1
|
Lee H, Kim J, Park MJ. Block Copolymer Electrolytes with Double Primitive Cubic Structures: Enhancing Solid-State Lithium Conduction via Lithium Salt Localization. ACS NANO 2025; 19:1251-1259. [PMID: 39752278 DOI: 10.1021/acsnano.4c13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We present a strategy for enhancing Li+ conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene-b-poly(ethylene oxide) (PS-b-PEO), wherein Li+ ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (Im3̅m) structures. Compared with TFSI- anions in Li salts, smaller anions (PF6- and BF4-) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable Im3̅m structures. The Im3̅m structures formed in PS-b-PEOs doped with LiBF4 at r = 0.013-0.02 (r ≡ [Li+]/[EO]) exhibited ionic conductivities several times higher than those doped at the conventional level (e.g., r = 0.06). The corresponding morphology factors were more than eight times higher than those of the lamellar-forming electrolytes. Notably, the activation energy value for Li+ conduction in PS-b-PEO with one Li+ ion per entire PEO chain was only 0.012 eV (by Vogel-Fulcher-Tammann), indicating that Li+ transport was less dependent on polymer relaxation. Furthermore, modifying the PEO chain ends with three -PO3H2 groups further strengthened the Li+-mediated end-end interactions and significantly extended the salt concentration range to form Im3̅m structures. In contrast, increasing the number of -OH end groups (such as diols and triols) had minimal effect on stabilizing the network morphologies.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jihoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Liu L, Gao Y, Dong C, Yang J, Yin P. The Hybridization of Polymers with Metal Oxide Clusters for the Design of Non-Fluorinated Proton Exchange Membranes. Chemistry 2024; 30:e202402262. [PMID: 38945834 DOI: 10.1002/chem.202402262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/02/2024]
Abstract
As the key component of various energy storage and conversion devices, proton exchange membranes (PEMs) have been attracting significant interest. However, their further development is limited by the high cost of perfluorosulfonic acid polymers and the poor stability of acid-dopped non-fluorinated polymers. Recently, a new group of PEMs has been developed by hybridizing polyoxometalates (POMs), a group of super acidic sub-nanoscale metal oxide clusters, with polymers. POMs can serve simultaneously as both proton sponges and stabilizing agents, and their complexation with polymers can further improve polymers' mechanical performance and processability. Enormous efforts have been focused on studying supramolecular complexation or covalent grafting of POMs with various polymers to optimize PEMs in terms of cost, mechanical properties and stabilities. This concept summarizes recent advances in this emerging field and outlines the design strategies and application perspectives employed for using POM-polymer hybrid materials as PEMs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yiren Gao
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Chen Dong
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
3
|
Li W, Li Y, Zhang Y, Lu J, Wu Y, Song J, Li J, Wang Z. Molecular-Level Modification of Sulfonated Poly(arylene ether ketone sulfone) with Polyoxovanadate-Ionic Liquid for High-Performance Proton Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45511-45522. [PMID: 39150706 DOI: 10.1021/acsami.4c09126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In this work, a proton-conductive inorganic filler based on polyoxovanadate (NH4)7[MnV13O38] (AMV) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIM TFSI) was synthesized for hybridization with sulfonated poly(aryl ether ketone sulfone) (SPAEKS) to address the "trade-off" between high proton conductivity and mechanical strength. The novel inorganic filler AMV-EMIM TFSI (AI) was uniformly dispersed and stable within the polymer matrix due to the enhanced ionic interaction. AI provided additional proton transport sites, leading to an elevated ion exchange capacity (IEC) and improved proton conductivity, even at low swelling ratios. The optimized SPAEKS-50/AI-5 (50 for degree of sulfonation of SPAEKS and 5 for weight percentage of AI filler) membrane exhibited the highest proton conductivity of 0.188 S·cm-1 at 80 °C with an IEC of 2.38 mmol·g-1. The enhancement of intermolecular forces improved the mechanical strength from 35 to 55 MPa and improved the elongation at break from 17 to 45%, indicating excellent mechanical properties. The hybrid membrane also demonstrated reinforced methanol resistance due to the hydrogen bonding network and blocking effect, making it suitable for direct methanol fuel cell (DMFC) applications, which exhibited a power density of 15.1 mW·cm-2 at 80 °C. The possibility of further functionalizing these hybrid membranes to tailor their properties for specific applications presents exciting new avenues for research and development. By modification of the type and distribution of fillers or incorporation of additional functional groups, the membranes could be customized to meet the unique demands of various energy storage and conversion systems, enhancing their performance and broadening their application scope. This work provides new insights into the design of polymer electrolyte membranes through inorganic filler hybridization.
Collapse
Affiliation(s)
- Wenjing Li
- School of Chemistry and Life Science, Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Yishan Li
- School of Chemistry and Life Science, Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Yanchao Zhang
- School of Chemistry and Life Science, Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Jiahao Lu
- School of Chemistry and Life Science, Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Yuanlong Wu
- School of Chemistry and Life Science, Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Jiaran Song
- School of Chemistry and Life Science, Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Jinsheng Li
- State Key Laboratory of Electroanalytic Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P.R. China
| | - Zhe Wang
- School of Chemistry and Life Science, Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
4
|
Liu D, He S, Luo L, Yang W, Liu Y, Yang S, Shen Z, Chen S, Fan XH. Double gyroid-structured electrolyte based on an azobenzene-containing monomer and its polymer. SOFT MATTER 2024; 20:6424-6430. [PMID: 39087847 DOI: 10.1039/d4sm00551a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The self-assembled structure has a significant impact on the performance of ion conductors. We prepared a new type of electrolyte with self-assembled structures from an azobenzene-based liquid crystalline (LC) monomer and its corresponding polymer. By doping different amounts of monomers and lithium salt LiTFSI, the self-assembled nanostructure of the electrolyte was changed from lamellae to double gyroid. The ionic conductivity of the azobenzene-based electrolytes with the double gyroid structure was 1.64 × 10-4 S cm-1, higher than most PEO-based polymer electrolytes. The azobenzene-based system provides a new strategy to design solid electrolytes with self-assembled structures that may be potentially used in solid-state lithium-ion batteries.
Collapse
Affiliation(s)
- Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shangming He
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Weilu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shichu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| | - Shuangjun Chen
- College of Materials Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Sujita R, Aoki H, Takenaka M, Ouchi M, Terashima T. Universal Access to Water-Compatible and Nanostructured Materials via the Self-Assembly of Cationic Alternating Copolymers. ACS Macro Lett 2024; 13:747-753. [PMID: 38815215 DOI: 10.1021/acsmacrolett.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we report the water-assisted self-assembly of alternating copolymers bearing imidazolium cations and hydrophobic groups to create water-compatible and nanostructured materials. The copolymers efficiently absorbed water into the cationic segments from the outer environments, depending on the relative humidity. The absorbed water serves as hydrophilic molecules to modulate the weight fraction of hydrophilic/hydrophobic units in the samples. Thus, the morphologies and domain spacing of the nanostructures can be controlled by not only the side chains, but also the amount of absorbed water. The self-assembly of the cationic copolymers, developed herein, afforded universal access to various morphologies, including lamella, gyroid, and cylinder, in addition to the precision control of the domain spacing at the 0.01 nm level.
Collapse
Affiliation(s)
- Ryota Sujita
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
6
|
Wang Y, Li YX, Li Q, Jia R, Tang Q, Huang H, Zhang Y, Feng X. Highly Ordered Gyroid Nanostructured Polymers: Facile Fabrication by Polymerizable Pluronic Surfactants. ACS Macro Lett 2024; 13:550-557. [PMID: 38634712 DOI: 10.1021/acsmacrolett.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Highly ordered, network-nanostructured polymers offer compelling geometric features and application potential. However, their practical utilization is hampered by the restricted accessibility. Here, we address this challenge using commercial Pluronic surfactants with a straightforward modification of tethering polymerizable groups. By leveraging lyotropic self-assembly, we achieve facile production of double-gyroid mesophases, which are subsequently solidified via photoinduced cross-linking. The exceptionally ordered periodicities of Ia3d symmetry in the photocured polymers are unambiguously confirmed by synchrotron small-angle X-ray scattering (SAXS), which can capture single-crystal-like diffraction patterns. Electron density maps reconstructed from SAXS data complemented by transmission electron microscopy analysis further elucidate the real-space gyroid assemblies. Intriguingly, by tuning the cross-linking through thiol-acrylate chemistry, the mechanical properties of the polymer are modulated without compromising the integrity of Ia3d assemblies. The 3-D percolating gyroid nanochannels demonstrate an ionic conductivity that surpasses that of disordered structures, offering promising prospects for scalable fabrication.
Collapse
Affiliation(s)
- Yinuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Ya-Xin Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Ruoyin Jia
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingchen Tang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Hairui Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Yizhou Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Xunda Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, and College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
He S, Fang Z, Liu D, Liu Y, Yang S, Wang H, Shen Z, Chen S, Fan XH. Impact of self-assembled structure on ionic conductivity of an azobenzene-containing electrolyte. RSC Adv 2024; 14:15987-15993. [PMID: 38765478 PMCID: PMC11099987 DOI: 10.1039/d4ra02300e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024] Open
Abstract
The type of self-assembled structure has a significant impact on the ionic conductivity of block copolymer or liquid crystalline (LC) ion conductors. In this study, we focus on the effect of self-assembled structures on the ionic conductivity of a non-block copolymer, LC ion conductor, which is a mixture of an azobenzene monomer (NbAzo), pentaerythritol tetre(3-mercapropionate) (PETMP), and a lithium salt, lithium bis(trifluoromethane)sulfonimide (LiTFSI). The self-assembled structures and ionic conductivities of ion conductors having different doping ratios of lithium salt to monomer were examined. With the increase in the doping ratio, the self-assembled structure transforms from lamellae (LAM) to double gyroid (GYR). The effect of self-assembled structure on ionic conductivity was analyzed; it was found that the conductivity of the GYR structure was about 3.6 times that of the LAM one, indicating that obtaining the GYR structure is more effective in improving ionic conductivity.
Collapse
Affiliation(s)
- Shangming He
- College of Materials Science & Engineering, Nanjing Tech University Nanjing 210009 China
| | - Zhifan Fang
- College of Materials Science & Engineering, Nanjing Tech University Nanjing 210009 China
| | - Dong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Shichu Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Hongfei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Shuangjun Chen
- College of Materials Science & Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
8
|
Ikami T, Aoki H, Terashima T. Lamellar Microphase Separation and Phase Transition of Hydrogen-Bonding/Crystalline Statistical Copolymers: Amide Functionalization at the Interface. ACS Macro Lett 2024; 13:446-452. [PMID: 38547521 DOI: 10.1021/acsmacrolett.3c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Microphase separation of random copolymers, as well as that of high χ-low N block copolymers, is promising to construct sub-10-nm structures into materials. Herein, we designed statistical copolymers consisting of 2-hydroxyethyl acrylate (HEA) and N-octadecylacrylamide (ODAAm) to produce crystallization and hydrogen bond-assisted lamellar structure materials. The copolymers not only formed a crystalline lamellar structure with 3-4 nm domain spacing but also maintained an amorphous lamellar structure via phase transition above the melting temperature up to approximately 100 °C. The key is to introduce hydrogen-bonding amide junctions between the octadecyl groups and the polymer backbones, by which the polymer chains are physically fixed at the interface of lamellar structures even above the melting temperature. The stabilization of the lamellar structure by the amide units is also supported by the fact that the lamellar structure of all-acrylate random copolymers bearing hydroxyethyl and crystalline octadecyl groups is disordered above the melting temperature. By spin-coating on a silicon substrate, the HEA/ODAAm copolymer formed a multilayered lamellar thin film consisting of a hydrophilic hydroxyethyl/main chain phase and a hydrophobic octadecyl phase. The structure and order-disorder transition were analyzed by neutron reflectivity.
Collapse
Affiliation(s)
- Takaya Ikami
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Naka-gun, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Liu L, Huang A, Yang J, Chen J, Fu K, Sun W, Deng J, Yin JF, Yin P. Supramolecular Complexation of Metal Oxide Cluster and Non-Fluorinated Polymer for Large-Scale Fabrication of Proton Exchange Membranes for High-Power-Density Fuel Cells. Angew Chem Int Ed Engl 2024; 63:e202318355. [PMID: 38265930 DOI: 10.1002/anie.202318355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Cost-effective, non-fluorinated polymer proton exchange membranes (PEMs) are highly desirable in emerging hydrogen fuel cells (FCs) technology; however, their low proton conductivities and poor chemical and dimension stabilities hinder their further development as alternatives to commercial Nafion®. Here, we report the inorganic-organic hybridization strategy by facilely complexing commercial polymers, polyvinyl butyral (PVB), with inorganic molecular nanoparticles, H3 PW12 O40 (PW) via supramolecular interaction. The strong affinity among them endows the obtained nanocomposites amphiphilicity and further lead to phase separation for bi-continuous structures with both inter-connected proton transportation channels and robust polymer scaffold, enabling high proton conductivities, mechanical/dimension stability and barrier performance, and the H2 /O2 FCs equipped with the composite PEM show promising power densities and long-term stability. Interestingly, the hybrid PEM can be fabricated continuously in large scale at challenging ~10 μm thickness via typical tape casting technique originated from their facile complexing strategy and the hybrids' excellent mechanical properties. This work not only provides potential material systems for commercial PEMs, but also raises interest for the research on hybrid composites for PEMs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Aowen Huang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jiadong Chen
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Kewen Fu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Weigang Sun
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jie Deng
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
10
|
Lee H, Kwon S, Min J, Jin SM, Hwang JH, Lee E, Lee WB, Park MJ. Thermodynamically stable plumber's nightmare structures in block copolymers. Science 2024; 383:70-76. [PMID: 38175890 DOI: 10.1126/science.adh0483] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Block copolymer self-assembly affords diverse nanostructures, spanning from spheres and cylinders to networks, offering meticulous control over properties and functionalities at the nanoscale. However, creating thermodynamically stable network structures with high packing frustration remains a challenge. In this study, we report a methodology to access diverse network structures such as gyroid, diamond, and primitive phases from diblock copolymers using end group and linker chemistry. The stability of the medial packing of polymer chain ends (plumber's nightmare structure) over skeletal aggregation (gyroid) is attributed to the interplay between the strength of the end-end interactions and the initial shape of the curvature. Our study establishes an approach to develop tailored network structures from block copolymers, providing an important platform for using block copolymers in nanotechnology applications.
Collapse
Affiliation(s)
- Hojun Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sangwoo Kwon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaemin Min
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seon-Mi Jin
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
11
|
Dong X, Liu X, Li H, Passerini S, Bresser D. Single-Ion Conducting Polymer Electrolyte for Superior Sodium-Metal Batteries. Angew Chem Int Ed Engl 2023; 62:e202308699. [PMID: 37496056 DOI: 10.1002/anie.202308699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Sodium-metal batteries (SMBs) are considered a potential alternative to high-energy lithium-metal batteries (LMBs). However, the high reactivity of metallic sodium towards common liquid organic electrolytes renders such battery technology particularly challenging. Herein, we propose a multi-block single-ion conducting polymer electrolyte (SIPE) doped with ethylene carbonate as suitable electrolyte system for SMBs. This novel SIPE provides a very high ionic conductivity (2.6 mS cm-1 ) and an electrochemical stability window of about 4.1 V at 40 °C, enabling stable sodium stripping and plating and excellent rate capability of Na||Na3 V2 (PO4 )3 cells up to 2 C. Remarkably, such cells provide a capacity retention of about 85 % after 1,000 cycles at 0.2 C thanks to the very high Coulombic efficiency (99.9 %), resulting from an excellent interfacial stability towards sodium metal and the Na3 V2 (PO4 )3 cathode.
Collapse
Affiliation(s)
- Xu Dong
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Xu Liu
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Huihua Li
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
- Chemistry Department, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Dominic Bresser
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| |
Collapse
|
12
|
Xue Y, Cao M, Chen C, Zhong M. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation. JACS AU 2023; 3:1284-1300. [PMID: 37234122 PMCID: PMC10207122 DOI: 10.1021/jacsau.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
With the ever-growing demand for sustainability, designing polymeric materials using readily accessible feedstocks provides potential solutions to address the challenges in energy and environmental conservation. Complementing the prevailing strategy of varying chemical composition, engineering microstructures of polymer chains by precisely controlling their chain length distribution, main chain regio-/stereoregularity, monomer or segment sequence, and architecture creates a powerful toolbox to rapidly access diversified material properties. In this Perspective, we lay out recent advances in utilizing appropriately designed polymers in a wide range of applications such as plastic recycling, water purification, and solar energy storage and conversion. With decoupled structural parameters, these studies have established various microstructure-function relationships. Given the progress outlined here, we envision that the microstructure-engineering strategy will accelerate the design and optimization of polymeric materials to meet sustainability criteria.
Collapse
Affiliation(s)
- Yazhen Xue
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mengxue Cao
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Charles Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
13
|
Liu L, Cai L, Xiao H, Lai Y, Liu Y, Zhou X, Yin J, Yang J, Chen K, Yin P. Supramolecular Assembly and Microscopic Dynamics Modulation of Nanoscale Inorganic Cryptand and Polymer Complex for Versatile Design of Flexible Single-Ion Conductors. NANO LETTERS 2023; 23:2669-2676. [PMID: 36939274 DOI: 10.1021/acs.nanolett.2c05043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The popular design of solid-state electrolytes (SSEs) from the chain relaxation of polymers faces the trade-offs among ion conductivity, stability, and processability. Herein, 2 nm inorganic cryptand molecules with the capability to carry different types of cations, including Ag+, Na+, K+, and Ca2+, are complexed with cationic polymers via ionic interaction, respectively, and the hybrid materials further phase separate into lamellar or hexagonal columnar structures. The successful establishment of ordered structures with ion channels from the packing of inorganic cryptands confers SSEs' excellent ionic conductivity to versatile types of cations. Meanwhile, suggested from the combination of broad dielectric spectroscopy, rheology, and thermal analysis, the fast chain relaxation can activate the dynamics of inorganic cryptand molecules and facilitate the ion hopping process in ion channels. The supramolecular interaction in the complex enables the highly flexible physical appearance for defect-free contact with electrodes as well as cost-effective processability and recyclability.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Haiyan Xiao
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuyan Lai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xin Zhou
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiafu Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Kun Chen
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
14
|
Feng H, Chae CG, Eom C, Craig GSW, Rowan SJ, Nealey PF. Synthesis and Characterization of Amine-Epoxy-Functionalized Polystyrene- block-Poly(glycidyl methacrylate) to Manage Morphology and Covarying Properties for Self-Assembly. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
15
|
Liu J, Schaefer JL. Li + Conduction in Glass-Forming Single-Ion Conducting Polymer Electrolytes with and without Ion Clusters. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Jiacheng Liu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer L. Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
16
|
Gavrilov AA. Effect of the counterion size on microphase separation in charged-neutral diblock copolymers. J Chem Phys 2023; 158:054901. [PMID: 36754807 DOI: 10.1063/5.0134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this work, the question of the influence of the counterion size on the self-assembly in melts of diblock copolymers with one charged block was studied using coarse-grained molecular dynamics simulations. It was assumed that the blocks were fully compatible, i.e., the Flory-Huggins parameter χ between them was equal to 0. Due to the presence of correlation attraction (electrostatic cohesion) between the charged species, the systems with all types of counterions underwent transitions to ordered states, forming various morphologies, including lamellae, perforated lamellae, and hexagonally packed cylinders. Phase diagrams were constructed by varying the chain composition fc and locating the order-disorder transition positions in terms of the electrostatic strength parameter λ (dimensionless Bjerrum length). Despite having a rather large ion size mismatch, the systems with smaller counterions demonstrated an even better tendency to form microphase separated states than the systems with larger ones. It was found that the differences between the phase diagrams of the systems with different counterions can be roughly rationalized by using coordinates (volume fraction of the charged block φc-modified interaction parameter λ*). The latter parameter assumes that the electrostatic energy is simply inversely proportional to the characteristic distance between the ions of different signs. Such an approach appeared to be rather effective and allowed the diagrams obtained for different counterion sizes to almost coincide. The results of this work suggest that the counterion size can be used as a tool to control the system morphology as well as the effective incompatibility between the blocks.
Collapse
Affiliation(s)
- Alexey A Gavrilov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia and A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Russia
| |
Collapse
|
17
|
Wang RY, Jeong S, Ham H, Kim J, Lee H, Son CY, Park MJ. Superionic Bifunctional Polymer Electrolytes for Solid-State Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203413. [PMID: 35861998 DOI: 10.1002/adma.202203413] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Achieving superionic conductivity from solid-state polymer electrolytes is an important task in the development of future energy storage and conversion technologies. Herein, a platform for innovative electrolyte technologies based on a bifunctional polymer, poly(3-hydroxy-4-sulfonated styrene) (PS-3H4S), is presented. By incorporating OH and SO3 H functional groups at adjacent positions in the styrene repeating unit, "intra-monomer" hydrogen bonds are formed to effectively weaken the electrostatic interactions of the SO3 - moieties in the polymer matrix with embedded ions, promoting rich structural and dynamic heterogeneity in the PS-3H4S electrolyte. Upon the incorporation of an ionic liquid, interconnected rod-like ion channels, which allow the decoupling of ion relaxation from polymer relaxation, are formed in the stiff motif of the polymeric domains passivated by interfacial ionic layers. This results in accelerated proton hopping through the glassy polymer matrix, and proton hopping becomes more pronounced at cryogenic temperatures down to -35 °C. The PS-3H4S/ionic liquid composite electrolytes exhibit a high ionic conductivity of 10-3 S cm-1 and high storage modulus of ≈100 MPa at 25 °C, and can be successfully applied in soft actuators and lithium-metal batteries.
Collapse
Affiliation(s)
- Rui-Yang Wang
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seungwon Jeong
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeonseong Ham
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihoon Kim
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hojun Lee
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chang Yun Son
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moon Jeong Park
- Department of Chemistry, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
18
|
Jones S, Bamford J, Fredrickson GH, Segalman RA. Decoupling Ion Transport and Matrix Dynamics to Make High Performance Solid Polymer Electrolytes. ACS POLYMERS AU 2022; 2:430-448. [PMID: 36561285 PMCID: PMC9761859 DOI: 10.1021/acspolymersau.2c00024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 12/25/2022]
Abstract
Transport of ions through solid polymeric electrolytes (SPEs) involves a complicated interplay of ion solvation, ion-ion interactions, ion-polymer interactions, and free volume. Nonetheless, prevailing viewpoints on the subject promote a significantly simplified picture, likening ion transport in a polymer to that in an unstructured fluid at low solute concentrations. Although this idealized liquid transport model has been successful in guiding the design of homogeneous electrolytes, structured electrolytes provide a promising alternate route to achieve high ionic conductivity and selectivity. In this perspective, we begin by describing the physical origins of the idealized liquid transport mechanism and then proceed to examine known cases of decoupling between the matrix dynamics and ionic transport in SPEs. Specifically we discuss conditions for "decoupled" mobility that include a highly polar electrolyte environment, a percolated path of free volume elements (either through structured or unstructured channels), high ion concentrations, and labile ion-electrolyte interactions. Finally, we proceed to reflect on the potential of these mechanisms to promote multivalent ion conductivity and the need for research into the interfacial properties of solid polymer electrolytes as well as their performance at elevated potentials.
Collapse
Affiliation(s)
- Seamus
D. Jones
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States
| | - James Bamford
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States,Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States,Mitsubishi
Chemical Center for Advanced Materials, University of California, Santa
Barbara, California 93106, United States,Materials
Department, University of California Santa
Barbara, Santa
Barbara, California 93106, United States,
| |
Collapse
|
19
|
Piñón-Balderrama CI, Leyva-Porras C, Conejo-Dávila AS, Zaragoza-Contreras EA. Sulfonated Block Copolymers: Synthesis, Chemical Modification, Self-Assembly Morphologies, and Recent Applications. Polymers (Basel) 2022; 14:polym14235081. [PMID: 36501479 PMCID: PMC9740409 DOI: 10.3390/polym14235081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Scientific research based on the self-assembly behavior of block copolymers (BCs) comprising charged-neutral segments has emerged as a novel strategy mainly looking for the optimization of efficiency in the generation and storage of electrical energy. The sulfonation reaction re- presents one of the most commonly employed methodologies by scientific investigations to reach the desired amphiphilic character, leading to enough ion concentration to modify and control the entire self-assembly behavior of the BCs. Recently, several works have studied and exploited these changes, inducing improvement on the mechanical properties, ionic conduction capabilities, colloidal solubility, interface activity, and stabilization of dispersed particles, among others. This review aims to present a description of recent works focused on obtaining amphiphilic block copolymers, specifically those that were synthesized by a living/controlled polymerization method and that have introduced the amphiphilic character by the sulfonation of one of the segments. Additionally, relevant works that have evidenced morphological and/or structural changes regarding the pristine BC as a result of the chemical modification are discussed. Finally, several emerging practical applications are analyzed to highlight the main drawbacks and challenges that should be addressed to overcome the development and understanding of these complex systems.
Collapse
|
20
|
Molecular dynamics insight into phase separation and transport in anion-exchange membranes: Effect of hydrophobicity of backbones. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Imai S, Arakawa M, Nakanishi Y, Takenaka M, Aoki H, Ouchi M, Terashima T. Water-Assisted Microphase Separation of Cationic Random Copolymers into Sub-5 nm Lamellar Materials and Thin Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sahori Imai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masato Arakawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4, Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
22
|
Fan M, Shen KH, Hall LM. Effect of Tethering Anions in Block Copolymer Electrolytes via Molecular Dynamics Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Liu J, Yang L, Pickett PD, Park B, Schaefer JL. Li + Transport in Single-Ion Conducting Side-Chain Polymer Electrolytes with Nanoscale Self-Assembly of Ordered Ionic Domains. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiacheng Liu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Lingyu Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Phillip D. Pickett
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Bumjun Park
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jennifer L. Schaefer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
24
|
Park J, Winey KI. Double Gyroid Morphologies in Precise Ion-Containing Multiblock Copolymers Synthesized via Step-Growth Polymerization. JACS AU 2022; 2:1769-1780. [PMID: 36032527 PMCID: PMC9400044 DOI: 10.1021/jacsau.2c00254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 05/31/2023]
Abstract
The double gyroid structure was first reported in diblock copolymers about 30 years ago, and the complexity of this morphology relative to the other ordered morphologies in block copolymers continues to fascinate the soft matter community. The double gyroid microphase-separated morphology has co-continuous domains of both species, and the minority phase is subdivided into two interpenetrating network structures. In addition to diblock copolymers, this structure has been reported in similar systems including diblock copolymers blended with one or two homopolymers and ABA-type triblock copolymers. Given the narrow composition region over which the double gyroid structure is typically observed (∼3 vol %), anionic polymerization has dominated the synthesis of block copolymers to control their composition and molecular weight. This perspective will highlight recent studies that (1) employ an alternative polymerization method to make block copolymers and (2) report double gyroid structures with lattice parameters below 10 nm. Specifically, step-growth polymerization linked precise polyethylene blocks and short sulfonate-containing blocks to form strictly alternating multiblock copolymers, and these copolymers produce the double gyroid structure over a dramatically wider composition range (>14 vol %). These new (AB) n multiblock copolymers self-assemble into the double gyroid structure by having exceptional control over the polymer architecture and large interaction parameters between the blocks. This perspective proposes criteria for a broader and synthetically more accessible range of polymers that self-assemble into double gyroids and other ordered structures, so that these remarkable structures can be employed to solve a variety of technological challenges.
Collapse
Affiliation(s)
- Jinseok Park
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Park J, Staiger A, Mecking S, Winey KI. Enhanced Li-Ion Transport through Selectively Solvated Ionic Layers of Single-Ion Conducting Multiblock Copolymers. ACS Macro Lett 2022; 11:1008-1013. [PMID: 35876880 DOI: 10.1021/acsmacrolett.2c00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate enhanced Li+ transport through the selectively solvated ionic layers of a single-ion conducting polymer. The polymer is a precisely segmented ion-containing multiblock copolymers with well-defined Li+SO3- ionic layers between crystallized linear aliphatic 18-carbon blocks. X-ray scattering reveals that the dimethyl sulfoxide (DMSO) molecules selectively solvate the ionic layers without disrupting the crystallization of the polymer backbone. The amount of DMSO (∼21 wt %) calculated from the increased layer spacing is consistent with thermogravimetric analysis. The ionic conductivity through DMSO-solvated ionic layers is >104 times higher than in the dried state, indicating a significant enhancement of ion transport in the presence of this solvent. Dielectric relaxation spectroscopy (DRS) further elucidates the role of the structural relaxation time (τ) and the number of free Li+ (n) on the ionic conductivity (σ). Specifically, DRS reveals that the solvation of ionic domains with DMSO contributes to both accelerating the structural relaxation and the dissociation of ion pairs. This study is the initial demonstration that selective solvation is a viable design strategy to improve ionic conductivity in nanophase separated, single-ion conducting multiblock copolymers.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Chen P, Mahanthappa MK, Dorfman KD. Stability of cubic single network phases in diblock copolymer melts. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pengyu Chen
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
27
|
Zheng C, Zhang B, Bates FS, Lodge TP. Self-Assembly of Partially Charged Diblock Copolymer-Homopolymer Ternary Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Caini Zheng
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bo Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Grim BJ, Green MD. Thermodynamics and Structure‐Property Relationships of Charged Block Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bradley J. Grim
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| | - Matthew D. Green
- Chemical Engineering School for Engineering of Matter Transport and Energy Arizona State University Tempe AZ 85287
| |
Collapse
|
29
|
Yu W, Zhang K, Zhang J, Liang X, Ge X, Ge Z, Wei C, Song W, Xu T, Wu L. Efficient lamellar two‐dimensional proton channels derived from dipole interactions in a polyelectrolyte membrane. AIChE J 2022. [DOI: 10.1002/aic.17731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weisheng Yu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Kaiyu Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Jianjun Zhang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Xian Liang
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Xiaolin Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Zijuan Ge
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Chengpeng Wei
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Wanjie Song
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Tongwen Xu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| | - Liang Wu
- Anhui Engineering Laboratory of Functional Membrane Materials and Technology, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science University of Science and Technology of China Hefei China
| |
Collapse
|
30
|
Park J, Staiger A, Mecking S, Winey KI. Ordered Nanostructures in Thin Films of Precise Ion-Containing Multiblock Copolymers. ACS CENTRAL SCIENCE 2022; 8:388-393. [PMID: 35350601 PMCID: PMC8949628 DOI: 10.1021/acscentsci.1c01594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 05/05/2023]
Abstract
We demonstrate that ionic functionality in a multiblock architecture produces highly ordered and sub-3 nm nanostructures in thin films, including bicontinuous double gyroids. At 40 °C, precise ion-containing multiblock copolymers of poly(ethylene-b-lithium sulfosuccinate ester) n (PESxLi, x = 12 or 18) exhibit layered ionic assemblies parallel to the substrate. These ionic layers are separated by crystalline polyethylene blocks with the polymer backbones perpendicular to the substrate. Notably, above the melting temperature (T m) of the polyethylene blocks, layered PES18Li thin films transform into a highly oriented double-gyroid morphology with the (211) plane (d 211 = 2.5 nm) aligned parallel to the substrate. The cubic lattice parameter (a gyr) of the double gyroid is 6.1 nm. Upon heating further above T m, the double-gyroid morphology in PES18Li transitions into hexagonally packed cylinders with cylinders parallel to the substrate. These layered, double-gyroid, and cylinder nanostructures form epitaxially and spontaneously without secondary treatment, such as interfacial layers and solvent vapor annealing. When the film thickness is less than ∼3a gyr, double gyroids and cylinders coexist due to the increased confinement. For PES12Li above T m, the layered ionic assemblies simply transform into disordered morphology. Given the chemical tunability of ion-functionalized multiblock copolymers, this study reveals a versatile pathway to fabricating ordered nanostructures in thin films.
Collapse
Affiliation(s)
- Jinseok Park
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department
of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department
of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biomolecular
Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
31
|
Paren BA, Häußler M, Rathenow P, Mecking S, Winey KI. Decoupled Cation Transport within Layered Assemblies in Sulfonated and Crystalline Telechelic Polyethylenes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin A. Paren
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, Pennsylvania 19104, United States
| | - Manuel Häußler
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Patrick Rathenow
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Materials Science & Engineering, University of Pennsylvania, 3231 Walnut St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
Zelovich T, Tuckerman ME. Controlling Hydronium Diffusivity in Model Proton Exchange Membranes. J Phys Chem Lett 2022; 13:2245-2253. [PMID: 35238561 DOI: 10.1021/acs.jpclett.1c04071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fuel-cell-based proton exchange membranes (PEMs) show great potential as cost-effective and clean energy conversion devices. In our recent work, we found that for the low-hydrated model PEMs with a inhomogeneous water distribution and a sulfonate anionic functional end group (SO3-), the H3O+ reacts with SO3- according to SO3- + H3O+ ↔ SO3H + H2O, indicating that the anions in PEMs become active participants in the hydronium diffusion. In this work, we use fully atomistic ab initio molecular dynamics simulations to elucidate the optimal conditions that would promote the participation of SO3- in the hydronium diffusion mechanism by increasing the H3O+/SO3- reactivity, thus increasing the hydronium diffusivity along the cell. The results presented in this work allow us to suggest a set of design rules for creating novel, highly conductive PEMs operating at high temperatures under a nonuniform water distribution using a linker/anion with a relatively high pKa such as (CH2)2SO3. We expect that the discovery of these key design principles will play an important role in the synthesis of high-performing materials for emerging PEM-based fuel cell technologies.
Collapse
Affiliation(s)
- Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, United States
- NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 North Zhongshan Rd, Shanghai 200062, China
| |
Collapse
|
33
|
Soman B, Go YK, Shen C, Leal C, Evans CM. Impact of dynamic covalent chemistry and precise linker length on crystallization kinetics and morphology in ethylene vitrimers. SOFT MATTER 2022; 18:293-303. [PMID: 34913939 DOI: 10.1039/d1sm01288f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vitrimers, dynamic polymer networks with topology conserving exchange reactions, have emerged as a promising platform for sustainable and reprocessable materials. While prior work has documented how dynamic bonds impact stress relaxation and viscosity, their role on crystallization has not been systematically explored. Precise ethylene vitrimers with 8, 10, or 12 methylene units between boronic ester junctions were investigated to understand the impact of bond exchange on crystallization kinetics and morphology. Compared to linear polyethylene which has been heavily investigated for decades, a long induction period for crystallization is seen in the vitrimers ultimately taking weeks in the densest networks. An increase in melting temperatures (Tm) of 25-30 K is observed with isothermal crystallization over 30 days. Both C10 and C12 networks initially form hexagonal crystals, while the C10 network transforms to orthorhombic over the 30 day window as observed with wide angle X-ray scattering (WAXS) and optical microscopy (OM). After 150 days of isothermal crystallization, the three linker lengths led to double diamond (C8), orthorhombic (C10), and hexagonal (C12) crystals indicating the importance of precision on final morphology. Control experiments on a precise, permanent network implicate dynamic bonds as the cause of long-time rearrangements of the crystals, which is critical to understand for applications of semi-crystalline vitrimers. The dynamic bonds also allow the networks to dissolve in water and alcohol-based solvents to monomers, followed by repolymerization while preserving the mechanical properties and melting temperatures.
Collapse
Affiliation(s)
- Bhaskar Soman
- Department of Materials Science and Engineering, Urbana, Illinois 61801, USA.
- Frederick Seitz Materials Research Laboratory, Urbana, Illinois 61801, USA
| | - Yoo Kyung Go
- Department of Materials Science and Engineering, Urbana, Illinois 61801, USA.
- Frederick Seitz Materials Research Laboratory, Urbana, Illinois 61801, USA
| | - Chengtian Shen
- Frederick Seitz Materials Research Laboratory, Urbana, Illinois 61801, USA
- Department of Chemistry University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, Urbana, Illinois 61801, USA.
- Frederick Seitz Materials Research Laboratory, Urbana, Illinois 61801, USA
| | - Christopher M Evans
- Department of Materials Science and Engineering, Urbana, Illinois 61801, USA.
- Frederick Seitz Materials Research Laboratory, Urbana, Illinois 61801, USA
| |
Collapse
|
34
|
Park J, Easterling CP, Armstrong CC, Huber DL, Bowman JI, Sumerlin BS, Winey KI, Taylor MK. Nanoscale layers of precise ion-containing polyamides with lithiated phenyl sulfonate in the polymer backbone. Polym Chem 2022. [DOI: 10.1039/d2py00802e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise polyamide ionomer produces well-defined nanoscale layers.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Charles P. Easterling
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Christopher C. Armstrong
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Dale L. Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jared I. Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mercedes K. Taylor
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
35
|
Min J, Barpuzary D, Ham H, Kang GC, Park MJ. Charged Block Copolymers: From Fundamentals to Electromechanical Applications. Acc Chem Res 2021; 54:4024-4035. [PMID: 34559505 DOI: 10.1021/acs.accounts.1c00423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Charged block copolymers are promising materials for next-generation battery technologies and soft electronics. Although once it was only possible to prepare randomly organized structures, nowadays, well-ordered charged block copolymers can be prepared. In addition, theoretical and experimental analyses of the thermodynamic properties of charged polymers have provided insights into how to control nanostructures via electrostatic interactions and improve the ionic conductivity without compromising mechanical strength, which is crucial for practical applications. In this Account, we discuss methods to control the self-assembly and ion diffusion behavior of charged block copolymers by varying the type of tethered ionic moieties, local concentration of embedded ions with controlled electrostatic interactions, and nanoscale morphology. We discuss with particular emphasis on the structure-transport relationship of charged block copolymers using various ionic additives to control the phase behavior electrostatically as well as the ion transport properties. Through this, we establish the role of interconnected ionic channels in promoting ion-conduction and the importance of developing three-dimensional interconnected morphologies such as gyroid, orthorhombic Fddd (O70) networks, body-centered cubic (bcc), face-centered cubic (fcc), and A15 structures with well-defined interfaces in creating less tortuous ion-conduction pathways. Our prolonged surge and synthetic advances are pushing the frontiers of charged block copolymers to have virtually homogeneous ionic domains with suppressed ion agglomeration via the nanoconfinement of closely bound ionic moieties, resulting in efficient ion conduction and high mechanical strength.Subsequently, we discuss how, by using zwitterions, we have radically improved the ionic conductivity of single-ion conducting polymers, which have potential for use in next-generation electrochemical devices owing to the constrained anion depletion. Key to the improvement stems from hierarchically ordered ionic crystals in nanodomains of the single-ion block copolymers through the self-organization of the dipolar/ionic moieties under confinement. By precisely tuning the distances between ionic sites and the dipolar orientation in the ionic domains with varied zwitterion contents, unprecedented dielectric constants close to those of aqueous electrolytes have been achieved, leading to the development of high-conductivity solid-state single-ion conducting polymers with leak-free characteristics. Further, using these materials, low-voltage-driven artificial muscles have been prepared that show a large bending strain and millisecond-scale mechanical deformations at 1 V in air without fatigue, exceeding the performance of previously reported polymer actuators. Finally, smart multiresponsive actuators based on tailor-made charged polymers capable of programmable deformation with high force and self-locking without power consumption are suggested as candidates for use in soft robotics.
Collapse
Affiliation(s)
- Jaemin Min
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Dipankar Barpuzary
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Hyeonseong Ham
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Gyeong-Chan Kang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| |
Collapse
|
36
|
Park J, Staiger A, Mecking S, Winey KI. Sub-3-Nanometer Domain Spacings of Ultrahigh-χ Multiblock Copolymers with Pendant Ionic Groups. ACS NANO 2021; 15:16738-16747. [PMID: 34617441 DOI: 10.1021/acsnano.1c06734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We investigated the temperature-dependent phase behavior and interaction parameter of polyethylene-based multiblock copolymers with pendant ionic groups. These step-growth polymers contain short polyester blocks with a single Li+SO3- group strictly alternating with polyethylene blocks of x-carbons (PESxLi, x = 12, 18, 23). At room temperature, these polymers exhibit layered morphologies with semicrystalline polyethylene blocks. Upon heating above the melting point (∼130 °C), PES18Li shows two order-to-order transitions involving Ia3̅d gyroid and hexagonal morphologies. For PES12Li, an order-to-disorder transition accompanies the melting of the polyethylene blocks. Notably, a Flory-Huggins interaction parameter was determined from the disordered morphologies of PES12Li using mean-field theory: χ(T) = 77.4/T + 2.95 (T in Kelvin) and χ(25 °C) ≈ 3.21. This ultrahigh χ indicates that the polar ionic and nonpolar polyethylene segments are highly incompatible and affords well-ordered morphologies even when the combined length of the alternating blocks is just 18-29 backbone atoms. This combination of ultrahigh χ and short multiblocks produces sub-3-nm domain spacings that facilitate the control of block copolymer self-assembly for various fields of study, including nanopatterning.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
DeStefano A, Segalman RA, Davidson EC. Where Biology and Traditional Polymers Meet: The Potential of Associating Sequence-Defined Polymers for Materials Science. JACS AU 2021; 1:1556-1571. [PMID: 34723259 PMCID: PMC8549048 DOI: 10.1021/jacsau.1c00297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/08/2023]
Abstract
Polymers with precisely defined monomeric sequences present an exquisite tool for controlling material properties by harnessing both the robustness of synthetic polymers and the ability to tailor the inter- and intramolecular interactions so crucial to many biological materials. While polymer scientists traditionally synthesized and studied the physics of long molecules best described by their statistical nature, many biological polymers derive their highly tailored functions from precisely controlled sequences. Therefore, significant effort has been applied toward developing new methods of synthesizing, characterizing, and understanding the physics of non-natural sequence-defined polymers. This perspective considers the synergistic advantages that can be achieved via tailoring both precise sequence control and attributes of traditional polymers in a single system. Here, we focus on the potential of sequence-defined polymers in highly associating systems, with a focus on the unique properties, such as enhanced proton conductivity, that can be attained by incorporating sequence. In particular, we examine these materials as key model systems for studying previously unresolvable questions in polymer physics including the role of chain shape near interfaces and how to tailor compatibilization between dissimilar polymer blocks. Finally, we discuss the critical challenges-in particular, truly scalable synthetic approaches, characterization and modeling tools, and robust control and understanding of assembly pathways-that must be overcome for sequence-defined polymers to attain their potential and achieve ubiquity.
Collapse
Affiliation(s)
- Audra
J. DeStefano
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Materials, University of California, Santa Barbara, California 93106, United States
| | - Emily C. Davidson
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
38
|
Staiger A, Paren BA, Zunker R, Hoang S, Häußler M, Winey KI, Mecking S. Anhydrous Proton Transport within Phosphonic Acid Layers in Monodisperse Telechelic Polyethylenes. J Am Chem Soc 2021; 143:16725-16733. [PMID: 34585919 DOI: 10.1021/jacs.1c08031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymers bearing phosphonic acid groups have been proposed as anhydrous proton-conducting membranes at elevated operating temperatures for applications in fuel cells. However, the synthesis of phosphonated polymers and the control over the nanostructure of such polymers is challenging. Here, we report the straightforward synthesis of phosphonic acid-terminated, long-chain aliphatic materials with precisely 26 and 48 carbon atoms (C26PA2 and C48PA2). These materials combine the structuring ability of monodisperse polyethylenes with the ability of phosphonic acid groups to form strong hydrogen-bonding networks. Anhydride formation is absent so that charge carrier loss by a condensation reaction is avoided even at elevated temperatures. Below the melting temperature (Tm), both materials exhibit a crystalline polyethylene backbone and a layered morphology with planar phosphonic acid aggregates separated by 29 and 55 Å for C26PA2 and C48PA2, respectively. Above Tm, the amorphous polyethylene (PE) segments coexist with the layered aggregates. This phenomenon is especially pronounced for the C26PA2 and is identified as a thermotropic smectic liquid crystalline phase. Under these conditions, an extraordinarily high correlation length (940 Å) along the layer normal is observed, demonstrating the strength of the hydrogen bond network formed by the phosphonic acid groups. The proton conductivity in both materials in the absence of water reaches 10-4 S/cm at 150 °C. These new precise phosphonic acid-based materials illustrate the importance of controlling the chemistry to form self-assembled nanoscale aggregates that facilitate rapid proton conductivity.
Collapse
Affiliation(s)
- Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Benjamin A Paren
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robin Zunker
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Son Hoang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Manuel Häußler
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
39
|
Kurimoto S, Tong L, Maeda H, Nabae Y, Hayakawa T. Long‐Range Ordered Double Gyroid Structures via Solution Casting from Poly(2,2,2‐trifluoroethyl methacrylate)‐
block
‐poly(2‐vinyl pyridine). MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sho Kurimoto
- Department of Materials Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐S8‐36 Ookayama Meguro‐ku Tokyo 152‐8552 Japan
| | - Liang Tong
- Department of Materials Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐S8‐36 Ookayama Meguro‐ku Tokyo 152‐8552 Japan
| | - Hayato Maeda
- Department of Materials Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐S8‐36 Ookayama Meguro‐ku Tokyo 152‐8552 Japan
| | - Yuta Nabae
- Department of Materials Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐S8‐36 Ookayama Meguro‐ku Tokyo 152‐8552 Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐S8‐36 Ookayama Meguro‐ku Tokyo 152‐8552 Japan
| |
Collapse
|
40
|
Abstract
We present a general theory of ionic conductivity in polymeric materials consisting of percolated ionic pathways. Identifying two key length scales corresponding to inter-path permeation distance ξ and one-dimensional hopping conduction path length mλ, we have derived closed-form formulas in terms of the energy U required to unbind a conductive ion from its bound state and the partition ratio ξ/mλ between the three-dimensional permeation and one-dimensional hopping pathways. The results provide design strategies to significantly enhance ionic conductivity in single-ion conductors. For large barriers to dissociate an ion, corrections to the Arrhenius law are presented. The predicted dependence of ionic conductivity on the unbinding time is in agreement with results in the literature based on simulations and experiments. This theory is generally applicable to conductive systems where the two mechanisms of permeation and hopping occur concurrently.
Collapse
Affiliation(s)
- Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
41
|
Yu B, Li R, Segalman RA. Tuning the Double Gyroid Phase Window in Block Copolymers via Polymer Chain Conformation Near the Interface. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Beihang Yu
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rachel A. Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
42
|
Park J, Staiger A, Mecking S, Winey KI. Structure–Property Relationships in Single-Ion Conducting Multiblock Copolymers: A Phase Diagram and Ionic Conductivities. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00493] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
43
|
Li S, Qiu P, Kang J, Ma Y, Zhang Y, Yan Y, Jensen TR, Guo Y, Zhang J, Chen X. Iodine-Substituted Lithium/Sodium closo-Decaborates: Syntheses, Characterization, and Solid-State Ionic Conductivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17554-17564. [PMID: 33821603 DOI: 10.1021/acsami.1c01659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid-state electrolytes based on closo-decaborates have caught increasing interest owing to the impressive room-temperature ionic conductivity, remarkable thermal/chemical stability, and excellent deformability. In order to develop new solid-state ion conductors, we investigated the influence of iodine substitution on the thermal, structural, and ionic conduction properties of closo-decaborates. A series of iodinated closo-decaborates, M2[B10H10-nIn] (M = Li, Na; n = 1, 2, 10), were synthesized and characterized by thermal analysis, powder X-ray diffraction, and electrochemical impedance spectroscopy; the stability and ionic conductivity of these compounds were studied. It was found that with the increase of iodine substitution on the closo-decaborate anion cage, the thermal decomposition temperature increases. All M2[B10H10-nIn] exhibit an amorphous structure. The ionic conductivity of Li2[B10H10-nIn] is higher than that of the Li2[B10H10] parent compound. An ionic conductivity of 2.96 × 10-2 S cm-1 with an activation energy of 0.23 eV was observed for Li2[B10I10] at 300 °C, implying that iodine substitution can improve the ionic conductivity. However, the ionic conductivity of Na2[B10H10-nIn] is lower than that of Na2[B10H10] and increases with the increase of iodine substitution, which could be associated with the increase of the electrostatic potential, mass, and volume of the iodinated anions. Moreover, Li2[B10I10] offers a Li-ion transference number of 0.999, an electrochemical stability window of 3.3 V and good compatibility with the Li anode, demonstrating its potential for application in high-temperature batteries.
Collapse
Affiliation(s)
- Shouhu Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengtao Qiu
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiaxin Kang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiming Ma
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yichun Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yigang Yan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, China
| | - Torben R Jensen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - Yanhui Guo
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
44
|
Abstract
Periodic gyroid network materials have many interesting properties (band gaps, topologically protected modes, superior charge and mass transport, and outstanding mechanical properties) due to the space-group symmetries and their multichannel triply continuous morphology. The three-dimensional structure of a twin boundary in a self-assembled polystyrene-b-polydimethylsiloxane (PS-PDMS) double-gyroid (DG) forming diblock copolymer is directly visualized using dual-beam scanning microscopy. The reconstruction clearly shows that the intermaterial dividing surface (IMDS) is smooth and continuous across the boundary plane as the pairs of chiral PDMS networks suddenly change their handedness. The boundary plane therefore acts as a topological mirror. The morphology of the normally chiral nodes and strut loops within the networks is altered in the twin-boundary plane with the formation of three new types of achiral nodes and the appearance of two new classes of achiral loops. The boundary region shares a very similar surface/volume ratio and distribution of the mean and Gaussian curvatures of the IMDS as the adjacent ordered DG grain regions, suggesting the twin is a low-energy boundary.
Collapse
Affiliation(s)
- Xueyan Feng
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77840
| | - Mujin Zhuo
- Department of Material Science and Nano Engineering, Rice University, Houston, TX 77005
| | - Hua Guo
- Department of Material Science and Nano Engineering, Rice University, Houston, TX 77005
| | - Edwin L Thomas
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77840;
| |
Collapse
|
45
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
46
|
Nowak SR, Lachmayr KK, Yager KG, Sita LR. Stable Thermotropic 3D and 2D Double Gyroid Nanostructures with Sub‐2‐nm Feature Size from Scalable Sugar–Polyolefin Conjugates. Angew Chem Int Ed Engl 2021; 60:8710-8716. [DOI: 10.1002/anie.202016384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 01/15/2023]
Affiliation(s)
- Samantha R. Nowak
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kätchen K. Lachmayr
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| | - Kevin G. Yager
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Lawrence R. Sita
- Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
| |
Collapse
|
47
|
Kang S, Park MJ. 100th Anniversary of Macromolecular Science Viewpoint: Block Copolymers with Tethered Acid Groups: Challenges and Opportunities. ACS Macro Lett 2020; 9:1527-1541. [PMID: 35617073 DOI: 10.1021/acsmacrolett.0c00629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Scientific research on advanced polymer electrolytes has led to the emergence of all-solid-state energy storage/transfer systems. Early research began with acid-tethered polymers half a century ago, and research interest has gradually shifted to high-precision polymers with controllable acid functional groups and nanoscale morphologies. Consequently, various self-assembled acid-tethered block polymer morphologies have been produced. Their ion properties are profoundly affected by the multiscale intermolecular interactions in confinements. The creation of hierarchically organized ion/dipole arrangements inside the block copolymer nanostructures has been highlighted as a future method for developing advanced single-ion polymers with decoupled ion dynamics and polymer chain relaxation. Several emerging practical applications of the acid-tethered block copolymers have been explored to draw attention to the challenges and opportunities in developing state-of-the-art electrochemical systems.
Collapse
Affiliation(s)
- Sejong Kang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| | - Moon Jeong Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Korea 790-784
| |
Collapse
|
48
|
Abstract
A scaling model for the structure of coacervates is presented for mixtures of oppositely-charged polyelectrolytes of both symmetric and asymmetric charge-densities for different degrees of electrostatic strength and levels of added salt. At low electrostatic strengths, weak coacervates, with the energy of electrostatic interactions between charges less than the thermal energy, k B T, are liquid. At higher electrostatic strengths, strong coacervates are gels with crosslinks formed by ion pairs of opposite charges bound to each other with energy higher than k B T. Charge-symmetric coacervates are formed for mixtures of oppositely-charged polyelectrolytes with equal and opposite charge-densities. While charge-symmetric weak coacervates form a semidilute polymer solution with a correlation length equal to the electrostatic blob size, charge-symmetric strong coacervates form reversible gels with a correlation length on the order of the distance between bound ion pairs. Charge-asymmetric coacervates are formed from mixtures of oppositely-charged polyelectrolytes with different charge-densities. While charge-asymmetric weak coacervates form double solutions with two correlation lengths and qualitatively different chain conformations of polycations and polyanions, charge-asymmetric strong coacervates form bottlebrush and star-like gels. Unlike liquid coacervates, for which an increase in the concentration of added salt screens electrostatic interactions, causing structural rearrangement and eventually leads to their dissolution, the salt does not affect the structure of strong coacervates until ion pairs dissociate and the gel disperses.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
| | - Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924, Russia
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States
- Departments of Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, NC 27708, United States
| |
Collapse
|
49
|
Brinkkötter M, Geisler R, Großkopf S, Hellweg T, Schönhoff M. Influence of Li-Salt on the Mesophases of Pluronic Block Copolymers in Ionic Liquid. J Phys Chem B 2020; 124:9464-9474. [PMID: 33048549 DOI: 10.1021/acs.jpcb.0c06664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study the complex mixture of a polyethylene oxide-b-polypropylene oxide-b-polyethylene oxide triblock copolymer (Pluronic F127) with ionic liquid (IL) and Li-salt, which is potentially interesting as an electrolyte system with decoupled mechanical and ion-transport properties. Small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) are employed to scrutinize the phase structures and elucidate the ternary phase diagram. These data are combined with the ion diffusivities obtained by pulsed field gradient (PFG) nuclear magnetic resonance (NMR). Analyzing the partial ternary phase diagram of F127/LiTFSI/Pyr14TFSI, hexagonal, lamellar, and micellar mesophases are identified, including two-phase coexistence regions. While the PPO block is immiscible with the liquid, and forms the backbone of the mesostructured aggregates, the PEO blocks are not well miscible with the IL. Poorly solvated, the latter may still crystallize. At a higher IL content, PEO is further solvated, but a major solvation effect occurs due to addition of Li-salt. Li ions promote solubilization of the PEO chains in the IL, since they coordinate to the PEO chains. This was identified as the mechanism of a transition of the mesostructures, with increasing Li-salt content changing from a hexagonal to a lamellar and further to a micellar phase. In summary, both, the amount of IL and its compatibility with the PEO block, the latter being controlled by the Li-salt amount, influence the compositions of the formed mesophases and the ion diffusion in their liquid regions.
Collapse
Affiliation(s)
- Marc Brinkkötter
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Ramsia Geisler
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Sören Großkopf
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Monika Schönhoff
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
50
|
Paren BA, Thurston BA, Neary WJ, Kendrick A, Kennemur JG, Stevens MJ, Frischknecht AL, Winey KI. Percolated Ionic Aggregate Morphologies and Decoupled Ion Transport in Precise Sulfonated Polymers Synthesized by Ring-Opening Metathesis Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Benjamin A. Paren
- Dept. Of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| | - Bryce A. Thurston
- Center for Integrated Nanotechnologies, Sandia National Labs, Albuquerque, New Mexico 87185-1411, United States
| | - William J. Neary
- Dept. Of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Aaron Kendrick
- Dept. Of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Justin G. Kennemur
- Dept. Of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Mark J. Stevens
- Center for Integrated Nanotechnologies, Sandia National Labs, Albuquerque, New Mexico 87185-1411, United States
| | - Amalie L. Frischknecht
- Center for Integrated Nanotechnologies, Sandia National Labs, Albuquerque, New Mexico 87185-1411, United States
| | - Karen I. Winey
- Dept. Of Materials Science & Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6272, United States
| |
Collapse
|