1
|
Bin Jassar M, Yao Q, Siro Brigiano F, Chen W, Pezzotti S. Chemistry at Oxide/Water Interfaces: The Role of Interfacial Water. J Phys Chem Lett 2024; 15:11961-11968. [PMID: 39579133 DOI: 10.1021/acs.jpclett.4c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Oxide-water interfaces host many chemical reactions in nature and industry. There, reaction free energies markedly differ from those of the bulk. While we can experimentally and theoretically measure these changes, we are often unable to address the fundamental question: what catalyzes these reactions? Recent studies suggest that surface and electrostatic contributions are an insufficient answer. The interface modulates chemistry in subtle ways. Revealing them is essential to understanding interfacial reactions, hence improving industrial processes. Here, we introduce a thermodynamic approach combined with cavitation free energy analysis to disentangle the driving forces at play. We find that water dictates chemistry via large variations of cavitation free energies across the interface. The resulting driving forces are both large enough to determine reaction output and highly tunable by adjusting interface composition, as showcased for silica-water interfaces. These findings shift the focus from common interpretations based on surface and electrostatics and open exciting perspectives for regulating interfacial chemistry.
Collapse
Affiliation(s)
- Mohammed Bin Jassar
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Qiwei Yao
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Flavio Siro Brigiano
- Laboratoire de Chimie Theorique, Sorbonne Universite, UMR 7616, CNRS, 75005 Paris, France
| | - Wanlin Chen
- Department of Physical Chemistry II, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| |
Collapse
|
2
|
Chen W, Kroutil O, Předota M, Pezzotti S, Gaigeot MP. Wetting of a Dynamically Patterned Surface Is a Time-Dependent Matter. J Phys Chem B 2024; 128:11914-11923. [PMID: 39571091 DOI: 10.1021/acs.jpcb.4c05163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
In nature and many technological applications, aqueous solutions are in contact with patterned surfaces, which are dynamic over time scales spanning from ps to μs. For instance, in biology, exposed polar and apolar residues of biomolecules form a pattern, which fluctuates in time due to side chain and conformational motions. At metal/and oxide/water interfaces, the pattern is formed by surface topmost atoms, and fluctuations are due to, e.g., local surface polarization and rearrangements in the adsorbed water layer. All these dynamics have the potential to influence key processes such as wetting, energy relaxation, and biological function. Yet, their impact on the water H-bond network remains often elusive. Here, we leverage molecular dynamics to address this fundamental question at a self-assembled monolayer (SAM)/water interface, where ns dynamics is induced by frustrating SAM-water interactions via methylation of the terminal -OH groups of poly(ethylene glycol) (PEG) chains. We find that surface dynamics couples to the water H-bond network, inducing a response on the same ns time scale. This leads to time fluctuations of local wetting, oscillating from hydrophobic to hydrophilic environments. Our results suggest that rather than average properties, it is the local─ both in time and space─ solvation that determines the chemical-physical properties of dynamically patterned surfaces in water.
Collapse
Affiliation(s)
- Wanlin Chen
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Ondřej Kroutil
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 06 České Budějovice, Czech Republic
| | - Milan Předota
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 06 České Budějovice, Czech Republic
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
3
|
McLean B, Yarovsky I. Structure, Properties, and Applications of Silica Nanoparticles: Recent Theoretical Modeling Advances, Challenges, and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405299. [PMID: 39380429 DOI: 10.1002/smll.202405299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Silica nanoparticles (SNPs), one of the most widely researched materials in modern science, are now commonly exploited in surface coatings, biomedicine, catalysis, and engineering of novel self-assembling materials. Theoretical approaches are invaluable to enhancing fundamental understanding of SNP properties and behavior. Tremendous research attention is dedicated to modeling silica structure, the silica-water interface, and functionalization of silica surfaces for tailored applications. In this review, the range of theoretical methodologies are discussed that have been employed to model bare silica and functionalized silica. The evolution of silica modeling approaches is detailed, including classical, quantum mechanical, and hybrid methods and highlight in particular the last decade of theoretical simulation advances. It is started with discussing investigations of bare silica systems, focusing on the fundamental interactions at the silica-water interface, following with a comprehensively review of the modeling studies that examine the interaction of silica with functional ligands, peptides, ions, surfactants, polymers, and carbonaceous species. The review is concluded with the perspective on existing challenges in the field and promising future directions that will further enhance the utility and importance of the theoretical approaches in guiding the rational design of SNPs for applications in engineering and biomedicine.
Collapse
Affiliation(s)
- Ben McLean
- School of Engineering, RMIT University, Melbourne, 3001, Australia
- ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, 3001, Australia
- ARC Research Hub for Australian Steel Innovation, Wollongong, 2500, Australia
| |
Collapse
|
4
|
Adhikari NM, Hou B, Allen HC. Vibrational sum frequency generation (VSFG) spectroscopy of water adsorption on surfaces of yttria-stabilized cubic zirconia (YSZ). J Chem Phys 2024; 161:194701. [PMID: 39545668 DOI: 10.1063/5.0231569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
Yttria-stabilized zirconia (YSZ) is found in a wide range of applications, from solid-oxide fuel cells to medical devices and implants. A molecular-level understanding of the hydration of YSZ surfaces is essential for optimizing its performance and durability in these applications. Nevertheless, only a limited amount of literature is available about the surface hydration of YSZ single crystals. In this study, we employ surface-sensitive non-linear vibrational sum frequency generation spectroscopy to investigate the hydration of YSZ(100), (110), and (111) single crystal substrates under ambient laboratory conditions. Three types of hydroxyl groups were identified at all three YSZ-D2O interfaces: (i) hydroxyls on the metal sites of Zr or Y resulting from the dissociative chemisorption of water, (ii) hydroxyls from proton adsorption to O sites formed from water dissociation, and (iii) hydroxyl groups as part of the physisorbed water at the interface.
Collapse
Affiliation(s)
- Narendra M Adhikari
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Binyang Hou
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Biological, Physical, and Exercise Sciences Department, Mount Vernon Nazarene University, Mount Vernon, Ohio 43050, USA
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Chen W, Louaas D, Brigiano FS, Pezzotti S, Gaigeot MP. A simplified method for theoretical sum frequency generation spectroscopy calculation and interpretation: The "pop model". J Chem Phys 2024; 161:144115. [PMID: 39392142 DOI: 10.1063/5.0231540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Existing methods to compute theoretical spectra are restricted to the use of time-correlation functions evaluated from accurate atomistic molecular dynamics simulations, often at the ab initio level. The molecular interpretation of the computed spectra requires additional steps to deconvolve the spectroscopic contributions from local water and surface structural populations at the interface. The lack of a standard procedure to do this often hampers rationalization. To overcome these challenges, we rewrite the equations for spectra calculation into a sum of partial contributions from interfacial populations, weighted by their abundance at the interface. We show that SFG signatures from each population can be parameterized into a minimum dataset of reference partial spectra. Accurate spectra can then be predicted by just evaluating the statistics of interfacial populations, which can be done even with force field simulations as well as with analytic models. This approach broadens the range of simulation techniques from which theoretical spectra can be calculated, opening toward non-atomistic and Monte Carlo simulation approaches. Most notably, it allows constructing accurate theoretical spectra for interfacial conditions that cannot even be simulated, as we demonstrate for the pH-dependent SFG spectra of silica/water interfaces.
Collapse
Affiliation(s)
- Wanlin Chen
- Université Paris-Saclay, University Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
- Department of Physical Chemistry II, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Dorian Louaas
- Université Paris-Saclay, University Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Flavio Siro Brigiano
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4 Place Jussieu, 75005 Paris, France
| | - Simone Pezzotti
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne University, CNRS, 75005 Paris, France
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, University Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
6
|
Li X, Brigiano FS, Pezzotti S, Liu X, Chen W, Chen H, Li Y, Li H, Lin X, Zheng W, Wang Y, Shen YR, Gaigeot MP, Liu WT. Unconventional structural evolution of an oxide surface in water unveiled by in situ sum-frequency spectroscopy. Nat Chem 2024:10.1038/s41557-024-01658-y. [PMID: 39402251 DOI: 10.1038/s41557-024-01658-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 12/12/2024]
Abstract
Oxide-water interfaces host a wide range of important reactions in nature and modern industrial applications; however, accurate knowledge about these interfaces is still lacking at the molecular level owing to difficulties in accessing buried oxide surfaces. Here we report an experimental scheme enabling in situ sum-frequency vibrational spectroscopy of oxide surfaces in liquid water. Application to the silica-water interface revealed the emergence of unexpected surface reaction pathways with water. With ab initio molecular dynamics and metadynamics simulations, we uncovered a surface reconstruction, triggered by deprotonation of surface hydroxylated groups, that led to unconventional five-coordinated silicon species. The results help demystify the multimodal chemistry of aqueous silica discovered decades ago, bringing in fresh information that modifies the current understanding. Our study will provide new opportunities for future in-depth physical and chemical characterizations of other oxide-water interfaces.
Collapse
Affiliation(s)
- Xiaoqun Li
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Flavio S Brigiano
- Université Paris-Saclay, Univ. Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, Evry-Courcouronnes, France
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, Paris, France
| | - Simone Pezzotti
- Université Paris-Saclay, Univ. Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, Evry-Courcouronnes, France
- PASTEUR, Département de Chimie, Ecole Normale Supérieur, PSL University, Sorbonne University, CNRS, Paris, France
| | - Xinyi Liu
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Wanlin Chen
- Université Paris-Saclay, Univ. Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, Evry-Courcouronnes, France
- Department of Physical Chemistry II, Ruhr University Bochum, Bochum, Germany
| | - Huiling Chen
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Ying Li
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Hui Li
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Xin Lin
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Wenqi Zheng
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Yuchong Wang
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Yue Ron Shen
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China.
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ. Evry, CY Cergy Paris Université, CNRS, LAMBE UMR8587, Evry-Courcouronnes, France.
- Institut Universitaire de France, Paris, France.
| | - Wei-Tao Liu
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Tetteh N, Parshotam S, Gibbs JM. Separating Hofmeister Trends in Stern and Diffuse Layers at a Charged Interface. J Phys Chem Lett 2024; 15:9113-9121. [PMID: 39206708 DOI: 10.1021/acs.jpclett.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Understanding the role of pH and ions on the electrical double layer (EDL) at charged mineral oxide/aqueous interfaces remains crucial in modeling environmental and industrial processes. Yet the simultaneous contribution of pH and specific ion effects (SIEs) on the different layers of the EDL remains unknown. Here, we utilize zeta potential measurements, vibrational sum frequency generation, and the maximum entropy method to ascertain the detailed structure of the Stern and diffuse regions of the EDL at the silica/water interface with varying pH values for different alkali chlorides. Both at pH 2, when the surface is nearly neutral, and at pH 12, when the surface is highly charged, we observe that Li+ and Na+ disrupt while Cs+ enhances existing water structures within the Stern layer. Moreover, the SIE trends for the diffuse and Stern layers are opposite to one another at pH 2 (in the amount of ordered water) and at pH 12 (in the amount of net oriented water). Finally, we observe an inversion in Hofmeister (SIE) trends at low and high pH in the zeta that impacts the diffuse layer structure. These results indicate that SIEs play critical yet separable roles in governing both the electrostatic and water-structuring capabilities of the EDL.
Collapse
Affiliation(s)
- Nathaniel Tetteh
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Shyam Parshotam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
Lee KM, Jaeger VW. Adsorption of Staphylococcus aureus biofilm associated compounds on silica probed with molecular dynamics simulations. Biointerphases 2024; 19:051006. [PMID: 39422496 DOI: 10.1116/6.0003870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a potentially pathogenic bacterium that commonly colonizes surfaces through the formation of biofilms. Silica glass is a common material in the built environment, especially in laboratory and medical spaces. The chemical and physical mechanisms by which S. aureus initially adheres to surfaces are unclear. In this study, the adsorption of several S. aureus biofilm associated compounds on silica is probed using molecular dynamics simulations. Model compounds containing a phosphorylated backbone, N-acetylglucosamine (GlcNAc), or D-alanine (D-Ala) were simulated across a range of pH. GlcNAc adsorption is unfavorable and insensitive to pH. D-Ala adsorption is unfavorable across the range of tested pH. Phosphorylated backbone adsorption is unfavorable at low pH but favorable at high pH. Adsorbate titration and solution salt concentration were probed to establish effects of molecular charge and charge screening. Hydrogen bonding between compounds and the silica surface is a key factor for stronger adsorption. The findings of this study are important for the rational design of improved silica surfaces through chemical functionalization or through the application of optimal chemical disinfectants that discourage the initial stages of biofilm growth.
Collapse
Affiliation(s)
- Kelly M Lee
- Department of Chemical Engineering, University of Louisville, 216 Eastern Pkwy, Louisville, Kentucky 40208
| | - Vance W Jaeger
- Department of Chemical Engineering, University of Louisville, 216 Eastern Pkwy, Louisville, Kentucky 40208
| |
Collapse
|
9
|
Ilgen AG, Borguet E, Geiger FM, Gibbs JM, Grassian VH, Jun YS, Kabengi N, Kubicki JD. Bridging molecular-scale interfacial science with continuum-scale models. Nat Commun 2024; 15:5326. [PMID: 38909017 PMCID: PMC11193788 DOI: 10.1038/s41467-024-49598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
Solid-water interfaces are crucial for clean water, conventional and renewable energy, and effective nuclear waste management. However, reflecting the complexity of reactive interfaces in continuum-scale models is a challenge, leading to oversimplified representations that often fail to predict real-world behavior. This is because these models use fixed parameters derived by averaging across a wide physicochemical range observed at the molecular scale. Recent studies have revealed the stochastic nature of molecular-level surface sites that define a variety of reaction mechanisms, rates, and products even across a single surface. To bridge the molecular knowledge and predictive continuum-scale models, we propose to represent surface properties with probability distributions rather than with discrete constant values derived by averaging across a heterogeneous surface. This conceptual shift in continuum-scale modeling requires exponentially rising computational power. By incorporating our molecular-scale understanding of solid-water interfaces into continuum-scale models we can pave the way for next generation critical technologies and novel environmental solutions.
Collapse
Affiliation(s)
- Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, La Jolla, CA, 92093, USA
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, GA, 30302, USA
| | - James D Kubicki
- Department of Earth, Environmental and Resource Sciences, The University of Texas at El Paso, El Paso, TX, 79968, USA
| |
Collapse
|
10
|
Raji F, Nguyen NN, Nguyen CV, Nguyen AV. Lead (II) ions enable the ion-specific effects of monovalent anions on the molecular structure and interactions at silica/aqueous interfaces. J Colloid Interface Sci 2024; 662:653-662. [PMID: 38367582 DOI: 10.1016/j.jcis.2024.02.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
HYPOTHESIS The adsorption of heavy metal ions such as Pb(II) onto negatively charged minerals such as silica is expected to alter the structure and the interactions at the silica/aqueous interfaces. Besides the solution pH, the inner-sphere sorption of Pb(II) is expected to regulate the surface charge/potential, hypothesized to control the actions of monovalent anions in the aqueous environment. These complex pictures can be probed directly using surface-sensitive sum-frequency generation (SFG) spectroscopy. EXPERIMENTS The pH-dependent water structure within the double layer at silica/aqueous interfaces under the influence of different ions was examined using SFG. The recorded SFG spectra were deconvoluted into the Stern layer (SL) and diffuse layer (DL) using the maximum entropy method in conjunction with the electrical double-layer theory. FINDINGS Standalone monovalent sodium salts do not exhibit ion-specific effects on the silica/aqueous interfaces. However, the mixture of Pb(II) species and each of these salts display profound ion-specific effects on the structure of silica/aqueous interfaces, indicating the role of Pb(II) as an enabler of the ion-specificity of the investigated monovalent anions. The interesting effect arises from a complex interplay between the physical processes (i.e., electrostatic interactions, screening effects, etc.) and chemical processes such as the hydrolysis of Pb(II) ions, ion complexation, protonation and deprotonation of the surface silanol group.
Collapse
Affiliation(s)
- Foad Raji
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- Department of Water and Environmental Regulation, Joondalup, WA 6027, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Uddin MM, Azam MS, Hore DK. Variable-Angle Surface Spectroscopy Reveals the Water Structure in the Stern Layer at Charged Aqueous Interfaces. J Am Chem Soc 2024; 146:11756-11763. [PMID: 38600700 DOI: 10.1021/jacs.3c14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
At charged aqueous interfaces, the second-order nonlinear optical response originates from water molecules within the diffuse part of the electrical double layer, which are ordered by the surface field and from water that additionally experiences chemical and physical interactions with the surface in the Stern layer. These two environments can either reinforce or diminish the overall signal and can be disentangled by varying the coherence length of their interaction with external laser fields. Here, we demonstrate a method in which the angle of incidence is varied to afford a significant change in the coherence length. When this technique was applied to the silica-water interface, it was observed that water molecules in the Stern and diffuse layers direct their hydrogen atoms toward the mineral surface at a low ionic strength and neutral pH. A decrease in the signal with increasing ionic strength is attributed to hydrated cation adsorption that competes with free water for deprotonated silanol sites.
Collapse
Affiliation(s)
- Md Mosfeq Uddin
- Department of Chemistry, University of Victoria, Victoria V8W 3 V6, British Columbia, Canada
| | - Md Shafiul Azam
- Department of Chemistry, University of Victoria, Victoria V8W 3 V6, British Columbia, Canada
| | - Dennis K Hore
- Department of Chemistry, University of Victoria, Victoria V8W 3 V6, British Columbia, Canada
- Department of Computer Science, University of Victoria, Victoria V8W 3P6, British Columbia, Canada
| |
Collapse
|
12
|
Lin YT, Agnello G, Link M, Guo Y, Zoba AN, Antony A, Smith NJ, Banerjee J, Kim SH. Water Adsorption Isotherm and Surface Conductivity of Boroaluminosilicate Glasses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1658-1665. [PMID: 38179938 DOI: 10.1021/acs.langmuir.3c02595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The surface resistivity of boroaluminosilicate display glasses, which may affect the downstream display panel manufacturing, varies with the relative humidity (RH) of the environment, but the origin of this RH dependence has not been well understood. We have measured the water adsorption behavior on Corning Eagle XG (Glass-E) and Lotus NXT (Glass-L) glass panels using Brewster angle transmission infrared spectroscopy. The IR spectra of adsorbed water were analyzed to obtain the effective thickness of adsorbed water, the distribution of hydrogen-bonding interactions among the adsorbed water molecules, and the isosteric heat of water adsorption. These characteristics were compared with the electrical conductivity (inverse of resistivity) of these two glasses [Appl. Surf. Sci. 2015, 356, 1189]. This comparison revealed the correlation between the conductivity and the water layer structure, which could explain the surface resistivity difference between Glass-E and Glass-L as a function of RH. This study also disputed the previous hypothesis that the water adsorption isotherm would be governed by the areal density of the surface hydroxyl group; instead, it suggested that the network modifier ions may also play a critical role, especially in the intermediate RH regime.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gabriel Agnello
- Science & Technology Division, Corning Inc., Corning, New York 14831, United States
| | - Mason Link
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yiwen Guo
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ava N Zoba
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrew Antony
- Manufacturing, Technology, and Engineering Division, Corning Inc., Corning, New York 14831, United States
| | - Nicholas J Smith
- Science & Technology Division, Corning Inc., Corning, New York 14831, United States
| | - Joy Banerjee
- Science & Technology Division, Corning Inc., Corning, New York 14831, United States
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Tan J, Wang M, Zhang J, Ye S. Determination of the Thickness of Interfacial Water by Time-Resolved Sum-Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18573-18580. [PMID: 38051545 DOI: 10.1021/acs.langmuir.3c02906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The physics and chemistry of a charged interface are governed by the structure of the electrical double layer (EDL). Determination of the interfacial water thickness (diw) of the charged interface is crucial to quantitatively describe the EDL structure, but it can be utilized with very scarce experimental methods. Here, we propose and verify that the vibrational relaxation time (T1) of the OH stretching mode at 3200 cm-1, obtained by time-resolved sum frequency generation vibrational spectroscopy with ssp polarizations, provides an effective tool to determine diw. By investigating the T1 values at the SiO2/NaCl solution interface, we established a time-space (T1-diw) relationship. We find that water has a T1 lifetime of ≥0.5 ps for diw ≤ 3 Å, while it displays bulk-like dynamics with T1 ≤ 0.2 ps for diw ≥ 9 Å. T1 decreases as diw increases from ∼3 Å to 9 Å. The hydration water at the DPPG lipid bilayer and LK15β protein interfaces has a thickness of ≥9 Å and shows a bulk-like feature. The time-space relationship will provide a novel tool to pattern the interfacial topography and heterogeneity in Ångstrom-depth resolution by imaging the T1 values.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
14
|
Neumann J, Lee SS, Zhao EJ, Fenter P. Direct Experimental Observations of Ion Distributions during Overcharging at the Muscovite-Water Interface by Adsorption of Rb + and Halides (Cl - , Br - , I - ) at High Salinity. Chemphyschem 2023; 24:e202300545. [PMID: 37632699 DOI: 10.1002/cphc.202300545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Classical electric double layer (EDL) models have been widely used to describe ion distributions at charged solid-water interfaces in dilute electrolytes. However, the chemistry of EDLs remains poorly constrained at high ionic strength where ion-ion correlations control non-classical behavior such as overcharging, i. e., the accumulation of counter-ions in amounts exceeding the substrate's surface charge. Here, we provide direct experimental observations of correlated cation and anion distributions adsorbed at the muscovite (001)-aqueous electrolyte interface as a function of dissolved RbBr concentration ([RbBr]=0.01-5.8 M) using resonant anomalous X-ray reflectivity. Our results show alternating cation-anion layers in the EDL when [RbBr]≳100 mM, whose spatial extension (i. e., ~20 Å from the surface) far exceeds the dimension of the classical Stern layer. Comparison to RbCl and RbI electrolytes indicates that these behaviors are sensitive to the choice of co-ion. This new in-depth molecular-scale understanding of the EDL structure during transition from classical to non-classical regimes supports the development of realistic EDL models for technologies operating at high salinity such as water purification applications or modern electrochemical storage.
Collapse
Affiliation(s)
- Julia Neumann
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL, 60439, USA
| | - Sang Soo Lee
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL, 60439, USA
| | - Eric J Zhao
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Avenue, Chicago, IL, 60637, USA
| | - Paul Fenter
- Chemical Science and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, IL, 60439, USA
| |
Collapse
|
15
|
Duan L, Zhang M, Nan Y, Jin Z. Effects of Interfacial Molecular Structures on Pressure-Driven Brine Flow in Silica Mesopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13019-13027. [PMID: 37669184 DOI: 10.1021/acs.langmuir.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In this work, we conduct molecular dynamics simulations to investigate pressure-driven brine flow in silica mesopores under typical reservoir conditions (323 K and 20 MPa). While surface counterions accumulate strongly in the vicinity of fully deprotonated silica surfaces, water forms multilayer structures due to hydrogen bonding, counterion hydration, and excluded-volume effect. Brine flow behaviors exhibit adsorption, transition, and bulk-like regions in fully deprotonated silica mesopores, while the transition region is negligible in fully protonated ones. In the adsorption region, strong surface hydrogen bonding and a high degree of counterion hydration collectively hinder water mobility. Even without surface hydrogen bonding, persistent ion hydration impedes water flow, leading to the transition region in fully deprotonated silica mesopores and higher viscosity of brine (with 10 wt % NaCl) in the bulk region. This work elucidates the collective effects of surface chemistry and interfacial water structures on brine flow behaviors in silica mesopores from molecular perspectives.
Collapse
Affiliation(s)
- Lian Duan
- School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mingshan Zhang
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yiling Nan
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Zhehui Jin
- School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
16
|
Di Pino S, Perez Sirkin YA, Morzan UN, Sánchez VM, Hassanali A, Scherlis DA. Water Self-Dissociation is Insensitive to Nanoscale Environments. Angew Chem Int Ed Engl 2023; 62:e202306526. [PMID: 37379226 DOI: 10.1002/anie.202306526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
Nanoconfinement effects on water dissociation and reactivity remain controversial, despite their importance to understand the aqueous chemistry at interfaces, pores, or aerosols. The pKw in confined environments has been assessed from experiments and simulations in a few specific cases, leading to dissimilar conclusions. Here, with the use of carefully designed ab initio simulations, we demonstrate that the energetics of bulk water dissociation is conserved intact to unexpectedly small length-scales, down to aggregates of only a dozen molecules or pores of widths below 2 nm. The reason is that most of the free-energy involved in water autoionization comes from breaking the O-H covalent bond, which has a comparable barrier in the bulk liquid, in a small droplet of nanometer size, or in a nanopore in the absence of strong interfacial interactions. Thus, dissociation free-energy profiles in nanoscopic aggregates or in 2D slabs of 1 nm width reproduce the behavior corresponding to the bulk liquid, regardless of whether the corresponding nanophase is delimited by a solid or a gas interface. The present work provides a definite and fundamental description of the mechanism and thermodynamics of water dissociation at different scales with broader implications on reactivity and self-ionization at the air-liquid interface.
Collapse
Affiliation(s)
- Solana Di Pino
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Yamila A Perez Sirkin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Uriel N Morzan
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Verónica M Sánchez
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
| | - Ali Hassanali
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| | - Damian A Scherlis
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
- Condensed Matter and Statistical Physics, International Centre for Theoretical Physics, I-34151, Trieste, Italy
| |
Collapse
|
17
|
Raji F, Nguyen CV, Nguyen NN, Nguyen TAH, Nguyen AV. Probing interfacial water structure induced by charge reversal and hydrophobicity of silica surface in the presence of divalent heavy metal ions using sum frequency generation spectroscopy. J Colloid Interface Sci 2023; 647:152-162. [PMID: 37247479 DOI: 10.1016/j.jcis.2023.05.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
HYPOTHESIS Adsorption of divalent heavy metal ions (DHMIs) at the mineral-water interfaces changes interfacial chemical species and charges, interfacial water structure, Stern (SL), and diffuse (DL) layers. These molecular changes can be detected by probing changing orientation and hydrogen-bond network of interfacial water molecules in response to changing local charges and hydrophobicity. EXPERIMENTS Sum-frequency generation (SFG) spectroscopy was used to probe changes in vibrational resonances of interfacial OH vs. DHMI concentration and pH. SFG spectra were deconvoluted using the measured surface potential and maximum entropy method in conjunction with the electrical double-layer theory for the SL and DL structures and correlated by hydrophobicity. FINDINGS Three surface charge reversals (CRs) were detected at low (CR1), medium (CR2), and high (CR3) pHs. Unlike CR1, SFG signals were minimized at CR2 and CR3 for DHMIs-silica systems highlighting considerable alterations in the structure of interfacial waters due to the inner-sphere sorption of metal hydroxo complexes. SFG results showed "hydrophobic-like" stretching modes at > 3600 cm-1 for Pb-, Cu-, and Zn-treated silica. However, contact angle measurements revealed the hydrophobization of silica only in the presence of Pb(II), as confirmed by an in-depth SFG analysis of the hydrogen-bond network of the interfacial water molecules in the SL.
Collapse
Affiliation(s)
- Foad Raji
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cuong V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ngoc N Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tuan A H Nguyen
- Sustainable Minerals Institute, The University of Queensland, QLD 4072, Australia
| | - Anh V Nguyen
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
18
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
19
|
Wei F, Urashima SH, Nihonyanagi S, Tahara T. Elucidation of the pH-Dependent Electric Double Layer Structure at the Silica/Water Interface Using Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. J Am Chem Soc 2023; 145:8833-8846. [PMID: 37068781 PMCID: PMC10143621 DOI: 10.1021/jacs.2c11344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Indexed: 04/19/2023]
Abstract
The silica/water interface is one of the most abundant charged interfaces in natural environments, and the elucidation of the water structure at the silica/water interface is essential. In the present study, we measured the interface-selective vibrational (χ(2)) spectra in the OH stretch region of the silica/water interface in a wide pH range of pH 2.0-12.0 while changing the salt concentration by heterodyne-detected vibrational sum-frequency generation spectroscopy. With the help of singular value decomposition analysis, it is shown that the imaginary part of the χ(2) (Imχ(2)) spectra can be decomposed into the spectra of the diffuse Gouy-Chapman layer (DL) and the compact Stern layer (SL), which enables us to quantitatively analyze the spectra of DL and SL separately. The salt-concentration dependence of the DL spectra at different pH values is analyzed using the modified Gouy-Chapman theory, and the pH-dependent surface charge density and the pKa value (4.8 ± 0.2) of the silica/water interface are evaluated. Furthermore, it is found that the pH-dependent change of the SL spectra is quantitatively explained by three spectral components that represent the three characteristic water species appearing in different pH regions in SL. The quantitative understanding obtained from the analysis of each spectral component in the Imχ(2) spectra provides a clear molecular-level picture of the electric double layer at the silica/water interface.
Collapse
Affiliation(s)
- Feng Wei
- Molecular
Spectroscopy Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Shu-hei Urashima
- Molecular
Spectroscopy Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Satoshi Nihonyanagi
- Molecular
Spectroscopy Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), Wako, Saitama 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
- Ultrafast
Spectroscopy Research Team, RIKEN Center
for Advanced Photonics (RAP), Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Light, Water, and Melatonin: The Synergistic Regulation of Phase Separation in Dementia. Int J Mol Sci 2023; 24:ijms24065835. [PMID: 36982909 PMCID: PMC10054283 DOI: 10.3390/ijms24065835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
The swift rise in acceptance of molecular principles defining phase separation by a broad array of scientific disciplines is shadowed by increasing discoveries linking phase separation to pathological aggregations associated with numerous neurodegenerative disorders, including Alzheimer’s disease, that contribute to dementia. Phase separation is powered by multivalent macromolecular interactions. Importantly, the release of water molecules from protein hydration shells into bulk creates entropic gains that promote phase separation and the subsequent generation of insoluble cytotoxic aggregates that drive healthy brain cells into diseased states. Higher viscosity in interfacial waters and limited hydration in interiors of biomolecular condensates facilitate phase separation. Light, water, and melatonin constitute an ancient synergy that ensures adequate protein hydration to prevent aberrant phase separation. The 670 nm visible red wavelength found in sunlight and employed in photobiomodulation reduces interfacial and mitochondrial matrix viscosity to enhance ATP production via increasing ATP synthase motor efficiency. Melatonin is a potent antioxidant that lowers viscosity to increase ATP by scavenging excess reactive oxygen species and free radicals. Reduced viscosity by light and melatonin elevates the availability of free water molecules that allow melatonin to adopt favorable conformations that enhance intrinsic features, including binding interactions with adenosine that reinforces the adenosine moiety effect of ATP responsible for preventing water removal that causes hydrophobic collapse and aggregation in phase separation. Precise recalibration of interspecies melatonin dosages that account for differences in metabolic rates and bioavailability will ensure the efficacious reinstatement of the once-powerful ancient synergy between light, water, and melatonin in a modern world.
Collapse
|
21
|
Chen W, Sanders SE, Özdamar B, Louaas D, Brigiano FS, Pezzotti S, Petersen PB, Gaigeot MP. On the Trail of Molecular Hydrophilicity and Hydrophobicity at Aqueous Interfaces. J Phys Chem Lett 2023; 14:1301-1309. [PMID: 36724059 DOI: 10.1021/acs.jpclett.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncovering microscopic hydrophilicity and hydrophobicity at heterogeneous aqueous interfaces is essential as it dictates physico/chemical properties such as wetting, the electrical double layer, and reactivity. Several molecular and spectroscopic descriptors were proposed, but a major limitation is the lack of connections between them. Here, we combine density functional theory-based MD simulations (DFT-MD) and SFG spectroscopy to explore how interfacial water responds in contact with self-assembled monolayers (SAM) of tunable hydrophilicity. We introduce a microscopic metric to track the transition from hydrophobic to hydrophilic interfaces. This metric combines the H/V descriptor, a structural descriptor based on the preferential orientation within the water network in the topmost binding interfacial layer (BIL) and spectroscopic fingerprints of H-bonded and dangling OH groups of water carried by BIL-resolved SFG spectra. This metric builds a bridge between molecular descriptors of hydrophilicity/hydrophobicity and spectroscopically measured quantities and provides a recipe to quantitatively or qualitatively interpret experimental SFG signals.
Collapse
Affiliation(s)
- Wanlin Chen
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Stephanie E Sanders
- Department of Chemistry and Biochemistry, Ruhr University Bochum, 44801Bochum, Germany
| | - Burak Özdamar
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Dorian Louaas
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Flavio Siro Brigiano
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4 Place Jussieu, 75005Paris, France
| | - Simone Pezzotti
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
- Department of Physical Chemistry II, Ruhr University Bochum, D-44801Bochum, Germany
| | - Poul B Petersen
- Department of Chemistry and Biochemistry, Ruhr University Bochum, 44801Bochum, Germany
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| |
Collapse
|
22
|
Piontek S, Naujoks D, Tabassum T, DelloStritto MJ, Jaugstetter M, Hosseini P, Corva M, Ludwig A, Tschulik K, Klein ML, Petersen PB. Probing the Gold/Water Interface with Surface-Specific Spectroscopy. ACS PHYSICAL CHEMISTRY AU 2023; 3:119-129. [PMID: 36718265 PMCID: PMC9881240 DOI: 10.1021/acsphyschemau.2c00044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023]
Abstract
Water is an integral component in electrochemistry, in the generation of the electric double layer, and in the propagation of the interfacial electric fields into the solution; however, probing the molecular-level structure of interfacial water near functioning electrode surfaces remains challenging. Due to the surface-specificity, sum-frequency-generation (SFG) spectroscopy offers an opportunity to investigate the structure of water near working electrochemical interfaces but probing the hydrogen-bonded structure of water at this buried electrode-electrolyte interface was thought to be impossible. Propagating the laser beams through the solvent leads to a large attenuation of the infrared light due to the absorption of water, and interrogating the interface by sending the laser beams through the electrode normally obscures the SFG spectra due to the large nonlinear response of conduction band electrons. Here, we show that the latter limitation is removed when the gold layer is thin. To demonstrate this, we prepared Au gradient films on CaF2 with a thickness between 0 and 8 nm. SFG spectra of the Au gradient films in contact with H2O and D2O demonstrate that resonant water SFG spectra can be obtained using Au films with a thickness of ∼2 nm or less. The measured spectra are distinctively different from the frequency-dependent Fresnel factors of the interface, suggesting that the features we observe in the OH stretching region indeed do not arise from the nonresonant response of the Au films. With the newfound ability to probe interfacial solvent structure at electrode/aqueous interfaces, we hope to provide insights into more efficient electrolyte composition and electrode design.
Collapse
Affiliation(s)
- Stefan
M. Piontek
- Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany,Light
Conversion Inc., Vilnius City Municipality, Vilnius 10234, Lithuania
| | - Dennis Naujoks
- Faculty
of Mechanical Engineering, Institute for Materials and ZGH, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Tadneem Tabassum
- Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Mark J. DelloStritto
- Institute
for Computational Molecular Science, Temple
University, Philadelphia, 19122 Pennsylvania, United States
| | | | - Pouya Hosseini
- Max-Planck-Institut
für Eisenforschung GmbH, 40237 Düsseldorf, Germany
| | - Manuel Corva
- Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Alfred Ludwig
- Faculty
of Mechanical Engineering, Institute for Materials and ZGH, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Kristina Tschulik
- Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Michael L. Klein
- Institute
for Computational Molecular Science, Temple
University, Philadelphia, 19122 Pennsylvania, United States
| | - Poul B. Petersen
- Faculty
of Chemistry and Biochemistry, Ruhr-Universität
Bochum, 44801 Bochum, Germany,
| |
Collapse
|
23
|
An W, Yue X, Zou J, Zhang L, Fu YC, Yan R. A Form of Non-Volatile Solid-like Hexadecane Found in Micron-Scale Silica Microtubule. MATERIALS (BASEL, SWITZERLAND) 2022; 16:9. [PMID: 36614348 PMCID: PMC9820975 DOI: 10.3390/ma16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Anomalous solid-like liquids at the solid-liquid interface have been recently reported. The mechanistic factors contributing to these anomalous liquids and whether they can stably exist at high vacuum are interesting, yet unexplored, questions. In this paper, thin slices of silica tubes soaked in hexadecane were observed under a transmission electron microscope at room temperature. The H-spectrum of hexadecane in the microtubules was measured by nuclear magnetic resonance. On the interior surface of these silica tubes, 0.2-30 μm in inside diameter (ID), a layer (12-400 nm) of a type of non-volatile hexadecane was found with thickness inversely correlated with the tube ID. A sample of this anomalous hexadecane in microtubules 0.4 μm in ID was found to be formable by an ion beam. Compared with the nuclear magnetic resonance H-spectroscopy of conventional hexadecane, the characteristic peaks of this abnormal hexadecane were shifted to the high field with a broader characteristic peak, nuclear magnetic resonance hydrogen spectroscopy spectral features typical of that of solids. The surface density of these abnormal hexadecanes was found to be positively correlated with the silanol groups found on the interior silica microtubular surface. This positive correlation indicates that the high-density aggregation of silanol is an essential factor for forming the abnormal hexadecane reported in this paper.
Collapse
Affiliation(s)
- Weiqing An
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiangan Yue
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jirui Zou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Lijuan Zhang
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yu-Chun Fu
- Department of Chemical Engineering, National Chung Cheng University, Taiwan 621301, China
| | - Rongjie Yan
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
24
|
Rehl B, Ma E, Parshotam S, DeWalt-Kerian EL, Liu T, Geiger FM, Gibbs JM. Water Structure in the Electrical Double Layer and the Contributions to the Total Interfacial Potential at Different Surface Charge Densities. J Am Chem Soc 2022; 144:16338-16349. [PMID: 36042195 DOI: 10.1021/jacs.2c01830] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The electric double layer governs the processes of all charged surfaces in aqueous solutions; however, elucidating the structure of the water molecules is challenging for even the most advanced spectroscopic techniques. Here, we present the individual Stern layer and diffuse layer OH stretching spectra at the silica/water interface in the presence of NaCl over a wide pH range using a combination of vibrational sum frequency generation spectroscopy, heterodyned second harmonic generation, and streaming potential measurements. We find that the Stern layer water molecules and diffuse layer water molecules respond differently to pH changes: unlike the diffuse layer, whose water molecules remain net-oriented in one direction, water molecules in the Stern layer flip their net orientation as the solution pH is reduced from basic to acidic. We obtain an experimental estimate of the non-Gouy-Chapman (Stern) potential contribution to the total potential drop across the insulator/electrolyte interface and discuss it in the context of dipolar, quadrupolar, and higher order potential contributions that vary with the observed changes in the net orientation of water in the Stern layer. Our findings show that a purely Gouy-Chapman (Stern) view is insufficient to accurately describe the electrical double layer of aqueous interfaces.
Collapse
Affiliation(s)
- Benjamin Rehl
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Emily Ma
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Shyam Parshotam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Emma L DeWalt-Kerian
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianli Liu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
25
|
Watts HD, Kubicki JD, Kabengi N. Connecting Thermodynamics of Alkali Ion Exchange on the Quartz (101) Surface with Density Functional Theory Calculations. J Phys Chem A 2022; 126:4286-4294. [PMID: 35762767 DOI: 10.1021/acs.jpca.2c02697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Periodic plane-wave density functional theory (DFT) calculations were performed on the α-quartz (SiO2) (101) surface to model exchange of adsorbed Li+ and either Na+, K+, or Rb+ in inner- and outer-sphere adsorbed, and aqueous configurations, which are charge-balanced with 2 Cl-. SiO- or SiOH groups represented the adsorption surface sites. The SiO- models included 58 H2O and 2 H3O+ molecules to approximate an aqueous environment, whereas the SiOH models had 59 H2O and 1 H3O+ molecules. The goal of this work is to calculate the heats of exchange for these alkali ions and to compare the results with those measured by flow microcalorimetry to ascertain the most probable mechanisms for these cations exchanging on the α-quartz (101) surface. Energy minimizations of each alkali ion adsorbed as outer-sphere complexes on SiOH surface sites, and as inner- and outer-sphere complexes on SiO- surface sites, were used to determine the energy of exchange (ΔEex) with Li+ for comparison with experimentally determined ΔHex values. Here, we present a novel method for calculating ΔEex using the difference in energies of geometry-optimized end member models. The aqueous and surface structures produced are similar to those observed experimentally. Although the trend for the calculated ΔEex values is consistent with those from the heats of exchange measured experimentally, the magnitude of our modeled ΔEex results is significantly larger than select experimental data from the literature [Peng, L. Zeta-Potentials and Enthalpy Changes in the Process of Electrostatic Self-Assembly of Cations on Silica Surface. Powder Technol. 2009, 193(1), 46-49]; we discuss the reasons for this discrepancy herein. The relative energy differences of the various configurations modeled have implications for the measurements of the surface charge via potentiometric titrations due to the more active role of alkali cations in quartz surface chemistry that have been previously considered as inert background electrolytes.
Collapse
Affiliation(s)
- Heath D Watts
- Department of Earth, Environmental & Resource Sciences, University of Texas at El Paso, El Paso, Texas 77968 United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, University of Texas at El Paso, El Paso, Texas 77968 United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
26
|
Xu Y, LiBretto NJ, Zhang G, Miller JT, Greeley J. First-Principles Analysis of Ethylene Oligomerization on Single-Site Ga 3+ Catalysts Supported on Amorphous Silica. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yinan Xu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Nicole J. LiBretto
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Guanghui Zhang
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province 116024, P.R. China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
de Mello Gallep C, Robert D. Are cyclic plant and animal behaviours driven by gravimetric mechanical forces? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1093-1103. [PMID: 34727177 PMCID: PMC8866634 DOI: 10.1093/jxb/erab462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 05/13/2023]
Abstract
The celestial mechanics of the Sun, Moon, and Earth dominate the variations in gravitational force that all matter, live or inert, experiences on Earth. Expressed as gravimetric tides, these variations are pervasive and have forever been part of the physical ecology with which organisms evolved. Here, we first offer a brief review of previously proposed explanations that gravimetric tides constitute a tangible and potent force shaping the rhythmic activities of organisms. Through meta-analysis, we then interrogate data from three study cases and show the close association between the omnipresent gravimetric tides and cyclic activity. As exemplified by free-running cyclic locomotor activity in isopods, reproductive effort in coral, and modulation of growth in seedlings, biological rhythms coincide with temporal patterns of the local gravimetric tide. These data reveal that, in the presumed absence of rhythmic cues such as light and temperature, local gravimetric tide is sufficient to entrain cyclic behaviour. The present evidence thus questions the phenomenological significance of so-called free-run experiments.
Collapse
Affiliation(s)
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
28
|
Tan J, Ni Z, Ye S. Protein-Water Coupling Tunes the Anharmonicity of Amide I Modes in the Interfacial Membrane-Bound Proteins. J Chem Phys 2022; 156:105103. [DOI: 10.1063/5.0078632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Junjun Tan
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| | - Zijian Ni
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale Nanoscience Laboratory, China
| | - Shuji Ye
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| |
Collapse
|
29
|
Brigiano FS, Gierada M, Tielens F, Pietrucci F. Mechanism and Free-Energy Landscape of Peptide Bond Formation at the Silica–Water Interface. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Flavio Siro Brigiano
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Maciej Gierada
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Frederik Tielens
- General Chemistry (ALGC), Materials Modeling Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Fabio Pietrucci
- Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| |
Collapse
|
30
|
Klaassen A, Liu F, Mugele F, Siretanu I. Correlation between Electrostatic and Hydration Forces on Silica and Gibbsite Surfaces: An Atomic Force Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:914-926. [PMID: 35025512 PMCID: PMC8793142 DOI: 10.1021/acs.langmuir.1c02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The balance between hydration and Derjaguin-Landau-Verwey-Overbeek (DLVO) forces at solid-liquid interfaces controls many processes, such as colloidal stability, wetting, electrochemistry, biomolecular self-assembly, and ion adsorption. Yet, the origin of molecular scale hydration forces and their relation to the surface charge density that controls the continuum scale electrostatic forces is poorly understood. We argue that these two types of forces are largely independent of each other. To support this hypothesis, we performed atomic force microscopy experiments using intermediate-sized tips that enable the simultaneous detection of DLVO and molecular scale oscillatory hydration forces at the interface between composite gibbsite:silica-aqueous electrolyte interfaces. We extract surface charge densities from forces measured at tip-sample separations of 1.5 nm and beyond using DLVO theory in combination with charge regulation boundary conditions for various pH values and salt concentrations. We simultaneously observe both colloidal scale DLVO forces and oscillatory hydration forces for an individual crystalline gibbsite particle and the underlying amorphous silica substrate for all fluid compositions investigated. While the diffuse layer charge varies with pH as expected, the oscillatory hydration forces are found to be largely independent of pH and salt concentration, supporting our hypothesis that both forces indeed have a very different origin. Oscillatory hydration forces are found to be distinctly more pronounced on gibbsite than on silica. We rationalize this observation based on the distribution of hydroxyl groups available for H bonding on the two distinct surfaces.
Collapse
Affiliation(s)
- Aram Klaassen
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Fei Liu
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Igor Siretanu
- Physics of Complex Fluids Group and
MESA+ Institute, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
31
|
|
32
|
Bischoff M, Biriukov D, Předota M, Marchioro A. Second Harmonic Scattering Reveals Ion-Specific Effects at the SiO 2 and TiO 2 Nanoparticle/Aqueous Interface. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:25261-25274. [PMID: 35591899 PMCID: PMC9109693 DOI: 10.1021/acs.jpcc.1c07191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Indexed: 06/01/2023]
Abstract
Ion-specific effects play a crucial role in controlling the stability of colloidal systems and regulating interfacial processes. Although mechanistic pictures have been developed to explain the electrostatic structure of solid/water colloidal interfaces, ion-specific effects remain poorly understood. Here we quantify the average interfacial water orientation and the electrostatic surface potential around 100 nm SiO2 and TiO2 colloidal particles in the presence of NaCl, RbCl, and CaCl2 using polarimetric angle-resolved second harmonic scattering. We show that these two parameters can be used to establish the ion adsorption mechanism in a low ionic strength regime (<1 mM added salt). The relative differences between salts as a function of the ionic strength demonstrate cation- and surface-specific preferences for inner- vs outer-sphere adsorption. Compared to monovalent Rb+ and Na+, Ca2+ is found to be preferentially adsorbed as outer-sphere on SiO2 surfaces, while a dominant inner-sphere adsorption is observed for Ca2+ on TiO2. Molecular dynamics simulations performed on crystalline SiO2 and TiO2 surfaces support the experimental conclusions. This work contributes to the understanding of the electrostatic environment around colloidal nanoparticles on a molecular level by providing insight into ion-specific effects with micromolar sensitivity.
Collapse
Affiliation(s)
- Marie Bischoff
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Denys Biriukov
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
- Department
of Physics, Faculty of Science, University
of South Bohemia, Branišovská 1760, 370
05 České Budějovice, Czech Republic
| | - Milan Předota
- Department
of Physics, Faculty of Science, University
of South Bohemia, Branišovská 1760, 370
05 České Budějovice, Czech Republic
| | - Arianna Marchioro
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Ma CY, Pezzotti S, Schwaab G, Gebala M, Herschlag D, Havenith M. Cation enrichment in the ion atmosphere is promoted by local hydration of DNA. Phys Chem Chem Phys 2021; 23:23203-23213. [PMID: 34622888 PMCID: PMC8797164 DOI: 10.1039/d1cp01963e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrostatic interactions are central to the structure and function of nucleic acids, including their folding, condensation, and interaction with proteins and other charged molecules. These interactions are profoundly affected by ions surrounding nucleic acids, the constituents of the so-called ion atmosphere. Here, we report precise Fourier Transform-Terahertz/Far-Infrared (FT-THz/FIR) measurements in the frequency range 30-500 cm-1 for a 24-bp DNA solvated in a series of alkali halide (NaCl, NaF, KCl, CsCl, and CsF) electrolyte solutions which are sensitive to changes in the ion atmosphere. Cation excess in the ion atmosphere is detected experimentally by observation of cation modes of Na+, K+, and Cs+ in the frequency range between 70-90 cm-1. Based on MD simulations, we propose that the magnitude of cation excess (which is salt specific) depends on the ability of the electrolyte to perturb the water network at the DNA interface: In the NaF atmosphere, the ions reduce the strength of interactions between water and the DNA more than in case of a NaCl electrolyte. Here, we explicitly take into account the solvent contribution to the chemical potential in the ion atmosphere: A decrease in the number of bound water molecules in the hydration layer of DNA is correlated with enhanced density fluctuations, which decrease the free energy cost of ion-hydration, thus promoting further ion accumulation within the DNA atmosphere. We propose that taking into account the local solvation is crucial for understanding the ion atmosphere.
Collapse
Affiliation(s)
- Chun Yu Ma
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Simone Pezzotti
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Gerhard Schwaab
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| | - Magdalena Gebala
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
34
|
Huang H, Zhang C, Crisci R, Lu T, Hung HC, Sajib MSJ, Sarker P, Ma J, Wei T, Jiang S, Chen Z. Strong Surface Hydration and Salt Resistant Mechanism of a New Nonfouling Zwitterionic Polymer Based on Protein Stabilizer TMAO. J Am Chem Soc 2021; 143:16786-16795. [PMID: 34582683 DOI: 10.1021/jacs.1c08280] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zwitterionic polymers exhibit excellent nonfouling performance due to their strong surface hydrations. However, salt molecules may severely reduce the surface hydrations of typical zwitterionic polymers, making the application of these polymers in real biological and marine environments challenging. Recently, a new zwitterionic polymer brush based on the protein stabilizer trimethylamine N-oxide (TMAO) was developed as an outstanding nonfouling material. Using surface-sensitive sum frequency generation (SFG) vibrational spectroscopy, we investigated the surface hydration of TMAO polymer brushes (pTMAO) and the effects of salts and proteins on such surface hydration. It was discovered that exposure to highly concentrated salt solutions such as seawater only moderately reduced surface hydration. This superior resistance to salt effects compared to other zwitterionic polymers is due to the shorter distance between the positively and negatively charged groups, thus a smaller dipole in pTMAO and strong hydration around TMAO zwitterion. This results in strong bonding interactions between the O- in pTMAO and water, and weaker interaction between O- and metal cations due to the strong repulsion from the N+ and hydration water. Computer simulations at quantum and atomistic scales were performed to support SFG analyses. In addition to the salt effect, it was discovered that exposure to proteins in seawater exerted minimal influence on the pTMAO surface hydration, indicating complete exclusion of protein attachment. The excellent nonfouling performance of pTMAO originates from its extremely strong surface hydration that exhibits effective resistance to disruptions induced by salts and proteins.
Collapse
Affiliation(s)
| | | | | | | | - Hsiang-Chieh Hung
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Md Symon Jahan Sajib
- Department of Chemical Engineering, Howard University, Washington D.C. 20059, United States
| | - Pranab Sarker
- Department of Chemical Engineering, Howard University, Washington D.C. 20059, United States
| | - Jinrong Ma
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Tao Wei
- Department of Chemical Engineering, Howard University, Washington D.C. 20059, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
35
|
Jiang J, Guo L, Tang L, Zhang Y. The manner and extent to which the hydration shell impacts interactions between hydrated species. Phys Chem Chem Phys 2021; 23:20496-20508. [PMID: 34499068 DOI: 10.1039/d1cp03368a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydration shell (HS) has a critical impact on every contact between hydrated species, which is a prerequisite for a great many physical and chemical processes, such as ion adsorption at the solution-solid interface. This paper reveals the extent and manner to which the HS interferes with ion adsorption utilizing molecular dynamics. The single-layer HS is the smallest unit that maintains the ionic hydration structure and the force on it. The energy penalty incurred by partial dehydration upon adsorption is one of the approaches through which HS influences ion adsorption, yet the collision of water molecules in HS may be the critical one. The repulsive force during dehydration is, to great extent, neutralized by HS collision. The index for estimating the extent of the influence of the HS is not the hydration energy, but the quantification of the contest between HS' collision and the binding of adsorption sites. The hydration energy is larger for charged functional groups, but the HS' impact is much smaller, as compared with electroneutral group cases. As a result, the order of the adsorption capacity for different ionic species may be quite different between charged and electroneutral cases.
Collapse
Affiliation(s)
- Jinyang Jiang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Le Guo
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Luping Tang
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Yu Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
36
|
Zhang J, Tan J, Pei R, Ye S, Luo Y. Ordered Water Layer on the Macroscopically Hydrophobic Fluorinated Polymer Surface and Its Ultrafast Vibrational Dynamics. J Am Chem Soc 2021; 143:13074-13081. [PMID: 34384210 DOI: 10.1021/jacs.1c03581] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrophobic-like water monolayers have been predicted at the metal and some polar surfaces by theoretical simulations. However, direct experimental evidence for the presence of this water layer at surfaces, particularly at biomolecule and polymer surfaces, is yet to be validated at room temperature. Here we observe experimentally that an ordered molecular water layer is present at the hydrophobic fluorinated polymer such as polytetrafluoroethylene (PTFE) surface by using sum frequency generation vibrational spectroscopy. The macroscopic hydrophobicity of PTFE surface is actually hydrophilic at the molecular level. The macroscopically hydrophobic character of PTFE is indeed resulting from the hydrophobicity of the ordered two-dimension (2D) water layer, in which cyclic water tetramer structure is found. The water layer at humidity of ≤40% has a vibrational relaxation time of 550 ± 60 fs. The vibrational relaxation time in the frequency range of 3200-3400 cm-1 shows remarkable difference from the interfacial water at the air/H2O interface and the lipid/H2O interface. No discernible frequency dependence of the vibrational relaxation time is observed, indicating the homogeneous dynamics of OH groups in the water layer. These insights into the water layer at the macroscopically hydrophobic surface may contribute to a better understanding of the hydrophobic interaction and interfacial water dynamics.
Collapse
Affiliation(s)
- Jiahui Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruoqi Pei
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Adams E, Pezzotti S, Ahlers J, Rüttermann M, Levin M, Goldenzweig A, Peleg Y, Fleishman SJ, Sagi I, Havenith M. Local Mutations Can Serve as a Game Changer for Global Protein Solvent Interaction. JACS AU 2021; 1:1076-1085. [PMID: 34337607 PMCID: PMC8317155 DOI: 10.1021/jacsau.1c00155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 05/15/2023]
Abstract
Although it is well-known that limited local mutations of enzymes, such as matrix metalloproteinases (MMPs), may change enzyme activity by orders of magnitude as well as its stability, the completely rational design of proteins is still challenging. These local changes alter the electrostatic potential and thus local electrostatic fields, which impacts the dynamics of water molecules close the protein surface. Here we show by a combined computational design, experimental, and molecular dynamics (MD) study that local mutations have not only a local but also a global effect on the solvent: In the specific case of the matrix metalloprotease MMP14, we found that the nature of local mutations, coupled with surface morphology, have the ability to influence large patches of the water hydrogen-bonding network at the protein surface, which is correlated with stability. The solvent contribution can be experimentally probed via terahertz (THz) spectroscopy, thus opening the door to the exciting perspective of rational protein design in which a systematic tuning of hydration water properties allows manipulation of protein stability and enzymatic activity.
Collapse
Affiliation(s)
- Ellen
M. Adams
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Simone Pezzotti
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Jonas Ahlers
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Maximilian Rüttermann
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| | - Maxim Levin
- Department
of Biological Regulation, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Adi Goldenzweig
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Yoav Peleg
- Structural
Proteomics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Irit Sagi
- Department
of Biological Regulation, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Martina Havenith
- Lehrstuhl
für Physkalische Chemie II, Ruhr
Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
38
|
Wang R, Klein ML, Carnevale V, Borguet E. Investigations of water/oxide interfaces by molecular dynamics simulations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruiyu Wang
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
| | - Michael L. Klein
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
- Institute for Computational Molecular Science, Temple University Philadelphia Pennsylvania USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University Philadelphia Pennsylvania USA
- Department of Biology Temple University Philadelphia Pennsylvania USA
| | - Eric Borguet
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
| |
Collapse
|
39
|
Backus EHG, Schaefer J, Bonn M. Probing the Mineral-Water Interface with Nonlinear Optical Spectroscopy. Angew Chem Int Ed Engl 2021; 60:10482-10501. [PMID: 32558984 PMCID: PMC8247323 DOI: 10.1002/anie.202003085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/18/2020] [Indexed: 12/21/2022]
Abstract
The interaction between minerals and water is manifold and complex: the mineral surface can be (de)protonated by water, thereby changing its charge; mineral ions dissolved into the aqueous phase screen the surface charges. Both factors affect the interaction with water. Intrinsically molecular-level processes and interactions govern macroscopic phenomena, such as flow-induced dissolution, wetting, and charging. This realization is increasingly prompting molecular-level studies of mineral-water interfaces. Here, we provide an overview of recent developments in surface-specific nonlinear spectroscopy techniques such as sum frequency and second harmonic generation (SFG/SHG), which can provide information about the molecular arrangement of the first few layers of water molecules at the mineral surface. The results illustrate the subtleties of both chemical and physical interactions between water and the mineral as well as the critical role of mineral dissolution and other ions in solution for determining those interactions.
Collapse
Affiliation(s)
- Ellen H. G. Backus
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Physical ChemistryUniversity of ViennaWähringer Strasse 421090ViennaAustria
| | - Jan Schaefer
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
40
|
Backus EHG, Schaefer J, Bonn M. Untersuchung der Mineral‐Wasser‐Grenzschicht mit nicht‐linearer optischer Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ellen H. G. Backus
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
- Institut für Physikalische Chemie Universität Wien Währinger Straße 42 1090 Wien Österreich
| | - Jan Schaefer
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Mischa Bonn
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| |
Collapse
|
41
|
Yang J, Chen J, Fang H. Dipole orientation variation of hydration shell around alkali metal cation on hexagonal boron nitride sheet. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1919773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Junwei Yang
- School of Arts and Sciences, Shanghai Dianji University, Shanghai, People’s Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jige Chen
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Haiping Fang
- Department of Physics, East China University of Science and Technology, Shanghai, People’s Republic of China
| |
Collapse
|
42
|
Pezzotti S, Serva A, Sebastiani F, Brigiano FS, Galimberti DR, Potier L, Alfarano S, Schwaab G, Havenith M, Gaigeot MP. Molecular Fingerprints of Hydrophobicity at Aqueous Interfaces from Theory and Vibrational Spectroscopies. J Phys Chem Lett 2021; 12:3827-3836. [PMID: 33852317 PMCID: PMC9004482 DOI: 10.1021/acs.jpclett.1c00257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 05/28/2023]
Abstract
Hydrophobicity/hydrophilicity of aqueous interfaces at the molecular level results from a subtle balance in the water-water and water-surface interactions. This is characterized here via density functional theory-molecular dynamics (DFT-MD) coupled with vibrational sum frequency generation (SFG) and THz-IR absorption spectroscopies. We show that water at the interface with a series of weakly interacting materials is organized into a two-dimensional hydrogen-bonded network (2D-HB-network), which is also found above some macroscopically hydrophilic silica and alumina surfaces. These results are rationalized through a descriptor that measures the number of "vertical" and "horizontal" hydrogen bonds formed by interfacial water, quantifying the competition between water-surface and water-water interactions. The 2D-HB-network is directly revealed by THz-IR absorption spectroscopy, while the competition of water-water and water-surface interactions is quantified from SFG markers. The combination of SFG and THz-IR spectroscopies is thus found to be a compelling tool to characterize the finest details of molecular hydrophobicity at aqueous interfaces.
Collapse
Affiliation(s)
- Simone Pezzotti
- Université
Paris-Saclay, Univ Evry, CNRS, LAMBE
UMR8587, 91025 Evry-Courcouronnes, France
| | - Alessandra Serva
- Université
Paris-Saclay, Univ Evry, CNRS, LAMBE
UMR8587, 91025 Evry-Courcouronnes, France
| | - Federico Sebastiani
- Department
of Physical Chemistry II, Ruhr University
Bochum, D-44801 Bochum, Germany
| | - Flavio Siro Brigiano
- Université
Paris-Saclay, Univ Evry, CNRS, LAMBE
UMR8587, 91025 Evry-Courcouronnes, France
| | - Daria Ruth Galimberti
- Université
Paris-Saclay, Univ Evry, CNRS, LAMBE
UMR8587, 91025 Evry-Courcouronnes, France
| | - Louis Potier
- Université
Paris-Saclay, Univ Evry, CNRS, LAMBE
UMR8587, 91025 Evry-Courcouronnes, France
| | - Serena Alfarano
- Department
of Physical Chemistry II, Ruhr University
Bochum, D-44801 Bochum, Germany
| | - Gerhard Schwaab
- Department
of Physical Chemistry II, Ruhr University
Bochum, D-44801 Bochum, Germany
| | - Martina Havenith
- Department
of Physical Chemistry II, Ruhr University
Bochum, D-44801 Bochum, Germany
| | - Marie-Pierre Gaigeot
- Université
Paris-Saclay, Univ Evry, CNRS, LAMBE
UMR8587, 91025 Evry-Courcouronnes, France
| |
Collapse
|
43
|
Rehl B, Gibbs JM. Role of Ions on the Surface-Bound Water Structure at the Silica/Water Interface: Identifying the Spectral Signature of Stability. J Phys Chem Lett 2021; 12:2854-2864. [PMID: 33720727 DOI: 10.1021/acs.jpclett.0c03565] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Isolating the hydrogen-bonding structure of water immediately at the surface is challenging, even with surface-specific techniques like sum-frequency generation (SFG), because of the presence of aligned water further away in the diffuse layer. Here, we combine zeta potential and SFG intensity measurements with the maximum entropy method referenced to reported phase-sensitive SFG and second-harmonic generation results to deconvolute the SFG spectral contributions of the surface waters from those in the diffuse layer. Deconvolution reveals that at very low ionic strength, the surface water structure is similar to that of a neutral silica surface near the point-of-zero-charge with waters in different hydrogen-bonding environments oriented in opposite directions. This similarity suggests that the known metastability of silica colloids against aggregation under both conditions could arise from this distinct surface water structure. Upon the addition of salt, significant restructuring of water is observed, leading to a net decrease in order at the surface.
Collapse
Affiliation(s)
- Benjamin Rehl
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
44
|
Smirnov KS. Structure and sum-frequency generation spectra of water on neutral hydroxylated silica surfaces. Phys Chem Chem Phys 2021; 23:6929-6949. [PMID: 33729227 DOI: 10.1039/d0cp06465c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural organization and vibrational sum-frequency generation (VSFG) spectra of water on crystalline and amorphous neutral silica surfaces were investigated by classical molecular dynamics simulations. The liquid phase represented with neat water and 1 M NaCl solution was analysed in terms of bonded interfacial layer (BIL), diffuse layer (DL) and bulk region. The simulations show that the structure of BIL depends on the surface morphology and density of surface OH groups. The water-silanol H-bond network and BIL structure are mainly insensitive to the presence of ions in the liquid phase. Molecules in DL of SiO2/neat water interfaces preferentially orient their OH bonds towards the surfaces. This effect is directly related to an effective negative charge of formally neutral surfaces. Ions of the electrolyte solution affect the intermolecular structure in DL by screening the surface electric field and by the chaotropic effect. Calculated phase-sensitive VSFG (Im[χ(2)]) spectrum of BIL features low-frequency negative and high-frequency positive bands. Characteristics of the positive band reflect the strength of water-surface interactions and surface crystallinity, while the position and shape of the negative band are common to all interfaces. The Im[χ(2)] spectrum of DL is dominated by a contribution from the third-order χ(3) susceptibility with the sign of the contribution directly related to the sign of electrostatic potential in the interfacial region. The DL spectrum is strongly affected by the presence of solvated ions. The computed intensity and Im[χ(2)] spectra of the amorphous silica/NaCl solution interface are in a good agreement with the conventional and phase-sensitive experimental VSFG spectra of fused SiO2/water system at low pH, in contrast to the spectra of the amorphous silica/neat water interface. Origins of the discrepancy are discussed.
Collapse
Affiliation(s)
- Konstantin S Smirnov
- Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'Environnement, F-59000 Lille, France.
| |
Collapse
|
45
|
David R, Tuladhar A, Zhang L, Arges C, Kumar R. Effect of Oxidation Level on the Interfacial Water at the Graphene Oxide-Water Interface: From Spectroscopic Signatures to Hydrogen-Bonding Environment. J Phys Chem B 2020; 124:8167-8178. [PMID: 32804501 PMCID: PMC7503515 DOI: 10.1021/acs.jpcb.0c05282] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
The interfacial region
of the graphene oxide (GO)-water system
is nonhomogenous due to the presence of two distinct domains: an oxygen-rich
surface and a graphene-like region. The experimental vibrational sum-frequency
generation (vSFG) spectra are distinctly different for the fully oxidized
GO-water interface as compared to the reduced GO-water case. Computational
investigations using ab initio molecular dynamics were performed to
determine the molecular origins of the different spectroscopic features.
The simulations were first validated by comparing the simulated vSFG
spectra to those from the experiment, and the contributions to the
spectra from different hydrogen bonding environments and interfacial
water orientations were determined as a function of the oxidation
level of the GO sheet. The ab initio simulations also revealed the
reactive nature of the GO-water interface.
Collapse
Affiliation(s)
- Rolf David
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Aashish Tuladhar
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Le Zhang
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Christopher Arges
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|