1
|
Walther R, Park M, Ashman N, Welch M, Carroll JS, Spring DR. Tuneable thiol exchange linkers for traceless drug release applications in prodrugs and ADCs. Chem Commun (Camb) 2024; 60:7025-7028. [PMID: 38888299 PMCID: PMC11223184 DOI: 10.1039/d4cc01558d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
We describe a versatile and tuneable thiol responsive linker system using thiovinylketones, which relies on the conjugate addition-elimination mechanism of Michael acceptors for the traceless release of therapeutics. In a proof-of-principle study, we translate our findings to exhibit potent thiol-cleavable antibiotic prodrugs and antibody-drug conjugates.
Collapse
Affiliation(s)
- Raoul Walther
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Mahri Park
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Nicola Ashman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, CB2 1QW Cambridge, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, Robinson Way, CB2 0RE Cambridge, UK
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK
| |
Collapse
|
2
|
Luo S, Wang N, Pan Y, Zheng B, Li F, Dong S. Supramolecular/Dynamic Covalent Design of High-Performance Pressure-Sensitive Adhesive from Natural Low-Molecular-Weight Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310839. [PMID: 38225689 DOI: 10.1002/smll.202310839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Adhesive materials have played an essential role in the history of humanity. Natural adhesives composed of low-molecular-weight monomers have been overshadowed by modern petroleum-based glues. With the development of green economy, the demand for eco-friendly materials has increased. Herein, two natural biocompatible compounds, namely thioctic acid (TA) and malic acid (MA), are selected to prepare a high-performance pressure-sensitive adhesive poly[TA-MA]. This adhesive can be quantitatively obtained via a simple mixing and heating process. Poly[TA-MA] shows interesting and useful properties, including reversible flexibility, high elongation, and good self-healing, owing to its dynamic polymerization pattern and reversible cross-linking behavior. Poly[TA-MA] exhibits excellent adhesion performance under various extreme conditions, such as at low temperatures and in hot water. High values of shear strength (3.86 MPa), peel strength (7.90 N cm-1), loop tack (10.60 N cm-1), tensile strength (1.02 MPa), and shear resistance (1628 h) demonstrate the strong adhesive effect of poly[TA-MA]. Additionally, TA can be regenerated in the monomer forms from poly[TA-MA] with high recovery rate (>90%). Meanwhile, strong anti-bacterial behavior of poly[TA-MA] is recorded. This study not only reported a new pressure-sensitive adhesive but also fully displayed the feasibility of using natural small molecules to achieve robust surface adhesion.
Collapse
Affiliation(s)
- Sha Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Na Wang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yanjuan Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Zheng
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Wu T, Zhang H, Zhang P, James TD, Sun X. A Rationally Designed Prodrug for the Fluorogenic Labeling of Albumin and Theranostic Effects on Drug-Induced Liver Injury. Anal Chem 2024; 96:3498-3507. [PMID: 38363806 DOI: 10.1021/acs.analchem.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The development of small-molecular fluorogenic tools for the chemo-selective labeling of proteins in live cells is important for the evaluation of intracellular redox homeostasis. Dynamic imaging of human serum albumin (HSA), an antioxidant protein under oxidative stress with concomitant release of antioxidant drugs to maintain redox homeostasis, affords potential opportunities for disease diagnosis and treatment. In this work, we developed a nonfluorogenic prodrug named TPA-NAC, by introducing N-acetyl-l-cysteine (NAC) into a conjugated acceptor skeleton. Through combined thiol and amino addition, coupling with HSA results in fluorescence turn-on and drug release. It was reasoned that the restricted intramolecular motion of the probe under an HSA microenvironment after covalent bonding inhibited the nonradiative transitions. Furthermore, the biocompatibility and photochemical properties of TPA-NAC enabled it to image exogenous and endogenous HSA in living cells in a wash-free manner. Additionally, the released drug evoked upregulation of superoxide dismutase (SOD), which synergistically eliminated reactive oxygen species in a drug-induced liver injury model. This study provides insights into the design of new theranostic fluorescent prodrugs for chemo-selective protein labeling and disease treatments.
Collapse
Affiliation(s)
- Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
4
|
Yang S, Liu W, Guo J, Yang Z, Qiao Z, Zhang C, Li J, Xu J, Zhao N. Direct and Catalyst-Free Ester Metathesis Reaction for Covalent Adaptable Networks. J Am Chem Soc 2023; 145:20927-20935. [PMID: 37710975 DOI: 10.1021/jacs.3c06262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Thermosetting polymers possess excellent environmental resistance and mechanical properties but cannot be reprocessed due to their covalently cross-linked structures. Recycling of thermosets via the implantation of dynamic covalent bonds offers a promising solution. Here, we report the direct and catalyst-free ester metathesis of N-acyloxyphthalimide (NAPI) at about 100 °C without the requirement of hydroxyl groups and its utilization for the fabrication of covalent adaptable networks (CANs). NAPI metathesis has interesting sigmoid kinetics with a fast exchange rate, which proceeds via a free radical chain mechanism, guaranteeing a fast associative exchange under a rather low dissociation. The bifunctional molecule of NAPI as both the radical precursor and substrate is the key to the dissociatively initiated associative (DAssociative) mechanism and kinetic behavior. Based on the efficient NAPI metathesis, polyester networks, poly(N-acyloxyphthalimides) (PNAPIs), show excellent malleability. Notably, PNAPIs exhibit exceptional solvent resistance and mechanical stability at elevated temperatures owing to the unique DAssociative mechanism, suggesting exciting opportunities for designing recyclable thermosetting polymers.
Collapse
Affiliation(s)
- Shijia Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jing Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenguang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jikun Li
- Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang V, Accardo JV, Kevlishvili I, Woods EF, Chapman SJ, Eckdahl CT, Stern CL, Kulik HJ, Kalow JA. Tailoring Dynamic Hydrogels by Controlling Associative Exchange Rates. Chem 2023; 9:2298-3317. [PMID: 37790656 PMCID: PMC10545375 DOI: 10.1016/j.chempr.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dithioalkylidenes are a newly-developed class of conjugate acceptors that undergo thiol exchange via an associative mechanism, enabling decoupling of key material properties for sustainability, biomedical, and sensing applications. Here, we show that the exchange rate is highly sensitive to the structure of the acceptor and tunable over four orders of magnitude in aqueous environments. Cyclic acceptors exchange rapidly, from 0.95 to 15.6 M-1s-1, while acyclic acceptors exchange between 3.77x10-3 and 2.17x10-2 M-1s-1. Computational, spectroscopic, and structural data suggest that cyclic acceptors are more reactive than their acyclic counterparts because of resonance stabilization of the tetrahedral exchange intermediate. We parametrize molecular reactivity with respect to computed descriptors of the electrophilic site and leverage this insight to design a compound with intermediate characteristics. Lastly, we incorporate this dynamic bond into hydrogels and demonstrate that the characteristic stress relaxation time (τ) is directly proportional to molecular kex.
Collapse
Affiliation(s)
- Vivian Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Joseph. V Accardo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA, USA
| | - Eliot F. Woods
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Steven J. Chapman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | | | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 25 Ames Street, Cambridge, MA, USA
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, USA
- Lead contact
| |
Collapse
|
6
|
Choi G, Oh Y, Jeong S, Chang M, Kim H. Synthesis of Renewable, Recyclable, Degradable Thermosets Endowed with Highly Branched Polymeric Structures and Reinforced with Carbon Fibers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Geunyoung Choi
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Yuree Oh
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Songah Jeong
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Mincheol Chang
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| | - Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro,
Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
7
|
Zhao Y, Shen A, Hao X, Li M, Hou L, Li Z, Duan R, Du M, Li X, Wang X, Zhao X, Yang Y. Ultrasensitivity Detecting AChE through "Covalent Assembly" and Signal Amplification Strategic Approaches and Applied to Screen Its Inhibitor. Anal Chem 2023; 95:4503-4512. [PMID: 36812425 DOI: 10.1021/acs.analchem.2c05313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
An ultrasensitivity detecting assay for acetylcholinesterase (AChE) activity was developed based on "covalent assembly" and signal amplification strategic approaches. After hydrolyzing thioacetylcholine by AChE and participation of thiol in a self-inducing cascade accelerated by the Meldrum acid derivatives of 2-[bis(methylthio) methylene] malonitrile (CA-2), mercaptans triggered an intramolecular cyclization assembly by the probe of 2-(2,2-dicyanovinyl)-5-(diethylamino) phenyl 2,4-dinitrobenzenesulfonate (Sd-I) to produce strong fluorescence. The limit of detection for AChE activity was as low as 0.0048 mU/mL. The detection system also had a good detecting effect on AChE activity in human serum and could also be used to screen its inhibitors. By constructing a Sd-I@agarose hydrogel with a smartphone, a point-of-care detection of AChE activity was achieved again.
Collapse
Affiliation(s)
- Yongwei Zhao
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ao Shen
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaohui Hao
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengwen Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lala Hou
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziqi Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruochen Duan
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Man Du
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xue Li
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xuebing Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiuqing Zhao
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yunxu Yang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
8
|
Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho SH, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. NANO-MICRO LETTERS 2023; 15:35. [PMID: 36629933 PMCID: PMC9833044 DOI: 10.1007/s40820-022-00993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
We conceptualize bioresource upgrade for sustainable energy, environment, and biomedicine with a focus on circular economy, sustainability, and carbon neutrality using high availability and low utilization biomass (HALUB). We acme energy-efficient technologies for sustainable energy and material recovery and applications. The technologies of thermochemical conversion (TC), biochemical conversion (BC), electrochemical conversion (EC), and photochemical conversion (PTC) are summarized for HALUB. Microalgal biomass could contribute to a biofuel HHV of 35.72 MJ Kg-1 and total benefit of 749 $/ton biomass via TC. Specific surface area of biochar reached 3000 m2 g-1 via pyrolytic carbonization of waste bean dregs. Lignocellulosic biomass can be effectively converted into bio-stimulants and biofertilizers via BC with a high conversion efficiency of more than 90%. Besides, lignocellulosic biomass can contribute to a current density of 672 mA m-2 via EC. Bioresource can be 100% selectively synthesized via electrocatalysis through EC and PTC. Machine learning, techno-economic analysis, and life cycle analysis are essential to various upgrading approaches of HALUB. Sustainable biomaterials, sustainable living materials and technologies for biomedical and multifunctional applications like nano-catalysis, microfluidic and micro/nanomotors beyond are also highlighted. New techniques and systems for the complete conversion and utilization of HALUB for new energy and materials are further discussed.
Collapse
Affiliation(s)
- Fanghua Li
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yiwei Li
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, People's Republic of China
| | - K S Novoselov
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, 117546, Singapore
- School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
| | - Feng Liang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Tong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Hui Zhou
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Awais Ahmad
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014, Cordoba, Spain
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Liangxing Hu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Dongxiao Ji
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Litao Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Rui Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, 119260, Singapore
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
9
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
10
|
Chemically triggered life control of “smart” hydrogels through click and declick reactions. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
12
|
Wu T, Feng X, Sun X. Chemically triggered soft material macroscopic degradation and fluorescence detection using self-propagating thiol-initiated cascades. Polym Chem 2022. [DOI: 10.1039/d1py01450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we present a new approach for thiol detection through chemically triggered polymeric macroscopic degradation using self-propagating cascades, coupled with photoluminescence.
Collapse
Affiliation(s)
- Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xing Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
13
|
Feng X, Wu T, Sun X, Qian X. "Indanonalkene" Photoluminescence Platform: Application in Real-Time Tracking the Synthesis, Remodeling, and Degradation of Soft Materials. J Am Chem Soc 2021; 143:21622-21629. [PMID: 34905350 DOI: 10.1021/jacs.1c09895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Article, we present a strategy to visually track chemically triggered covalent bonding processes in gelation, remodeling, and degradation of soft materials, i.e., hydrogels, based on a new photoluminescence platform. Initially in the development of photoluminophors named "indanonalkenes", turn-on emission can be tracked and quantified in the optical reaction between a conjugate acceptor and amine derivatives. On this basis, fluorescence enhancement and mechanical changes were recorded during the gelation process through amine-thiol exchanges under organic and aqueous conditions. Next in macromolecular remodeling, we realized a stimulus-induced transformation of one architecture into another one, exploiting the orthogonality of chemical covalent bonding that could be visualized using luminescence. Furthermore, the hydrogel network can be degraded to release the coupling partner induced by ethylene diamine, and the process can be monitored using fluorescence changes and quantified through gel permeation chromatography, while the released components can be utilized again to regenerate a new hydrogel. In addition, the photographic images provide alternatives to fluorescence spectra and can be digitally processed to quantify the macroscopic changes, resulting in a photographic imaging approach. The real-time observation and quantification of chemically triggered polymeric formation, morphology, and degradation through luminescence in spatial and time scales herald a new generation of "smart" materials.
Collapse
Affiliation(s)
- Xing Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China.,School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshan Road, Shanghai 200062, People's Republic of China
| |
Collapse
|
14
|
Liu H, Lu HH, Zhuang J, Thayumanavan S. Three-Component Dynamic Covalent Chemistry: From Janus Small Molecules to Functional Polymers. J Am Chem Soc 2021; 143:20735-20746. [PMID: 34870962 DOI: 10.1021/jacs.1c08574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new multicomponent reaction involving 2-hydroxybenzaldehyde, amine, and 2-mercaptobenzaldehyde (HAM reaction) has been developed and applied to multicomponent polymerization and controlled radical polymerization for the construction of random and block copolymers. This chemistry features mild reaction conditions, high yield, simple isolation, and water as the only byproduct. With the advantages of the distinct nucleophilicity of thiol and hydroxyl groups, the chemistry could be used for stepwise labeling and modifications on primary amines. The Janus chemical joint formed from this reaction exhibits degradability in buffers and generates the corresponding starting reagents, allowing amine release. Interestingly, the chemical joint exhibits thermally activated reversibility with water as the catalyst. This multicomponent dynamic covalent feature has been applied to the metamorphosis of random and block copolymers, generating polymers with diverse architectures. This chemistry is expected to be broadly applicable to synthetic polymer chemistry and materials science.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hung-Hsun Lu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Lee DH, Valenzuela SA, Dominguez MN, Otsuka M, Milliron DJ, Anslyn EV. A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100552. [PMID: 34632430 PMCID: PMC8500376 DOI: 10.1016/j.xcrp.2021.100552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nerve agents that irreversibly deactivate the enzyme acetylcholinesterase are extremely toxic weapons of mass destruction. Thus, developing methods to detect these lethal agents is important. To create an optical sensor for a surrogate of the nerve agent tabun, as well as a physical barrier that dissolves in response to this analyte, we devise a network hydrogel that decomposes via a self-propagating cascade. A Meldrums acid-derived linker is incorporated into a hydrogel that undergoes a declick reaction in response to thiols, thereby breaking network connections, which releases more thiols, propagating the response throughout the gel. A combination of chemical reactions triggered by the addition of the tabun mimic initiates the cascade. The dissolving barrier is used to release dyes, as well as nanocrystals that undergo a spontaneous aggregation. Thus, this sensing system for tabun generates a physical response and the delivery of chemical agents in response to an initial trigger.
Collapse
Affiliation(s)
- Doo-Hee Lee
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Manuel N. Dominguez
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Mai Otsuka
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Delia J. Milliron
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- Lead contact
| |
Collapse
|
16
|
Wu T, Liang T, Hu W, Du M, Zhang S, Zhang Y, Anslyn EV, Sun X. Chemically Triggered Click and Declick Reactions: Application in Synthesis and Degradation of Thermosetting Plastics. ACS Macro Lett 2021; 10:1125-1131. [PMID: 35549076 DOI: 10.1021/acsmacrolett.1c00548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this Letter, we report that two amines can be coupled together rapidly and quantitatively through amine-thiol scrambling using a bisvinylogous thioester conjugate acceptor under mild conditions. The resulting bisvinylogous amide conjugate acceptors can be decoupled via an ethylene diamine-induced cyclization. Four representative conjugate acceptors have been utilized in the couple-decouple reactions, which were monitored and characterized by nuclear magnetic resonance, high-resolution mass spectrometry, and UV-vis spectroscopy. Further, we applied these small-molecule-based "click-declick" reactions to polymer synthesis and degradation. Highly cross-linked polymers, i.e., plastics, were quantitatively synthesized by simple reactions between commercial tris(2-aminoethyl)amine and the conjugate acceptors without solvent and any initiator or catalyst through ball milling within 60 min. Significantly, these thermosetting plastics can be degraded within 3-24 h via addition of ethylene diamine. The multiple architectures, application to plastics synthesis, and chemically triggered clean degradation to the thermosets at mild conditions with little input of energy herald a new generation of "intelligent" materials.
Collapse
Affiliation(s)
- Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tianyu Liang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Wei Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,College of Bioresources and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Meiqing Du
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sijia Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
17
|
Chang L, Wang C, Han S, Sun X, Xu F. Chemically Triggered Hydrogel Transformations through Covalent Adaptable Networks and Applications in Cell Culture. ACS Macro Lett 2021; 10:901-906. [PMID: 35549189 DOI: 10.1021/acsmacrolett.1c00276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this article, we report a "smart" hydrogel system, which can be remodeled into multiple architectures through dynamic covalent adaptable networks. The topological changes in hydrogel structures yield dynamically tunable properties through the reformation of covalent chemical linkages via amine-thiol scrambling, thiol-thiol exchange, decoupling reaction, and disulfide formation. The stiffness of the hydrogels can be regulated via dynamic covalent bonding, with some hydrogels displaying self-healing and shear thinning properties, as demonstrated by rheological measurements. Significantly, the dramatic structural transformations are achieved under neutral aqueous conditions at room temperature. These "smart" hydrogels show good biocompatibility, which can induce cell growth in two-dimensional cell culture and effectively serve as a scaffold for encapsulating and releasing human mesenchymal stem cells in three-dimensional cell culture. Thus, the developed "smart" hydrogel system holds great potential in biomedical applications such as tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Le Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Cong Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Shuang Han
- Department of Gastroenterology of Honghui Hospital, Xi’an 710054, China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
18
|
Ishibashi JSA, Pierce IC, Chang AB, Zografos A, El-Zaatari BM, Fang Y, Weigand SJ, Bates FS, Kalow JA. Mechanical and Structural Consequences of Associative Dynamic Cross-Linking in Acrylic Diblock Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jacob S. A. Ishibashi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ian C. Pierce
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alice B. Chang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aristotelis Zografos
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bassil M. El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yan Fang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J. Weigand
- Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Julia A. Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
Zheng N, Xu Y, Zhao Q, Xie T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem Rev 2021; 121:1716-1745. [DOI: 10.1021/acs.chemrev.0c00938] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
- Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
| | - Yang Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
| |
Collapse
|
20
|
Meng QY, Gao F, Mosad S, Zhang Z, You YZ, Hong CY. Facile Multicomponent Polymerization and Postpolymerization Modification via an Effective Meldrum's Acid-Based Three-Component Reaction. Macromol Rapid Commun 2020; 42:e2000610. [PMID: 33345361 DOI: 10.1002/marc.202000610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/02/2020] [Indexed: 02/03/2023]
Abstract
Providing access to highly diverse polymer structures by multicomponent reactions is highly desirable; efficient Meldrum's acid-based multicomponent reactions, however, have been rarely highlighted in polymer chemistry. Here, the three-component reaction of Meldrum's acid, indole, and aldehyde is introduced into polymer synthesis. Direct multicomponent polymerization of Meldrum's acid, dialdehyde, and diindole can perform under mild conditions, resulting in complex Meldrum's acid-containing polymers with well-defined structures, and high molecular weights. Additionally, nearly quantitative postpolymerization modification can also perform via this Meldrum's acid-based multicomponent reaction. These results indicate that Meldrum's acid-based multicomponent reaction will be a potential tool to prepare novel polymers.
Collapse
Affiliation(s)
- Qing-Yong Meng
- First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Fan Gao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Smaher Mosad
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ze Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ye-Zi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chun-Yan Hong
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
21
|
Sun M, Deng J, Walther A. Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angew Chem Int Ed Engl 2020; 59:18161-18165. [PMID: 32608535 PMCID: PMC7590193 DOI: 10.1002/anie.202006526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Adaptivity is an essential trait of life. One type of adaptivity is the reconfiguration of a functional system states by correlating sensory inputs. We report polymer transformers, which can adaptively reconfigure their composition from a state of a mixed copolymer to being enriched in either monomer A or B. This is achieved by embedding and hierarchically interconnecting two chemically fueled activation/deactivation enzymatic reaction networks for both monomers via a joint activation pathway (network level) and an AB linker monomer reactive to both A and B (species level). The ratio of enzymes governing the individual deactivation pathways (our external signals) control the enrichment behavior in the dynamic state. The method shows high programmability of the reconfigured state, rejuvenation of transformation cycles, and quick in situ adaptation. As a proof-of-concept, we showcase this dynamic reconfiguration for colloidal surface functionalities.
Collapse
Affiliation(s)
- Mo Sun
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Jie Deng
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Andreas Walther
- ABMS Lab—Active, Adaptive and Autonomous Bioinspired MaterialsInstitute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Straße 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Straße 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
22
|
Sun M, Deng J, Walther A. Polymer Transformers: Interdigitating Reaction Networks of Fueled Monomer Species to Reconfigure Functional Polymer States. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mo Sun
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Jie Deng
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Andreas Walther
- A3BMS Lab—Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
23
|
Bravin C, Hunter CA. Template effects of vesicles in dynamic covalent chemistry. Chem Sci 2020; 11:9122-9125. [PMID: 34123161 PMCID: PMC8163447 DOI: 10.1039/d0sc03185b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Vesicle lipid bilayers have been employed as templates to modulate the product distribution in a dynamic covalent library of Michael adducts formed by mixing a Michael acceptor with thiols. In methanol solution, all possible Michael adducts were obtained in similar amounts. Addition of vesicles to the dynamic covalent library led to the formation of a single major product. The equilibrium constants for formation of the Michael adducts are similar for all of the thiols used in this experiment, and the effect of the vesicles on the composition of the library is attributed to the differential partitioning of the library members between the lipid bilayer and the aqueous solution. The results provide a quantitative approach for exploiting dynamic covalent chemistry within lipid bilayers.
Collapse
Affiliation(s)
- Carlo Bravin
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|