ion-doped upconversion nanoparticle (UCNP)-based sensor has emerged as an innovative and promising approach for detecting and analyzing food contaminants due to its superior photophysical properties, including low autofluorescence background, deep penetration of light, low toxicity, and minimal photodamage to the biological samples. The aim of this review was to discuss an outline of the applications of UCNPs to detect contaminants in food matrices, with particular attention on the determination of heavy metals, pesticides, pathogenic bacteria, mycotoxins, and antibiotics. The review briefly discusses the mechanism of upconversion (UC) luminescence, the synthesis, modification, functionality of UCNPs, as well as the detection principles for the design of UC biosensors. Furthermore, because current UCNP research on food safety detection is still at an early stage, this review identifies several bottlenecks that must be overcome in UCNPs and discusses the future prospects for its application in the field of food analysis.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Wei Sheng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
13
|
Hamraoui K, Torres-Vera VA, Zabala Gutierrez I, Casillas-Rubio A, Alqudwa Fattouh M, Benayas A, Marin R, Natile MM, Manso Silvan M, Rubio-Zuazo J, Jaque D, Melle S, Calderón OG, Rubio-Retama J. Exploring the Origin of the Thermal Sensitivity of Near-Infrared-II Emitting Rare Earth Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390496 DOI: 10.1021/acsami.3c04125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Rare-earth doped nanoparticles (RENPs) are attracting increasing interest in materials science due to their optical, magnetic, and chemical properties. RENPs can emit and absorb radiation in the second biological window (NIR-II, 1000-1400 nm) making them ideal optical probes for photoluminescence (PL) in vivo imaging. Their narrow emission bands and long PL lifetimes enable autofluorescence-free multiplexed imaging. Furthermore, the strong temperature dependence of the PL properties of some of these RENPs makes remote thermal imaging possible. This is the case of neodymium and ytterbium co-doped NPs that have been used as thermal reporters for in vivo diagnosis of, for instance, inflammatory processes. However, the lack of knowledge about how the chemical composition and architecture of these NPs influence their thermal sensitivity impedes further optimization. To shed light on this, we have systematically studied their emission intensity, PL decay time curves, absolute PL quantum yield, and thermal sensitivity as a function of the core chemical composition and size, active-shell, and outer-inert-shell thicknesses. The results revealed the crucial contribution of each of these factors in optimizing the NP thermal sensitivity. An optimal active shell thickness of around 2 nm and an outer inert shell of 3.5 nm maximize the PL lifetime and the thermal response of the NPs due to the competition between the temperature-dependent back energy transfer, the surface quenching effects, and the confinement of active ions in a thin layer. These findings pave the way for a rational design of RENPs with optimal thermal sensitivity.
Collapse
Affiliation(s)
- Khouloud Hamraoui
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Vivian Andrea Torres-Vera
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Irene Zabala Gutierrez
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | | | - Mohammed Alqudwa Fattouh
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| | - Antonio Benayas
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Riccardo Marin
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Maria Natile
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Padua, Italy
- Istituto di Chimica della Materia Condensata e Tecnologie per l'Energia (ICMATE), Consiglio Nazionale delle Ricerche (CNR), 35131 Padova, Padua, Italy
| | - Miguel Manso Silvan
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Rubio-Zuazo
- Spanish CRG BM25-SpLine Beamline at the ESRF, 38043 Grenoble, France
- Instituto de Ciencias de los Materiales de Madrid-Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | - Daniel Jaque
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Sonia Melle
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain
| | - Oscar G Calderón
- Department of Optics, Complutense University of Madrid, E-28037 Madrid, Spain
| | - Jorge Rubio-Retama
- Department of Chemistry in Pharmaceutical Sciences, Complutense University of Madrid, E-28040 Madrid, Spain
| |
Collapse
|
14
|
Alzahrani YA, Alromaeh A, Alkahtani M. Efficient Lithium-Based Upconversion Nanoparticles for Single-Particle Imaging and Temperature Sensing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4354. [PMID: 37374538 DOI: 10.3390/ma16124354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Upconversion Nanoparticles (UCNPs) have attracted exceptional attention due to their great potential in high-contrast, free-background biofluorescence deep tissue imaging and quantum sensing. Most of these interesting studies have been performed using an ensemble of UCNPs as fluorescent probes in bioapplications. Here, we report a synthesis of small and efficient YLiF4:Yb,Er UCNPs for single-particle imaging as well as sensitive optical temperature sensing. The reported particles demonstrated a bright and photostable upconversion emission at a single particle level under a low laser intensity excitation of 20 W/cm2. Furthermore, the synthesized UCNPs were tested and compared to the commonly used two-photon excitation QDs and organic dyes and showed a nine times better performance at a single particle level under the same experimental conditions. In addition, the synthesized UCNPs demonstrated sensitive optical temperature sensing at a single particle level within the biological temperature range. The good optical properties of single YLiF4:Yb,Er UCNPs open an avenue for small and efficient fluorescent markers in imaging and sensing applications.
Collapse
Affiliation(s)
- Yahya A Alzahrani
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdulaziz Alromaeh
- Microelectronics and Semiconductors Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Masfer Alkahtani
- Future Energy Technologies Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
15
|
Bhuckory S, Lahtinen S, Höysniemi N, Guo J, Qiu X, Soukka T, Hildebrandt N. Understanding FRET in Upconversion Nanoparticle Nucleic Acid Biosensors. NANO LETTERS 2023; 23:2253-2261. [PMID: 36729707 DOI: 10.1021/acs.nanolett.2c04899] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Upconversion nanoparticles (UCNPs) have been frequently applied in Förster resonance energy transfer (FRET) bioanalysis. However, the understanding of how surface coatings, bioconjugation, and dye-surface distance influence FRET biosensing performance has not significantly advanced. Here, we investigated UCNP-to-dye FRET DNA-hybridization assays in H2O and D2O using ∼24 nm large NaYF4:Yb3+,Er3+ UCNPs coated with thin layers of silica (SiO2) or poly(acrylic acid) (PAA). FRET resulted in strong distance-dependent PL intensity changes. However, the PL decay times were not significantly altered because of continuous Yb3+-to-Er3+ energy migration during Er3+-to-dye FRET. Direct bioconjugation of DNA to the thin PAA coating combined with the closest possible dye-surface distance resulted in optimal FRET performance with minor influence from competitive quenching by H2O. The better comprehension of UCNP-to-dye FRET was successfully translated into a microRNA (miR-20a) FRET assay with a limit of detection of 100 fmol in a 80 μL sample volume.
Collapse
Affiliation(s)
- Shashi Bhuckory
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- EMEA Clinical Service Operations, NAMSA, 38670 Chasse-sur-Rhône, France
| | - Satu Lahtinen
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niina Höysniemi
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Jiajia Guo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Tero Soukka
- University of Turku, Department of Life Technologies/Biotechnology, 20520 Turku, Finland
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Université de Rouen Normandie, CNRS, INSA, Normandie Université, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse - UMR6014 & FR3038), 76000 Rouen, France
- Seoul National University, Department of Chemistry, Seoul 08826, South Korea
| |
Collapse
|
16
|
Chen X, Wan J, Wei M, Xia Z, Zhou J, Lu M, Yuan Z, Huang L, Xie X. Tandem fabrication of upconversion nanocomposites enabled by confined protons. NANOSCALE 2023; 15:2642-2649. [PMID: 36651807 DOI: 10.1039/d2nr06029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticle (UCNP)-based nanocomposites can address the intrinsic limitations associated with UCNPs and bestow new functions on UCNPs, which can facilitate the development and application of UCNPs. However, the fabrication of UCNP-based composites typically suffers from complex operations, long-drawn-out procedures, and even loss or damage of UCNPs. Herein, we report a tandem fabrication strategy for the preparation of UCNP-based nanocomposites, in which protons, confined in the non-aqueous polar solvent, can produce ligand-free UCNPs for the direct fabrication of a composite without further treatment. Our studies show that the confined protons can be generated by diverse materials and can yield different types of ligand-free nanomaterials for desired composites. This versatile strategy enables a simple but scalable fabrication of UCNP-based nanocomposites, and can be extended to other nanomaterial-based composites. These findings should provide a platform for constructing multifunctional UCNP-based materials, and benefit potential applications of UCNPs in varied fields.
Collapse
Affiliation(s)
- Xiumei Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jinyu Wan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Minmin Wei
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhengyu Xia
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Jie Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Min Lu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Ze Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Ling Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Xiaoji Xie
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
17
|
Brightening heavily doped upconversion nanoparticles by tuning characteristics of core-shell structures. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
18
|
Zhang Y, Wen R, Hu J, Guan D, Qiu X, Zhang Y, Kohane DS, Liu Q. Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration. Nat Commun 2022; 13:5927. [PMID: 36207318 PMCID: PMC9546905 DOI: 10.1038/s41467-022-33660-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Manipulating topological arrangement is a powerful tool for tuning energy migration in natural photosynthetic proteins and artificial polymers. Here, we report an inorganic optical nanosystem composed of NaErF4 and NaYbF4, in which topological arrangement enhanced upconversion luminescence. Three architectures are designed for considerations pertaining to energy migration and energy transfer within nanoparticles: outside-in, inside-out, and local energy transfer. The outside-in architecture produces the maximum upconversion luminescence, around 6-times brighter than that of the inside-out at the single-particle level. Monte Carlo simulation suggests a topology-dependent energy migration favoring the upconversion luminescence of outside-in structure. The optimized outside-in structure shows more than an order of magnitude enhancement of upconversion brightness compared to the conventional core-shell structure at the single-particle level and is used for long-term single-particle tracking in living cells. Our findings enable rational nanoprobe engineering for single-molecule imaging and also reveal counter-intuitive relationships between upconversion nanoparticle structure and optical properties.
Collapse
Affiliation(s)
- Yanxin Zhang
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Rongrong Wen
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Jialing Hu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Daoming Guan
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Xiaochen Qiu
- grid.8547.e0000 0001 0125 2443Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438 China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Daniel S. Kohane
- grid.38142.3c000000041936754XLaboratory for Biomaterials and Drug Delivery, Division of Critical Care Medicine, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
19
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
20
|
Kotulska AM, Pilch-Wróbel A, Lahtinen S, Soukka T, Bednarkiewicz A. Upconversion FRET quantitation: the role of donor photoexcitation mode and compositional architecture on the decay and intensity based responses. LIGHT, SCIENCE & APPLICATIONS 2022; 11:256. [PMID: 35986019 PMCID: PMC9391450 DOI: 10.1038/s41377-022-00946-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 05/15/2023]
Abstract
Lanthanide-doped colloidal nanoparticles capable of photon upconversion (UC) offer long luminescence lifetimes, narrowband absorption and emission spectra, and efficient anti-Stokes emission. These features are highly advantageous for Förster Resonance Energy Transfer (FRET) based detection. Upconverting nanoparticles (UCNPs) as donors may solve the existing problems of molecular FRET systems, such as photobleaching and limitations in quantitative analysis, but these new labels also bring new challenges. Here we have studied the impact of the core-shell compositional architecture of upconverting nanoparticle donors and the mode of photoexcitation on the performance of UC-FRET from UCNPs to Rose Bengal (RB) molecular acceptor. We have quantitatively compared luminescence rise and decay kinetics of Er3+ emission using core-only NaYF4: 20% Yb, 2% Er and core-shell NaYF4: 20% Yb @ NaYF4: 20% Yb, 5% Er donor UCNPs under three photoexcitation schemes: (1) direct short-pulse photoexcitation of Er3+ at 520 nm; indirect photoexcitation of Er3+ through Yb3+ sensitizer with (2) 980 nm short (5-7 ns) or (3) 980 nm long (4 ms) laser pulses. The donor luminescence kinetics and steady-state emission spectra differed between the UCNP architectures and excitation schemes. Aiming for highly sensitive kinetic upconversion FRET-based biomolecular assays, the experimental results underline the complexity of the excitation and energy-migration mechanisms affecting the Er3+ donor responses and suggest ways to optimize the photoexcitation scheme and the architecture of the UCNPs used as luminescent donors.
Collapse
Affiliation(s)
- Agata M Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland
| | - Aleksandra Pilch-Wróbel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul. Okolna 2, Wrocław, 50-422, Poland.
| |
Collapse
|
21
|
Yurkov GY, Kozinkin AV, Shvachko OV, Kubrin SP, Ovchenkov EA, Korobov MS, Kirillov VE, Osipkov AS, Makeev MO, Ryzhenko DS, Solodilov VI, Burakova EA, Bouznik VM. One
‐step synthesis of composite materials based on polytetrafluoroethylene microgranules and Co@
Fe
2
O
3
‐FeF
2
nanoparticles. J Appl Polym Sci 2022. [DOI: 10.1002/app.52890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gleb Yu. Yurkov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
- Bauman Moscow State Technical University Moscow Russian Federation
| | | | | | | | | | - Maxim S. Korobov
- Bauman Moscow State Technical University Moscow Russian Federation
| | - Vladislav E. Kirillov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
| | | | | | | | - Vitaly I. Solodilov
- Semenov Federal Research Center Chemical Physics Russian Academy of Sciences Moscow Russian Federation
| | | | | |
Collapse
|
22
|
Ding C, Cheng S, Yuan F, Zhang C, Xian Y. Ratiometrically pH-Insensitive Upconversion Nanoprobe: Toward Simultaneously Quantifying Organellar Calcium and Chloride and Understanding the Interaction of the Two Ions in Lysosome Function. Anal Chem 2022; 94:10813-10823. [PMID: 35876218 DOI: 10.1021/acs.analchem.2c01714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium and chloride levels are closely related to lysosome dysfunction. However, the simultaneous measurement of calcium (Ca2+) and chloride (Cl-) in acidic subcellular organelles, which is conducive to a deep understanding of lysosome-related biological events, remains a challenge. In this study, we developed a pH-insensitive, ratiometric NIR nanoprobe for the simultaneous detection of Ca2+ and Cl- in acidic lysosomes and determined the roles of the two ions in lysosome function. The upconversion nanoprobe with blue, green, and red emissions was modified with a Ca2+-sensitive dye (Rhod-5N) and Cl--responsive fluorophore (10,10'-bis[3-carboxypropyl]-9,9'-biacridinium dinitrate, BAC). As a result of a dual-luminescence resonance energy transfer between upconversion nanoparticles (UCNPs) and Rhod-5N/BAC, the blue and green upconversion luminescence (UCL) of UCNPs were quenched and the red UCL was used as the reference signal. The ratiometric upconversion nanoprobe possesses a specific ability for the concurrent recognition of Ca2+ and Cl- ions independent of the influence of the environmental pH. To locate the probe in the lysosome, dextran was further modified with upconversion nanoparticles. Then, the nanoprobe with a high spatial resolution was constructed for the simultaneous monitoring of Ca2+ and Cl- in acidic lysosomes. Moreover, it was found that the reduction of lysosomal Cl- affects the release of lysosomal Ca2+, which further blocks the activities of specific lysosomal enzymes. The ratiometric NIR nanoprobe has great potential for decoding and evaluating lysosomal diseases.
Collapse
Affiliation(s)
- Caiping Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Fang Yuan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
23
|
Role of Förster Resonance Energy Transfer in Graphene-Based Nanomaterials for Sensing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Förster resonance energy transfer (FRET)-based fluorescence sensing of various target analytes has been of growing interest in the environmental, bioimaging, and diagnosis fields. Graphene-based zero- (0D) to two-dimensional (2D) nanomaterials, such as graphene quantum dots (GQDs), graphene oxide (GO), reduced graphene oxide (rGO), and graphdiyne (GD), can potentially be employed as donors/acceptors in FRET-based sensing approaches because of their unique electronic and photoluminescent properties. In this review, we discuss the basics of FRET, as well as the role of graphene-based nanomaterials (GQDs, GO, rGO, and GD) for sensing various analytes, including cations, amino acids, explosives, pesticides, biomolecules, bacteria, and viruses. In addition, the graphene-based nanomaterial sensing strategy could be applied in environmental sample analyses, and the reason for the lower detection ranges (micro- to pico-molar concentration) could also be explained in detail. Challenges and future directions for designing nanomaterials with a new sensing approach and better sensing performance will also be highlighted.
Collapse
|
24
|
Wang L, Zhang B, Yang G, Li W, Wang J, Zhang X, Liang G. Spectral analysis on the acceptor concentration-dependent fluorescence resonance energy transfer process in CuInS 2@ZnS-SQ complexes. OPTICS EXPRESS 2022; 30:23695-23703. [PMID: 36225044 DOI: 10.1364/oe.460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 06/16/2023]
Abstract
Owing to the broad spectral response and flexible choices of donors and acceptors, fluorescence resonance energy transfer (FRET) system based on quantum dots (QDs) is a potential candidate for enhancing performance of solar cells and other optoelectronic devices. Thus it is necessary to develop such FRET systems with high efficiency and understand the involved photophysical dynamics. Here, with type I CuInS2@ZnS core-shell quantum dots as the energy donor, series of CuInS2@ZnS-SQ complexes are synthesized by adjusting the acceptor (squaric acid, SQ) concentration. The FRET dynamics of the samples is systematically investigated by virtue of steady-state emission, time-resolved fluorescence decay, and transient absorption measurements. The experimental results display a positive correlation between the energy transfer efficient (η). The best energy transfer efficient achieved from experimental data is 52%. This work provides better understanding of the photophysical dynamics in similar complexes and facilitates further development of new photoelectronic devices based on relevant FRET systems.
Collapse
|
25
|
Pilch-Wrobel A, Kotulska AM, Lahtinen S, Soukka T, Bednarkiewicz A. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200464. [PMID: 35355389 DOI: 10.1002/smll.202200464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio-imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo-bleaching, spectral cross-excitation, and emission bleed-through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay-based analysis of D-A interaction. In this work, the assessment of designed virtual core-shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy-transfer and energy migration between lanthanide ion dopants and how the architecture of core-shell UCNPs affects their performance as FRET donors to organic acceptor dyes.
Collapse
Affiliation(s)
- Aleksandra Pilch-Wrobel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Agata Maria Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| |
Collapse
|
26
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
27
|
Wang M, Hu C, Su Q. Luminescent Lifetime Regulation of Lanthanide-Doped Nanoparticles for Biosensing. BIOSENSORS 2022; 12:131. [PMID: 35200391 PMCID: PMC8869906 DOI: 10.3390/bios12020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 05/16/2023]
Abstract
Lanthanide-doped nanoparticles possess numerous advantages including tunable luminescence emission, narrow peak width and excellent optical and thermal stability, especially concerning the long lifetime from microseconds to milliseconds. Differing from other shorter-lifetime fluorescent nanomaterials, the long lifetime of lanthanide-doped nanomaterials is independent with background fluorescence interference and biological tissue depth. This review presents the recent advances in approaches to regulating the lifetime and applications of bioimaging and biodetection. We begin with the introduction of the strategies for regulating the lifetime by modulating the core-shell structure, adjusting the concentration of sensitizer and emitter, changing energy transfer channel, establishing a fluorescence resonance energy transfer pathway and changing temperature. We then summarize the applications of these nanoparticles in biosensing, including ion and molecule detecting, DNA and protease detection, cell labeling, organ imaging and thermal and pH sensing. Finally, the prospects and challenges of the lanthanide lifetime regulation for fundamental research and practical applications are also discussed.
Collapse
Affiliation(s)
- Mingkai Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
28
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. .,CEITEC MU, Masaryk University, Brno, Czech Republic.
| | | | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC MU, Masaryk University, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
29
|
McLellan CA, Siefe C, Casar JR, Peng CS, Fischer S, Lay A, Parakh A, Ke F, Gu XW, Mao W, Chu S, Goodman MB, Dionne JA. Engineering Bright and Mechanosensitive Alkaline-Earth Rare-Earth Upconverting Nanoparticles. J Phys Chem Lett 2022; 13:1547-1553. [PMID: 35133831 PMCID: PMC9587901 DOI: 10.1021/acs.jpclett.1c03841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Upconverting nanoparticles (UCNPs) are an emerging platform for mechanical force sensing at the nanometer scale. An outstanding challenge in realizing nanometer-scale mechano-sensitive UCNPs is maintaining a high mechanical force responsivity in conjunction with bright optical emission. This Letter reports mechano-sensing UCNPs based on the lanthanide dopants Yb3+ and Er3+, which exhibit a strong ratiometric change in emission spectra and bright emission under applied pressure. We synthesize and analyze the pressure response of five different types of nanoparticles, including cubic NaYF4 host nanoparticles and alkaline-earth host materials CaLuF, SrLuF, SrYbF, and BaLuF, all with lengths of 15 nm or less. By combining optical spectroscopy in a diamond anvil cell with single-particle brightness, we determine the noise equivalent sensitivity (GPa/√Hz) of these particles. The SrYb0.72Er0.28F@SrLuF particles exhibit an optimum noise equivalent sensitivity of 0.26 ± 0.04 GPa/√Hz. These particles present the possibility of robust nanometer-scale mechano-sensing.
Collapse
Affiliation(s)
- Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chunte Sam Peng
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Stefan Fischer
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Alice Lay
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Abhinav Parakh
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Feng Ke
- Department of Geological Sciences, Stanford University, Stanford, California 94305, United States
| | - X Wendy Gu
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Wendy Mao
- Department of Geological Sciences, Stanford University, Stanford, California 94305, United States
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, California 94305, United States
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Miriam B Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
30
|
Aghajanzadeh M, Zamani M, Rajabi Kouchi F, Eixenberger J, Shirini D, Estrada D, Shirini F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14020322. [PMID: 35214054 PMCID: PMC8880656 DOI: 10.3390/pharmaceutics14020322] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
This review provides a summary of recent progress in the development of different nano-platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In particular, this review focuses on various methods in which photosensitizers and chemotherapeutic agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and biologically derived nanocarriers. Many studies have demonstrated various benefits from using these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes novel approaches from different research groups that utilize various targeting strategies to increase treatment efficacy through simultaneous photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Mozhgan Aghajanzadeh
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Mostafa Zamani
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
| | - Fereshteh Rajabi Kouchi
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
| | - Josh Eixenberger
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
- Correspondence: (J.E.); or (F.S.)
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA; (F.R.K.); (D.E.)
- Center for Advanced Energy Studies, Boise State University, Boise, ID 83725, USA
| | - Farhad Shirini
- Department of Chemistry, College of Science, University of Guilan, Rasht 41335-19141, Iran; (M.A.); (M.Z.)
- Correspondence: (J.E.); or (F.S.)
| |
Collapse
|
31
|
Jurga N, Przybylska D, Kamiński P, Tymiński A, Grześkowiak BF, Grzyb T. Influence of the synthesis route on the spectroscopic, cytotoxic, and temperature-sensing properties of oleate-capped and ligand-free core/shell nanoparticles. J Colloid Interface Sci 2022; 606:1421-1434. [PMID: 34492477 DOI: 10.1016/j.jcis.2021.08.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/22/2023]
Abstract
The right choice of synthesis route for upconverting nanoparticles (UCNPs) is crucial for obtaining a well-defined product with a specific application capability. Thus we decided to compare the physicochemical, cytotoxic, and temperature-sensing properties of UCNPs obtained from different rare earth (RE) ions, which has been made for the first time in a single study. The core/shell NaYF4:Yb3+,Er3+/NaYF4 UCNPs were obtained by reaction in a mixture of oleic acid and octadecene, and their highly stable water colloids were prepared using the ligand-free modification method. Both oleate-capped and ligand-free UCNPs exhibited a bright upconversion emission upon 975 nm excitation. Moreover, slope values, emission quantum yields, and luminescence lifetimes confirmed an effective energy transfer between the Yb3+ and Er3+ ions. Additionally, the water colloids of the UCNPs showed temperature-sensing properties with a good thermal sensitivity level, higher than 1 % K-1 at 358 K. Evaluation of the cytotoxicity profiles of the obtained products indicated that cell viability was decreased in a dose-dependent manner in the analyzed concentration range.
Collapse
Affiliation(s)
- Natalia Jurga
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| | - Dominika Przybylska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| | - Piotr Kamiński
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| | - Artur Tymiński
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| | - Bartosz F Grześkowiak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, Poznań 61-614, Poland.
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland.
| |
Collapse
|
32
|
Xu J, Cheng Y, Xu J, Lin H, Wang Y. Inflection in size-dependence of thermally enhanced up-conversion luminescence of UCNPs. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01654g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation on the size-dependence of UCL thermal behavior of UCNPs with the size down to 3 nm reveals an inflection in the size-dependence of the thermo-enhanced luminescence of UCNPs.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yao Cheng
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
| | - Ju Xu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hang Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, P. R. China
| | - Yuansheng Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
33
|
Lei L, Liu E, Wang Y, Hua Y, Zhang J, Chen J, Mao R, Jia G, Xu S. Amplifying Upconversion by Engineering Interfacial Density of State in Sub-10 nm Colloidal Core/Shell Fluoride Nanoparticles. NANO LETTERS 2021; 21:10222-10229. [PMID: 34847665 DOI: 10.1021/acs.nanolett.1c03134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Achieving bright photon upconversion under low irradiance is of great significance and finds many stimulating applications from photovoltaics to biophotonics. However, it remains a daunting challenge to significantly intensify upconversion luminescence in small nanoparticles with a simple structure. Herein, we report the amplification of photon upconversion through engineering interfacial density of states between the core and the shell layer in sub-10 nm colloidal rare-earth ions doped fluoride nanocrystals. Through tuning of the metal cations in the shell layer of alkaline-earth-based core/shell nanoparticles, both the interfacial phonon frequency and the density of state are evidently decreased, resulting in the luminescence intensification of up to 8224 times. The generality of this upconversion enhancement strategy has been verified through expansion of this approach to alkali-based core/shell nanoparticles. The engineering of photon density of state in such core/shell nanoparticles enables dynamic display and high-level security information storage.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Enyang Liu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Yubin Wang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Youjie Hua
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Junjie Zhang
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| | - Jiayi Chen
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rundong Mao
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shiqing Xu
- Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, P. R. China
| |
Collapse
|
34
|
Tang Y, Zhong X, Yan S, Liu X, Cheng L, Wang Y, Liu X. Enantiospecific Detection of D‐Amino Acid through Synergistic Upconversion Energy Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yongan Tang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
- Department of Chemistry National University of Singapore Singapore 117549 Singapore
| | - Xiaoyan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Shuangqian Yan
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
- Department of Chemistry National University of Singapore Singapore 117549 Singapore
| | - Xiaowang Liu
- MIIT Key Laboratory of Flexible Electronics (KLoFE) and Xi'an Institute of Flexible Electronics Northwestern Polytechnical University 710072 Xi'an Shaanxi China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
| | - Xiaogang Liu
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 China
- Department of Chemistry National University of Singapore Singapore 117549 Singapore
| |
Collapse
|
35
|
Li R, Fang X, Ren J, Chen B, Yuan X, Pan X, Zhang P, Zhang L, Tu D, Fang Z, Chen X, Ju Q. The effect of surface-capping oleic acid on the optical properties of lanthanide-doped nanocrystals. NANOSCALE 2021; 13:12494-12504. [PMID: 34105534 DOI: 10.1039/d0nr08488c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid development of nanotechnology has placed a higher demand on the synthesis of nanomaterials. Benefiting from its capability to keep nanoparticles away from aggregation, oleic acid (OA) has been routinely utilized as a capping agent in the synthesis of monodisperse nanocrystals. To satisfy downstream biological applications, hydrophobic OA capping on the surface should be removed or coated, but scarce attention has been paid to its influence on the optical properties of nanocrystals. In this work, the effect of surface-capping OA has been systematically explored on the optical properties of lanthanide-doped upconversion and downshifting nanocrystals, respectively. The emission intensity and lifetime of emissive lanthanides have been compared between OA-capped and ligand-free nanocrystals either in solid state or in colloidal solution. In solid state, surface-capping OA can significantly influence both emission intensity and radiative transition possibility of emissive lanthanides. However, in colloidal solution, a distinct variation between OA-capped and ligand-free nanocrystals is observed. Besides, the effect of OA on the luminescence dynamics of lanthanides with different energy gaps (emitting level to the next-lower-energy level) has been investigated in colloidal solution. The possible mechanism for the effect of OA on the optical properties of lanthanide-doped nanocrystals has been further proposed.
Collapse
Affiliation(s)
- Renfu Li
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tang Y, Zhong X, Yan S, Liu X, Cheng L, Wang Y, Liu X. Enantiospecific Detection of D-Amino Acid through Synergistic Upconversion Energy Transfer. Angew Chem Int Ed Engl 2021; 60:19648-19652. [PMID: 34224644 DOI: 10.1002/anie.202105297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/20/2021] [Indexed: 01/23/2023]
Abstract
D-amino acids (DAAs) are indispensable in regulating diverse metabolic pathways. Selective and sensitive detection of DAAs is crucial for understanding the complexity of metabolic processes and managing associated diseases. However, current DAA detection strategies mainly rely on bulky instrumentation or electrochemical probes, limiting their cellular and animal applications. Here we report an enzyme-coupled nanoprobe that can detect enantiospecific DAAs through synergistic energy transfer. This nanoprobe offers near-infrared upconversion capability, a wide dynamic detection range, and a detection limit of 2.2 μM, providing a versatile platform for in vivo noninvasive detection of DAAs with high enantioselectivity. These results potentially allow real-time monitoring of biomolecular handedness in living animals, as well as developing antipsychotic treatment strategies.
Collapse
Affiliation(s)
- Yongan Tang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, National University of Singapore, Singapore, 117549, Singapore
| | - Xiaoyan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Shuangqian Yan
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, National University of Singapore, Singapore, 117549, Singapore
| | - Xiaowang Liu
- MIIT Key Laboratory of Flexible Electronics (KLoFE) and Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yu Wang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiaogang Liu
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, National University of Singapore, Singapore, 117549, Singapore
| |
Collapse
|
37
|
Han S, Yi Z, Zhang J, Gu Q, Liang L, Qin X, Xu J, Wu Y, Xu H, Rao A, Liu X. Photon upconversion through triplet exciton-mediated energy relay. Nat Commun 2021; 12:3704. [PMID: 34140483 PMCID: PMC8211736 DOI: 10.1038/s41467-021-23967-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
Exploration of upconversion luminescence from lanthanide emitters through energy migration has profound implications for fundamental research and technology development. However, energy migration-mediated upconversion requires stringent experimental conditions, such as high power excitation and special migratory ions in the host lattice, imposing selection constraints on lanthanide emitters. Here we demonstrate photon upconversion of diverse lanthanide emitters by harnessing triplet exciton-mediated energy relay. Compared with gadolinium-based systems, this energy relay is less dependent on excitation power and enhances the emission intensity of Tb3+ by 158-fold. Mechanistic investigations reveal that emission enhancement is attributable to strong coupling between lanthanides and surface molecules, which enables fast triplet generation (<100 ps) and subsequent near-unity triplet transfer efficiency from surface ligands to lanthanides. Moreover, the energy relay approach supports long-distance energy transfer and allows upconversion modulation in microstructures. These findings enhance fundamental understanding of energy transfer at molecule-nanoparticle interfaces and open exciting avenues for developing hybrid, high-performance optical materials.
Collapse
Affiliation(s)
- Sanyang Han
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Jiangbin Zhang
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
| | - Qifei Gu
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Liangliang Liang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| | - Jiahui Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yiming Wu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, China.
| | - Akshay Rao
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China.
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou, China.
| |
Collapse
|
38
|
Zhao Q, Du P, Wang X, Huang M, Sun LD, Wang T, Wang Z. Upconversion Fluorescence Resonance Energy Transfer Aptasensors for H5N1 Influenza Virus Detection. ACS OMEGA 2021; 6:15236-15245. [PMID: 34151102 PMCID: PMC8210407 DOI: 10.1021/acsomega.1c01491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Influenza A virus (IAV) poses a significant threat to human health, which calls for the development of efficient detection methods. The present study constructed a fluorescence resonance energy transfer (FRET) system based on novel fluorescent probes and graphene oxide (GO) for detecting H5N1 IAV hemagglutinin (HA). Here, we synthesized small (sub-20 nm) sandwich-structured upconversion nanoparticles (UCNPs) (SWUCNPs for short) with a high energy transfer efficiency, which allows for controlling the emitter in a thin shell. The π-π stacking interaction between the aptamer and GO shortens the distance between the fluorescent probe and the receptor, thereby realizing fluorescence resonance energy transfer (FRET). When HA is present, the aptamer enables changes in their conformations and move away from GO surface. Fluorescence signals display a linear relationship between HA quantitation in the range of 0.1-15 ng mL-1 and a limit of detection (LOD) of 60.9 pg mL-1. The aptasensor was also applicable in human serum samples with a linear range from 0.2 to 12 ng mL-1 and a limit of detection of 114.7 pg mL-1. This strategy suggested the promising prospect of the aptasensor in clinical applications because of the excellent sensing performance and sensitivity. This strategy may be promising for vitro diagnostics and provides new insights into the functioning of the SWUCNPs system.
Collapse
Affiliation(s)
- Qiuzi Zhao
- School
of Life Sciences, Tianjin University, 92 Weijin Road,
Nankai District, Tianjin 300072, China
| | - Ping Du
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Xiaoyong Wang
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Mengqian Huang
- School
of Life Sciences, Tianjin University, 92 Weijin Road,
Nankai District, Tianjin 300072, China
| | - Ling-Dong Sun
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory
in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry
and Molecular Engineering, Peking University, 202 Chengfu Road, Haidian District, Beijing 100871, China
| | - Tao Wang
- School
of Life Sciences, Tianjin University, 92 Weijin Road,
Nankai District, Tianjin 300072, China
| | - Zhiyun Wang
- School
of Environmental Science and Engineering, 135 Yaguang Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
39
|
Photostable and Small YVO 4:Yb,Er Upconversion Nanoparticles in Water. NANOMATERIALS 2021; 11:nano11061535. [PMID: 34200704 PMCID: PMC8230167 DOI: 10.3390/nano11061535] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 01/14/2023]
Abstract
In this work, we report a simple method of silica coating of upconversion nanoparticles (UCNPs) to obtain well-crystalline particles that remain small and not agglomerated after high-temperature post-annealing, and produce bright visible emission when pumped with near-infrared light. This enables many interesting biological applications, including high-contrast and deep tissue imaging, quantum sensing and super-resolution microscopy. These VO4-based UNCPs are an attractive alternative to fluoride-based crystals for water-based biosensing applications.
Collapse
|
40
|
Ansari AA, Thakur VK, Chen G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213821] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Zuo M, Duan Q, Li C, Ge J, Wang Q, Li Z, Liu Z. A Versatile Strategy for Constructing Ratiometric Upconversion Luminescent Probe with Sensitized Emission of Energy Acceptor. Anal Chem 2021; 93:5635-5643. [PMID: 33749233 DOI: 10.1021/acs.analchem.1c00470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
When fabricating ratiometric optical probes using lanthanide-doped upconversion nanoparticles (UCNPs), which are promising luminescent materials that have widely been utilized in biosensing and bioimaging as energy donors, it is still a challenge to obtain the emission signal of energy acceptors with reasons unclear so far. Herein, we reveal that the energy-transfer efficiency and brightness of UCNPs as well as the aggregation-caused quenching (ACQ) of energy accepting dyes are the main factors restricting the emission of energy acceptors, and we have circumvented this problem by modulating the structure of UCNPs and the assembly manner of the energy donor-acceptor pair. On this basis, a proof-of-concept ratiometric upconversion nanoprobe was constructed for hydrogen sulfide (H2S) detection with an elaborate dye Fl-1 as an energy acceptor. As the H2S concentration increased, the emission intensity of Fl-1 at 525 nm increased gradually, accompanied by a decrease of upconversion luminescence at 480 nm, thus providing a ratiometric signal of F480/F525 dependent on the H2S concentration. This probe was able to track H2S in living cells and zebrafish and visualize the H2S level of mice in physiological processes.
Collapse
Affiliation(s)
- Miaomiao Zuo
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qian Duan
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Chenchen Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Juan Ge
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Qirong Wang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
42
|
Yu Z, Jiang F, Hu C, Tang B. Functionalized nanoprobes for in situ detection of telomerase. Chem Commun (Camb) 2021; 57:3736-3748. [PMID: 33876119 DOI: 10.1039/d0cc08412c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Telomerase, a special ribonucleoprotein reverse transcriptase, can maintain the length and stability of telomeres and plays an important role in cell proliferation and differentiation. Due to the distinguishable expression level in normal cells and cancer cells, telomerase has become an important biomarker for cancer diagnosis and prognosis evaluation. Despite major breakthroughs in the field of telomerase detection, the extracts in the cell lysate are still the first choice as the analyte nevertheless, which will bring serious inaccuracies compared with the real intracellular activity. With the development of nanotechnology and nanomaterials, extraordinary progress has been made in telomerase detection by employing different versatile nanoprobes. In this review, we list the superiority of nanoprobes and systematically summarize the applications of nanoprobes in telomerase detection from the aspects of various nanomaterials and discuss the current challenges and potential trends in the future design of nanoprobes.
Collapse
Affiliation(s)
- Zhengze Yu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
| | | | | | | |
Collapse
|
43
|
Mei S, Zhou J, Sun H, Cai Y, Sun L, Jin D, Yan C. Networking State of Ytterbium Ions Probing the Origin of Luminescence Quenching and Activation in Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003325. [PMID: 33747733 PMCID: PMC7967042 DOI: 10.1002/advs.202003325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/05/2020] [Indexed: 05/24/2023]
Abstract
At the organic-inorganic interface of nanocrystals, electron-phonon coupling plays an important but intricate role in determining the diverse properties of nanomaterials. Here, it is reported that highly doping of Yb3+ ions within the nanocrystal host can form an energy-migration network. The networking state Yb3+ shows both distinct Stark splitting peak ratios and lifetime dynamics, which allows quantitative investigations of quenching and thermal activation of luminescence, as the high-dimensional spectroscopy signatures can be correlated to the attaching and de-attaching status of surface molecules. By in-situ surface characterizations, it is proved that the Yb-O coordination associated with coordinated water molecules has significantly contributed to this reversible effect. Moreover, using this approach, the prime quencher -OH can be switched to -CH in the wet-chemistry annealing process, resulting in the electron-phonon coupling probability change. This study provides the molecular level insights and dynamics of the surface dark layer of luminescent nanocrystals.
Collapse
Affiliation(s)
- Sheng Mei
- Institute for Biomedical Materials & Devices (IBMD)Faculty of ScienceUniversity of Technology SydneyNew South Wales2007Australia
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPKU‐HKU Joint Laboratory in Rare Earth Materials and Bioinorganic ChemistryCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Jiajia Zhou
- Institute for Biomedical Materials & Devices (IBMD)Faculty of ScienceUniversity of Technology SydneyNew South Wales2007Australia
| | - Hong‐Tao Sun
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversityJiangsu215123China
- International Center for Materials Nanoarchitectonics (MANA)National Institute for Materials Science (NIMS)Tsukuba305‐0044Japan
| | - Yangjian Cai
- UTS‐SUStech Joint Research Centre for Biomedical Materials & DevicesDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Ling‐Dong Sun
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPKU‐HKU Joint Laboratory in Rare Earth Materials and Bioinorganic ChemistryCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD)Faculty of ScienceUniversity of Technology SydneyNew South Wales2007Australia
- UTS‐SUStech Joint Research Centre for Biomedical Materials & DevicesDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Chun‐Hua Yan
- Beijing National Laboratory for Molecular SciencesState Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPKU‐HKU Joint Laboratory in Rare Earth Materials and Bioinorganic ChemistryCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
- College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhou730000China
| |
Collapse
|
44
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Ren Y, Rosch JG, Landry MR, Winter H, Khan S, Pratx G, Sun C. Tb-Doped core-shell-shell nanophosphors for enhanced X-ray induced luminescence and sensitization of radiodynamic therapy. Biomater Sci 2021; 9:496-505. [PMID: 33006335 PMCID: PMC7855282 DOI: 10.1039/d0bm00897d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of radiation responsive materials, such as nanoscintillators, enables a variety of exciting new theranostic applications. In particular, the ability of nanophosphors to serve as molecular imaging agents in novel modalities, such as X-ray luminescence computed tomography (XLCT), has gained significant interest recently. Here, we present a radioluminescent nanoplatform consisting of Tb-doped nanophosphors with an unique core/shell/shell (CSS) architecture for improved optical emission under X-ray excitation. Owing to the spatial confinement and separation of luminescent activators, these CSS nanophosphors exhibited bright optical luminescence upon irradiation. In addition to standard physiochemical characterization, these CSS nanophosphors were evaluated for their ability to serve as energy mediators in X-ray stimulated photodynamic therapy, also known as radiodynamic therapy (RDT), through attachment of a photosensitizer, rose bengal (RB). Furthermore, cRGD peptide was used as a model targeting agent against U87 MG glioblastoma cells. In vitro RDT efficacy studies suggested the RGD-CSS-RB in combination with X-ray irradiation could induce enhanced DNA damage and increased cell killing, while the nanoparticles alone are well tolerated. These studies support the utility of CSS nanophosphors and warrants their further development for theranostic applications.
Collapse
Affiliation(s)
- Yufu Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Justin G Rosch
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Madeleine R Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Ave, Portland, OR 97201, USA
| | - Hayden Winter
- Department of Chemistry, College of Liberal Arts & Sciences, Portland State University, 1719 SW 10th Ave, Portland, OR 97201, USA
| | - Syamantak Khan
- Department of Radiation Oncology, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Guillem Pratx
- Department of Radiation Oncology, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 SW Moody Ave, Portland, OR 97201, USA and Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Upconversion Nanoparticles Encapsulated with Amorphous Silica and Their Emission Quenching by FRET: A Nanosensor Excited by NIR for Mercury Detection. CRYSTALS 2021. [DOI: 10.3390/cryst11020104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Near-infrared (NIR) region has been considered as a diagnostic window since it avoids sample autofluorescence and light scattering. Upconversion nanoparticles (UCNPs) convert NIR light into high energy excitation light, making them a suitable excitation source for nanoprobes with deep penetration depth and high signal-to-noise ratio. The current work reported a rhodamine-derived probe for the detection of Hg(II). Corresponding absorption and emission responses for Hg(II) and detailed recognizing mechanism were discussed. An absorption titration experiment was performed. It was found that Hg(II) directly bonded with probe with chemical stoichiometry of 1:1, its association constant was calculated as 2.59 × 105 M−1. Such a high value indicated a direct coordination affinity between Hg(II) and this rhodamine-derived probe. Most metal cations exerted no increasing effect on the probe emission or absorption, exhibiting good sensing selectivity of probe towards Hg(II). Upconversion nanoparticles (UCNPs) were firstly encapsulated with silica (SiO2) and then bonded with the probe via a covalent bond. Given a near-infrared (NIR) laser excitation with wavelength of 980 nm, this probe, (E)-2-((3′,6′-bis(diethylamino)-2′,7′-dimethyl-3-oxospiro[isoindoline-1,9′-xanthen]-2-yl)imino)acetaldehyde (denoted as RHO), captured the energy of UCNPs via a FRET (fluorescence resonance energy transfer) path, resulting in the emission quenching of UCNPs. This composite system showed linear sensing behavior towards Hg(II) with high selectivity, which was similar to the case of pure probe. No probe emission, however, was observed from the composite system, which was different from the case of most literature reports. The self-quenching between probe molecules was claimed responsible for the probe emission, which was confirmed by experiment result and analysis. To the best of our knowledge, this is the first demonstration of covalently integrating SiO2-coated UCNPs with a rhodamine-derived probe for Hg(II) sensing.
Collapse
|
47
|
Engineering Red-Enhanced and Biocompatible Upconversion Nanoparticles. NANOMATERIALS 2021; 11:nano11020284. [PMID: 33499075 PMCID: PMC7911982 DOI: 10.3390/nano11020284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The exceptional optical properties of lanthanide-doped upconversion nanoparticles (UCNPs) make them among the best fluorescent markers for many promising bioapplications. To fully utilize the unique advantages of the UCNPs for bioapplications, recent significant efforts have been put into improving the brightness of small UCNPs crystals by optimizing dopant concentrations and utilizing the addition of inert shells to avoid surface quenching effects. In this work, we engineered bright and small size upconversion nanoparticles in a core–shell–shell (CSS) structure. The emission of the synthesized CSS UCNPs is enhanced in the biological transparency window under biocompatible excitation wavelength by optimizing dopant ion concentrations. We also investigated the biosafety of the synthesized CSS UCNP particles in living cell models to ensure bright and non-toxic fluorescent probes for promising bioapplications.
Collapse
|
48
|
Casar JR, McLellan CA, Siefe C, Dionne JA. Lanthanide-Based Nanosensors: Refining Nanoparticle Responsiveness for Single Particle Imaging of Stimuli. ACS PHOTONICS 2021; 8:3-17. [PMID: 34307765 PMCID: PMC8297747 DOI: 10.1021/acsphotonics.0c00894] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanthanide nanoparticles (LNPs) are promising sensors of chemical, mechanical, and temperature changes; they combine the narrow-spectral emission and long-lived excited states of individual lanthanide ions with the high spatial resolution and controlled energy transfer of nanocrystalline architectures. Despite considerable progress in optimizing LNP brightness and responsiveness for dynamic sensing, detection of stimuli with a spatial resolution approaching that of individual nanoparticles remains an outstanding challenge. Here, we highlight the existing capabilities and outstanding challenges of LNP sensors, en-route to nanometer-scale, single particle sensor resolution. First, we summarize LNP sensor read-outs, including changes in emission wavelength, lifetime, intensity, and spectral ratiometric values that arise from modified energy transfer networks within nanoparticles. Then, we describe the origins of LNP sensor imprecision, including sensitivity to competing conditions, interparticle heterogeneities, such as the concentration and distribution of dopant ions, and measurement noise. Motivated by these sources of signal variance, we describe synthesis characterization feedback loops to inform and improve sensor precision, and introduce noise-equivalent sensitivity as a figure of merit of LNP sensors. Finally, we project the magnitudes of chemical and pressure stimulus resolution achievable with single LNPs at nanoscale resolution. Our perspective provides a roadmap for translating ensemble LNP sensing capabilities to the single particle level, enabling nanometer-scale sensing in biology, medicine, and sustainability.
Collapse
Affiliation(s)
- Jason R Casar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Claire A McLellan
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Chris Siefe
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering and Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
49
|
Fu H, Ma Y, Liu Y, Hong M. Local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for biological applications. Chem Commun (Camb) 2021; 57:2970-2981. [DOI: 10.1039/d0cc07699f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This feature article overviews the recent advances in the local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for various biological applications.
Collapse
Affiliation(s)
- Huhui Fu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yuhan Ma
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
50
|
Jia T, Wang Z, Sun Q, Dong S, Xu J, Zhang F, Feng L, He F, Yang D, Yang P, Lin J. Intelligent Fe-Mn Layered Double Hydroxides Nanosheets Anchored with Upconversion Nanoparticles for Oxygen-Elevated Synergetic Therapy and Bioimaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001343. [PMID: 33107221 DOI: 10.1002/smll.202001343] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/30/2020] [Indexed: 05/14/2023]
Abstract
Multimodal synergistic therapy based on photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) has attracted increasing attention in cancer therapy. However, the scant therapeutic efficiency is always a barrier for further application. Herein, a smart tumor microenvironment (TME) responsive nanocatalysts are developed by adopting Fe-Mn layered double hydroxides (FeMn-LDH) as an effective photothermal nanocarrier to load mesoporous silica and chlorin e6 (Ce6)-covalently coated upconversion nanoparticles (UCSP) for multimodal imaging for directed therapy. Under acidic TME, FeMn-LDH degrades into Fe3+ and Mn2+ ions to initiate a Fenton-like reaction inducing CDT and enhancing magnetic resonance imaging. Additionally, Fe3+ can decompose H2 O2 to oxygen (O2 ), enhancing PDT guided by UCSP. As a representative noninvasive imaging probe, the upconversion luminescence will recover after decomposition of FeMn-LDH, and provide high-resolution upconversion luminescent imaging guidance for pinpointed PDT. Moreover, the photothermal properties of FeMn-LDH can further enhance CDT effects. The synergistic therapy and multifunctional imaging can realize the integration of diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Jia
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jiating Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fangmei Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|