1
|
Zhou P, Wang C, Wan G, Zheng W, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent Metal-Catalyzed Oxidative Alkynylation of 2-Arylthiazoles with Terminal Alkynes under Air Conditions. J Org Chem 2024; 89:10953-10964. [PMID: 39016014 DOI: 10.1021/acs.joc.4c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Regiodivergent transition-metal-catalyzed oxidative C5- and ortho-alkynylation of 2-arylthiazoles have been demonstrated. Namely, Pd(II)-catalysis selectively generated C5-alkynylated products from the reaction of 2-arylthiazoles and terminal alkynes. In contrast, Ru(II)-catalysis exclusively provided ortho-alkynylated products from the same substrates. This protocol features a wide substrate scope, good functional group tolerance, high atom-economy, and exclusive regioselectivity. The alkynylated products can be readily converted into highly valuable synthons, which hold potential for applications in the fields of medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Cheng Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Guibin Wan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Weining Zheng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
2
|
González-Fernández E, Marinus N, Dhankhar J, Linden A, Čorić I. Control over Anion Coordination on Pd(II), Cu(I), and Ag(I) with Regioisomeric Phosphine-Carboxylate Ligands. Chemistry 2024; 30:e202401215. [PMID: 38688855 DOI: 10.1002/chem.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The coordination of anionic donors is involved at various stages of catalytic cycles in transition-metal catalysis, but control over the spatial positioning of anions around a metal center is a challenge in coordination chemistry. Here we show that regioisomeric phosphine-carboxylate ligands provide spatial anion control on palladium(II) centers by favoring either κ2, cis-κ1, or trans-κ1 coordination of the carboxylate donor. Additionally, the palladium(II) carboxylates, which contain a methyl donor, upon protonation, deliver metal-alkyl complexes that feature a coordinated carboxylic acid. Such complexes can be considered as models for the minima that follow the concerted metalation-deprotonation transition state for C-H activation. The predictability of the coordination modes is further demonstrated on silver(I) and copper(I) centers, for which less common structures of mononuclear and dinuclear complexes can be obtained by using spatial anion control. Our results demonstrate the potential for spatial control over carboxylate anions in coordination chemistry.
Collapse
Affiliation(s)
- Elisa González-Fernández
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Nittert Marinus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
3
|
Zhou P, Liang X, Xu Z, Chen H, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent C-H alkynylation of 2-arylthiazoles switched by Ru II and Pd II catalysis. Chem Commun (Camb) 2024; 60:6679-6682. [PMID: 38860866 DOI: 10.1039/d4cc02254h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Two complementary regiodivergent C-H alkynylations of 2-arylthiazoles are reported. When RuII catalysis is employed, an aryl ortho-alkynylation process is favored. The alkynylated products are gained in good yields. With the use of PdII catalysis, a thiazole C5-alkynylation process is developed, allowing for the construction of C5-alkynylated products. This strategy not only expands the methods for the functionalization of 2-arylthiazoles, but also provides new opportunities for the rapid assembly of complex molecular structures, which may have great potential in organic synthesis, medicinal chemistry, and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Xinyao Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zekun Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Honggu Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China.
| |
Collapse
|
4
|
Yuan C, Jia C, Zhang X, Zhang W, You Y, Xu X, Zhu L, Chen Y, Dong Y, Xu L. Ligand-Enabled ortho-Selective C-H Olefination of Tertiary Aniline Derivatives. Org Lett 2024; 26:4877-4881. [PMID: 38836549 DOI: 10.1021/acs.orglett.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A highly ortho-selective CAr-H olefination of tertiary anilines without a directing group was developed. This reaction tolerated various substituted arenes and olefin coupling partners, affording ortho-olefination products in moderate to good yields. Preliminary mechanistic studies showed that N-Ac-d-Ala, Ag2CO3, and BQ were the key factors for tuning the regioselectivity from para to ortho. Density functional theory was used to achieve a theoretical understanding of the ortho selectivity.
Collapse
Affiliation(s)
- Chunchen Yuan
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Changbo Jia
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xinyu Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, 459 Main Street, Shihezi, Xinjiang 832003, China
| | - Wenlong Zhang
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yang'en You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xiaolong Xu
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yiliang Chen
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Yongping Dong
- School of Chemistry and Chemical Engineering Xiushan Campus, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Liang Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, 459 Main Street, Shihezi, Xinjiang 832003, China
| |
Collapse
|
5
|
Deng KZ, Sukowski V, Fernández-Ibáñez MÁ. Non-Directed C-H Arylation of Anisole Derivatives via Pd/S,O-Ligand Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400689. [PMID: 38401127 DOI: 10.1002/anie.202400689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Non-directed C-H arylation is one of the most efficient methods to synthesize biaryl compounds without the need of the prefuctionalization of starting materials, or the installment and removal of directing groups on the substrate. A direct C-H arylation of simple arenes as limiting reactants remains a challenge. Here we disclose a non-directed C-H arylation of anisole derivatives as limiting reagents with aryl iodides under mild reaction conditions. The arylated products are obtained in synthetically useful yields and the arylation of bioactive molecules is also demonstrated. Key to the success of this methodology is the use of a one-step synthesized S,O-ligand.
Collapse
Affiliation(s)
- Ke-Zuan Deng
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Verena Sukowski
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - M Ángeles Fernández-Ibáñez
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Zeng C, Su S, Fang S, Jiang H, Yang S, Wu W. Palladium-Catalyzed Tandem Cyclization of Bromoalkynes, Anilines and CO: Access to 1,3-Substituted Maleimides. Chem Asian J 2023:e202300880. [PMID: 37983560 DOI: 10.1002/asia.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/28/2023] [Indexed: 11/22/2023]
Abstract
A novel palladium-catalyzed three-component carbonylation reaction for the assembly of various 1,3-substituted maleimide derivatives from haloalkynes and simple anilines. The nucleophilic addition reaction of haloalkynes, anilines and CO, and insertion of carbonyl have been achieved sequentially in this reaction. The high chemo- and regioselectivities, as well as no need of expensive ligands or additives further illustrate the synthetic value of this approach.
Collapse
Affiliation(s)
- Caijin Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaoting Su
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Songjia Fang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huangfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Shaorong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
7
|
Guria S, Hassan MMM, Ma J, Dey S, Liang Y, Chattopadhyay B. A tautomerized ligand enabled meta selective C-H borylation of phenol. Nat Commun 2023; 14:6906. [PMID: 37903772 PMCID: PMC10616221 DOI: 10.1038/s41467-023-42310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Remote meta selective C-H functionalization of aromatic compounds remains a challenging problem in chemical synthesis. Here, we report an iridium catalyst bearing a bidentate pyridine-pyridone (PY-PYRI) ligand framework that efficiently catalyzes this meta selective borylation reaction. We demonstrate that the developed concept can be employed to introduce a boron functionality at the remote meta position of phenols, phenol containing bioactive and drug molecules, which was an extraordinary challenge. Moreover, we have demonstrated that the method can also be applied for the remote C6 borylation of indole derivatives including tryptophan that was the key synthetic precursor for the total synthesis of Verruculogen and Fumitremorgin A alkaloids. The inspiration of this catalytic concept was started from the O-Si secondary interaction, which by means of several more detailed control experiments and detailed computational investigations revealed that an unprecedented Bpin shift occurs during the transformation of iridium bis(boryl) complex to iridium tris(boryl) complex, which eventually control the remote meta selectivity by means of the dispersion between the designed ligand and steering silane group.
Collapse
Affiliation(s)
- Saikat Guria
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Mirja Md Mahamudul Hassan
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Sayan Dey
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
8
|
Dutta U, Prakash G, Devi K, Borah K, Zhang X, Maiti D. Directing group assisted para-selective C-H alkynylation of unbiased arenes enabled by rhodium catalysis. Chem Sci 2023; 14:11381-11388. [PMID: 37886091 PMCID: PMC10599460 DOI: 10.1039/d3sc03528j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Regioselective C-H alkynylation of arenes via C-H activation is challenging yet a highly desirable transformation. In this regard, directing group assisted C(sp2)-H alkynylation of arenes offers a unique opportunity to ensure precise regioselectivity. While the existing methods are mainly centered around ortho-C-H alkynylation and a few for meta-C-H alkynylation, the DG-assisted para-selective C-H alkynylation is yet to be reported. Herein we disclose the first report on Rh-catalyzed para-C-H alkynylation of sterically and electronically unbiased arenes. The para-selectivity is achieved with the assistance of a cyano-based directing template and the selectivity remained unaltered irrespective of the steric and electronic influence of the substituents. The post-synthetic modification of synthesized para-alkynylated arenes is also demonstrated. The mechanistic intricacies of the developed protocol are elucidated through experimental and computational studies.
Collapse
Affiliation(s)
- Uttam Dutta
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Gaurav Prakash
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kirti Devi
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kongkona Borah
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Debabrata Maiti
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| |
Collapse
|
9
|
Kaltenberger S, van Gemmeren M. Controlling Reactivity and Selectivity in the Nondirected C-H Activation of Arenes with Palladium. Acc Chem Res 2023; 56:2459-2472. [PMID: 37639549 DOI: 10.1021/acs.accounts.3c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ConspectusAromatic structures are widespread motifs throughout organic chemistry, and C-H activation has been recognized as a major tool for enabling their sustainable and efficient functionalization. Through C-H activation, arenes can be modified without the need for prefunctionalization, leading to inherent atom- and step-economic advantages over traditional methods. However, for the development of synthetically useful methods, several hurdles have to be overcome. The strength of C-H bonds necessitates the development of sufficiently reactive catalysts, while the presence of multiple C-H bonds within a substrate poses challenges in terms of site-selectivity. Traditionally these challenges have been addressed by substrate control. By attaching different directing groups (DGs), the reactivity of the respective arene was significantly enhanced and the DG guided the metal in close proximity to specific C-H bonds, resulting in high site-selectivity. However, the introduction and removal of the DG add additional steps to the synthetic sequence, and the scope of the reaction is limited to a specific substrate class. The development of complementary nondirected methods that can be applied to a broad range of arenes without the necessity to carry a specific functional group that coordinates to Pd (referred to as simple arenes) is therefore highly desirable. However, the intrinsically lower reactivity of such substrates and the absence of a selectivity-determining DG pose significant challenges that can be solved only by the development of highly efficient catalysts. Consequently, the field of nondirected C-H activation, especially with respect to Pd-catalyzed methods, remained comparatively underdeveloped when we initiated our research program in 2017. At that time, state-of-the-art methods required the arene to be used in large excess, precluding its use in late-stage functionalization. Since organopalladium species are among the most versatile synthetic intermediates, we realized that developing a system, which can effectively and selectively activate C-H bonds in simple arenes with the arene as the limiting reagent, would be a powerful tool in synthetic organic chemistry. This account summarizes our groups' research toward the development and application of catalytic systems offering this desired reactivity and focuses explicitly on Pd-catalyzed nondirected C-H functionalization reactions of arenes, where the arene is employed as a limiting reagent. After an introduction that summarizes the state of Pd-catalyzed C-H activation of arenes before 2017 and the associated challenges, experimental and mechanistic details about the development of the first arene-limited, nondirected C-H functionalization of simple arenes with palladium will be discussed. This reactivity was enabled by the identification and combination of two complementary ligands, an N-heterocycle and an amino acid-derived ligand. Afterward we will discuss the expansion of this dual-ligand approach to further arene-limited transformations. Finally, we describe two methodologies that originated from the observations we made during our studies, namely, the late-stage deuteration of simple arenes and a highly selective olefination method that uses noncovalent interactions to induce meta selectivity.
Collapse
Affiliation(s)
- Simon Kaltenberger
- Otto Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Manuel van Gemmeren
- Otto Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
10
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
11
|
Liu LY, Fan Z, Hoque ME, Qian S, Meng G, Chekshin N, Tanaka K, Qiao JX, Yeung KS, Yu JQ. Remote C-H Olefination of Heterocyclic Biaryls Enabled by Reversibly Bound Templates. Angew Chem Int Ed Engl 2023; 62:e202307581. [PMID: 37470111 PMCID: PMC10552871 DOI: 10.1002/anie.202307581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Remote C-H functionalization of heterocyclic biaryls will be of great importance in synthesis and medicinal chemistry. Through adjusting the geometric relationship of the directing atom and target C-H bonds, two new catalytic templates have been developed to enable the functionalization of the more hindered ortho-C-H bonds of heterobiaryls bearing directing heteroatom at the meta- or para-positions, affording unprecedented site-selectivity. The use of template chaperone also overcomes product inhibition and renders the directing templates catalytic. The utility of this protocol was demonstrated by olefination of heterocyclic biaryls with various substituents, overriding conventional steric and electronic effects. These ortho-C-H olefinated heterobiaryls are sterically hindered and can often be challenging to prepare through aryl-aryl coupling reactions.
Collapse
Affiliation(s)
- Luo-Yan Liu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Zhoulong Fan
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Md Emdadul Hoque
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Shaoqun Qian
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Keita Tanaka
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jennifer X Qiao
- Discovery Chemistry, Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, NJ, 08543, USA
| | - Kap-Sun Yeung
- Discovery Chemistry, Bristol-Myers Squibb Research and Development, 100 Binney Street, Cambridge, MA, 02142, USA
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
12
|
Lin Z, Dhawa U, Hou X, Surke M, Yuan B, Li SW, Liou YC, Johansson MJ, Xu LC, Chao CH, Hong X, Ackermann L. Electrocatalyzed direct arene alkenylations without directing groups for selective late-stage drug diversification. Nat Commun 2023; 14:4224. [PMID: 37454167 DOI: 10.1038/s41467-023-39747-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Electrooxidation has emerged as an increasingly viable platform in molecular syntheses that can avoid stoichiometric chemical redox agents. Despite major progress in electrochemical C-H activations, these arene functionalizations generally require directing groups to enable the C-H activation. The installation and removal of these directing groups call for additional synthesis steps, which jeopardizes the inherent efficacy of the electrochemical C-H activation approach, leading to undesired waste with reduced step and atom economy. In sharp contrast, herein we present palladium-electrochemical C-H olefinations of simple arenes devoid of exogenous directing groups. The robust electrocatalysis protocol proved amenable to a wide range of both electron-rich and electron-deficient arenes under exceedingly mild reaction conditions, avoiding chemical oxidants. This study points to an interesting approach of two electrochemical transformations for the success of outstanding levels of position-selectivities in direct olefinations of electron-rich anisoles. A physical organic parameter-based machine learning model was developed to predict position-selectivity in electrochemical C-H olefinations. Furthermore, late-stage functionalizations set the stage for the direct C-H olefinations of structurally complex pharmaceutically relevant compounds, thereby avoiding protection and directing group manipulations.
Collapse
Affiliation(s)
- Zhipeng Lin
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Uttam Dhawa
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Xiaoyan Hou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Max Surke
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Binbin Yuan
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Shu-Wen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Yan-Cheng Liou
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Li-Cheng Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Chen-Hang Chao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, PR China.
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Göttingen, Germany.
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany.
| |
Collapse
|
13
|
Xi L, Wang M, Liang Y, Zhao Y, Shi Z. Tunably strained metallacycles enable modular differentiation of aza-arene C-H bonds. Nat Commun 2023; 14:3986. [PMID: 37414774 DOI: 10.1038/s41467-023-39753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
The precise activation of C-H bonds will eventually provide chemists with transformative methods to access complex molecular architectures. Current approaches to selective C-H activation relying on directing groups are effective for the generation of five-membered, six-membered and even larger ring metallacycles but show narrow applicability to generate three- and four-membered rings bearing high ring strain. Furthermore, the identification of distinct small intermediates remains unsolved. Here, we developed a strategy to control the size of strained metallacycles in the rhodium-catalysed C-H activation of aza-arenes and applied this discovery to tunably incorporate the alkynes into their azine and benzene skeletons. By merging the rhodium catalyst with a bipyridine-type ligand, a three-membered metallacycle was obtained in the catalytic cycle, while utilizing an NHC ligand favours the generation of the four-membered metallacycle. The generality of this method was demonstrated with a range of aza-arenes, such as quinoline, benzo[f]quinolone, phenanthridine, 4,7-phenanthroline, 1,7-phenanthroline and acridine. Mechanistic studies revealed the origin of the ligand-controlled regiodivergence in the strained metallacycles.
Collapse
Affiliation(s)
- Longlong Xi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Meng G, Hu L, Chan HSS, Qiao JX, Yu JQ. Synthesis of 1,3-Dienes via Ligand-Enabled Sequential Dehydrogenation of Aliphatic Acids. J Am Chem Soc 2023; 145:13003-13007. [PMID: 37285407 PMCID: PMC11139440 DOI: 10.1021/jacs.3c03378] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
1,3-Dienes are common scaffolds in biologically active natural products as well as building blocks for chemical synthesis. Developing efficient methods for the synthesis of diverse 1,3-dienes from simple starting materials is therefore highly desirable. Herein, we report a Pd(II)-catalyzed sequential dehydrogenation reaction of free aliphatic acids via β-methylene C-H activation, which enables one-step synthesis of diverse E,E-1,3-dienes. Free aliphatic acids of varying complexities, including the antiasthmatic drug seratrodast, were found to be compatible with the reported protocol. Considering the high lability of 1,3-dienes and lack of protecting strategies, dehydrogenation of aliphatic acids to reveal 1,3-dienes at the late stage of synthesis offers an appealing strategy for the synthesis of complex molecules containing such motifs.
Collapse
Affiliation(s)
| | | | - Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jennifer X. Qiao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem Rev 2023. [PMID: 37163671 DOI: 10.1021/acs.chemrev.2c00888] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Site-predictable and chemoselective C-H bond functionalization reactions offer synthetically powerful strategies for the step-economic diversification of both feedstock and fine chemicals. Many transition-metal-catalyzed methods have emerged for the selective activation and functionalization of C-H bonds. However, challenges of regio- and chemoselectivity have emerged with application to highly complex molecules bearing significant functional group density and diversity. As molecular complexity increases within molecular structures the risks of catalyst intolerance and limited applicability grow with the number of functional groups and potentially Lewis basic heteroatoms. Given the abundance of C-H bonds within highly complex and already diversified molecules such as pharmaceuticals, natural products, and materials, design and selection of reaction conditions and tolerant catalysts has proved critical for successful direct functionalization. As such, innovations within transition-metal-catalyzed C-H bond functionalization for the direct formation of carbon-carbon bonds have been discovered and developed to overcome these challenges and limitations. This review highlights progress made for the direct metal-catalyzed C-C bond forming reactions including alkylation, methylation, arylation, and olefination of C-H bonds within complex targets.
Collapse
Affiliation(s)
- Jamie H Docherty
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Thomas M Lister
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gillian Mcarthur
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Michael T Findlay
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo Domingo-Legarda
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jacob Kenyon
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Shweta Choudhary
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Igor Larrosa
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
16
|
Zhou J, Jiao T, Fu Q, Wang J, Lu J, Yang L, Wei J, Wei S, Cong X, Hao N. Catalytic C-H alkynylation of benzylamines and aldehydes with aldimine-directing groups generated in situ. Chem Commun (Camb) 2023; 59:6355-6358. [PMID: 37139669 DOI: 10.1039/d3cc01414b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Iridium-catalysed regioselective C-H alkynylation of unprotected primary benzylamines and aliphatic aldehydes has been achieved using in situ-installed aldimine directing groups. This protocol provides a straightforward route for the synthesis of the alkynylated primary benzylamine and aliphatic aldehyde derivatives, featuring good substrate compatibility and high regioselectivity.
Collapse
Affiliation(s)
- Jiao Zhou
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Tenggang Jiao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Fu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Lin Yang
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Siping Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Xuefeng Cong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Na Hao
- Green Pharmaceutical Technology Key Laboratory of Luzhou, Central Nervous System Drug Key Laboratory of Sichuan Province, Department of Medicinal Chemistry, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
17
|
Meng G, Wang Z, Chan HSS, Chekshin N, Li Z, Wang P, Yu JQ. Dual-Ligand Catalyst for the Nondirected C-H Olefination of Heteroarenes. J Am Chem Soc 2023; 145:8198-8208. [PMID: 36975773 PMCID: PMC10173962 DOI: 10.1021/jacs.3c01631] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Pd(II)-catalyzed nondirected C-H functionalization of heteroarenes is a significant challenge for the following reasons: poor reactivity of electron-deficient heterocycles and the unproductive coordination of Lewis basic nitrogen atoms. Existing methodologies using palladium catalysis often employ a large excess of heterocycle substrates to overcome these hurdles. Despite recent advances in nondirected functionalization of arenes that allow them to be used as limiting reagents, the reaction conditions are incompatible with electron-deficient heteroarenes. Herein we report a dual-ligand catalyst that enables Pd(II)-catalyzed nondirected C-H olefination of heteroarenes without using a large excess of substrate. In general, the use of 1-2 equiv of substrates was sufficient to obtain synthetically useful yields. The reactivity was rationalized by the synergy between two types of ligands: a bidentate pyridine-pyridone ligand promotes C-H cleavage; the monodentate heterocycle substrate acts as a second ligand to form a cationic Pd(II) complex that has high affinity for arenes. The proposed dual-ligand cooperation is supported by a combination of X-ray, kinetics, and control experiments.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Hau Sun Sam Chan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Nikita Chekshin
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhen Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Peng Wang
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
18
|
Yun SJ, Kim J, Kang E, Jung H, Kim HT, Kim M, Joo JM. Nondirected Pd-Catalyzed C–H Perdeuteration and meta-Selective Alkenylation of Arenes Enabled by Pyrazolopyridone Ligands. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Seo Jin Yun
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jisu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Minkyu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, South Korea
- Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
19
|
Naksomboon K, Gómez-Bengoa E, Mehara J, Roithová J, Otten E, Fernández-Ibáñez MÁ. Mechanistic studies of the palladium-catalyzed S,O-ligand promoted C-H olefination of aromatic compounds. Chem Sci 2023; 14:2943-2953. [PMID: 36937590 PMCID: PMC10016329 DOI: 10.1039/d2sc06840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023] Open
Abstract
Pd-catalyzed C-H functionalization reactions of non-directed substrates have recently emerged as an attractive alternative to the use of directing groups. Key to the success of these transformations has been the discovery of new ligands capable of increasing both the reactivity of the inert C-H bond and the selectivity of the process. Among them, a new type of S,O-ligand has been shown to be highly efficient in promoting a variety of Pd-catalyzed C-H olefination reactions of non-directed arenes. Despite the success of this type of S,O-ligand, its role in the C-H functionalization processes is unknown. Herein, we describe a detailed mechanistic study focused on elucidating the role of the S,O-ligand in the Pd-catalyzed C-H olefination of non-directed arenes. For this purpose, several mechanistic tools, including isolation and characterization of reactive intermediates, NMR and kinetic studies, isotope effects and DFT calculations have been employed. The data from these experiments suggest that the C-H activation is the rate-determining step in both cases with and without the S,O-ligand. Furthermore, the results indicate that the S,O-ligand triggers the formation of more reactive Pd cationic species, which explains the observed acceleration of the reaction. Together, these studies shed light on the role of the S,O-ligand in promoting Pd-catalyzed C-H functionalization reactions.
Collapse
Affiliation(s)
- Kananat Naksomboon
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Enrique Gómez-Bengoa
- Department of Organic Chemistry I, Universidad País Vasco, UPV/EHU Apdo. 1072 20080 San Sebastian Spain
| | - Jaya Mehara
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jana Roithová
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Edwin Otten
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - M Ángeles Fernández-Ibáñez
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
20
|
Zhang Q, Huang X, Gui Y, He Y, Liao S, Huang G, Liang T, Zhang Z. Unlocking Regiodivergence in Pd II- and Rh III-Mediated Site-Selective C-H Bond Alkynylation of Imidazopyridines. Org Lett 2023; 25:1447-1452. [PMID: 36826371 DOI: 10.1021/acs.orglett.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An efficient PdII- and RhIII-controlled site-selective C-H bond alkynylation of imidazopyridines using (bromoethynyl)triisopropylsilane is disclosed. The divergent methodology allows straightforward access to a wide range of products alkynylated at the C3 and ortho positions. This strategy is suggestive of a practical platform that can be suitable for late-stage diversification and may assist in the design of more selective and complementary catalytic systems.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuecong Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuting Gui
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Youyuan He
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyang Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
21
|
Liu Y, Han C, Shi H, Mackenroth AV, Zhang L, Rudolph M, Rominger F, Hashmi ASK. Gold-Catalyzed Regio- and Stereoselective α-Acyloxy-β-Alkynylation of Ynol Ethers. J Org Chem 2023. [PMID: 36799936 DOI: 10.1021/acs.joc.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Enol esters and conjugated enynes are valuable structural motifs for synthetic chemistry and material sciences. Herein, the synthesis of tetra-substituted enol ester 2-iodobenzoate derivatives was achieved in good yields at room temperature through a gold-catalyzed acyloxyalkynylation of sensitive ynol ethers with ethynylbenziodoxolones (EBXs), the latter acting as bifunctional reactants. The conversion is highly regioselective with a broad substrate scope. Mechanistically, an Au(III) species is the key intermediate of an Au(I)/Au(III) redox cycle. The reaction is synthetically useful and can easily be scaled up to gram scale.
Collapse
Affiliation(s)
- Yaowen Liu
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Chunyu Han
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Hongwei Shi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Alexandra V Mackenroth
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Linghua Zhang
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
22
|
Roberts RA, Metze BE, Nilova A, Stuart DR. Synthesis of Arynes via Formal Dehydrogenation of Arenes. J Am Chem Soc 2023; 145:3306-3311. [PMID: 36728842 DOI: 10.1021/jacs.2c13007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arynes offer immense potential for diversification of benzenoid rings, which occur in pharmaceuticals, agrochemicals, and liquid crystals. However, accessing these high-energy intermediates requires synthetic precursors, which involve either harsh conditions or multistep syntheses. The development of alternative methods to access arynes using simpler substrates and milder conditions is necessary for a more streamlined approach. Here, we describe a two-step formal dehydrogenation of simple arenes to generate arynes at a remote position relative to traditionally reactive groups, e.g., halides. This approach is enabled by regioselective installation and ejection of an "onium" leaving group, and we demonstrate the compatibility of simple arenes (20 examples) and arynophiles (8 examples). Moreover, through direct comparison, we show that our formal dehydrogenation method is both more functional group tolerant and efficient in generating arynes than the current state-of-the-art aryne precursors. Finally, we show that aryne intermediates offer opportunities for regioselective C-H amination that are distinct from other methods.
Collapse
Affiliation(s)
- Riley A Roberts
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Bryan E Metze
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Aleksandra Nilova
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - David R Stuart
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| |
Collapse
|
23
|
Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
24
|
Mondal A, Díaz-Ruiz M, Deufel F, Maseras F, van Gemmeren M. Charge-controlled Pd catalysis enables the meta-C–H activation and olefination of arenes. Chem 2023; 9:1004-1016. [PMID: 37125236 PMCID: PMC10127283 DOI: 10.1016/j.chempr.2022.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023]
Abstract
The regioselective C-H activation of arenes remains one of the most promising techniques for accessing highly important functionalized motifs. Such functionalizations can generally be achieved through directed and non-directed processes. The directed approach requires a covalently attached directing group (DG) on the substrate to induce reactivity and selectivity and therefore intrinsically leaves a functional group at the point of attachment within the molecule, even after the tailored DG has been removed. Conversely, non-directed methods typically suffer from regioselectivity issues, especially for unbiased substrates. Herein, we report a unique approach that employs weak charge-charge and charge-dipole interactions to enable the meta-selective activation and olefination of arenes to address these challenges in Pd catalysis. The charged moiety can easily be converted to uncharged simple arenes by hydrogenation or cross-coupling. In-depth mechanistic studies prove that the charge is responsible for the observed selectivity. We expect our studies to be generalizable and thereby enable further regioselective transformations.
Collapse
|
25
|
Mondal A, van Gemmeren M. Silver-Free C-H Activation: Strategic Approaches towards Realizing the Full Potential of C-H Activation in Sustainable Organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210825. [PMID: 36062882 PMCID: PMC9828228 DOI: 10.1002/anie.202210825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/12/2023]
Abstract
The activation of carbon-hydrogen bonds is considered as one of the most attractive techniques in synthetic organic chemistry because it bears the potential to shorten synthetic routes as well as to produce complementary product scopes compared to traditional synthetic strategies. However, many current methods employ silver salts as additives, leading to stoichiometric metal waste and thereby preventing the full potential of C-H activation to be exploited. Therefore, the development of silver-free protocols has recently received increasing attention. Mechanistically, silver can serve various roles in C-H activation and thus, avoiding the use of silver requires different approaches based on the role it serves in a given process. In this Review, we present the comparison of silver-based and silver-free methods. Focusing on the strategic approaches to develop silver-free C-H activation, we provide the reader with the means to develop sustainable methods for C-H activation.
Collapse
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
26
|
Dhankhar J, Hofer MD, Linden A, Čorić I. Site-Selective C-H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angew Chem Int Ed Engl 2022; 61:e202205470. [PMID: 35830351 DOI: 10.1002/anie.202205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 01/07/2023]
Abstract
Catalytic systems for direct C-H activation of arenes commonly show preference for electronically activated and sterically exposed C-H sites. Here we show that a range of functionally rich and pharmaceutically relevant arene classes can undergo site-selective C-H arylation ortho to small alkyl substituents, preferably endocyclic methylene groups. The C-H activation is experimentally supported as being the selectivity-determining step, while computational studies of the transition state models indicate the relevance of non-covalent interactions between the catalyst and the methylene group of the substrate. Our results suggest that preference for C(sp2 )-H activation next to alkyl groups could be a general selectivity mode, distinct from common steric and electronic factors.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Micha D Hofer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
27
|
Liu Y, Dietl MC, Han C, Rudolph M, Rominger F, Krämer P, Hashmi ASK. Synthesis of Amide Enol 2-Iodobenzoates by the Regio- and Stereoselective Gold-Catalyzed Acyloxyalkynylation of Ynamides with Hypervalent Iodine Reagents. Org Lett 2022; 24:7101-7106. [PMID: 36137218 DOI: 10.1021/acs.orglett.2c02161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multisubstituted alkenes are accessible by a gold-catalyzed acyloxyalkynylation of ynamides with ethynylbenziodoxolones (EBXs) with perfect atom-economy. The EBX reagents transfer both the carboxylate as well as the alkynyl entity. Overall, this cascade comprises the in situ generation of an alkynyl gold(III) species, a stereoselective C(sp)-C(sp2) bond formation, and a C-O coupling at the alkynyl position of the ynamides. This reaction proceeds under mild conditions and accepts a wide range of substrates. A number of tetrasubstituted amide enol 2-iodobenzoates bearing different functional groups were obtained in good to excellent yields. DFT calculations explain the observed regioselectivity. The synthetic potential of the reaction was further demonstrated by a number of selected follow-up transformations.
Collapse
Affiliation(s)
- Yaowen Liu
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Martin C Dietl
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Chunyu Han
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Petra Krämer
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Liu J, Jia X, Huang L. Sulfilimines as Transformable and Retainable Directing Groups in Rhodium-Catalyzed ortho-C-H Bond Functionalization. Org Lett 2022; 24:6772-6776. [PMID: 36098745 DOI: 10.1021/acs.orglett.2c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shown herein is the first time that the sulfilimine is utilized as a directing group for Rh(III)-catalyzed C-H activation/annulation with intermolecular and intramolecular alkyne compounds. Sulfilimine serves as a transformable directing group, an internal oxidant, in the annulation with an alkyne moiety via N-S bond cleavage. Notably, the retention of sulfilimine as a directing group is also achieved in the Rh(III)-catalyzed ortho-alkynylation with alkyne bromides.
Collapse
Affiliation(s)
- Jiechun Liu
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaoyan Jia
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liangbin Huang
- State Key Laboratory of Pulp and Paper Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
29
|
Saha A, Ghosh A, Guin S, Panda S, Mal DK, Majumdar A, Akita M, Maiti D. Substrate‐Rhodium Cooperativity in Photoinduced
ortho
‐Alkynylation of Arenes. Angew Chem Int Ed Engl 2022; 61:e202210492. [DOI: 10.1002/anie.202210492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Argha Saha
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Animesh Ghosh
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Srimanta Guin
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sanjib Panda
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Dibya Kanti Mal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Abhirup Majumdar
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Munetaka Akita
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science Tokyo Institute of Technology Tokyo Japan
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
30
|
Saha A, Ghosh A, Guin S, Panda S, Mal DK, Majumdar A, Akita M, Maiti D. Substrate‐Rhodium Cooperativity in Photoinduced ortho‐Alkynylation of Arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Argha Saha
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Animesh Ghosh
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Srimanta Guin
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Sanjib Panda
- Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Dibya Kanti Mal
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Abhirup Majumdar
- IIT Bombay: Indian Institute of Technology Bombay CHEMISTRY INDIA
| | - Munetaka Akita
- Tokyo Institute of Technology Chemistry and Life Science JAPAN
| | - Debabrata Maiti
- Indian Institute of Technology-Bombay Department of Chemistry Powai 400076 Mumbai INDIA
| |
Collapse
|
31
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
32
|
Zhou K, Wang D, Ju G, Deng Z, Huang P, Huang Z, Li B, Zhao Y. Ligand-Promoted Fluorinated Olefination of Isatins at the C5 Position via a Palladium Catalyst. Org Lett 2022; 24:5568-5572. [PMID: 35867047 DOI: 10.1021/acs.orglett.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed nondirected fluorinated olefination was developed. The oxalyl amide ligand greatly improved the yield of the reaction. A wide variety of isatin derivatives were well tolerated and yielded the corresponding products in moderate to good yields. Various fluorinated olefins were also compatible. The application and synthesis of bioactive compounds such as a Metisazone derivative highlight the synthetic value of this approach.
Collapse
Affiliation(s)
- Kehan Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zefeng Deng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Pengcheng Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
33
|
Site‐Selective C–H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Sinha SK, Panja S, Grover J, Hazra PS, Pandit S, Bairagi Y, Zhang X, Maiti D. Dual Ligand Enabled Nondirected C-H Chalcogenation of Arenes and Heteroarenes. J Am Chem Soc 2022; 144:12032-12042. [PMID: 35759373 DOI: 10.1021/jacs.2c02126] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chalcogenide motifs are present as principal moieties in a vast array of natural products and complex molecules. Till date, the construction of these chalcogen motifs has been restricted to either the use of directing groups or the employment of a large excess of electronically activated arenes, typically employed as a cosolvent. Despite being highly effective, these methods have their own limitations in the step economy and the deployment of an excess amount of arenes. Herein, we report the evolution of a catalytic system employing arene-limited, nondirected thioarylation of arenes and heteroarenes using a complimentary dual-ligand approach. The reaction is controlled by a combination of steric and electronic factors, and the utilization of a suitable ligand enables the generation of products on a complimentary spectrum to that generated by classical methods. The combination of ligands remains imperative in the reaction protocol with theoretical calculations pointing towards a monoprotected amino acid ligand being crucial in the concerted metalation deprotonation (CMD) mechanism by a characteristic [5,6]-palladacyclic transition state, while the pyridine moiety assists in the active catalyst species formation and product release. Combined experimental and computational mechanistic investigations point toward the C-H activation step being both regio- and rate-determining. Interestingly, oxidative addition of the diphenyl disulfide substrate is found to be unlikely, and an alternative transmetalation-like mechanism involving the Pd-Ag heterometallic complex is proposed to be operative.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jagrit Grover
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Partha Sarathi Hazra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Saikat Pandit
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Yogesh Bairagi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Debabrata Maiti
- Department of Chemistry and IDP, Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
35
|
Fernández-Canelas P, Barrio P, González JM. Merging gold catalysis and haloethynyl frames: emphasis on halide-shift processes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Deng K, Jia W, Ángeles Fernández‐Ibáñez M. Selective Para-C-H Alkynylation of Aniline Derivatives by Pd/S,O-Ligand Catalysis. Chemistry 2022; 28:e202104107. [PMID: 34902180 PMCID: PMC9306564 DOI: 10.1002/chem.202104107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Herein, we report a nondirected para-selective C-H alkynylation of aniline derivatives by a Pd/S,O-ligand-based catalyst. The reaction proceeds under mild conditions and is compatible with a variety of substituted anilines. The scalability and further derivatizations of the alkynylated products have been also demonstrated.
Collapse
Affiliation(s)
- Ke‐Zuan Deng
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - Wen‐Liang Jia
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdam (TheNetherlands
| |
Collapse
|
37
|
Čorić I, Dhankhar J. Introduction to Spatial Anion Control for Direct C–H Arylation. Synlett 2022. [DOI: 10.1055/s-0040-1719860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractC–H activation of functionally rich molecules without the need for directing groups promises shorter organic syntheses and late-stage diversification of molecules for drug discovery. We highlight recent examples of palladium-catalyzed nondirected functionalization of C–H bonds in arenes as limiting substrates with a focus on the development of the concept of spatial anion control for direct C–H arylation.1 C–H Activation and the CMD Mechanism2 Nondirected C–H Functionalizations of Arenes as Limiting Substrates3 Nondirected C–H Arylation4 Spatial Anion Control for Direct C–H Arylation5 Coordination Chemistry with Spatial Anion Control6 Conclusion
Collapse
|
38
|
Guo LY, Li Q, liu Y, Li L, Ni Y, Li Y, Pan F. Palladium‐Catalyzed Alkynylation of Alkenes via C‐H Activation for the Preparation of Conjugated 1,3‐Enynes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Qing Li
- Sichuan Normal University CHINA
| | | | - Lin Li
- Sichuan Normal University CHINA
| | | | - Yang Li
- Sichuan Normal University CHINA
| | - Fei Pan
- Sichuan Normal University CHINA
| |
Collapse
|
39
|
Saha A, Guin S, Ali W, Bhattacharya T, Sasmal S, Goswami N, Prakash G, Sinha SK, Chandrashekar HB, Panda S, Anjana SS, Maiti D. Photoinduced Regioselective Olefination of Arenes at Proximal and Distal Sites. J Am Chem Soc 2022; 144:1929-1940. [DOI: 10.1021/jacs.1c12311] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Argha Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Wajid Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nupur Goswami
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gaurav Prakash
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - S. S. Anjana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
40
|
Zuo Z, Studer A. 1,3-Oxyalkynylation of Aryl Cyclopropanes with Ethylnylbenziodoxolones Using Photoredox Catalysis. Org Lett 2022; 24:949-954. [PMID: 35023750 DOI: 10.1021/acs.orglett.1c04319] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alkynes and cyclopropanes are vital motifs in chemistry. Herein, a photoredox catalyzed 1,3-oxyalkynylation of aryl cyclopropanes with ethylnylbenziodoxolones (EBXs) in an atom-economic fashion is described. This cascade comprises single-electron oxidation of the aryl cyclopropane and nucleophilic ring opening followed by radical alkynylation at the benzylic position. The EBX compounds act as bifunctional reagents providing the nucleophilic acid as well as the alkynyl entity. The introduced method features mild conditions and wide substrate scope.
Collapse
Affiliation(s)
- Zhijun Zuo
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfalische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
41
|
Robichon M, Branquet D, Uziel J, Lubin‐Germain N, Ferry A. Directed Nickel‐Catalyzed
pseudo
‐Anomeric C−H Alkynylation of Glycals as an Approach towards
C
‐Glycoconjugate Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Morgane Robichon
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| | - David Branquet
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| | - Jacques Uziel
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| | - Nadège Lubin‐Germain
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| | - Angélique Ferry
- CY Cergy Paris University BioCIS, CNRS 5 mail Gay-Lussac 95000 Cergy-Pontoise cedex France
- Paris-Saclay University BioCIS, CNRS 5 rue J.-B. Clément 92296 Châtenay-Malabry cedex France
| |
Collapse
|
42
|
Tan E, Montesinos-Magraner M, García-Morales C, Mayans JG, Echavarren AM. Rhodium-catalysed ortho-alkynylation of nitroarenes. Chem Sci 2021; 12:14731-14739. [PMID: 34820088 PMCID: PMC8597868 DOI: 10.1039/d1sc04527j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
The ortho-alkynylation of nitro-(hetero)arenes takes place in the presence of a Rh(iii) catalyst to deliver a wide variety of alkynylated nitroarenes regioselectively. These interesting products could be further derivatized by selective reduction of the nitro group or palladium-catalysed couplings. Experimental and computational mechanistic studies demonstrate that the reaction proceeds via a turnover-limiting electrophilic C-H metalation ortho to the strongly electron-withdrawing nitro group.
Collapse
Affiliation(s)
- Eric Tan
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Marc Montesinos-Magraner
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Cristina García-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Joan Guillem Mayans
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
43
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
44
|
Farizyan M, Mondal A, Mal S, Deufel F, van Gemmeren M. Palladium-Catalyzed Nondirected Late-Stage C-H Deuteration of Arenes. J Am Chem Soc 2021; 143:16370-16376. [PMID: 34582686 PMCID: PMC8517979 DOI: 10.1021/jacs.1c08233] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 12/11/2022]
Abstract
We describe a palladium-catalyzed nondirected late-stage deuteration of arenes. Key aspects include the use of D2O as a convenient and easily available deuterium source and the discovery of highly active N,N-bidentate ligands containing an N-acylsulfonamide group. The reported protocol enables high degrees of deuterium incorporation via a reversible C-H activation step and features extraordinary functional group tolerance, allowing for the deuteration of complex substrates. This is exemplified by the late-stage isotopic labeling of various pharmaceutically relevant motifs and related scaffolds. We expect that this method, among other applications, will prove useful as a tool in drug development processes and for mechanistic studies.
Collapse
Affiliation(s)
| | | | | | | | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
45
|
Suseelan Sarala A, Bhowmick S, Carvalho RL, Al‐Thabaiti SA, Mokhtar M, Silva Júnior EN, Maiti D. Transition‐Metal‐Catalyzed Selective Alkynylation of C−H Bonds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anjana Suseelan Sarala
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
- Department of Chemistry Saarland University 66123 Saarbrucken Germany
| | - Suman Bhowmick
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| | - Renato L. Carvalho
- Department of Chemistry Federal University of Minas Gerais 31270-901 Belo Horizonte MG Brazil
| | | | - Mohamed Mokhtar
- Chemistry Department Faculty of Science King Abdulaziz University 21589 Jeddah Saudi Arabia
| | | | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai 400076 Mumbai India
| |
Collapse
|
46
|
Sukowski V, Jia W, Diest R, Borselen M, Fernández‐Ibáñez MÁ. S,O‐Ligand‐Promoted Pd‐Catalyzed C−H Olefination of Anisole Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wen‐Liang Jia
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Rianne Diest
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Manuela Borselen
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
47
|
Wedi P, Farizyan M, Bergander K, Mück-Lichtenfeld C, van Gemmeren M. Mechanism of the Arene-Limited Nondirected C-H Activation of Arenes with Palladium*. Angew Chem Int Ed Engl 2021; 60:15641-15649. [PMID: 33998116 PMCID: PMC8361776 DOI: 10.1002/anie.202105092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Indexed: 01/11/2023]
Abstract
Recently palladium catalysts have been discovered that enable the directing-group-free C-H activation of arenes without requiring an excess of the arene substrate, thereby enabling methods for the late-stage modification of complex organic molecules. The key to success has been the use of two complementary ligands, an N-acyl amino acid and an N-heterocycle. Detailed experimental and computational mechanistic studies on the dual-ligand-enabled C-H activation of arenes have led us to identify the catalytically active species and a transition state model that explains the exceptional activity and selectivity of these catalysts. These findings are expected to be highly useful for further method development using this powerful class of catalysts.
Collapse
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Mirxan Farizyan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| | - Manuel van Gemmeren
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149, Münster, Germany
| |
Collapse
|
48
|
Wedi P, Farizyan M, Bergander K, Mück‐Lichtenfeld C, Gemmeren M. Mechanismus der Aren‐limitierten, nicht‐dirigierten C‐H‐Aktivierung von Arenen mit Palladium**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Wedi
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Mirxan Farizyan
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Klaus Bergander
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| | - Manuel Gemmeren
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Correnstraße 36 48149 Münster Deutschland
| |
Collapse
|
49
|
Della‐Felice F, Zanini M, Jie X, Tan E, Echavarren AM. Rhodium(III)‐Catalyzed Synthesis of Skipped Enynes via C(sp
3
)–H Alkynylation of Terminal Alkenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Franco Della‐Felice
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Margherita Zanini
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Xiaoming Jie
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Eric Tan
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
50
|
Della-Felice F, Zanini M, Jie X, Tan E, Echavarren AM. Rhodium(III)-Catalyzed Synthesis of Skipped Enynes via C(sp 3 )-H Alkynylation of Terminal Alkenes. Angew Chem Int Ed Engl 2021; 60:5693-5698. [PMID: 33410209 DOI: 10.1002/anie.202014877] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Indexed: 12/18/2022]
Abstract
The RhIII -catalyzed allylic C-H alkynylation of non-activated terminal alkenes leads selectively to linear 1,4-enynes at room-temperature. The catalytic system tolerates a wide range of functional groups without competing functionalization at other positions. Similarly, the vinylic C-H alkynylation of α,β- and β,γ- unsaturated amides gives conjugated Z-1,3-enynes and E-enediynes.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Margherita Zanini
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Xiaoming Jie
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Eric Tan
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|