1
|
Li D, Jiang Z, Zheng S, Fu C, Wang P, Cheng Y. Tunable circularly polarized electroluminescence behaviors from chiral co-assembled conjugated liquid crystal polymers. J Colloid Interface Sci 2025; 678:1213-1222. [PMID: 39342866 DOI: 10.1016/j.jcis.2024.09.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Chiral co-assembly strategy has proven effective in increasing the dissymmetry factor (gEL) of the emitting layers (EMLs) in circularly polarized organic light-emitting diodes (CP-OLEDs). Therefore, it is crucial to investigate the molecular structures that facilitate chiral co-assembly for further amplification of circularly polarized electroluminescence (CP-EL) signals. In this study, three types of achiral conjugated liquid crystal (LC) polymers (PFPh, PFNa and PFPy) and chiral binaphthyl-based polymer inducers (R/S-FO) were synthesized to construct corresponding chiral co-assemblies (R/S-FO)0.1-(PFPh/Na/Py)0.9 as EMLs for CP-OLEDs through strong intermolecular π-π stacking interactions. Interestingly, these resulting chiral co-assembled EMLs exhibited tunable CP-EL behaviors caused by the different conjugation linkers of LC polymers. Among them, the deep blue devices based on (R/S-FO)0.1-(PFNa)0.9 emitted the strongest CP-EL signals (|gEL| = 0.014, Lmax = 3039 cd m-2, CEmax = 1.16 cd A-1). It is attributed to the formation of ordered helical nanofibers facilitated by the excellent intermolecular compatibility due to the same naphthyl moieties in PFNa and R/S-FO. This study provides novel perspectives for developing high-performance CP-EL materials in chiral co-assembly systems.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Zhenhao Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Suwen Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Chunya Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China
| | - Pengxiang Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Ren L, Lu X, Yan J, Zhang A, Li W. Hierarchical assembly of thermoresponsive helical dendronized poly(phenylacetylene)s through photo-crosslinking of the thermal aggregates. J Colloid Interface Sci 2025; 677:928-940. [PMID: 39128287 DOI: 10.1016/j.jcis.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Supramolecular assembly of helical homopolymers to form stable chiral entities in water is highly valuable for creating chiral nanostructures and fabricating chiral biomaterials. Here we report on thermally induced supramolecular assembly of helical dendronized poly(phenylacetylene)s (PPAs) in aqueous solutions, and their in-situ photo-crosslinking at elevated temperatures to afford crosslinked nano-assemblies with hierarchical structures and stabilized helicities. These helical dendronized homopolymers carry cinnamate-cored dendritic oligoethylene glycol (OEG) pendants, which exhibit characteristic thermoresponsive behavior. Their thermal aggregation confers hexagonal packing of the polymer chains, and simultaneously resulting in enhancement of their chiralities. Assisted by radial amphiphilicity and worm-like molecular geometry, these dendronized PPAs form supramolecular twisted fibers, spheroid particles or toroids via thermal aggregation. Through UV photoirradiation above their cloud points (Tcps), cycloaddition of cinnamate moieties from the dendritic pendants promotes intermolecular crosslinking of dendronized PPA chains within the thermal aggregates, and simultaneously, the dynamic morphologies and supramolecular chirality from the dendronized PPAs through thermally induced aggregation can be fixed. In addition, photo-crosslinking can be occurred solely within individual aggregates due to the protection of densely packed dendritic OEGs. Therefore, various crosslinked assemblies from the dendronized homopolymers with tailorable morphologies and stabilized chirality are fabricated by tuning their thermally induced dynamic aggregations followed by in-situ photo-crosslinking. We believe that this work paves a convenient route to fabricate chiral assemblies with stabilized morphologies and fixed chiralities from dynamic helical homopolymers through intermolecular crosslinking, which can be promising for various chiral applications.
Collapse
Affiliation(s)
- Liangxuan Ren
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Xueting Lu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Mailbox 152, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
3
|
Okuda S, Ikai T, Okutsu H, Ando M, Hattori M, Ishidate R, Yashima E. Helix-Sense-Selective Memory Polymerization of Biphenylylacetylenes Bearing Carboxy and Amino Groups in Water. Angew Chem Int Ed Engl 2024; 63:e202412752. [PMID: 39043565 DOI: 10.1002/anie.202412752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
We report the helix-sense-selective memory polymerization (HSMP) of achiral biphenylylacetylenes bearing carboxy and amino pendant groups in the presence of basic and acidic chiral guests in water, respectively. The HSMP proceeds in a highly helix-sense-selective manner driven by noncovalent chiral ionic interactions between the monomers and guests under kinetic control, producing the one-handed helical polymers with a static memory of helicity in one-pot during the polymerization in a very short time, accompanied by amplification of asymmetry. The carboxy-bound helicity-memorized polymer self-assembles into a cholesteric liquid crystal in concentrated water, in which a variety of basic achiral fluorophores further co-assembles to form supramolecular helical aggregates that exhibit an induced circularly polarized luminescence in a color tunable manner.
Collapse
Affiliation(s)
- Shogo Okuda
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tomoyuki Ikai
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) Kawaguchi, Saitama, 332-0012, Japan
| | - Hinako Okutsu
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Mitsuka Ando
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Masaki Hattori
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Ryoma Ishidate
- Department of Molecular Design and Engineering Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Department of Molecular Design and Engineering Graduate School of Engineering, Nagoya University Chikusa-ku, Nagoya, 464-8603, Japan
- Present address: Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan, R.O.C
| |
Collapse
|
4
|
Wang X, Gao X, Zhong H, Yang K, Zhao B, Deng J. Three-Level Chirality Transfer and Amplification in Liquid Crystal Supramolecular Assembly for Achieving Full-Color and White Circularly Polarized Luminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412805. [PMID: 39487629 DOI: 10.1002/adma.202412805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Indexed: 11/04/2024]
Abstract
Chiral liquid crystal supramolecular assembly provides an ideal strategy for constructing excellent circularly polarized luminescence (CPL) materials. However, the chirality transfer in chiral liquid crystals normally occurs at two levels from the configurational chirality to the supramolecular phase chirality. The more precise and more levels of chirality transmission are fascinating but remain challenging. The present work reports the first success of three-level chirality transfer and amplification from configurationally point chirality of small molecules to conformationally helical chirality of helical polymers and finally to supramolecular phase chirality of cholesteric liquid crystals composed of chiral nonfluorescent polymers (P46) and nematic liquid crystals. Noticeably, the helical twisting power of P46 is five-fold larger than its monomer. Full-color and white CPL with maximum luminescence dissymmetry factor up to 1.54 and photoluminescence quantum yield up to 63.8% are realized utilizing helical supramolecular assembly combined with selective reflection mechanism. Also significantly, the electrically stimuli-responsive CPL switching device as well as anti-counterfeiting security, information encryption, and chiral logic gate applications are developed. This study deepens the understanding of chirality transfer and amplification across different hierarchical levels.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinhui Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Liu ZF, Liu XX, Zhang H, Zeng L, Niu LY, Chen PZ, Fang WH, Peng X, Cui G, Yang QZ. Intense Circularly Polarized Luminescence Induced by Chiral Supramolecular Assembly: The Importance of Intermolecular Electronic Coupling. Angew Chem Int Ed Engl 2024; 63:e202407135. [PMID: 39018249 DOI: 10.1002/anie.202407135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron β-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by single-crystal XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθμ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Xin Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Han Zhang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lan Zeng
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Peng-Zhong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ganglong Cui
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
6
|
Zong Y, Gao RT, Liu N, Luo J, Chen Z, Wu ZQ. Helical Polyallenes: From Controlled Synthesis to Distinct Properties. Macromol Rapid Commun 2024:e2400671. [PMID: 39388665 DOI: 10.1002/marc.202400671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Polyallenes with appropriate pendants can form stable helices and exhibit significant optical activity. These helical polyallenes contain reactive double bonds that allow for further functionalization, making them a class of chiral functional materials with broad application prospects. This review article delves into the intricacies of synthesizing well-defined helical polyallenes through controlled synthetic methodologies, including helix-sense selective living polymerization, regioselective and asymmetric living polymerization, and one-pot block copolymerization of allenes with aryl monomers. The systemically outlined characteristics of the resulting helical polyallenes and related copolymers are summarized include their unique chiroptical properties, stimuli-responsiveness, helix-induced chiral self-assembly, and circularly polarized luminescence (CPL). Additionally, current challenges and future perspectives in the research of controlled synthesis, functionalities, and applications of helical polyallenes are discussed in detail.
Collapse
Affiliation(s)
- Yang Zong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Jing Luo
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230009, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
7
|
Wang X, Yang K, Zhao B, Deng J. Polymeric Cholesteric Superhelix Induced by Chiral Helical Polymer for Achieving Full-Color Circularly Polarized Room-Temperature Phosphorescence with Ultra-High Dissymmetry Factor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404576. [PMID: 38881334 DOI: 10.1002/smll.202404576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Circularly polarized room-temperature phosphorescence (CPRTP) simultaneously featuring multiple colors and extremely high dissymmetry factor (glum) is crucial for increasing the complexity of optical characteristics and advancing further development, but such a type of CPRTP is still unprecedented. The present work develops an effective and universal strategy to achieve full-color CPRTP with ultra-high glum factors in a polymeric cholesteric superhelix network, which is constructed by cholesteric liquid crystal polymer and chiral helical polymer (CHP). Taking advantage of the high helical twisting power of CHP, the resulting polymeric cholesteric superhelix network exhibits remarkable optical activity. Significantly, by adopting a simple double-layered architectures consisting of the cholesteric superhelix film and phosphorescent films, blue-, green-, yellow-, and red-CPRTP emissions are successfully obtained, with maximum |glum| values up to 1.43, 1.39, 1.09 and 0.84, respectively. Further, a multilevel information encryption application is demonstrated based on the multidimensional optical characteristics of the full-color double-layered CPRTP architectures. This study offers new insights into fabricating polymeric cholesteric superhelix with considerable CPRTP performance in advanced photonic applications.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Yang K, Zhang R, Liu Y, Zhao B, Wu Y, Deng J. Circularly Polarized Phosphorescence Energy Transfer Combined with Chirality-Selective Absorption for Modulating Full-Color and White Circularly Polarized Long Afterglow. Angew Chem Int Ed Engl 2024; 63:e202409514. [PMID: 38987891 DOI: 10.1002/anie.202409514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Circularly polarized long afterglow (CPLA) attracts great interests in multi-disciplinary fields with significant potentials in optical multiplexing applications, but achieving full-color and white CPLA is still challenging. The present contribution reports the first success in utilizing circularly polarized phosphorescence energy transfer (CPP-ET) combined with chirality-selective absorption (CSA) to construct full-color and white CPLA materials. Blue CPLA with luminescence dissymmetry factor (glum) of 3×10-2 is firstly obtained via the CSA effect of chiral helical polyacetylene and blue ultralong afterglow of inorganic phosphor BP. Significantly, full-color and white CPLA films are prepared by simply blending different fluorophores into the blue-CPLA films via CPP-ET. Benefited from the persistent luminescence of BP, the lifetimes of the fluorophores increase from nanoseconds to minutes, and ultralong full-color CPLA emissions lasting for more than 20 min are realized with glum of 10-3. Also noticeably, chiral optoelectronic devices, multi-dimension information encryption and chiral logic gate are developed based on the full-color tunable CPLA-active materials. The established strategy provides a universal platform for future development of CPLA-active materials with great applications.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Run Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanze Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Youping Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
9
|
Tang X, Zhang K, Xue R, Zheng Y, Chen S, Zheng S, Fan J, Zhang Y, Ye W, Zhang W, Cai S, Liu Y. Self-Standing Chiral Covalent Organic Framework Thin Films with Full-Color Tunable Guest-Induced Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202413171. [PMID: 39193661 DOI: 10.1002/anie.202413171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Exploring self-standing chiral covalent organic framework (COF) thin films with controllable circularly polarized luminescence (CPL) is of paramount significance but remains a challenging task. Herein, we demonstrate the first example of self-standing chiral COF films employing a polymerization-dispersion-filtration strategy. Pristine, low-quality chiral COF films were produced by interfacial polymerization and then re-dispersed into COF colloidal solutions. Via vacuum assisted assembly, these COF colloids were densely stacked and assembled into self-standing, pure chiral COF films (L-/D-CCOF-F) that were transparent, smooth, crack-free and highly crystalline. These films were tunable in thicknesses, areas, and roughness, along with strong diffuse reflectance circular dichroism (DRCD) and cyan CPL signals, showing an intrinsic luminescence asymmetric factor (glum) of ~4.3×10-3. Furthermore, these COF films served as host adsorbents to load various achiral organic dye guests through adsorption. The effective chiral transfer and energy transfer between CCOF-F and achiral fluorescent dyes endowed the dyes with strong chirality and tunable DRCD, resulting in intense, full-color-tunable solid-state CPL. Notably, the ordered arrangement of dye guest molecules within the preferentially oriented chiral pores of CCOF-F contributed to an amplified |glum| factor of up to 7.2×10-2, which is state-of-the-art for COF-based CPL materials. This work provides new insights into the design and fabrication of self-standing chiral COF films, demonstrating their great potential for chiroptical applications.
Collapse
Affiliation(s)
- Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | | | - Yuexin Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Simin Chen
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Yuwei Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Weiping Ye
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| |
Collapse
|
10
|
Yang T, Duan H, Nian H, Wang P, Yan C, Cao F, Li Q, Cao L. Unraveling the structure-chirality sensing relationship between achiral anthracene-based tetracationic nanotubes and nucleosides in aqueous host-guest complexation. Biosens Bioelectron 2024; 258:116342. [PMID: 38705071 DOI: 10.1016/j.bios.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In biological systems, nucleosides play crucial roles in various physiological processes. In this study, we designed and synthesized four achiral anthracene-based tetracationic nanotubes (1-4) as artificial hosts and chiroptical sensors for nucleosides in aqueous media. Notably, different nanotubes exhibit varied chirality sensing on circular dichroism (CD)/circularly polarized luminescence (CPL) spectra through the host-guest complexation, which prompted us to explore the factors influencing their chiroptical responses. Through systematic host-guest experiments, the structure-chirality sensing relationship between achiral anthracene-based tetracationic nanotubes and nucleosides in the host-guest complexation was unraveled. Firstly, the CD response originates from the anthracene rings situated at the side-wall position, resulting from the right-handed (P)- or left-handed (M)-twisted conformation of the macrocyclic structure. Secondly, the CPL signal is influenced by the presence of anthracene rings at the linking-wall position, which results from intermolecular chiral twisted stacking between these anthracene rings. Therefore, these nanotubes can serve as chiroptical sensor arrays to enhance the accuracy of nucleotide recognition through principal component analysis (PCA) analysis based on the diversified CD spectra. This study provides insights for the construction of adaptive chirality from achiral nanotubes with dynamic conformational nature and might facilitate further design of chiral functional materials for several applications.
Collapse
Affiliation(s)
- Ting Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Honghong Duan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China; Xian North Qinghua Electrical Co., Ltd, Xi'an, 710054, China
| | - Hao Nian
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China; Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pingxia Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Chaochao Yan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Fan Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
11
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
12
|
Shao SW, Puneet P, Li MC, Ikai T, Yashima E, Ho RM. Chiral Luminophore Guided Self-Assembly of Achiral Block Copolymers for the Amplification of Circularly Polarized Luminescence. ACS Macro Lett 2024; 13:734-740. [PMID: 38814070 PMCID: PMC11191678 DOI: 10.1021/acsmacrolett.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
This work aims to examine the effect of self-assembly on the chiroptic responses of the achiral block copolymer (BCP) polystyrene-b-poly(ethylene oxide) (PS-b-PEO) associated with chiral luminophores, (R)- or (S)-1,1'-bi-2-naphthol ((R)- or (S)-BINOL), through hydrogen bonding. With the formation of a well-ordered helical phase (H*), significantly induced circular dichroism (ICD) signals for the PEO block in the mixture can be found. Most interestingly, a remarkable amplification with an extremely large dissymmetry factor of luminescence (glum) from 10-3 to 0.3 (i.e., induced circular polarized luminescence (iCPL) behavior) for the chiral BINOLs in the mixture can be achieved by the formation of the helical phase (H*) via mesochiral self-assembly. As a result, by taking advantage of BCP for mesochiral self-assembly, it is feasible to create a nanostructured monolith with substantial optical activities, offering promising applications in the design of chiroptic devices.
Collapse
Affiliation(s)
- Sheng-Wei Shao
- Department
of Chemical Engineering, National Tsing
Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, R.O.C.
| | - Puhup Puneet
- Department
of Chemical Engineering, National Tsing
Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, R.O.C.
| | - Ming-Chia Li
- Department
of Biological Science and Technology, Center for Intelligent Drug
Systems and Smart Bio-devices (IDS2B), National
Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.
| | - Tomoyuki Ikai
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Eiji Yashima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Rong-Ming Ho
- Department
of Chemical Engineering, National Tsing
Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, R.O.C.
| |
Collapse
|
13
|
Wang Z, Guo Z, Liu Y, Cui L, Wang Y, Yu H, Ji L. Photoisomerization and thermal reconstruction induced supramolecular chirality inversion in nanofiber determined by minority isomer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124138. [PMID: 38503253 DOI: 10.1016/j.saa.2024.124138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Here, amphiphile GCH based on glutamide-cyanostilbene is designed and synthesized, it is found that it can assembly in acetonitrile, and shows circular dichroism signals. After Z-E isomerizaition by UV irradiation, the CD signal of the assembly can be inverted. Unexpectedly, after another heating and cooling process, the circular dichroism signals can be totally inverted even though the E-isomers are in minority. Finally, the molecular dynamics (MD) simulations deeply elucidate the supramolecuar chirality inversion mechanism. This work brings some new insights into the control of chirality inversion, which may provide a perspective for the smart chiroptical materials construction.
Collapse
Affiliation(s)
- Zhixia Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Ziwei Guo
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Linfeng Cui
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Yuanyuan Wang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200 Hebei, China
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
14
|
Zhang G, Bao Y, Ma H, Wang N, Cheng X, He Z, Wang X, Miao T, Zhang W. Precise Modulation of Circularly Polarized Luminescence via Polymer Chiral Co-assembly and Contactless Dynamic Chiral Communication. Angew Chem Int Ed Engl 2024; 63:e202401077. [PMID: 38456382 DOI: 10.1002/anie.202401077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Circularly polarized luminescence (CPL) plays a pivotal role in cutting-edge display and information technologies. Currently achieving precise color control and dynamic signal regulation in CPL still remains challenging due to the elusory relationship between fluorescence and chirality. Inspired by the natural mechanisms governing color formation and chiral interaction, we proposed an addition-subtraction principle theory to address this issue. Three fluorene-based polymers synthesized by Suzuki polycondensation with different electron-deficient monomers exhibit similar structures and UV/Vis absorption, but distinct fluorescence emissions due to intramolecular charge transfer. Based on this, precise-color CPL-active films are obtained through quantitative supramolecular co-assembly directed by addition principle. Particularly, an ideal white-emitting CPL film (CIE coordinates: (0.33, 0.33)) is facilely fabricated with a high quantum yield of 80.8 % and a dissymmetry factor (glum) of 1.4×10-2. Structural analysis reveals that the ordered stacking orientation favors higher glum. Furthermore, to address the dynamically regulated challenge, the comparable subtraction principle is proposed, involving a contactless chiral communication between excited and ground states. The representative system consisting of as-prepared fluorene-based polymers and chirality-selective absorption azobenzene (Azo)-containing polymers is constructed, achieving CPL weakening, reversal, and enhancement. Finally, a switchable quick response code is realized based on trans-cis isomerization of Azo moiety.
Collapse
Affiliation(s)
- Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yinglong Bao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haotian Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Nianwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tengfei Miao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Department School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
15
|
Gao RT, Li SY, Liu BH, Chen Z, Liu N, Zhou L, Wu ZQ. One-pot asymmetric living copolymerization-induced chiral self-assemblies and circularly polarized luminescence. Chem Sci 2024; 15:2946-2953. [PMID: 38404389 PMCID: PMC10882484 DOI: 10.1039/d3sc06242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 02/27/2024] Open
Abstract
Controlled synthesis of conjugated block polymers enables the optimization of their self-assembly and may lead to distinct optical properties and functionalities. Herein, we report a direct chain extension of one-handed helical poly(acyl methane) with 1-ethynyl-4-iodo-2,5-bis(octyloxy)benzene, affording well-defined π-conjugated poly(acyl methane)-b-poly(phenylene ethynylene) copolymers. Although the distinct monomers are polymerized via different mechanisms, the one-pot copolymerization follows a living polymerization manner, giving the desired optically active block copolymers with controllable molar mass and low distribution. The block copolymerization induced chiral self-assembly simultaneously due to the one-handed helicity of the poly(acyl methane) block, giving spherical nanoparticles, one-handed helices, and chiral micelles with controlled dimensions regarding the composition of the generated copolymers. Interestingly, the chiral assemblies exhibit clear circularly polarized luminescence with tunable handedness and a high dissymmetric factor.
Collapse
Affiliation(s)
- Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Bing-Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University 1266 Fujin Road Changchun Jilin 130021 P.R. China
| | - Li Zhou
- Department of Polymer Science and Engineering, Hefei University of Technology Hefei 230009 China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
16
|
Rey-Tarrío F, Simón-Fuente S, Cuerva JM, Miguel D, Ribagorda M, Quiñoá E, Freire F. Metallo-Supramolecular Helical Fibres from Chiral Phenylacetylene Monomers: Cation Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202318454. [PMID: 38185794 DOI: 10.1002/anie.202318454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Chiral metallo-supramolecular fibres can be easily obtained by mixing a chloroform solution of a phenylacetylene monomer (PA) that bears a chiral sulfoxide group as pendant, with different equivalents of a methanolic solution of AgClO4 . Thus, while the PA is found molecularly dissolved in chloroform, the addition of Ag+ ions induce its aggregation through the formation of an axially chiral metallo-supramolecular aggregate with high thermal stable properties. In this case, the ability of the metal ion to coordinate the PA triple bond, combined with the argentophilicity of the metal ion and the planarity of the phenylacetylene drives to the formation of a helical coordination polymer, whose P or M axial chirality is determined by the chirality of the sulfoxide used as substituent of the PA. Depending on the PA/Ag+ (mol/mol) ratio, it is possible to tune the morphology of the metallo-supramolecular aggregate from chiral fibers to chiral gel.
Collapse
Affiliation(s)
- Francisco Rey-Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Silvia Simón-Fuente
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica. Facultad de Ciencias, Universidad de Granada (UGR), Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), 18071, Granada, Spain
| | - Delia Miguel
- Departamento de Fisicoquímica. Facultad de Farmacia, Universidad de Granada (UGR, UEQ), 18071, Granada, Spain
| | - Maria Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Zou H, Zhao S, Wu Q, Chu B, Zhou L. One-Pot Synthesis, Circularly Polarized Luminescence, and Controlled Self-Assembly of Janus-Type Miktoarm Star Copolymers. ACS Macro Lett 2024:227-233. [PMID: 38300520 DOI: 10.1021/acsmacrolett.3c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
With the aim of broadening the scope of Janus-type polymers with new functionalities, Janus-type miktoarm star copolymers comprising helical poly(phenyl isocyanide) (PPI) and a vinyl polymer were designed and synthesized via a combination of Pd(II)-initiated isocyanide polymerization and atom transfer radical polymerization (ATRP). A functional β-cyclodextrin bearing 7 Pd(II) complexes at one side and 14 bromine groups at the other side ((Pd(II))7-CD-(Br)14) was prepared and used as an initiator for the one-pot polymerization of phenyl isocyanide and the ATRP of vinyl monomers in a living and controlled manner. A variety of Janus-type copolymers with different structures and tunable compositions were facilely obtained by using this method. Thus, Janus-type copolymers composed of helical PPIs and tetraphenylethylene-modified vinyl polymers exhibited a significant circularly polarized luminescence performance in both soluble and aggregated states. Meanwhile, Janus-type copolymers containing PPIs and hydrophilic vinyl polymers presented amphiphilicity and self-assembled into diverse morphologies.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Shuyang Zhao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Qiliang Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 23200 Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009 Anhui, China
| |
Collapse
|
18
|
Zhou Y, Wang Y, Song Y, Zhao S, Zhang M, Li G, Guo Q, Tong Z, Li Z, Jin S, Yao HB, Zhu M, Zhuang T. Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence. Nat Commun 2024; 15:251. [PMID: 38177173 PMCID: PMC10767107 DOI: 10.1038/s41467-023-44643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Colorful circularly polarized luminescence materials are desired for 3D displays, information security and asymmetric synthesis, in which single-emitted materials are ideal owing to self-absorption avoidance, evenly entire-visible-spectrum-covered photon emission and facile device fabrication. However, restricted by the synthesis of chiral broad-luminescent emitters, the realization and application of high-performing single-emitted full-color circularly polarized luminescence is in its infancy. Here, we disclose a single-emitted full-color circularly polarized luminescence system (spiral full-color emission generator), composed of whole-vis-spectrum emissive quantum dots and chiral liquid crystals. The system achieves a maximum luminescence dissymmetry factor of 0.8 and remains an order of 10-1 in visible region by tuning its photonic bandgap. We then expand it to a series of desired customized-color circularly polarized luminescence, build chiral devices and further demonstrate the working scenario in the photoinduced enantioselective polymerization. This work contributes to the design and synthesis of efficient chiroptical materials, device fabrication and photoinduced asymmetric synthesis.
Collapse
Affiliation(s)
- Yajie Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yaxin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yonghui Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shanshan Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Mingjiang Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guangen Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Guo
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zhi Tong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zeyi Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shan Jin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, PR China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, PR China
| | - Taotao Zhuang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
19
|
Nakajima T, Tashiro S, Ehara M, Shionoya M. Selective synthesis of tightly- and loosely-twisted metallomacrocycle isomers towards precise control of helicity inversion motion. Nat Commun 2023; 14:7868. [PMID: 38057325 DOI: 10.1038/s41467-023-43658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Molecular twist is a characteristic component of molecular machines. Selectively synthesising isomers with different modes of twisting and controlling their motion such as helicity inversion is an essential challenge for achieving more advanced molecular systems. Here we report a strategy to control the inversion kinetics: the kinetically selective synthesis of tightly- and loosely-twisted isomers of a trinuclear PdII-macrocycle and their markedly different molecular behaviours. The loosely-twisted isomers smoothly invert between (P)- and (M)-helicity at a rate of 3.31 s-1, while the helicity inversion of the tightly-twisted isomers is undetectable but rather relaxes to the loosely-twisted isomers. This critical difference between these two isomers is explained by the presence or absence of an absolute configuration inversion of the nitrogen atoms of the macrocyclic amine ligand. Strategies to control the helicity inversion and structural loosening motions by the mode of twisting offer future possibilities for the design of molecular machines.
Collapse
Affiliation(s)
- Tomoki Nakajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
Li Y, Chen Y, Li H, Liu C, Li L, Quan Y, Cheng Y. Achiral Dichroic Dyes-mediated Circularly Polarized Emission Regulated by Orientational Order Parameter through Cholesteric Liquid Crystals. Angew Chem Int Ed Engl 2023; 62:e202312159. [PMID: 37776155 DOI: 10.1002/anie.202312159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023]
Abstract
It is noteworthy that cholesteric liquid crystal (CLC) platforms have been witnessed in high-performance circularly polarized luminescence (CPL) behaviors through the highly organized chiral co-assembled arrangement of achiral dyes. However, most CPL-active design strategies are closely relative to the helix co-assembly structure of CLC rather than achiral dyes. Herein, we developed an intriguing regulation strategy for CPL-active CLC materials. They were regulated using the orientational order parameter (SF ) of achiral dichroic dyes as an incisive probe for the order arrangement degree of achiral dyes in CLC media. The I-shaped phenothiazine derivative PHECN dye (SF =0.30) emitted a strong CPL signal (|glum |=0.47). In contrast, the T-shaped derivative (PHEBen) dye (SF =0.09) showed a weak circular polarization level (|glum |=0.07) at similar CLC textures. Most interestingly, this kind of dichroic PHECN dye with a higher SF could greatly improve the contrast ratio of CPL (Δglum =0.47) and emission intensity (ΔFL=46.0 %) at direct-current electric field compared with the T-shaped PHEBen (Δglum =0.07 and ΔFL=1.0 %) in CLC. This work demonstrates that an induced CPL emission can be mediated using achiral dichroic dye, which will open a new avenue for developing excellent CPL-active display materials.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chao Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lulu Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
21
|
Xu L, Zhou L, Li YX, Gao RT, Chen Z, Liu N, Wu ZQ. Thermo-responsive chiral micelles as recyclable organocatalyst for asymmetric Rauhut-Currier reaction in water. Nat Commun 2023; 14:7287. [PMID: 37949865 PMCID: PMC10638429 DOI: 10.1038/s41467-023-43092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Developing eco-friendly chiral organocatalysts with the combined advantages of homogeneous catalysis and heterogeneous processes is greatly desired. In this work, a family of amphiphilic one-handed helical polyisocyanides bearing phosphine pendants is prepared, which self-assembles into well-defined chiral micelles in water and showed thermo-responsiveness with a cloud point of approximately 38.4 °C. The micelles with abundant phosphine moieties at the interior efficiently catalyze asymmetric cross Rauhut-Currier reaction in water. Various water-insoluble substrates are transferred to target products in high yield with excellent enantioselectivity. The yield and enantiomeric excess (ee) of the product generated in water are up to 90% and 96%, respectively. Meanwhile, the yields of the same R-C reaction catalyzed by the polymer itself in organic solvents is <16%, with an ee < 72%. The homogeneous reaction of the chiral micelles in water turns to heterogeneous at temperatures higher than the cloud point, and the catalyst precipitation facilitates product isolation and catalyst recovery. The polymer catalyst is recycled 10 times while maintaining activity and enantioselectivity.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, 235000, Huaibei, Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, Hefei University of Technology, 230009, Hefei, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, 130021, Changchun, Jilin, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China.
| |
Collapse
|
22
|
Yin K, Zhang J, Xing P, Li H. Chiral Polymer Dots Show Unexpected Versatility of Highly Ordered Self-Assembly into Chiroptical Liquid Crystals, Ultra-Thin Films, and Long-Ribbons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302668. [PMID: 37150858 DOI: 10.1002/smll.202302668] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/16/2023] [Indexed: 05/09/2023]
Abstract
Compared to the organic counterparts, chiral self-assembly of nanomaterials shows persistency to kinetic factors such as solvent environments, and consequently, dynamic modulation of self-assembly and functions remains major challenge. Here, it is shown that alkylated, chiral polymer dots (c-PDs) give highly ordered self-assemblies with amplified chirality adaptive to solvent environments, and one-to-many hierarchical aggregation can be realized. The c-PDs tended to self-assemble into nanohelices with cubic packing in the solid state, which, thanks to the thermo-responsiveness, transformed into thermic liquid crystals upon heating. Cotton effects and circularly polarized luminescence evidenced the chirality transfer from central chirality to supramolecular chirality. At the air-water interface, the c-PDs are self-assembled into monolayers, which further stack into multiple layers with chirality transfer and highly ordered packing. In addition, undergoing a good/poor solvent exchange, the c-PDs afforded ultra-long microribbons up to a length scale of millimeters, which are constituted by the bilayer lamellar stacking. The versatile chiral self-assembly modalities with long-range ordered packing arrays of carbonized c-PDs via solvent strategy are realized. This feature is comparable to the organic species, although the c-PDs have no atomic precise structures. This work would surely expand the applications of quantum dot ordered self-assembly with adaptiveness to kinetic factors.
Collapse
Affiliation(s)
- Keyang Yin
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Honguang Li
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
23
|
Yang S, Zhang S, Hu F, Han J, Li F. Circularly polarized luminescence polymers: From design to applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
24
|
Cheng X, Gan Y, Zhang G, Song Q, Zhang Z, Zhang W. Conformationally supramolecular chirality prevails over configurational point chirality in side-chain liquid crystalline polymers. Chem Sci 2023; 14:5116-5124. [PMID: 37206386 PMCID: PMC10189893 DOI: 10.1039/d3sc00975k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
In nature, the communication of primary amino acids in the polypeptides influences molecular-level packing, supramolecular chirality, and the resulting protein structures. In chiral side-chain liquid crystalline polymers (SCLCPs), however, the hierarchical chiral communication between supramolecular mesogens is still determined by the parent chiral source due to the intermolecular interactions. Herein, we present a novel strategy to enable the tunable chiral-to-chiral communication in azobenzene (Azo) SCLCPs, in which the chiroptical properties are not dominated by the configurational point chirality but by the conformationally supramolecular chirality that emerged. The communication of dyads biases supramolecular chirality with multiple packing preference, thereby overruling the configurational chirality of the stereocenter. The chiral communication mechanism between the side-chain mesogens is revealed through the systematic study of the chiral arrangement at the molecular level, including mesomorphic properties, stacking modes, chiroptical dynamics and further morphological dimensions.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Yijing Gan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Qingping Song
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
25
|
Xu L, Wu YJ, Gao RT, Li SY, Liu N, Wu ZQ. Visible Helicity Induction and Memory in Polyallene toward Circularly Polarized Luminescence, Helicity Discrimination, and Enantiomer Separation. Angew Chem Int Ed Engl 2023; 62:e202217234. [PMID: 36745050 DOI: 10.1002/anie.202217234] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/07/2023]
Abstract
Inspired by biological helices (e.g., DNA), artificial helical polymers have attracted intense attention. However, precise synthesis of one-handed helices from achiral materials remains a formidable challenge. Herein, a series of achiral poly(biphenyl allene)s with controlled molar mass and low dispersity were prepared and induced into one-handed helices using chiral amines and alcohols. The induced one-handed helix was simultaneously memorized, even after the chiral inducer was removed. The switchable induction processes were visible to naked eye; the achiral polymers exhibited blue emission (irradiated at 365 nm), whereas the induced one-handed helices exhibited cyan emission with clear circularly polarized luminescence. The induced helices formed stable gels in various solvents with helicity discrimination ability: the same-handed helix gels were self-healing, whereas the gels of opposite-handed helicity were self-sorted. Moreover, the induced helices could separate enantiomers via enantioselective crystallization with high efficiency and switchable enantioselectivity.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.,Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Yong-Jie Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui Province, 230009, China
| | - Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin, 130021, P. R. China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
26
|
Puneet P, Shao SW, Ho RM. Induced Circular Dichroism and Circularly Polarized Luminescence for Block Copolymers with Chiral Communications. Macromol Rapid Commun 2023; 44:e2200369. [PMID: 35836097 DOI: 10.1002/marc.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Many sophisticated chiral materials are found in living organisms, giving specific functions and required complexity. Owing to the remarkable optical properties of chiral materials, they have drawn significant attention for the development of synthetic materials to give optical activities for appealing applications. In contrast to a top-down approach, the bottom-up approach from self-assembled systems with chiral host-achiral guest and achiral guest-chiral host for induced circular dichroism and induced circularly polarized luminescence has greatly emerged because of its cost-effective advantage with easy fabrication for mesoscale assembly. Self-assembled hierarchical textures with chiral sense indeed give significant amplification of the dissymmetry factors of absorption and luminescence (gabs and glum ), resulting from the formation of well-ordered superstructures and phases with the building of chromophores and luminophores. By taking advantage of the microphase separation of block copolymers via self-assembly, a variety of well-defined chiral nanostructures can be formed as tertiary superstructures that can be further extended to quaternary phases in bulk or thin film. In this article, a conceptual perspective is presented to utilize the self-assembly of chiral block copolymers with chiral communications, giving quaternary phases with well-ordered textures at the nanoscale for significant enhancement of dissymmetry factors.
Collapse
Affiliation(s)
- Puhup Puneet
- Department of Chemical Engineering, National Tsing Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, Republic of China
| | - Sheng-Wei Shao
- Department of Chemical Engineering, National Tsing Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, Republic of China
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30013, Republic of China
| |
Collapse
|
27
|
Fan T, Huang X, Zheng S, Guo H, Yang F. Novel liquid crystals with circularly polarized luminescence induced by tartaric core. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202208574. [DOI: 10.1002/anie.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Song
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
29
|
Yang X, Lv J, Zhang J, Shen T, Xing T, Qi F, Ma S, Gao X, Zhang W, Tang Z. Tunable Circularly Polarized Luminescence from Inorganic Chiral Photonic Crystals Doped with Quantum Dots. Angew Chem Int Ed Engl 2022; 61:e202201674. [PMID: 35499962 DOI: 10.1002/anie.202201674] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 12/31/2022]
Abstract
Chiral semiconductor nanostructures have received enormous attention due to their emerging circularly polarized luminescence (CPL) properties. However, compared with well-studied photoluminescence (PL), the reported CPL is much weaker and more challenging to be modulated. Herein, we describe a new approach for acquiring the intense and tunable CPL from inorganic chiral photonic crystals (CPCs) doped with semiconductor quantum dots (QDs). Unprecedentedly, the sign, position and intensity of CPL peaks can be precisely controlled by manipulating either the photonic band gap of CPCs or luminescence wavelength of QDs and a giant absolute dissymmetry factor |glum | up to 0.25 is obtained. More importantly, the origin of the CPL modulation is clearly elucidated by both experiment and theory. This work lays the foundation for the construction of next-generation high-performance CPL-based devices.
Collapse
Affiliation(s)
- Xuekang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiawei Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Tianxi Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Tingyang Xing
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Fenglian Qi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shaohua Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, P. R. China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing, 100088, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
30
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Song
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Shuai Qiu
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Wei Tian
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
31
|
Yang KC, Reddy A, Tsai HW, Zhao W, Grason GM, Ho RM. Breaking Mirror Symmetry of Double Gyroids via Self-Assembly of Chiral Block Copolymers. ACS Macro Lett 2022; 11:930-934. [PMID: 35802510 DOI: 10.1021/acsmacrolett.2c00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significant enhancement of segment-scale chirality, as measured by vibrational circular dichroism (VCD), is observed in the helical phase (H*) of polylactide-based chiral block copolymers (BCPs*) due to the mesoscale chirality of the microphase-separated domains. Here, we report a weaker, yet meaningful, enhancement on the VCD signal of a double gyroid phase (DG) as compared to a double diamond phase (DD) and disordered phase from the same diblock BCPs*. Residual VCD enhancement indicates a weak degree of chiral symmetry breaking, implying the formation of a chiral double gyroid (DG*) instead of the canonical achiral form. Calculations on the basis of orientational self-consistent field theory, comparing coupling between the segmental-scale preference of an intradomain twist and morphological chirality, show that a transition between DG and DG* takes place above the critical chiral strength, driving a weak volume asymmetry between the two enantiomeric single networks of DG*. The formation of nanostructures with controllable mesoscale chiral asymmetry indicates a pathway for the amplification of optical activity driven by self-assembly.
Collapse
Affiliation(s)
- Kai-Chieh Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Abhiram Reddy
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Hsiu-Wen Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei Zhao
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510005, China
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
32
|
Kawasaki Y, Nakagawa M, Ito T, Imura Y, Wang KH, Kawai T. Chiral transcription from chiral Au nanowires to self-assembled monolayers of achiral azobenzene derivatives. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yukie Kawasaki
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Nakagawa
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Tomoki Ito
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yoshiro Imura
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Ke-Hsuan Wang
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Takeshi Kawai
- Department of Industrial Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
33
|
Yang M, Shi W, Liu S, Xu K. Multifunctional diphenyl ether-based, cross-linked polyisocyanide for efficient iodine capture and NO2-/SO32- electrochemical probing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Yang X, Lv J, Zhang J, Shen T, Xing T, Qi F, Ma S, Gao X, Zhang W, Tang Z. Tunable Circularly Polarized Luminescence from Inorganic Chiral Photonic Crystals Doped with Quantum Dots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuekang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiawei Lv
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jing Zhang
- Institute of Applied Chemistry Shanxi University Taiyuan 030006 P. R. China
| | - Tianxi Shen
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325000 P. R. China
| | - Tingyang Xing
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325000 P. R. China
| | - Fenglian Qi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shaohua Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaoqing Gao
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou 325000 P. R. China
| | - Wei Zhang
- Institute of Applied Physics and Computational Mathematics Beijing 100088 P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
35
|
Zhang Y, Yu C, Han L, Liu M, Guo Y, Zhang Z. In Situ Probe Supramolecular Self-Assembly Dynamics and Chirality Transfer Mechanism at Air-Water Interface. J Phys Chem Lett 2022; 13:3523-3528. [PMID: 35420041 DOI: 10.1021/acs.jpclett.2c00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The study of supramolecular self-assembly dynamics and the chirality transfer mechanism is of importance to the rational design of potentially functional chiral supramolecular materials and an understanding of the origin of homochirality in biological systems. Herein, we study the supramolecular assemblies constructed by the tetrakis(4-sulfonatophenyl) porphyrin (TPPS) molecules' adsorption on the enantiomer chiral amphiphilic molecules (l-/d-G12) using sum-frequency generation (SFG) and second harmonic generation (SHG) spectra. We first establish a dynamic model that involved adsorption and assembly and obtained the dynamic parameters by fitting this model. We then propose the chiral transfer mechanism from the chiral center of the l-/d-G12 molecule to the whole supramolecular assembly. Finally, we put forward an explanation that the sulfonic acid group and the phenyl group on the TPPS molecule show homochirality, but the porphyrin ring forms J-aggregation and shows mirror-symmetric structural chirality in the l-/d-G12 and TPPS self-assembly at these processes.
Collapse
Affiliation(s)
- Yuening Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Changhui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Linyu Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Minghua Liu
- University of Chinese Academy Sciences, Beijing 100049, China
- Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Yuan YX, Jia JH, Song YP, Ye FY, Zheng YS, Zang SQ. Fluorescent TPE Macrocycle Relayed Light-Harvesting System for Bright Customized-Color Circularly Polarized Luminescence. J Am Chem Soc 2022; 144:5389-5399. [PMID: 35302750 DOI: 10.1021/jacs.1c12767] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Artificial systems for sequential chirality transmission/amplification and energy relay are perpetual topics that entail learning from nature. However, engineering chiral light-harvesting supramolecular systems remains a challenge. Here, we developed new chiral light-harvesting systems with a sequential Förster resonance energy transfer process where a designed blue-violet-emitting BINOL (1,1'-Bi-2-naphthol) compound, BINOL-di-octadecylamide (BDA), functions as an initiator of chirality and light absorbance, a new green-emitting hexagonal tetraphenylethene-based macrocycle (TPEM) with aggregation-induced emission serves as a conveyor, and Nile red (NiR) or/and a near-infrared dye, tetraphenylethene (TPE)-based benzoselenodiazole (TPESe), are the terminal acceptors. Benefiting from the close contact and large optical overlap between donors and acceptors at each level, triad and tetrad relaying systems sequentially and efficiently furnish chirality transmission/amplification and energy transfer along the cascaded line BDA-TPEM-NiR (or/and TPESe), leading to bright customized-color circularly polarized luminescence (CPL) and bright white-light-emitting CPL (CIE coordinates: 0.33, 0.34) with an amplified dissymmetry factor (glum) of 3.5 × 10-2 over a wide wavelength range. This work provides a new direction for the construction of chiral light-harvesting systems for a broad range of applications in chiroptical physics and chemistry.
Collapse
Affiliation(s)
- Ying-Xue Yuan
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing-Hui Jia
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Pan Song
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Feng-Ying Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
37
|
Chen X, Zhang S, Chen X, Li Q. Tunable Circularly Polarized Luminescent Supramolecular Systems: Approaches and Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
38
|
Hu L, Zhu X, Yang C, Liu M. Two‐Dimensional Chiral Polyrotaxane Monolayer with Emergent and Steerable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | | | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid, Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Xue C, Xu L, Wang H, Li T, Liu M. Circularly Polarized Luminescence (CPL) from Pyrene‐Appended Cyclohexanediamides and Photoirradiation‐Tuned CPL Inversion. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenlu Xue
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Lifei Xu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Han‐Xiao Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Tiesheng Li
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| |
Collapse
|
40
|
Li H, Wang Y, Zhou Y, Yao Z, Huang W, Gao T, Yan P. Asymmetric induction in quadruple-stranded europium(III) helicates and circularly polarized luminescence. Dalton Trans 2022; 51:10973-10982. [DOI: 10.1039/d2dt01379g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral supramolecular lanthanide-helicates are regarded as promising chiroptical materials due to their combination of ground and excited state chirality and special luminescence property from Ln3+, named as circularly polarized luminescence...
Collapse
|
41
|
Hu L, Zhu X, Yang C, Liu M. Two-Dimensional Chiral Polyrotaxane Monolayer with Emergent and Steerable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2021; 61:e202114759. [PMID: 34816570 DOI: 10.1002/anie.202114759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/20/2022]
Abstract
Here, we propose a mechanically interlocked strategy to achieve a 2D chiral polyrotaxane (2D CPR) monolayer with emergent and steerable CPL activity by utilizing β-cyclodextrin as the chiral wheel and a luminescent dynamic covalent organic framework as 2D polymeric axle. Such methodology, integrating host-guest and dynamic covalent chemistry, enabled the direct construction of a delaminated 2D CPR monolayer with extraordinarily large size (up to tens of micrometers) and simultaneously endowed chirality to the extended 2D CPR network to generate CPL activity. Importantly, not only the structure but also the CPL performance of the 2D CPR network can be further regulated by the feeding amount of β-cyclodextrin. This work demonstrated a monolayered 2D CPR with CPL activity for the first time. The insightful structure-property relationship of the induced CPL will be of benefit for a deeper understanding of the excited-state chirality of 2D chiral nanomaterials.
Collapse
Affiliation(s)
- Liangyu Hu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China
| | | | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, ZhongGuanCun North First Street 2, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Zou H, Liang WQ, Wu QL, Zhou L, Hou XH, Liu N, Wu ZQ. Inducing enantioselective crystallization with and self-assembly of star-shaped hybrid polymers prepared via "grafting to" strategy. Chirality 2021; 34:61-69. [PMID: 34749440 DOI: 10.1002/chir.23387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
Helical polymers present some interesting and distinctive properties, and one of the most distinguished applications of them is the chiral recognition and resolution of enantiomers. In this work, star-shaped hybrid helical poly (phenyl isocyanide) (PPI) with polyhedral oligomeric silsesquioxanes (POSS) as the core was designed and synthesized by "grafting to" strategy. The homoarm star-shaped hybrid POSS-(PPI)8 was first obtained by the click reaction between azide-modified POSS (POSS-(N3 )8 ) and alkynyl-modified PPI (PPI-Alkynyl). The hybrid POSS-(PPI)8 was with predominated left-handed helical conformation and exhibited excellent ability in the enantioselective crystallization of racemic compounds. In the meantime, heteroarm star-shaped hybrid (PEG)4 -POSS-(PPI)4 was prepared by the click reaction of POSS-(N3 )8 with PPI-Alkynyl and alkynyl-modified poly (ethylene glycol) (PEG-Alkynyl). The hybrid (PEG)4 -POSS-(PPI)4 was amphiphilic, and it could self-assemble to form spherical micelles in aqueous solutions.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Wen-Quan Liang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Qi-Liang Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province, China
| |
Collapse
|
43
|
Fa S, Mizobata M, Nagano S, Suetsugu K, Kakuta T, Yamagishi TA, Ogoshi T. Reversible "On/Off" Chiral Amplification of Pillar[5]arene Assemblies by Dual External Stimuli. ACS NANO 2021; 15:16794-16801. [PMID: 34542992 DOI: 10.1021/acsnano.1c06975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report dual-stimuli, thermo- and photostimuli, responsive chiral assemblies, of planar-chiral pillar[5]arenes with azobenzene groups on their rims. The azobenzene-substituted planar-chiral pillar[5]arenes were synthesized by copper(I)-catalyzed alkyne-azide cycloaddition "click" reaction of azide-substituted planar-chiral pillar[5]arenes containing S or R stereogenic carbon atoms with an alkyne-substituted azobenzene. These decaazides with stereogenic carbons could act as starting points for a large library of planar-chiral pillar[5]arenes. Homeotropic alignment of azobenzenes, caused by the mesogenic property of the azobenzene groups, was induced by annealing a film of the azobenzene-substituted planar-chiral pillar[5]arenes. The alignment resulted in chiral propagation from the planar-chiral pillar[5]arene cores to the azobenzene area and caused significant chiral amplification consequently. These aligned chiral assemblies were collapsed by trans to cis photoisomerization of the azobenzene groups, resulting in chiral amplification off, and reconstructed by cis to trans thermo-isomerization, again turning on the chiral amplification.
Collapse
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Masayuki Mizobata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shusaku Nagano
- College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Kota Suetsugu
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takahiro Kakuta
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tada-Aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute (Nano-LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
44
|
Hu M, Ye FY, Du C, Wang W, Zhou TT, Gao ML, Liu M, Zheng YS. Tunable Circularly Polarized Luminescence from Single Crystal and Powder of the Simplest Tetraphenylethylene Helicate. ACS NANO 2021; 15:16673-16682. [PMID: 34545741 DOI: 10.1021/acsnano.1c06644] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tetraphenylethylene and its derivatives are a class of aggregation-induced emission (AIE) compounds that are most extensively and successfully studied. It has been found that the simplest TPE is easy to crystallize into homochiral M crystals or P crystals. However, no research on circularly polarized luminescence (CPL) of TPE solid is documented. In this paper, we report that TPE can grow into big and nonefflorescent single crystals in single helical conformation and has large birefringence that is comparative with commercially available products. The TPE single crystals can emit strong CPL with a very high glum value up to 0.53. Moreover, the sense and magnitude of CPL signals can be willfully tuned by simple rotation of the single crystal due to anisotropy of the crystals. This simple and promising CPL photonic material integrates emission, chirality, and birefringence together in one single crystal without needing an additional chiral dopant or conjugate polymer that can produce linearly polarized light. After being ground into fine powder and pressed as KBr pellets, the obtained nanocrystals of TPE also emit strong CPL light. Exceptionally, by mixing other achiral luminescent dyes together with TPE powder in KBr pellets, induced CPL signals were obtained, which could give full-color CPL emission. Although there were no interactions between TPE and the dyes in the pellets, induced CPL signals were realized through radiative energy transfer, providing a very simple method for the tuning of CPL emission.
Collapse
Affiliation(s)
- Ming Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng-Ying Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Ting-Ting Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miao-Li Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
45
|
Zhao J, Xing P. Regulation of Circularly Polarized Luminescence in Multicomponent Supramolecular Coassemblies. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jianjian Zhao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| |
Collapse
|
46
|
Li Q, Zhang J, Wang Y, Zhang G, Qi W, You S, Su R, He Z. Self-Assembly of Peptide Hierarchical Helical Arrays with Sequence-Encoded Circularly Polarized Luminescence. NANO LETTERS 2021; 21:6406-6415. [PMID: 34014681 DOI: 10.1021/acs.nanolett.1c00697] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled peptide materials with sequence-encoded properties have attracted great interest. Despite their intrinsic chirality, the generation of circularly polarized luminescence (CPL) based on the self-assembly of simple peptides has been rarely reported. Here, we report the self-assembly of peptides into hierarchical helical arrays (HHAs) with controlled supramolecular handedness. The HHAs can emit full-color CPL signals after the incorporation of various achiral fluorescent molecules, and the glum value is 40 times higher than that of the CPL signal from the solutions. By simply changing the amino acid sequence of the peptides, CPL signals with opposite handedness can be generated within the HHAs. The peptide HHAs can provide hydrophobic pockets to accommodate the fluorescent molecules with helical arrangement through strong aromatic stacking interactions, which are responsible for the CPL signals. This work provides a pathway to construct highly ordered chiral materials, which have broad applications in the chiroptical field.
Collapse
Affiliation(s)
- Qing Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Gong Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Shengping You
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
47
|
Li ZQ, Gong ZL, Shao JY, Yao J, Zhong YW. Full-Color and White Circularly Polarized Luminescence of Hydrogen-Bonded Ionic Organic Microcrystals. Angew Chem Int Ed Engl 2021; 60:14595-14600. [PMID: 33822449 DOI: 10.1002/anie.202103091] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Indexed: 01/08/2023]
Abstract
A simple and general method is presented herein for the in situ preparations of circularly polarized luminescence (CPL)-active microcrystals with a large luminescence dissymmetry factor glum , high fluorescence quantum efficiency (ΦFL ), wide emission color tenability, and well-ordered morphology. The reactions of pyridine-containing achiral molecules 1-7 with chiral camphor sulfonic acid ((±)-CSA) gave crystalline microplates formed by hydrogen bonding interactions between the protonated pyridinium units and the sulfonic anions. The chiral information of CSA are effectively transferred to the microcrystals by hydrogen bonding to afford full-color CPL from deep-blue to red with glum in the order of 10-2 and ΦFL up to 80 %. Moreover, organic microcrystals with high-performance white CPL (ΦFL =46 %; |glum |=0.025) are achieved via the light-harvesting energy transfer between blue and yellow emitters.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Liang Gong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiang-Yang Shao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Hamada Y, Tokoro Y, Oyama T. Chiral Self‐Sorting of Diformylated
N
‐Hetero‐
ortho
‐phenylene Hexamers by Macrocyclization with Aromatic Diamines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshihiro Hamada
- Department of Advanced Chemistry Faculty of Engineering Yokohama National University 79-5 Tokiwadai Hodogaya-ku Yokohama 240-8501 Japan
| | - Yuichiro Tokoro
- Department of Applied Chemistry School of Applied Science National Defense Academy of Japan 1-10-20 Hashirimizu Yokosuka Kanagawa 239-8686 Japan
| | - Toshiyuki Oyama
- Department of Advanced Chemistry Faculty of Engineering Yokohama National University 79-5 Tokiwadai Hodogaya-ku Yokohama 240-8501 Japan
| |
Collapse
|
49
|
Li Z, Gong Z, Shao J, Yao J, Zhong Y. Full‐Color and White Circularly Polarized Luminescence of Hydrogen‐Bonded Ionic Organic Microcrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhong‐Qiu Li
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhong‐Liang Gong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiang‐Yang Shao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Jiannian Yao
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu‐Wu Zhong
- Key Laboratory of Photochemistry Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
50
|
Hierarchical communication of chirality for aromatic oligoamide sequences. Nat Commun 2021; 12:2659. [PMID: 33976219 PMCID: PMC8113567 DOI: 10.1038/s41467-021-22984-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
The communication of chirality at a molecular and supramolecular level is the fundamental feature capable of transmitting and amplifying chirality information. Yet, the limitation of one-step communication mode in many artificial systems has precluded the ability of further processing the chirality information. Here, we report the chirality communication of aromatic oligoamide sequences within the interpenetrated helicate architecture in a hierarchical manner, specifically, the communication is manipulated by three sequential steps: (i) coordination, (ii) concentration, and (iii) ion stimulus. Such approach enables the information to be implemented progressively and reversibly to different levels. Furthermore, the chiral information on the side chains can be accumulated and transferred to the helical backbones of the sequences, resulting in that one of ten possible diastereoisomers of the interpenetrated helicate is finally selected. The circular dichroism experiments with a mixture of chiral and achiral ligands demonstrate a cooperative behavior of these communications, leading to amplification of chiral information. Communication of chirality at a molecular level is the fundamental for transmitting chirality information but one-step communication modes in many artificial systems limits further processing the chirality information. Here, the authors report chirality communication of aromatic oligoamide sequences within interpenetrated helicate architecture in a hierarchical manner.
Collapse
|