1
|
Li RJ, Niu WJ, Zhao WW, Yu BX, Cai CY, Xu LY, Wang FM. Achievements and Challenges in Surfactants-Assisted Synthesis of MOFs-Derived Transition Metal-Nitrogen-Carbon as a Highly Efficient Electrocatalyst for ORR, OER, and HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408227. [PMID: 39463060 DOI: 10.1002/smll.202408227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Metal-organic frameworks (MOFs) are excellent precursors for preparing transition metal and nitrogen co-doped carbon catalysts, which have been widely utilized in the field of electrocatalysis since their initial development. However, the original MOFs derived catalysts have been greatly limited in their development and application due to their disadvantages such as metal atom aggregation, structural collapse, and narrow pore channels. Recently, surfactants-assisted MOFs derived catalysts have attracted much attention from researchers due to their advantages such as hierarchical porous structure, increased specific surface area, and many exposed active sites. This review mainly focuses on the synthesis methods of surfactants-assisted MOFs derived catalysts and comprehensively introduces the action of surfactants in MOFs derived materials and the structure-activity relationship between the catalysts and the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction performance. Apparently, the aims of this review not only introduce the status of surfactants-assisted MOFs derived catalysts in the field of electrocatalysis but also contribute to the rational design and synthesis of MOFs derived catalysts for fuel cells, metal-air cells, and electrolysis of water toward hydrogen production.
Collapse
Affiliation(s)
- Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Bing-Xin Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Chen-Yu Cai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Li-Yang Xu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Fu-Ming Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
2
|
Cui WG, Gao F, Na G, Wang X, Li Z, Yang Y, Niu Z, Qu Y, Wang D, Pan H. Insights into the pH effect on hydrogen electrocatalysis. Chem Soc Rev 2024; 53:10253-10311. [PMID: 39239864 DOI: 10.1039/d4cs00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Guoquan Na
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xingqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
3
|
Zhou J, Xu L, Gai H, Xu N, Ren Z, Hou X, Chen Z, Han Z, Sarker D, Levchenko SV, Huang M. Interpretable Data-Driven Descriptors for Establishing the Structure-Activity Relationship of Metal-Organic Frameworks Toward Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202409449. [PMID: 38864513 DOI: 10.1002/anie.202409449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal-organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni-based MOFs. Through an artificial-intelligence (AI) data-mining subgroup discovery (SGD) approach, a combination of the d-band center and number of missing electrons in eg states of Ni, as well as the first ionization energy and number of electrons in eg states of the substituents, is revealed as a gene of a superior OER catalyst. The found descriptor, obtained from the AI analysis of a dataset of MOFs containing 3-5d transition metals and 13 organic linkers, has been demonstrated to facilitate in-depth understanding of structure-activity relationship at the molecular orbital level. The descriptor is validated experimentally for 11 Ni-based MOFs. Combining SGD with physical insights and experimental verification, our work offers a highly efficient approach for screening MOF-based OER catalysts, simultaneously providing comprehensive understanding of the catalytic mechanism.
Collapse
Affiliation(s)
- Jian Zhou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-Ro, Yuseong-Gu, Daejeon, 34141, Republic of Korea
| | - Huiyu Gai
- Physical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Ning Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310000, China
| | - Zhichu Ren
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xianbiao Hou
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zongkun Chen
- Physical Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Zhongkang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310000, China
| | - Debalaya Sarker
- UGC-DAE Consortium for Scientific Research Indore, University Campus, Khandwa Road, Indore, 452001, M.P., India
| | | | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
4
|
Zhang X, Tong X, Wang J, Zhu X, Li Z, Fang F, Qian K, E Y. Enhancement of acidic hydrogen evolution reaction efficiency through Cu/Ni-doped MFI-type protozeolite layered nanoclusters. RSC Adv 2024; 14:26604-26610. [PMID: 39175691 PMCID: PMC11340388 DOI: 10.1039/d4ra04475d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
We have prepared a highly active and stable copper-doped nickel electrocatalyst. Cu/Ni-doped MFI-type protozeolite layered nanoclusters electrodes have a large electrochemically active surface area (ECSA) and good HER activity, as well as excellent durability. The addition of Cu greatly increases hydrogen evolution reaction (HER) activity under acidic conditions. At the same time, the in situ grown Cu2+1O provides some activity, and in addition, the interface constructed between Cu and Ni further generates sufficient electrochemically active surface area. The activated Cu/Ni-doped MFI-type layered nanoclusters required only a 385 mV overpotential to generate 10 mA cm-2, demonstrating efficient and stable activity with potential practical applications.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Xiyuan Tong
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Junyang Wang
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Xinyu Zhu
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Zhuozhe Li
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Fang Fang
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Kun Qian
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Yifeng E
- Jinzhou Medical University Jinzhou 121001 PR China
| |
Collapse
|
5
|
Wu C, Wang X, Huang M, Meng C, Chang L, Xu D, Pei W. Design and fabrication of intermetallic NiCo electrocatalysts for the alkaline HER. NANOSCALE 2024; 16:15148-15157. [PMID: 39087743 DOI: 10.1039/d4nr02519a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The design and fabrication of highly efficient electrocatalysts are crucial for reducing energy consumption, improving hydrogen production rates, and prolonging the service life of alkaline electrolyzers. In this study, intermetallic L10-NiCo electrocatalysts were designed using DFT calculations and fabricated through a one-step solid-state reaction method. The DFT calculations indicated that L10-NiCo presented a lower H adsorption Gibbs free energy and a moderate H2O dissociation barrier compared to the commonly used Ni catalyst and disordered NiCo alloy. Increasing the solid-state reaction temperature facilitated the formation of intermetallic L10-NiCo. Electrocatalytic tests for the alkaline HER demonstrated that the ECSA of L10-NiCo nanoparticles increased to 2.3 times, the overpotential decreased by 19%, the electrocatalytic activity increased to 1.5 times, and the stability improved to 2.2 times compared to those of the Ni nanoparticles. This research provides insights into the design and fabrication of highly efficient catalytic electrodes for alkaline electrolyzers.
Collapse
Affiliation(s)
- Chun Wu
- Ordos Institute of Liaoning Technical University, Ordos, 017010, China.
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.
- Science and Technology Development Corporation, Shenyang Ligong University, Shenyang, 110159, China
| | - Xuhui Wang
- Ordos Institute of Liaoning Technical University, Ordos, 017010, China.
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Mengyao Huang
- Ordos Institute of Liaoning Technical University, Ordos, 017010, China.
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Chao Meng
- Ordos Institute of Liaoning Technical University, Ordos, 017010, China.
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Ling Chang
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.
| | - Dake Xu
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.
| | - Wenli Pei
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
6
|
Bai W, Wang X, Xu J, Liu Y, Lou Y, Sun X, Zhou A, Li H, Fu G, Dou S, Yu H. Lattice Strain Engineering on Metal-Organic Frameworks by Ligand Doping to Boost the Electrocatalytic Biomass Valorization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403431. [PMID: 38829272 PMCID: PMC11304310 DOI: 10.1002/advs.202403431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Indexed: 06/05/2024]
Abstract
As an efficient and environmental-friendly strategy, electrocatalytic oxidation can realize biomass lignin valorization by cleaving its aryl ether bonds to produce value-added chemicals. However, the complex and polymerized structure of lignin presents challenges in terms of reactant adsorption on the catalyst surface, which hinders further refinement. Herein, NiCo-based metal-organic frameworks (MOFs) are employed as the electrocatalyst to enhance the adsorption of reactant molecules through π-π interaction. More importantly, lattice strain is introduced into the MOFs via curved ligand doping, which enables tuning of the d-band center of metal active sites to align with the reaction intermediates, leading to stronger adsorption and higher electrocatalytic activity toward bond cleavage within lignin model compounds and native lignin. When 2'-phenoxyacetophenone is utilized as the model compound, high yields of phenol (76.3%) and acetophenone (21.7%) are achieved, and the conversion rate of the reactants reaches 97%. Following pre-oxidation of extracted poplar lignin, >10 kinds of phenolic compounds are received using the as-designed MOFs electrocatalyst, providing ≈12.48% of the monomer, including guaiacol, vanillin, eugenol, etc., and p-hydroxybenzoic acid dominates all the products. This work presents a promising and deliberately designed electrocatalyst for realizing lignin valorization, making significant strides for the sustainability of this biomass resource.
Collapse
Affiliation(s)
- Wenjing Bai
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jianing Xu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yongzhuang Liu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Yuhan Lou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Xinyue Sun
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Ao Zhou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980–8577Japan
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Shuo Dou
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio‐Based Material Science and Technology of Ministry of EducationNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
7
|
Wang FL, Tan JL, Jin ZY, Gu CY, Lv QX, Dong YW, Lv RQ, Dong B, Chai YM. In Situ Electrochemical Rapid Induction of Highly Active γ-NiOOH Species for Industrial Anion Exchange Membrane Water Electrolyzer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310064. [PMID: 38607265 DOI: 10.1002/smll.202310064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Limited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self-reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S-modified Ni oxyhydroxide (Fe/S-NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation-dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ-NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d-band center, decreasing the energy barrier of the rate-determining step (*O→*OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S-NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm-2 for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S-NiOOH//Pt/C-60 °C) can deliver 1000 mA cm-2 at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self-reconstruction strategy for high-performance AEM electrocatalysts for future hydrogen economy.
Collapse
Affiliation(s)
- Fu-Li Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jin-Long Tan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zheng-Yang Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chao-Yue Gu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qian-Xi Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ren-Qing Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
8
|
Xue J, Dong X, Liu C, Li J, Dai Y, Xue W, Luo L, Ji Y, Zhang X, Li X, Jiang Q, Zheng T, Xiao J, Xia C. Turning copper into an efficient and stable CO evolution catalyst beyond noble metals. Nat Commun 2024; 15:5998. [PMID: 39013916 PMCID: PMC11252372 DOI: 10.1038/s41467-024-50436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Using renewable electricity to convert CO2 into CO offers a sustainable route to produce a versatile intermediate to synthesize various chemicals and fuels. For economic CO2-to-CO conversion at scale, however, there exists a trade-off between selectivity and activity, necessitating the delicate design of efficient catalysts to hit the sweet spot. We demonstrate here that copper co-alloyed with isolated antimony and palladium atoms can efficiently activate and convert CO2 molecules into CO. This trimetallic single-atom alloy catalyst (Cu92Sb5Pd3) achieves an outstanding CO selectivity of 100% (±1.5%) at -402 mA cm-2 and a high activity up to -1 A cm-2 in a neutral electrolyte, surpassing numerous state-of-the-art noble metal catalysts. Moreover, it exhibits long-term stability over 528 h at -100 mA cm-2 with an FECO above 95%. Operando spectroscopy and theoretical simulation provide explicit evidence for the charge redistribution between Sb/Pd additions and Cu base, demonstrating that Sb and Pd single atoms synergistically shift the electronic structure of Cu for CO production and suppress hydrogen evolution. Additionally, the collaborative interactions enhance the overall stability of the catalyst. These results showcase that Sb/Pd-doped Cu can steadily carry out efficient CO2 electrolysis under mild conditions, challenging the monopoly of noble metals in large-scale CO2-to-CO conversion.
Collapse
Affiliation(s)
- Jing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xue Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Chunxiao Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jiawei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yizhou Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Weiqing Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Laihao Luo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Yuan Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Xiao Zhang
- Department of Mechanical Engineering, Research Institute for Advanced Manufacturing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Qiu Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| |
Collapse
|
9
|
Sun X, Araujo RB, Dos Santos EC, Sang Y, Liu H, Yu X. Advancing electrocatalytic reactions through mapping key intermediates to active sites via descriptors. Chem Soc Rev 2024; 53:7392-7425. [PMID: 38894661 DOI: 10.1039/d3cs01130e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Descriptors play a crucial role in electrocatalysis as they can provide valuable insights into the electrochemical performance of energy conversion and storage processes. They allow for the understanding of different catalytic activities and enable the prediction of better catalysts without relying on the time-consuming trial-and-error approaches. Hence, this comprehensive review focuses on highlighting the significant advancements in commonly used descriptors for critical electrocatalytic reactions. First, the fundamental reaction processes and key intermediates involved in several electrocatalytic reactions are summarized. Subsequently, three types of descriptors are classified and introduced based on different reactions and catalysts. These include d-band center descriptors, readily accessible intrinsic property descriptors, and spin-related descriptors, all of which contribute to a profound understanding of catalytic behavior. Furthermore, multi-type descriptors that collectively determine the catalytic performance are also summarized. Finally, we discuss the future of descriptors, envisioning their potential to integrate multiple factors, broaden application scopes, and synergize with artificial intelligence for more efficient catalyst design and discovery.
Collapse
Affiliation(s)
- Xiaowen Sun
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Rafael B Araujo
- Department of Materials Science and Engineering, The Ångstrom Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden
| | - Egon Campos Dos Santos
- Departamento de Física dos Materials e Mecânica, Instituto de Física, Universidade de SãoPaulo, 05508-090, São Paulo, Brazil
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
- Jinan Institute of Quantum Technology, Jinan Branch, Hefei National Laboratory, Jinan, 250101, China
| | - Xiaowen Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
10
|
Wickramaratne KMK, Ramezanipour F. Electrocatalytic Properties of Quasi-2D Oxides LaSrMn 0.5M 0.5O 4 (M = Co, Ni, Cu, and Zn) for Hydrogen and Oxygen Evolution Reactions. Molecules 2024; 29:3107. [PMID: 38999059 PMCID: PMC11243240 DOI: 10.3390/molecules29133107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Designing cost-effective and highly efficient electrocatalysts for water splitting is a significant challenge. We have systematically investigated a series of quasi-2D oxides, LaSrMn0.5M0.5O4 (M = Co, Ni, Cu, Zn), to enhance the electrocatalytic properties of the two half-reactions of water-splitting, namely oxygen and hydrogen evolution reactions (OER and HER). The four materials are isostructural, as confirmed by Rietveld refinements with X-ray diffraction. The oxygen contents and metal valence states were determined by iodometric titrations and X-ray photoelectron spectroscopy. Electrical conductivity measurements in a wide range of temperatures revealed semiconducting behavior for all four materials. Electrocatalytic properties were studied for both half-reactions of water-splitting, namely, oxygen-evolution and hydrogen-evolution reactions (OER and HER). For the four materials, the trends in both OER and HER were the same, which also matched the trend in electrical conductivities. Among them, LaSrMn0.5Co0.5O4 showed the best bifunctional electrocatalytic activity for both OER and HER, which may be attributed to its higher electrical conductivity and favorable electron configuration.
Collapse
|
11
|
Nazemi M, Darband GB, Davoodi A. Interfacial engineering of Ni-Co-Mn@Ni nanosheet-nanocone arrays as high performance non-noble metal electrocatalysts for hydrogen generation. NANOSCALE 2024; 16:10853-10863. [PMID: 38770787 DOI: 10.1039/d4nr01404a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The electrochemical hydrogen production from water splitting is a promising strategy for obtaining new energy sources and replacing fossil fuels. In this study, nickel nanocones were first deposited on a nickel foam substrate using a direct current method. Then, a nickel-cobalt-manganese ternary alloy with a nanosheet morphology was deposited on the nanocones using a cyclic voltammetry method with different cycles and sweep rates. The results show that the sample synthesized in 3 cycles with a sweep rate of 10 mV s-1 exhibits the best electrocatalytic activity and requires -81, -121, and -214 mV overpotentials to reach 10, 20 and 100 mA cm-2 current densities, respectively. Electrochemical impedance spectroscopy studies also improved the HER performance with the lowest charge transfer resistance among all of the synthesized electrodes. This study introduces an effective and facile method for the fabrication of highly active and stable electrocatalysts.
Collapse
Affiliation(s)
- Mostafa Nazemi
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran.
| | - Ghasem Barati Darband
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran.
| | - Ali Davoodi
- Amsterdam Science Park, PC 1098X, The Netherlands
| |
Collapse
|
12
|
Zheng N, Hu X, Yan L, Ding LY, Feng J, Li D, Ji T, Ai F, Yu K, Hu J. Bimetallic Cu@Ru Core-Shell Structures with Ligand Effects for Endo-Exogenous Stimulation-Mediated Dynamic Oncotherapy. NANO LETTERS 2024; 24:6165-6173. [PMID: 38717317 DOI: 10.1021/acs.nanolett.4c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.
Collapse
Affiliation(s)
- Nannan Zheng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Xin Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Ling-Yun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Dan Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Ji
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Fujin Ai
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| |
Collapse
|
13
|
Yi L, Chen X, Wen Y, Chen H, Zhang S, Yang H, Li W, Zhou L, Xu B, Xu W, Guan W, Dai S, Lu Z. Solidophobic Surface for Electrochemical Extraction of High-Valued Mg(OH) 2 Coupled with H 2 Production from Seawater. NANO LETTERS 2024; 24:5920-5928. [PMID: 38708934 DOI: 10.1021/acs.nanolett.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
A significant challenge in direct seawater electrolysis is the rapid deactivation of the cathode due to the large scaling of Mg(OH)2. Herein, we synthesized a Pt-coated highly disordered NiCu alloy (Pt-NiCu alloy) electrode with superior solidophobic behavior, enabling stable hydrogen generation (100 mA cm-2, >1000 h durability) and simultaneous production of Mg(OH)2 (>99.0% purity) in electrolyte enriched with Mg2+ and Ca2+. The unconventional solidophobic property primarily stems from the high surface energy of the NiCu alloy substrate, which facilitates the adsorption of surface water and thereby compels the bulk formation of Mg(OH)2 via homogeneous nucleation. The discovery of this solidophobic electrode will revolutionarily simplify the existing techniques for seawater electrolysis and increase the economic viability for seawater electrolysis.
Collapse
Affiliation(s)
- Li Yi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xu Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
| | - Yingjie Wen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
| | - Haocheng Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sixie Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenbo Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Beibei Xu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Wenwen Xu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
| | - Wanbing Guan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhiyi Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Zhao H, Zhu L, Yin J, Jin J, Du X, Tan L, Peng Y, Xi P, Yan CH. Stabilizing Lattice Oxygen through Mn Doping in NiCo 2O 4-δ Spinel Electrocatalysts for Efficient and Durable Acid Oxygen Evolution. Angew Chem Int Ed Engl 2024; 63:e202402171. [PMID: 38494450 DOI: 10.1002/anie.202402171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Design the electrocatalysts without noble metal is still a challenge for oxygen evolution reaction (OER) in acid media. Herein, we reported the manganese (Mn) doping method to decrease the concentration of oxygen vacancy (VO) and form the Mn-O structure adjacent octahedral sites in spinel NiCo2O4-δ (NiMn1.5Co3O4-δ), which highly enhanced the activity and stability of spinel NiCo2O4-δ with a low overpotential (η) of 280 mV at j=10 mA cm-2 and long-term stability of 80 h in acid media. The isotopic labelling experiment based on differential electrochemical mass spectrometry (DEMS) clearly demonstrated the lattice oxygen in NiMn1.5Co3O4-δ is more stable due to strong Mn-O bond and shows synergetic adsorbate evolution mechanism (SAEM) for acid OER. Density functional theory (DFT) calculations reveal highly increased oxygen vacancy formation energy (EVO) of NiCo2O4-δ after Mn doping. More importantly, the highly hydrogen bonding between Mn-O and *OOH adsorbed on adjacent Co octahedral sites promote the formation of *OO from *OOH due to the greatly enhanced charge density of O in Mn substituted sites.
Collapse
Affiliation(s)
- Hongyu Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Liu Zhu
- School of Materials and Energy, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Jing Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Tan
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yong Peng
- School of Materials and Energy, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University. The University of Hong Kong Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Zhang Z, Wang P, Wei C, Feng J, Xiong S, Xi B. Synchronous Regulation of D-Band Centers in Zn Substrates and Weakening Pauli Repulsion of Zn Ions Using the Ascorbic Acid Additive for Reversible Zinc Anodes. Angew Chem Int Ed Engl 2024; 63:e202402069. [PMID: 38466145 DOI: 10.1002/anie.202402069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
The advanced aqueous zinc-ion batteries (AZIBs) are still challenging due to the harmful reactions including hydrogen evolution and corrosion. Here, a natural small molecule acid vitamin C (Vc) as an aqueous electrolyte additive has been selectively identified. The small molecule Vc can adjust the d band center of Zn substrate which fixes the active H+ so that the hydrogen evolution reaction (HER) is restrained. Simultaneously, it could also fine-tune the solvation structure of Zn ions due to the enhanced electrostatics and reduced Pauli repulsion verified by energy decomposition analysis (EDA). Hence, the cell retains an ultra-long cycle performance of over 1300 cycles and a superior Coulombic efficiency (CE) of 99.5 %. The prepared full cells display increased rate capability, cycle lifetime, and self-discharge suppression. Our results shed light on the mechanistic principle of electrolyte additives on the performance improvement of ZIBs, which is anticipated to render a new round of studies.
Collapse
Affiliation(s)
- Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| | - Chuanliang Wei
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, 250061, Jinan, P.R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, P.R. China
| |
Collapse
|
16
|
Zhang X, Ju S, Li C, Hao J, Sun Y, Hu X, Chen W, Chen J, He L, Xia G, Fang F, Sun D, Yu X. Atomic reconstruction for realizing stable solar-driven reversible hydrogen storage of magnesium hydride. Nat Commun 2024; 15:2815. [PMID: 38561357 PMCID: PMC10984991 DOI: 10.1038/s41467-024-47077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Reversible solid-state hydrogen storage of magnesium hydride, traditionally driven by external heating, is constrained by massive energy input and low systematic energy density. Herein, a single phase of Mg2Ni(Cu) alloy is designed via atomic reconstruction to achieve the ideal integration of photothermal and catalytic effects for stable solar-driven hydrogen storage of MgH2. With the intra/inter-band transitions of Mg2Ni(Cu) and its hydrogenated state, over 85% absorption in the entire spectrum is achieved, resulting in the temperature up to 261.8 °C under 2.6 W cm-2. Moreover, the hydrogen storage reaction of Mg2Ni(Cu) is thermodynamically and kinetically favored, and the imbalanced distribution of the light-induced hot electrons within CuNi and Mg2Ni(Cu) facilitates the weakening of Mg-H bonds of MgH2, enhancing the "hydrogen pump" effect of Mg2Ni(Cu)/Mg2Ni(Cu)H4. The reversible generation of Mg2Ni(Cu) upon repeated dehydrogenation process enables the continuous integration of photothermal and catalytic roles stably, ensuring the direct action of localized heat on the catalytic sites without any heat loss, thereby achieving a 6.1 wt.% H2 reversible capacity with 95% retention under 3.5 W cm-2.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Department of Materials Science, Fudan University, Shanghai, China
| | - Shunlong Ju
- Department of Materials Science, Fudan University, Shanghai, China
| | - Chaoqun Li
- Department of Materials Science, Fudan University, Shanghai, China
| | - Jiazheng Hao
- Spallation Neutron Source Science Center, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yahui Sun
- Department of Materials Science, Fudan University, Shanghai, China
| | - Xuechun Hu
- Department of Materials Science, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Materials Science, Fudan University, Shanghai, China
| | - Jie Chen
- Spallation Neutron Source Science Center, Dongguan, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Lunhua He
- Spallation Neutron Source Science Center, Dongguan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, PR China
- Songshan Lake Materials Laboratory, Dongguan, PR China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, China.
| | - Fang Fang
- Department of Materials Science, Fudan University, Shanghai, China.
| | - Dalin Sun
- Department of Materials Science, Fudan University, Shanghai, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Kwak IH, Kim JY, Zewdie GM, Yang J, Lee KS, Yoo SJ, Kwon IS, Park J, Kang HS. Electrocatalytic Activation in ReSe 2-VSe 2 Alloy Nanosheets to Boost Water-Splitting Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310769. [PMID: 38239004 DOI: 10.1002/adma.202310769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Indexed: 01/25/2024]
Abstract
It is challenging to control the electronic structure of 2D transition metal dichalcogenides (TMD) for extended applications in renewable energy devices. Here, ReSe2-VSe2 (Re1- xVxSe2) alloy nanosheets over the whole composition range via a colloidal reaction is synthesized. Increasing x makes the nanosheets more metallic and induces a 1T″-to-1T phase transition at x = 0.5-0.6. Compared to the MoSe2-VSe2 and WSe2-VSe2 alloy nanosheets, ReSe2 and VSe2 are mixed more homogeneously at the atomic scale. The alloy nanosheets at x = 0.1-0.7 exhibit an enhanced electrocatalytic activity toward acidic hydrogen evolution reaction (HER). In situ X-ray absorption fine structure measurements reveal that alloying caused the Re and V atoms to be synergically more active in the HER. Gibbs free energy (ΔGH*) and density of state calculations confirm that alloying and Se vacancies effectively activate the metal sites toward HER. The composition dependence of HER performance is explained by homogenous atomic mixing with the increased Se vacancies. The study provides a strategy for designing new TMD alloy nanosheets with enhanced catalytic activity.
Collapse
Affiliation(s)
- In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Research Center for Materials Analysis, Division of Analytical Science, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonbuk, 55069, Republic of Korea
| | - JuHyun Yang
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung Jo Yoo
- Research Center for Materials Analysis, Division of Analytical Science, Korea Basic Science Institute (KBSI), Daejeon, 34133, Republic of Korea
| | - Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Beamline Science Team, 4GSR Project Headquarters, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk, 55069, Republic of Korea
| |
Collapse
|
18
|
Feng Y, Huang L, Xiao Z, Zhuang X, Aslam TS, Zhang X, Tan YX, Wang Y. Temporally Decoupled Ammonia Splitting by a Zn-NH 3 Battery with an Ammonia Oxidation/Hydrogen Evolution Bifunctional Electrocatalyst as a Cathode. J Am Chem Soc 2024; 146:7771-7778. [PMID: 38453653 DOI: 10.1021/jacs.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Ammonia splitting to hydrogen is a decisive route for hydrogen economy but is seriously limited by the complex device and low efficiency. Here, we design and propose a new rechargeable Zn-NH3 battery based on temporally decoupled ammonia splitting to achieve efficient NH3-to-H2 conversion. In this system, ammonia is oxidized into nitrogen during cathodic charging (2NH3 + 6OH- → N2 + 6H2O + 6e-) with external electrical energy conversion and storage, while during cathodic discharging, water is reduced to hydrogen (2H2O + 2e- → H2 + 2OH-) with electrical energy generation. In this loop, continuous and efficient H2 production without separation and purification is achieved. With the help of the ammonia oxidation reaction (AOR) and hydrogen evolution reaction (HER) bifunctional catalyst of Mo2C/NiCu@C, a rechargeable Zn-NH3 battery is realized that exhibits a high NH3-to-H2 FE of 91.6% with outstanding durability for 900 cycles (300 h) at 20 mA/cm2, enabling efficient and continuous NH3-to-H2 conversion.
Collapse
Affiliation(s)
- Yangyang Feng
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Lanting Huang
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Zhiwei Xiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Xu Zhuang
- College of Chemistry, Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Tayyab Sohail Aslam
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Yan-Xi Tan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China; Fuzhou 350108, Fujian P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Liu K, Li H, Xie M, Wang P, Jin Z, Liu Y, Zhou M, Li P, Yu G. Thermally Enhanced Relay Electrocatalysis of Nitrate-to-Ammonia Reduction over Single-Atom-Alloy Oxides. J Am Chem Soc 2024; 146:7779-7790. [PMID: 38466142 DOI: 10.1021/jacs.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) holds promise for converting nitrogenous pollutants to valuable ammonia products. However, conventional electrocatalysis faces challenges in effectively driving the complex eight-electron and nine-proton transfer process of the NO3RR while also competing with the hydrogen evolution reaction. In this study, we present the thermally enhanced electrocatalysis of nitrate-to-ammonia conversion over nickel-modified copper oxide single-atom alloy oxide nanowires. The catalyst demonstrates improved ammonia production performance with a Faradaic efficiency of approximately 80% and a yield rate of 9.7 mg h-1 cm-2 at +0.1 V versus a reversible hydrogen electrode at elevated cell temperatures. In addition, this thermally enhanced electrocatalysis system displays impressive stability, interference resistance, and favorable energy consumption and greenhouse gas emissions for the simulated industrial wastewater treatment. Complementary in situ analyses confirm that the significantly superior relay of active hydrogen species formed at Ni sites facilitates the thermal-field-coupled electrocatalysis of Cu surface-adsorbed *NOx hydrogenation. Theoretical calculations further support the thermodynamic and kinetic feasibility of the relay catalysis mechanism for the NO3RR over the Ni1Cu model catalyst. This study introduces a conceptual thermal-electrochemistry approach for the synergistic regulation of complex catalytic processes, highlighting the potential of multifield-coupled catalysis to advance sustainable-energy-powered chemical synthesis technologies.
Collapse
Affiliation(s)
- Kui Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongmei Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Minghao Xie
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengfei Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanting Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Miao L, Jia W, Cao X, Jiao L. Computational chemistry for water-splitting electrocatalysis. Chem Soc Rev 2024; 53:2771-2807. [PMID: 38344774 DOI: 10.1039/d2cs01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has attracted great interest in recent years for producing hydrogen with high-purity. However, the practical applications of this technology are limited by the development of electrocatalysts with high activity, low cost, and long durability. In the search for new electrocatalysts, computational chemistry has made outstanding contributions by providing fundamental laws that govern the electron behavior and enabling predictions of electrocatalyst performance. This review delves into theoretical studies on electrochemical water-splitting processes. Firstly, we introduce the fundamentals of electrochemical water electrolysis and subsequently discuss the current advancements in computational methods and models for electrocatalytic water splitting. Additionally, a comprehensive overview of benchmark descriptors is provided to aid in understanding intrinsic catalytic performance for water-splitting electrocatalysts. Finally, we critically evaluate the remaining challenges within this field.
Collapse
Affiliation(s)
- Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenqi Jia
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
21
|
Zhong W, Chen D, Wu Y, Yue J, Shen Z, Huang H, Wang Y, Li X, Lang JP, Xia Q, Cao Y. Screening of transition metal and boron atoms co-doped graphdiyne catalysts for electrocatalytic urea synthesis. J Colloid Interface Sci 2024; 655:80-89. [PMID: 37925971 DOI: 10.1016/j.jcis.2023.10.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Electrocatalytic CN coupling using nitrogen (N2) and carbon dioxide (CO2) as precursors offers a promising alternative for urea production under mild conditions, compared to traditional synthesis approaches. However, the design and screening of extremely efficient electrocatalysts remains a significant challenge in this field. Hence, we propose a systematic approach to screen efficient double-atom catalysts (DACs) with both metal and boron active sites, employing density functional theory (DFT). A comprehensive evaluation of 27 potential catalysts were performed, taking into account their stability, co-adsorption of N2 and CO2, as well as the potential-determining step (PDS) involved urea formation. The calculated results show that co-doped graphdiyne with CrB and MnB double atoms (CrB@GDY and MnB@GDY) emerge as potential electrocatalysts for urea production, displaying thermodynamic energy barriers of 0.41 eV and 0.66 eV, respectively. More importantly, these two DACs can significantly suppress the ammonia (NH3) and C1 products formation. Furthermore, a catalytic activity relationship between the d-band centers of the DACs and urea production performance were established. This study not only forecasts two promising DACs for subsequent experimental work but also establishes a theoretical framework for the evaluation of DACs in electrocatalytic urea synthesis.
Collapse
Affiliation(s)
- Weichan Zhong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Dixing Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yuting Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jingxiu Yue
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China.
| | - Qineng Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| | - Yongyong Cao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, PR China; College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, PR China.
| |
Collapse
|
22
|
Li D, Xiang R, Yu F, Zeng J, Zhang Y, Zhou W, Liao L, Zhang Y, Tang D, Zhou H. In Situ Regulating Cobalt/Iron Oxide-Oxyhydroxide Exchange by Dynamic Iron Incorporation for Robust Oxygen Evolution at Large Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305685. [PMID: 37747155 DOI: 10.1002/adma.202305685] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The key dilemma for green hydrogen production via electrocatalytic water splitting is the high overpotential required for anodic oxygen evolution reaction (OER). Co/Fe-based materials show superior catalytic OER activity to noble metal-based catalysts, but still lag far behind the state-of-the-art Ni/Fe-based catalysts probably due to undesirable side segregation of FeOOH with poor conductivity and unsatisfied structural durability under large current density. Here, a robust and durable OER catalyst affording current densities of 500 and 1000 mA cm-2 at extremely low overpotentials of 290 and 304 mV in base is reported. This catalyst evolves from amorphous bimetallic FeOOH/Co(OH)2 heterostructure microsheet arrays fabricated by a facile mechanical stirring strategy. Especially, in situ X-ray photoelectron spectroscopy (XPS) and Raman analysis decipher the rapid reconstruction of FeOOH/Co(OH)2 into dynamically stable Co1-x Fex OOH active phase through in situ iron incorporation into CoOOH, which perform as the real active sites accelerating the rate-determining step supported by density functional theory calculations. By coupling with MoNi4 /MoO2 cathode, the self-assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.613 V, better than commercial IrO2 (+) ||Pt/C(-) and most of reported transition metal-based electrolyzers. This work provides a feasible strategy for the exploration and design of industrial water-splitting catalysts for large-scale green hydrogen production.
Collapse
Affiliation(s)
- Dongyang Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Rong Xiang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Fang Yu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Jinsong Zeng
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Yong Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Weichang Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Liling Liao
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Yan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, and Department of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Dongsheng Tang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
23
|
Poudel MB, Logeshwaran N, Prabhakaran S, Kim AR, Kim DH, Yoo DJ. Low-Cost Hydrogen Production from Alkaline/Seawater over a Single-Step Synthesis of Mo 3 Se 4 -NiSe Core-Shell Nanowire Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305813. [PMID: 37855237 DOI: 10.1002/adma.202305813] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/27/2023] [Indexed: 10/20/2023]
Abstract
The rational design and steering of earth-abundant, efficient, and stable electrocatalysts for hydrogen generation is highly desirable but challenging with catalysts free of platinum group metals (PGMs). Mass production of high-purity hydrogen fuel from seawater electrolysis presents a transformative technology for sustainable alternatives. Here, a heterostructure of molybdenum selenide-nickel selenide (Mo3 Se4 -NiSe) core-shell nanowire arrays constructed on nickel foam by a single-step in situ hydrothermal process is reported. This tiered structure provides improved intrinsic activity and high electrical conductivity for efficient charge transfer and endows excellent hydrogen evolution reaction (HER) activity in alkaline and natural seawater conditions. The Mo3 Se4 -NiSe freestanding electrodes require small overpotentials of 84.4 and 166 mV to reach a current density of 10 mA cm-2 in alkaline and natural seawater electrolytes, respectively. It maintains an impressive balance between electrocatalytic activity and stability. Experimental and theoretical calculations reveal that the Mo3 Se4 -NiSe interface provides abundant active sites for the HER process, which modulate the binding energies of adsorbed species and decrease the energetic barrier, providing a new route to design state-of-the-art, PGM-free catalysts for hydrogen production from alkaline and seawater electrolysis.
Collapse
Affiliation(s)
- Milan Babu Poudel
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Natarajan Logeshwaran
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ae Rhan Kim
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Do Hwan Kim
- Devison of Science Education, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
24
|
Liang S, Dong C, Zhou C, Wang R, Huang F. Ion-Sieve-Confined Synthesis of Size-Tunable Ru for Electrochemical Hydrogen Evolution. NANO LETTERS 2024; 24:757-763. [PMID: 38166149 DOI: 10.1021/acs.nanolett.3c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The controllable and low-cost synthesis of nanometal particles is highly desired in scientific and industrial research. Herein, size-tunable Ru nanoparticles were synthesized by using a novel ion-sieve-confined reduction method. The H2TiO3 ion-sieve was used to adsorb Ru3+ into the hydroxyl-enriched porous [TiO3]2- layers. The confined environment of the interlayer space facilitates Ru-Ru collision and bonding during annealing, achieving a precise reduction from Ru3+ to Ru0 without additional reductants. Owing to the confinement effect, Ru0 nanoparticles are uniformly embedded in the pores on the surface of the postannealed TiO2 matrix (Ru@TiO2). Ru@TiO2 exhibited a lower overpotential than Pt/C (57 vs 87 mV at 10 mA cm-2) for the HER in 0.1 M KOH solution. The confinement-induced reduction of metal ions was also preliminarily proved in ion-exchanged zeolites, which provides facile and abundant approaches for the size-controllable synthesis of nanometal catalysts with high catalytic activity.
Collapse
Affiliation(s)
- Song Liang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chenlong Dong
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ce Zhou
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ruiqi Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Fuqiang Huang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
25
|
Li L, Zhang X, Humayun M, Xu X, Shang Z, Li Z, Yuen MF, Hong C, Chen Z, Zeng J, Bououdina M, Temst K, Wang X, Wang C. Manipulation of Electron Spins with Oxygen Vacancy on Amorphous/Crystalline Composite-Type Catalyst. ACS NANO 2024; 18:1214-1225. [PMID: 38150422 DOI: 10.1021/acsnano.3c12133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.
Collapse
Affiliation(s)
- Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zixuan Shang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhishan Li
- Faculty of Metallurgical and Energy Engineering, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, People's Republic of China
| | - Chunxia Hong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Kristiaan Temst
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D Box 2418, B 3001 Leuven, Belgium
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Xiaolei Wang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
26
|
Zhu Z, Lin Y, Fang P, Wang M, Zhu M, Zhang X, Liu J, Hu J, Xu X. Orderly Nanodendritic Nickel Substitute for Raney Nickel Catalyst Improving Alkali Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307035. [PMID: 37739409 DOI: 10.1002/adma.202307035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Indexed: 09/24/2023]
Abstract
The development of nonprecious metal catalysts to meet the activity-stability balance at industrial-grade large current densities remains a challenge toward practical alkali-water electrolysis. Here, this work develops an orderly nanodendritic nickel (ND-Ni) catalyst that consists of ultrafine nanograins in chain-like conformation, which shows both excellent activity and robust stability for large current density hydrogen evolution reaction (HER) in alkaline media, superior to currently applied Raney nickel (R-Ni) catalyst in commercial alkali-water electrolyzer (AWE). The ND-Ni catalyst featured by a three-dimensional (3D) interconnecting microporous structure endows with high specific surface area and excellent conductivity and hydrophilicity, which together afford superior charge/mass transport favorable to HER kinetics at high current densities. An actual AWE with ND-Ni catalyst demonstrates durable water splitting with 1.0 A cm-2 at 1.71 V under industrial conditions and renders a record-low power consumption of 3.95 kW h Nm-3 with an energy efficiency close to 90%. The hydrogen price per gallon of gasoline equivalent (GGE) is calculated to be ≈$0.95, which is less than the target of $2.0 per GGE by 2026 from the U.S. Department of Energy. The results suggest the feasibility of ND-Ni substitute for R-Ni catalyst in commercial AWE.
Collapse
Affiliation(s)
- Zexuan Zhu
- College of Physics Science and Technology, and Center for Interdisciplinary Research, Yangzhou University, Yangzhou, 225002, China
| | - Yuxing Lin
- Department of Physics, Xiamen University, Xiamen, 361005, China
| | - Peng Fang
- College of Physics Science and Technology, and Center for Interdisciplinary Research, Yangzhou University, Yangzhou, 225002, China
| | - Minshan Wang
- College of Physics Science and Technology, and Center for Interdisciplinary Research, Yangzhou University, Yangzhou, 225002, China
| | - Mingze Zhu
- Jiuchang New Energy Technology Co. LTD, Yangzhou, 225001, China
| | - Xiuyun Zhang
- College of Physics Science and Technology, and Center for Interdisciplinary Research, Yangzhou University, Yangzhou, 225002, China
| | - Jianshuang Liu
- College of Physics Science and Technology, and Center for Interdisciplinary Research, Yangzhou University, Yangzhou, 225002, China
| | - Jingguo Hu
- College of Physics Science and Technology, and Center for Interdisciplinary Research, Yangzhou University, Yangzhou, 225002, China
| | - Xiaoyong Xu
- College of Physics Science and Technology, and Center for Interdisciplinary Research, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
27
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
28
|
Boué JF, Espinet C, Amigues S, Mesguich D, Cornu D, Holade Y, Cambedouzou J, Laurent C. Spark plasma sintered catalytic nickel-copper alloy and carbon nanotube electrodes for the hydrogen evolution reaction. Chem Commun (Camb) 2023; 59:13719-13722. [PMID: 37909229 DOI: 10.1039/d3cc04472f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We report the proof-of-concept of spark plasma sintered (SPS) consolidated mesoporous composite catalytic electrodes based on nickel-copper alloys and carbon nanotubes for the electrocatalytic hydrogen evolution reaction (HER) in alkaline media. The optimized electrode (203 m2 g-1, 5 wt% Ni75Cu25) operated at -0.1 A cm-2 (current of -0.15 A) for 24 h with a stable overpotential of about 0.3 V. This newly described freestanding SPS approach allows the rational control of specific surface area, metal loading, and electrocatalytic performance, thus opening a new route to catalytic electrodes with controllable physical and catalytic properties.
Collapse
Affiliation(s)
- Jean-Félix Boué
- Institut Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34090, France.
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 118 Route de Narbonne, Toulouse cedex 9 31062, France.
| | - Cédric Espinet
- Institut Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34090, France.
| | - Simon Amigues
- Institut Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34090, France.
| | - David Mesguich
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 118 Route de Narbonne, Toulouse cedex 9 31062, France.
| | - David Cornu
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 118 Route de Narbonne, Toulouse cedex 9 31062, France.
- French Research Network on Hydrogen (FRH2), Research Federation No. 2044 CNRS, BP 32229, Nantes CEDEX 3 44322, France
| | - Yaovi Holade
- Institut Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34090, France.
- French Research Network on Hydrogen (FRH2), Research Federation No. 2044 CNRS, BP 32229, Nantes CEDEX 3 44322, France
| | - Julien Cambedouzou
- Institut Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier 34090, France.
- French Research Network on Hydrogen (FRH2), Research Federation No. 2044 CNRS, BP 32229, Nantes CEDEX 3 44322, France
| | - Christophe Laurent
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 118 Route de Narbonne, Toulouse cedex 9 31062, France.
| |
Collapse
|
29
|
Gao G, Zhu G, Chen X, Sun Z, Cabot A. Optimizing Pt-Based Alloy Electrocatalysts for Improved Hydrogen Evolution Performance in Alkaline Electrolytes: A Comprehensive Review. ACS NANO 2023; 17:20804-20824. [PMID: 37922197 DOI: 10.1021/acsnano.3c05810] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The splitting of water through electrocatalysis offers a sustainable method for the production of hydrogen. In alkaline electrolytes, the lack of protons forces water dissociation to occur before the hydrogen evolution reaction (HER). While pure Pt is the gold standard electrocatalyst in acidic electrolytes, since the 5d orbital in Pt is nearly fully occupied, when it overlaps with the molecular orbital of water, it generates a Pauli repulsion. As a result, the formation of a Pt-H* bond in an alkaline environment is difficult, which slows the HER and negates the benefits of using a pure Pt catalyst. To overcome this limitation, Pt can be alloyed with transition metals, such as Fe, Co, and Ni. This approach has the potential not only to enhance the performance but also to increase the Pt dispersion and decrease its usage, thus overall improving the catalyst's cost-effectiveness. The excellent water adsorption and dissociation ability of transition metals contributes to the generation of a proton-rich local environment near the Pt-based alloy that promotes HER. Significant progress has been achieved in comprehending the alkaline HER mechanism through the manipulation of the structure and composition of electrocatalysts based on the Pt alloy. The objective of this review is to analyze and condense the latest developments in the production of Pt-based alloy electrocatalysts for alkaline HER. It focuses on the modified performance of Pt-based alloys and clarifies the design principles and catalytic mechanism of the catalysts from both an experimental and theoretical perspective. This review also highlights some of the difficulties encountered during the HER and the opportunities for increasing the HER performance. Finally, guidance for the development of more efficient Pt-based alloy electrocatalysts is provided.
Collapse
Affiliation(s)
- Guoliang Gao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Xueli Chen
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
30
|
Wu Y, Lv J, Xie F, An R, Zhang J, Huang H, Shen Z, Jiang L, Xu M, Yao Q, Cao Y. Single and double transition metal atoms doped graphdiyne for highly efficient electrocatalytic reduction of nitric oxide to ammonia. J Colloid Interface Sci 2023; 656:155-167. [PMID: 37989049 DOI: 10.1016/j.jcis.2023.11.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023]
Abstract
The electrocatalytic conversion of nitric oxide (NORR) to ammonia (NH3) represents a pivotal approach for sustainable energy transformation and efficient waste utilization. Designing highly effective catalysts to facilitate the conversion of NO into NH3 remains a formidable challenge. In this work, the density functional theory (DFT) is used to design NORR catalysts based on single and double transition metal (TM:Fe, Co, Ni and Cu) atoms supported by graphdiyne (TM@GDY). Among eight catalysts, the Cu2@GDY is selected as a the most stable NORR catalyst with high NH3 activity and selectivity. A pivotal discovery underscores that the NORR mechanism is thermodynamically constrained on single atom catalysts (SACs), while being governed by electrochemical processes on double atom catalysts (DACs), a distinction arising from the different d-band centers of these catalysts. Therefore, this work not only introduces an efficient NORR catalyst but also provides crucial insights into the fundamental parameters influencing NORR performance.
Collapse
Affiliation(s)
- Yuting Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Jiarui Lv
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Fengjing Xie
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - RunZhi An
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Jiaojiao Zhang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Minhong Xu
- Department of Materials Engineering, Huzhou University, Huzhou 313000, Zhejiang, PR China.
| | - Qiufang Yao
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, Zhejiang, PR China.
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China.
| |
Collapse
|
31
|
Du J, Zhang H, Hu W, Li Z, Gao W, Wang X, Li C. Grain Boundary Effects of Hierarchical Ni-Fe (Oxy)hydroxide Nanosheets in Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304245. [PMID: 37480178 DOI: 10.1002/smll.202304245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/03/2023] [Indexed: 07/23/2023]
Abstract
The robust and scalable oxygen evolution electrocatalysts that can deliver high current densities at low applied potential is a great challenge for the large-scale industrial application in hydrogen production. Here, the preparation of a grain-boundary-rich Ni-Fe (oxy)hydroxide catalyst on Ni foam is reported using a scalable coating approach followed by a chemical precipitating treatment. This facile method effectively assembles the hierarchical Ni-Fe (oxy)hydroxide nanosheet in the ultrasmall crystalline domains (<4 nm) with rich grain boundaries. The hierarchical nanosheet structure with the grain boundaries provides more accessible catalytic sites, facile charge, and mass transfer. Benefiting from the abundant grain boundaries in the hierarchical nanosheets, the as-prepared Ni-Fe (oxy)hydroxide electrodes deliver current densities of 500 and 1000 mA cm-2 at overpotentials of only 278 and 296 mV for the oxygen evolution reaction. The prepared electrode also exhibits long-term durability at a high current density in alkaline conditions.
Collapse
Affiliation(s)
- Jing Du
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hong Zhang
- Electron Microscopy Centre of Lanzhou University, School of Materials and Energy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wei Hu
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zelong Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wensheng Gao
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaomei Wang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
32
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
33
|
Yao Q, Yu Z, Li L, Huang X. Strain and Surface Engineering of Multicomponent Metallic Nanomaterials with Unconventional Phases. Chem Rev 2023; 123:9676-9717. [PMID: 37428987 DOI: 10.1021/acs.chemrev.3c00252] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Multicomponent metallic nanomaterials with unconventional phases show great prospects in electrochemical energy storage and conversion, owing to unique crystal structures and abundant structural effects. In this review, we emphasize the progress in the strain and surface engineering of these novel nanomaterials. We start with a brief introduction of the structural configurations of these materials, based on the interaction types between the components. Next, the fundamentals of strain, strain effect in relevant metallic nanomaterials with unconventional phases, and their formation mechanisms are discussed. Then the progress in surface engineering of these multicomponent metallic nanomaterials is demonstrated from the aspects of morphology control, crystallinity control, surface modification, and surface reconstruction. Moreover, the applications of the strain- and surface-engineered unconventional nanomaterials mainly in electrocatalysis are also introduced, where in addition to the catalytic performance, the structure-performance correlations are highlighted. Finally, the challenges and opportunities in this promising field are prospected.
Collapse
Affiliation(s)
- Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhiyong Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
34
|
Wang Y, Gong N, Liu H, Ma W, Hippalgaonkar K, Liu Z, Huang Y. Ordering-Dependent Hydrogen Evolution and Oxygen Reduction Electrocatalysis of High-Entropy Intermetallic Pt 4 FeCoCuNi. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302067. [PMID: 37165532 DOI: 10.1002/adma.202302067] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/08/2023] [Indexed: 05/12/2023]
Abstract
Disordered solid-solution high-entropy alloys have attracted wide research attention as robust electrocatalysts. In comparison, ordered high-entropy intermetallics have been hardly explored and the effects of the degree of chemical ordering on catalytic activity remain unknown. In this study, a series of multicomponent intermetallic Pt4 FeCoCuNi nanoparticles with tunable ordering degrees is fabricated. The transformation mechanism of the multicomponent nanoparticles from disordered structure into ordered structure is revealed at the single-particle level, and it agrees with macroscopic analysis by selected-area electron diffraction and X-ray diffraction. The electrocatalytic performance of Pt4 FeCoCuNi nanoparticles correlates well with their crystal structure and electronic structure. It is found that increasing the degree of ordering promotes electrocatalytic performance. The highly ordered Pt4 FeCoCuNi achieves the highest mass activities toward both acidic oxygen reduction reaction (ORR) and alkaline hydrogen evolution reaction (HER) which are 18.9-fold and 5.6-fold higher than those of commercial Pt/C, respectively. The experiment also shows that this catalyst demonstrates better long-term stability than both partially ordered and disordered Pt4 FeCoCuNi as well as Pt/C when subject to both HER and ORR. This ordering-dependent structure-property relationship provides insight into the rational design of catalysts and stimulates the exploration of many other multicomponent intermetallic alloys.
Collapse
Affiliation(s)
- Yong Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Na Gong
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Hongfei Liu
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Wei Ma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kedar Hippalgaonkar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
35
|
Wei J, Luo D, Shi M, Yuan Q, Wang M, Huang Y, Ni Y. Ultrathin Carbon Nitride Nanosheets Exfoliated and In Situ Modified with a Nickel Bis(Chelate) Complex for Boosting Photocatalytic Performances. Inorg Chem 2023. [PMID: 37384457 DOI: 10.1021/acs.inorgchem.3c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Exfoliation and interfacial modification of two-dimensional (2D) polymeric carbon nitride (CN) are considerably vital for applications in photo/electrocatalysis fields. Here, a grinding-ultrasonic route was designed to construct nickel bis(chelate) complex (Ni(abt)2, abt = 2-aminobenzenethiolate)-modified CN ultrathin nanosheets. Under the assistance of the shear force derived from the grinding process, Ni(abt)2 was implanted into the interlamination of bulk CN, resulting in the formation of ultrathin CN (UCN) nanosheets. Simultaneously, Ni(abt)2 molecules were anchored on the surfaces of as-formed UCN nanosheets due to the π-π stacking interaction. Interestingly, compared with single Ni(abt)2 and UCN, the as-obtained Ni(abt)2/UCN nanosheets exhibited excellent photocatalytic hydrogen evolution capability. A molecule-semiconductor internal electron transmission mechanism was suggested for explaining the separation and transfer of electron-hole pairs. Density functional theory (DFT) calculations demonstrated that the interface-induced electron redistribution tuned the electron density and hydrogen adsorption of the active centers, thus enhancing the photocatalytic performance of the hybrid catalyst. In addition, the as-obtained Ni(abt)2/UCN nanosheets could also catalyze the reduction of nitroaromatics in the presence of NaBH4. It was found that under the simulated sunlight irradiation, the conversion efficiency of nitroaromatic compounds to amino aromatic ones was up to 97.3%, far higher than that under the condition without light irradiation (51.7%), suggesting that the photocatalytic-produced hydrogen took part in the reduction of nitroaromatic compounds.
Collapse
Affiliation(s)
- Jieding Wei
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Dian Luo
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Manman Shi
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Qingbing Yuan
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Meifang Wang
- Department of Chemistry, WanNan Medical College, Wuhu 241002, P. R. China
- The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, 81 Meishan Road, Heifei 230032, Anhui, P. R. China
| | - Yucheng Huang
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| |
Collapse
|
36
|
Cheng Z, Tan Z, Zhou L, Li L, Xu X, Yuen MF, Li L, Pang Y, Debecker DP, Ma R, Wang C. Engineering Amorphous/Crystalline Ru(OH) 3/CoFe-Layered Double Hydroxide for Hydrogen Evolution at 1000 mA cm -2. Inorg Chem 2023; 62:7424-7433. [PMID: 37141089 DOI: 10.1021/acs.inorgchem.3c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
For large-scale industrial applications, it is highly desirable to create effective, economical electrocatalysts with long-term stability for the hydrogen evolution reaction (HER) at a large current density. Herein, we report a unique motif with crystalline CoFe-layered hydroxide (CoFe-LDH) nanosheets enclosed by amorphous ruthenium hydroxide (a-Ru(OH)3/CoFe-LDH) to realize the efficient hydrogen production at 1000 mA cm-2, with a low overpotential of 178 mV in alkaline media. During the continuous HER process for 40 h at such a large current density, the potential remains almost constant with only slight fluctuations, indicating good long-term stability. The remarkable HER performance can be attributed to the charge redistribution caused by abundant oxygen vacancies in a-Ru(OH)3/CoFe-LDH. The increased electron density of states lowers the charge-transfer resistance and promotes the formation and release of H2 molecules. The water-splitting electrolyzer with a-Ru(OH)3/CoFe-LDH as both an anode and a cathode in 1.0 M KOH demonstrates stable hydrogen production and a 100% faradic efficiency. The design strategy of interface engineering in this work will inspire the design of practical electrocatalysts for water splitting on an industrial scale.
Collapse
Affiliation(s)
- Zhuoer Cheng
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, P. R. China
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhanming Tan
- College of Horticulture and Forestry, Tarim University, Alar 843300, P. R. China
| | - Li Zhou
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, P. R. China
| | - Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Ligui Li
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R. China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Damien P Debecker
- Institute of Condensed Matter and Nanoscience (IMCN), UCLouvain, Louvain-La-Neuve 1348, Belgium
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
37
|
Dong YW, Wang FL, Wu Y, Zhai XJ, Xu N, Zhang XY, Lv RQ, Chai YM, Dong B. Directed electron regulation promoted sandwich-like CoO@FeBTC/NF with p-n heterojunctions by gel electrodeposition for oxygen evolution reaction. J Colloid Interface Sci 2023; 645:410-419. [PMID: 37156149 DOI: 10.1016/j.jcis.2023.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Metal organic framework (MOF) is currently-one of the key catalysts for oxygen evolution reaction (OER), but its catalytic performance is severely limited by electronic configuration. In this study, cobalt oxide (CoO) on nickel foam (NF) was first prepared, which then wrapped it with FeBTC synthesized by ligating isophthalic acid (BTC) with iron ions by electrodeposition to obtain CoO@FeBTC/NF p-n heterojunction structure. The catalyst requires only 255 mV overpotential to reach a current density of 100 mA cm-2, and can maintain 100 h long time stability at 500 mA cm-2 high current density. The catalytic properties are mainly related to the strong induced modulation of electrons in FeBTC by holes in the p-type CoO, which results in stronger bonding and faster electron transfer between FeBTC and hydroxide. At the same time, the uncoordinated BTC at the solid-liquid interface ionizes acidic radicals which form hydrogen bonds with the hydroxyl radicals in solution, capturing them onto the catalyst surface for the catalytic reaction. In addition, CoO@FeBTC/NF also has strong application prospects in alkaline electrolyzers, which only needs 1.78 V to reach a current density of 1 A cm-2, and it can maintain long-term stability for 12 h at this current. This study provides a new convenient and efficient approach for the control design of the electronic structure of MOF, leading to a more efficient electrocatalytic process.
Collapse
Affiliation(s)
- Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fu-Li Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xue-Jun Zhai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Na Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Xin-Yu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ren-Qing Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
38
|
Li P, Li W, Huang Y, Huang Q, Tian S. 3D Hierarchical-Architectured Nanoarray Electrode for Boosted and Sustained Urea Electro-Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300725. [PMID: 37035957 DOI: 10.1002/smll.202300725] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Exploring active and durable Ni-based materials with optimized electronic and architectural engineering to promote the urea oxidation reaction (UOR) is pivotal for the urea-related technologies. Herein a 3D self-supported hierarchical-architectured nanoarray electrode (CC/MnNi@NC) is proposed in which 1D N-doped carbon nanotubes (N-CNTs) with 0D MnNi nanoparticles (NPs) encapsulation are intertwined into 2D nanosheet aligned on the carbon cloth for prominently boosted and sustained UOR electrocatalysis. From combined experimental and theoretical investigations, Mn-alloying can regulate Ni electronic state with downshift of the d-band center, facilitating active Ni3+ species generation and prompting the rate-determining step (*COO intermediate desorption). Meanwhile, the micro/nano-hierarchical nanoarray configuration with N-CNTs encapsulating MnNi NPs can not only endow strong operational durability against metal corrosion/agglomeration and enrich the density of active sites, but also accelerate electron transfer, and more intriguingly, promote mass transfer as a result of desirable superhydrophilic and quasi-superaerophobic characteristics. Therefore, with such elegant integration of 0D, 1D and 2D motifs into 3D micro/nano-hierarchical architecture, the resulting CC/MnNi@NC can deliver admirable UOR performance, favorably comparable to the best-performing UOR electrocatalysts reported thus far. This work opens a fresh prospect in developing advanced electrocatalysts via electronic manipulation coupled with architectural engineering for various energy conversion technologies.
Collapse
Affiliation(s)
- Ping Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Wenqin Li
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Yuqi Huang
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Quhua Huang
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| | - Shuanghong Tian
- School of Environment Science and Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, P. R. China
| |
Collapse
|
39
|
Mu X, Wang K, Lv K, Feng B, Yu X, Li L, Zhang X, Yang X, Lu Z. Doping of Cr to Regulate the Valence State of Cu and Co Contributes to Efficient Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16552-16561. [PMID: 36960922 DOI: 10.1021/acsami.2c18799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Water electrolysis in alkaline media is the most promising technology for hydrogen production, but efficient electrocatalysts are required to reduce the overpotential in HER and OER processes. In this work, the multicomponent transition metal catalyst Cr-Cu/CoOx was loaded on copper foam by electrodeposition and annealing, and the catalyst exhibited excellent electrochemical activity. The HER overpotential is 21 mV and the OER overpotential is 252 mV at a current density of 10 mA cm-2. The overall water splitting voltage is 1.51 V, even better than the Pt/C//RuO2 two-electrode system (1.61 V). The excellent performance of this catalyst is mainly derived from the close synergistic interaction among Cu, Co, and Cr. The doping of Cr modulates the valence states of Cu and Co at the active sites and improves the adsorption of various reaction intermediates. Density functional theory (DFT) calculations show that the doping of Cr can optimize the adsorption of the reaction intermediate H*. Meanwhile, the high-valent Cr and Co promote hydrolysis through strong adsorption with OH-. The present work provides a reasonable strategy for designing low-cost transition metals as efficient catalysts for water electrolysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China
| |
Collapse
|
40
|
Alkaline hydrogen oxidation reaction on Ni-based electrocatalysts: From mechanistic study to material development. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Kwon IS, Lee SJ, Kim JY, Kwak IH, Zewdie GM, Yoo SJ, Kim JG, Lee KS, Park J, Kang HS. Composition-Tuned (MoWV)Se 2 Ternary Alloy Nanosheets as Excellent Hydrogen Evolution Reaction Electrocatalysts. ACS NANO 2023; 17:2968-2979. [PMID: 36656992 DOI: 10.1021/acsnano.2c11528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ternary alloying of transition metal dichalcogenides (TMDs) has the potential for altering the electronic structure of materials to suit electrochemical applications. Herein, we synthesized (MoWV)Se2 nanosheets at various compositions via a colloidal reaction. The mole fraction of V atoms (xV) was successfully increased up to 0.8, producing a metallic phase that is highly durable against hydration. Furthermore, we synthesized (MoW)Se2 nanosheets over the entire composition range. The atomic mixing of the ternary alloys is more random than that of the constitutional binary alloys, as supported by first-principles calculations. Compared to binary alloying, ternary alloying more effectively enhanced the electrocatalytic activity for acidic hydrogen evolution reaction (HER). The HER performance increased upon increasing xV to 0.44, and thereafter, it declined at higher xV primarily owing to surface oxidation. The analysis of Gibbs free energy for H adsorption revealed that ternary alloying strongly activates the basal plane for the HER. VSe2 contains numerous sites favorable for H adsorption, facilitating the composition-dependent HER. These results provide a pioneering strategy for designing multicomponent TMD catalysts that maximize the advantages of each component.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Getasew Mulualem Zewdie
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Seung Jo Yoo
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Jin-Gyu Kim
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon 305-806, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
42
|
He X, Zhao Y, Dong Y, Yin F, Lin X, Ma R, Li J. Hydrogen evolution boosted by moderate Co 3ZnC with current densities beyond 1000 mA cm -2. Chem Commun (Camb) 2023; 59:1197-1200. [PMID: 36629149 DOI: 10.1039/d2cc06042f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Co3ZnC can efficiently boost the activity of Co@N, O co-doped carbons for hydrogen evolution. The results show that moderate Co3ZnC plays key roles in achieving an appropriate weighted Co 3d band centre, enhancing charger transfer and thus optimizing the electrochemical active surface area. Thus, a low overpotential of ∼219 mV can drive a high current density of 1000 mA cm-2 under the favourable condition of moderate Co3ZnC.
Collapse
Affiliation(s)
- Xiaobo He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yanling Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuanchu Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Fengxiang Yin
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xin Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ruilong Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jiaqi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
43
|
A Petal-like Structured NiCuOOH-NF Electrode by a Sonochemical Combined with the Electrochemical Method for Ammonia Oxidation Reaction. Processes (Basel) 2023. [DOI: 10.3390/pr11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Direct electrochemical oxidation, as an economical and efficient method, has recently received increasing attention for ammonia-nitrogen wastewater treatment. Developing a low-cost, efficient catalytic electrode is the key to solve the problem of sluggish ammonia oxidation reaction (AOR) kinetics. In this study, a three-dimensional (3D) Ni foam electrode coated with NiCuOOH petal-like cluster structures was prepared using a simple sonochemical method combined with a surface electrochemical reconstruction strategy. This structure has a large surface area and abundant NiCuOOH active sites, giving a good premise for extraordinary electrocatalytic activity of AOR. The results show that the maximum current density for AOR reaches 97.8 mA cm−2 at 0.60 V vs. saturated calomel electrode (SCE). Additionally, 96.53% of NH4+-N removal efficiency and 63.12% of TN removal efficiency were acquired in the electrolysis system based on the NiCuOOH-NF electrode, as well as a good stability for at least 24 h. It is a promising flow-through anode for the clean treatment of ammonia-nitrogen wastewater.
Collapse
|
44
|
Burungale VV, Bae H, Mane P, Cha AN, Ryu SW, Kang SH, Ha JS. A Ni-modified CuS-based self-supported electrocatalyst with nanobead-like porous morphology for efficient hydrogen production in basic media. NEW J CHEM 2023. [DOI: 10.1039/d2nj06114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The enhanced HER catalytic activity of a porous CuS-based catalyst, which was converted from Cu2O, is due to both increased surface porosity and intrinsic activity resulting from the synergy between Cu and Ni.
Collapse
Affiliation(s)
- Vishal V. Burungale
- School of Chemical Engineering, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
| | - Hyojung Bae
- Optoelectronics Convergence Research Center, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
| | - Pratik Mane
- School of Chemical Engineering, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
| | - An-Na Cha
- Energy Convergence Core Facility, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
| | - Sang-Wan Ryu
- Optoelectronics Convergence Research Center, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
| | - Soon-Hyung Kang
- Optoelectronics Convergence Research Center, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
| | - Jun-Seok Ha
- School of Chemical Engineering, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
- Optoelectronics Convergence Research Center, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
- Energy Convergence Core Facility, Chonnam National University, 77 Yongbongro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
45
|
Yu X, Qu L, Lee C, Peng J, Yan Q, Bai H, Yao M. Bismuth-nickel bimetal nanosheets with a porous structure for efficient hydrogen production in neutral and alkaline media. NANOSCALE 2022; 14:17210-17221. [PMID: 36300418 DOI: 10.1039/d2nr04407b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Active and durable electrocatalysts are very important for efficient and economically sustainable hydrogen generation via electrocatalytic water splitting. A bismuth-nickel (Bi-Ni) bimetal nanosheet with a mesoporous structure was prepared via a self-template electrochemical in situ process. The Bi-Ni catalyst required overpotentials of 56 mV and 183 mV at 10 mA cm-2 for the hydrogen evolution reaction (HER), which were close to that of commercial Pt/C in 1.0 M KOH and 1.0 M PBS (pH 7.0), respectively. The electrocatalyst maintained a steady current density during 20 h electrolysis in 1.0 M KOH and 1.0 M PBS (pH 7.0). Density functional theory (DFT) indicated that the alloying effect could induce charge transfer from the Bi atom to Ni atom and thus modulate the d-band centre of Bi-Ni nanosheets, which could efficiently accelerate H* conversion and H2 desorption at the Ni active site. This promotes the HER kinetics. By adopting the Bi84.8Ni15.2 alloy as the cathode to establish a full-cell (IrO2∥Bi84.8Ni15.2) for water splitting in 1.0 M KOH, the required cell voltage was 1.53 V to drive 10 mA cm-2, which was lower than that of the IrO2∥Pt/C electrolyzer (1.64 V@10 mA cm-2).
Collapse
Affiliation(s)
- Xueping Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Li Qu
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Carmen Lee
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Juan Peng
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Qingyu Yan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Hongcun Bai
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Min Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| |
Collapse
|
46
|
Ding J, Yang H, Zhang S, Liu Q, Cao H, Luo J, Liu X. Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters-based Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204524. [PMID: 36287086 DOI: 10.1002/smll.202204524] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Indexed: 05/27/2023]
Abstract
With the development of renewable energy systems, clean hydrogen is burgeoning as an optimal alternative to fossil fuels, in which its application is promising to retarding the global energy and environmental crisis. The hydrogen evolution reaction (HER), capable of producing high-purity hydrogen rapidly in electrocatalytic water splitting, has received much attention. Abundant research about HER has been done, focusing on advanced electrocatalyst design with high efficiency and robust stability. As potential HER catalysts, metal nanoclusters (MNCs) have been studied extensively. They are composed of several to a hundred metal atoms, with sizes being comparable to the Fermi wavelength of electrons, that is, < 2.0 nm. Different from metal atoms/nanoparticles, they exhibit unique catalytic properties due to their quantum size effect and low-coordination environment. In this review, the activity-enhancing approaches of MNCs applied in HER electrocatalysis are mainly summarized. Furthermore, recent progress in MNCs classified with different stabilization strategies, that is, the freestanding MNCs, MNCs with organic, metal and carbon supports, are introduced. Finally, the current challenges and deficiencies of these MNCs for HER are prospected.
Collapse
Affiliation(s)
- Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Hui Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450000, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin, 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
47
|
Oshchepkov AG, Simonov PA, Kuznetsov AN, Shermukhamedov SA, Nazmutdinov RR, Kvon RI, Zaikovskii VI, Kardash TY, Fedorova EA, Cherstiouk OV, Bonnefont A, Savinova ER. Bimetallic NiM/C (M = Cu and Mo) Catalysts for the Hydrogen Oxidation Reaction: Deciphering the Role of Unintentional Surface Oxides in the Activity Enhancement. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Alexandr G. Oshchepkov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Pavel A. Simonov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksey N. Kuznetsov
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Shokir A. Shermukhamedov
- Kazan National Research Technological University, Kazan 420015, Russia
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | | | - Ren I. Kvon
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
| | - Vladimir I. Zaikovskii
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatyana Yu. Kardash
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | | | - Olga V. Cherstiouk
- Boreskov Institute of Catalysis, Lavrentiev Avenue 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - Antoine Bonnefont
- Institut de Chimie de Strasbourg, UMR 7177 CNRS-University of Strasbourg, 4 rue Blaise Pascal, Strasbourg 67070, France
| | - Elena R. Savinova
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel, Strasbourg Cedex 67087, France
| |
Collapse
|
48
|
Li L, Sun H, Xu X, Humayun M, Ao X, Yuen MF, Xue X, Wu Y, Yang Y, Wang C. Engineering Amorphous/Crystalline Rod-like Core-Shell Electrocatalysts for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50783-50793. [PMID: 36331553 DOI: 10.1021/acsami.2c13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The design of bifunctional electrocatalysts for hydrogen and oxygen evolution reactions delivering excellent catalytic activity and stability is highly desirable, yet challenged. Herein, we report an amorphous RuO2-encapsulated crystalline Ni0.85Se nanorod structure (termed as a/c-RuO2/Ni0.85Se) for enhanced HER and OER activities. The as-prepared a/c-RuO2/Ni0.85Se nanorods not only demonstrate splendid HER activity (58 mV@10 mA cm-2 vs RHE), OER activity (233 mV@10 mA cm-2 vs RHE), and electrolyzer activity (1.488 V@10 mA cm-2 vs RHE for overall water splitting) but also exhibit long-term stability with negligible performance decay after 50 h continuous test for overall water splitting. In addition, the variation of the d-band center (from the perspective of bonding and antibonding states) is unveiled theoretically by density functional theory calculations upon amorphous RuO2 layers coupling to clarify the increased hydrogen species adsorption for HER activity enhancement. This work represents a new pathway for the fabrication of bifunctional electrocatalysts toward green hydrogen generation.
Collapse
Affiliation(s)
- Linfeng Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huachuan Sun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xuefei Xu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiang Ao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, P. R. China
| | - Xinying Xue
- Department of Physics, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Ying Wu
- College of Chemistry and Chemical Engineering, Tarim University, Alaer 843300, P. R. China
| | - Yang Yang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
49
|
He Y, Qian J, Wang P, Lu B, Tang S, Li J, Liu Y, Gao P. Modulating cobalt-iron electron transfer via encapsulated structure for enhanced catalytic activity in photo-peroxymonosulfate coupling system. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129609. [PMID: 35870209 DOI: 10.1016/j.jhazmat.2022.129609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
In recent years, many efforts have been made to modulate the interaction between carriers and nanoparticles under the integrity of the active site structure. Herein, SrFeO3 @CoSe2 nanocomposite was fabricated by loading CoSe2 onto SrFeO3 particles with a perovskite structure in the form of an encapsulation. The optimized SFO@CS-0.3 catalyst exhibited high catalytic activity in photo-peroxymonosulfate-based reaction and the catalyst was structurally stable over a wide temperature range. Characterization and theoretical results demonstrated that the charge in the SrFeO3 was transferred from Fe to Co cation of the CoSe2 via the interfacial oxygen atom. Moreover, the newly established oxygen-metal structure (Fe-Ov-Co) acted as a catalytic site, accelerating the cleavage of the peroxymonosulfate bond to generate radicals, which were desorbed into solution to attack the contaminant. Simultaneously, the heterojunction constructed by the catalyst underwent internal electron transfer under visible light, creating a field in which multiple reactive oxygen species co-oxidized organic contaminant.
Collapse
Affiliation(s)
- Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jianfeng Li
- PowerChina Huadong Engineering Corporation Limited, Hangzhou, People's Republic of China; Zhejiang Huadong Eco-Environmental Engineering Institute, Hangzhou, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Pan Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
50
|
Wu J, Wang X, Zheng W, Sun Y, Xie Y, Ma K, Zhang Z, Liao Q, Tian Z, Kang Z, Zhang Y. Identifying and Interpreting Geometric Configuration-Dependent Activity of Spinel Catalysts for Water Reduction. J Am Chem Soc 2022; 144:19163-19172. [PMID: 36196037 DOI: 10.1021/jacs.2c08726] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic activity of transition metal-based catalysts is overwhelmingly dependent on the geometric configuration. Identification and interpretation of different geometric configurations' contributions to catalytic activity plays a pivotal role in catalytic performance elevation. Spinel structured AB2X4, consisting of tetrahedral (A2+-X)Td and octahedral (B3+-X)Oh geometric configurations, is a prototypical category of multi-geometric-configuration featured catalysts. However, it is still under debate about the predominant geometric configuration responsible for spinel catalyst activity, and the mechanistic origin of specific activity discrepancy among varied geometric configurations also remains ambiguous. Herein, CoTd2+ and CoOh3+ in Co3O4 are replaced by catalytically inert Zn2+ and Al3+ to yield ZnCo2O4 and CoAl2O4, respectively, thus ensuring the manipulable exposure of monotypic active configurations. By means of pulse voltammetry and in situ extended X-ray absorption fine structure, (Co3+-O)Oh is identified to be dominant for alkaline HER. In-depth theoretical investigation in combination with X-ray absorption spectroscopy further interprets the synergistic effect between Co and O sites in (Co3+-O)Oh configuration on water reduction kinetics upon both water dissociation and hydrogen desorption steps. Furthermore, specific facet dependence of catalytic activity is also deciphered based on precise facet exposure identification and serial theoretical analysis. This work unambiguously figures out the subtle geometric configuration dependence of spinel catalyst activity for water reduction and highlights the synergistic relationship among different components confined in geometric configuration, thereby shedding new light on the rational design of advanced catalysts from the atomic level of geometric configuration optimization.
Collapse
Affiliation(s)
- Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Wenhao Zheng
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yu Sun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yong Xie
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Kaikai Ma
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qingliang Liao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhen Tian
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.,Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|