1
|
Knutson SD, Pan CR, Bisballe N, Bloomer BJ, Raftopolous P, Saridakis I, MacMillan DWC. Parallel Proteomic and Transcriptomic Microenvironment Mapping (μMap) of Nuclear Condensates in Living Cells. J Am Chem Soc 2025; 147:488-497. [PMID: 39707993 DOI: 10.1021/jacs.4c11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cellular activity is spatially organized across different organelles. While several structures are well-characterized, many organelles have unknown roles. Profiling biomolecular composition is key to understanding function but is difficult to achieve in the context of small, dynamic structures. Photoproximity labeling has emerged as a powerful tool for mapping these interaction networks, yet maximizing catalyst localization and reducing toxicity remains challenging in live cell applications. Here, we disclose a new intracellular photocatalyst with minimal cytotoxicity and off-target binding, and we utilize this catalyst for HaloTag-based microenvironment-mapping (μMap) to spatially catalog subnuclear condensates in living cells. We also specifically develop a novel RNA-focused workflow (μMap-seq) to enable parallel transcriptomic and proteomic profiling of these structures. After validating the accuracy of our approach, we generate a spatial map across the nucleolus, nuclear lamina, Cajal bodies, paraspeckles, and PML bodies. These results provide potential new insights into RNA metabolism and gene regulation while significantly expanding the μMap platform for improved live-cell proximity labeling in biological systems.
Collapse
Affiliation(s)
- Steve D Knutson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Chenmengxiao Roderick Pan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Niels Bisballe
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Brandon J Bloomer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Philip Raftopolous
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Iakovos Saridakis
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Miura K, Niimi H, Niwa T, Taguchi H, Nakamura H. Intracellular Photocatalytic Proximity Labeling (iPPL) for Dynamic Analysis of Chromatin-Binding Proteins Targeting Histone H3. ACS Chem Biol 2024; 19:2412-2417. [PMID: 39652713 DOI: 10.1021/acschembio.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We demonstrated a novel approach for protein-protein interaction (PPI) profiling of histone H3 using intracellular photocatalytic-proximity labeling (iPPL). This approach identified that the combination of acriflavine as a photocatalyst and 1-methyl-4-arylurazol (MAUra) as a protein labeling agent was the most efficient strategy to proceed the protein proximity labeling reaction. Furthermore, the identification of the labeled amino acids in histone H3 interacting proteins, histone lysine N-methyltransferase EZH2, showed that the amino acid in EZH2 within a few nanometers from histone H3 is labeled by iPPL. This restricted labeling radius allows for more-focused PPI profiling, compared to conventional proximity labeling methods.
Collapse
Affiliation(s)
- Kazuki Miura
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama 226-8501, Japan
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hikaru Niimi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Integrated Research, Institute of Science Tokyo, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama 226-8501, Japan
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
3
|
Sun X, Chen Y, Yang C, Yang S, Lin W, Quan B, Pan X, Ding Q, Chen X, Wang C, Qin W. Chemical Recording of Pump-Specific Drug Efflux in Living Cells. Angew Chem Int Ed Engl 2024; 63:e202409282. [PMID: 39324755 DOI: 10.1002/anie.202409282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
Drug efflux-a process primarily facilitated by efflux pumps such as multidrug resistance proteins (MRPs)-plays a pivotal role in cellular resistance to chemotherapies. Conventional approaches to assess drug efflux are predominantly conducted in vitro and often lack pump specificity. Here we report the bioorthogonal reporter inhibiting efflux (BRIEF) strategy, which enables the recording of pump-specific drug efflux in living cells. In BRIEF, a specific substrate is engineered as a bioorthogonal efflux probe (BEP) for specific pumps. The cellular concentration and protein labeling level of the probe can be augmented when the test drug is transported by the same pumps. Serendipitously, we discovered that per-O-acetylated unnatural monosaccharides, initially designed for metabolic glycan labeling, are exported by some MRPs. Using Ac4GlcNAl as a BEP, we studied the structure-efflux relationship of flavonoids and identified small molecules, including tannic acid, cholesterol and gallic acid, as novel MRP substrates in high-throughput screening. Tannic acid, known for anti-tumor and anti-SARS-CoV-2 properties, showed increased efficacy upon MRP inhibition. Additionally, BRIEF was adapted to assess p-glycoprotein-mediated efflux using Rhodamine 123 as a BEP, leveraging its light-activatable proximity labeling ability. BRIEF provides a versatile approach to investigate drug efflux and enhance chemotherapy strategies.
Collapse
Affiliation(s)
- Xuege Sun
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100871, China
| | - Ying Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chen Yang
- School of Medicine, Tsinghua University, Beijing, 100871, China
| | - Song Yang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Lin
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Baiyi Quan
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuanzhen Pan
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100871, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, The State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100871, China
| |
Collapse
|
4
|
Guo H, Wang X, Li C, Mohamed HF, Li D, Wang L, Chen H, Lin K, Huang S, Pang J, Zhang Y, Krock B, Luo Z. Ignited competition: Impact of bioactive extracellular compounds on organelle functions and photosynthetic systems in harmful algal blooms. PLANT, CELL & ENVIRONMENT 2024; 47:4615-4629. [PMID: 39047015 DOI: 10.1111/pce.15057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Prevalent interactions among marine phytoplankton triggered by long-range climatic stressors are well-known environmental disturbers of community structure. Dynamic response of phytoplankton physiology is likely to come from interspecies interactions rather than direct climatic effect on single species. However, studies on enigmatic interactions among interspecies, which are induced by bioactive extracellular compounds (BECs), especially between related harmful algae sharing similar shellfish toxins, are scarce. Here, we investigated how BECs provoke the interactions between two notorious algae, Alexandrium minutum and Gymnodinium catenatum, which have similar paralytic shellfish toxin (PST) profiles. Using techniques including electron microscopy and transcriptome analysis, marked disruptions in G. catenatum intracellular microenvironment were observed under BECs pressure, encompassing thylakoid membrane deformations, pyrenoid matrix shrinkage and starch sheaths disappearance. In addition, the upregulation of gene clusters responsible for photosystem-I Lhca1/4 and Rubisco were determined, leading to weaken photon captures and CO2 assimilation. The redistribution of lipids and proteins occurred at the subcellular level based on in situ focal plane array FTIR imaging approved the damages. Our findings illuminated an intense but underestimated interspecies interaction triggered by BECs, which is responsible for dysregulating photosynthesis and organelle function in inferior algae and may potentially account for fitness alteration in phytoplankton community.
Collapse
Affiliation(s)
- Huige Guo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiaochen Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Changlin Li
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Hala F Mohamed
- Department of Botany & Microbiology, (Girls Branch), Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Dawei Li
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lianghui Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Hongzhe Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Kunning Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jinling Pang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Bernd Krock
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
5
|
Mato M, Fernández-González X, D'Avino C, Tomás-Gamasa M, Mascareñas JL. Bioorthogonal Synthetic Chemistry Enabled by Visible-Light Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202413506. [PMID: 39135347 DOI: 10.1002/anie.202413506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/17/2024]
Abstract
The field of bioorthogonal chemistry has revolutionized our ability to interrogate and manipulate biological systems at the molecular level. However, the range of chemical reactions that can operate efficiently in biological environments without interfering with the native cellular machinery, remains limited. In this context, the rapidly growing area of photocatalysis offers a promising avenue for developing new type of bioorthogonal tools. The inherent mildness, tunability, chemoselectivity, and external controllability of photocatalytic transformations make them particularly well-suited for applications in biological and living systems. This minireview summarizes recent advances in bioorthogonal photocatalytic technologies, with a particular focus on their potential to enable the selective generation of designed products within biologically relevant or living settings.
Collapse
Affiliation(s)
- Mauro Mato
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Xulián Fernández-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Cinzia D'Avino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Lin Z, Schaefer K, Lui I, Yao Z, Fossati A, Swaney DL, Palar A, Sali A, Wells JA. Multiscale photocatalytic proximity labeling reveals cell surface neighbors on and between cells. Science 2024; 385:eadl5763. [PMID: 39024454 DOI: 10.1126/science.adl5763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Proximity labeling proteomics (PLP) strategies are powerful approaches to yield snapshots of protein neighborhoods. Here, we describe a multiscale PLP method with adjustable resolution that uses a commercially available photocatalyst, Eosin Y, which upon visible light illumination activates different photo-probes with a range of labeling radii. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor and orthogonally validated more than 20 neighbors using immunoassays and AlphaFold-Multimer prediction. We further profiled the protein neighborhoods of cell-cell synapses induced by bispecific T cell engagers and chimeric antigen receptor T cells. This integrated multiscale PLP platform maps local and distal protein networks on and between cell surfaces, which will aid in the systematic construction of the cell surface interactome, revealing horizontal signaling partners and reveal new immunotherapeutic opportunities.
Collapse
Affiliation(s)
- Zhi Lin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kaitlin Schaefer
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Irene Lui
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zi Yao
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrea Fossati
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ajikarunia Palar
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrej Sali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Zhang S, Tang Q, Zhang X, Chen X. Proximitomics by Reactive Species. ACS CENTRAL SCIENCE 2024; 10:1135-1147. [PMID: 38947200 PMCID: PMC11212136 DOI: 10.1021/acscentsci.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024]
Abstract
The proximitome is defined as the entire collection of biomolecules spatially in the proximity of a biomolecule of interest. More broadly, the concept of the proximitome can be extended to the totality of cells proximal to a specific cell type. Since the spatial organization of biomolecules and cells is essential for almost all biological processes, proximitomics has recently emerged as an active area of scientific research. One of the growing strategies for proximitomics leverages reactive species-which are generated in situ and spatially confined, to chemically tag and capture proximal biomolecules and cells for systematic analysis. In this Outlook, we summarize different types of reactive species that have been exploited for proximitomics and discuss their pros and cons for specific applications. In addition, we discuss the current challenges and future directions of this exciting field.
Collapse
Affiliation(s)
- Shaoran Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Qi Tang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
| | - Xu Zhang
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
| | - Xing Chen
- College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s
Republic of China
- Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, People’s Republic of China
- Beijing
National Laboratory for Molecular Sciences, Peking University, Beijing 100871, People’s
Republic of China
- Synthetic
and Functional Biomolecules Center, Peking
University, Beijing 100871, People’s
Republic of China
- Key
Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry
of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
8
|
Knutson SD, Buksh BF, Huth SW, Morgan DC, MacMillan DWC. Current advances in photocatalytic proximity labeling. Cell Chem Biol 2024; 31:1145-1161. [PMID: 38663396 PMCID: PMC11193652 DOI: 10.1016/j.chembiol.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 06/23/2024]
Abstract
Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.
Collapse
Affiliation(s)
- Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danielle C Morgan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Feng H, Zhao Q, Zhao N, Liang Z, Huang Y, Zhang X, Zhang L, Liu Y. A Cell-Permeable Photosensitizer for Selective Proximity Labeling and Crosslinking of Aggregated Proteome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306950. [PMID: 38441365 PMCID: PMC11095223 DOI: 10.1002/advs.202306950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/08/2024] [Indexed: 05/16/2024]
Abstract
Intracellular proteome aggregation is a ubiquitous disease hallmark with its composition associated with pathogenicity. Herein, this work reports on a cell-permeable photosensitizer (P8, Rose Bengal derivative) for selective photo induced proximity labeling and crosslinking of cellular aggregated proteome. Rose Bengal is identified out of common photosensitizer scaffolds for its unique intrinsic binding affinity to various protein aggregates driven by the hydrophobic effect. Further acetylation permeabilizes Rose Bengal to selectively image, label, and crosslink aggregated proteome in live stressed cells. A combination of photo-chemical, tandem mass spectrometry, and protein biochemistry characterizations reveals the complexity in photosensitizing pathways (both Type I & II), modification sites and labeling mechanisms. The diverse labeling sites and reaction types result in highly effective enrichment and identification of aggregated proteome. Finally, aggregated proteomics and interaction analyses thereby reveal extensive entangling of proteostasis network components mediated by HSP70 chaperone (HSPA1B) and active participation of autophagy pathway in combating proteasome inhibition. Overall, this work exemplifies the first photo induced proximity labeling and crosslinking method (namely AggID) to profile intracellular aggregated proteome and analyze its interactions.
Collapse
Affiliation(s)
- Huan Feng
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qun Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Nan Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhen Liang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yanan Huang
- Department of Chemistry and Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Xin Zhang
- Department of Chemistry and Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Lihua Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yu Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
10
|
Liu Z, Guo F, Zhu Y, Qin S, Hou Y, Guo H, Lin F, Chen PR, Fan X. Bioorthogonal photocatalytic proximity labeling in primary living samples. Nat Commun 2024; 15:2712. [PMID: 38548729 PMCID: PMC10978841 DOI: 10.1038/s41467-024-46985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
In situ profiling of subcellular proteomics in primary living systems, such as native tissues or clinic samples, is crucial for understanding life processes and diseases, yet challenging due to methodological obstacles. Here we report CAT-S, a bioorthogonal photocatalytic chemistry-enabled proximity labeling method, that expands proximity labeling to a wide range of primary living samples for in situ profiling of mitochondrial proteomes. Powered by our thioQM labeling warhead development and targeted bioorthogonal photocatalytic chemistry, CAT-S enables the labeling of mitochondrial proteins in living cells with high efficiency and specificity. We apply CAT-S to diverse cell cultures, dissociated mouse tissues as well as primary T cells from human blood, portraying the native-state mitochondrial proteomic characteristics, and unveiled hidden mitochondrial proteins (PTPN1, SLC35A4 uORF, and TRABD). Furthermore, CAT-S allows quantification of proteomic perturbations on dysfunctional tissues, exampled by diabetic mouse kidneys, revealing the alterations of lipid metabolism that may drive disease progression. Given the advantages of non-genetic operation, generality, and spatiotemporal resolution, CAT-S may open exciting avenues for subcellular proteomic investigations of primary samples that are otherwise inaccessible.
Collapse
Affiliation(s)
- Ziqi Liu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fuhu Guo
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yufan Zhu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shengnan Qin
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuchen Hou
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haotian Guo
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Feng Lin
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Xinyuan Fan
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
11
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024; 67:4322-4345. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
13
|
D’Avino C, Gutiérrez S, Feldhaus MJ, Tomás-Gamasa M, Mascareñas JL. Intracellular Synthesis of Indoles Enabled by Visible-Light Photocatalysis. J Am Chem Soc 2024; 146:2895-2900. [PMID: 38277674 PMCID: PMC10859955 DOI: 10.1021/jacs.3c13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Performing abiotic synthetic transformations in live cell environments represents a new, promising approach to interrogate and manipulate biology and to uncover new types of biomedical tools. We now found that photocatalytic bond-forming reactions can be added to the toolbox of bioorthogonal synthetic chemistry. Specifically, we demonstrate that exogenous styryl aryl azides can be converted into indoles inside living mammalian cells under photocatalytic conditions.
Collapse
Affiliation(s)
- Cinzia D’Avino
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Sara Gutiérrez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Max J. Feldhaus
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CIQUS),
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Wang Y, Qin W. Revealing protein trafficking by proximity labeling-based proteomics. Bioorg Chem 2024; 143:107041. [PMID: 38134520 DOI: 10.1016/j.bioorg.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Protein trafficking is a fundamental process with profound implications for both intracellular and intercellular functions. Proximity labeling (PL) technology has emerged as a powerful tool for capturing precise snapshots of subcellular proteomes by directing promiscuous enzymes to specific cellular locations. These enzymes generate reactive species that tag endogenous proteins, enabling their identification through mass spectrometry-based proteomics. In this comprehensive review, we delve into recent advancements in PL-based methodologies, placing particular emphasis on the label-and-fractionation approach and TransitID, for mapping proteome trafficking. These methodologies not only facilitate the exploration of dynamic intracellular protein trafficking between organelles but also illuminate the intricate web of intercellular and inter-organ protein communications.
Collapse
Affiliation(s)
- Yankun Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
15
|
Zeng K, Jiao ZH, Jiang Q, He R, Zhang Y, Li WG, Xu TL, Chen Y. Genetically Encoded Photocatalysis Enables Spatially Restricted Optochemical Modulation of Neurons in Live Mice. ACS CENTRAL SCIENCE 2024; 10:163-175. [PMID: 38292609 PMCID: PMC10823520 DOI: 10.1021/acscentsci.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/01/2024]
Abstract
Light provides high temporal precision for neuronal modulations. Small molecules are advantageous for neuronal modulation due to their structural diversity, allowing them to suit versatile targets. However, current optochemical methods release uncaged small molecules with uniform concentrations in the irradiation area, which lack spatial specificity as counterpart optogenetic methods from genetic encoding for photosensitive proteins. Photocatalysis provides spatial specificity by generating reactive species in the proximity of photocatalysts. However, current photocatalytic methods use antibody-tagged heavy-metal photocatalysts for spatial specificity, which are unsuitable for neuronal applications. Here, we report a genetically encoded metal-free photocatalysis method for the optochemical modulation of neurons via deboronative hydroxylation. The genetically encoded photocatalysts generate doxorubicin, a mitochondrial uncoupler, and baclofen by uncaging stable organoboronate precursors. The mitochondria, nucleus, membrane, cytosol, and ER-targeted drug delivery are achieved by this method. The distinct signaling pathway dissection in a single projection is enabled by the dual optogenetic and optochemical control of synaptic transmission. The itching signaling pathway is investigated by photocatalytic uncaging under live-mice skin for the first time by visible light irradiation. The cell-type-specific release of baclofen reveals the GABABR activation on NaV1.8-expressing nociceptor terminals instead of pan peripheral sensory neurons for itch alleviation in live mice.
Collapse
Affiliation(s)
- Kaixing Zeng
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
| | - Zhi-Han Jiao
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qin Jiang
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ru He
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
| | - Yixin Zhang
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Wei-Guang Li
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- Department
of Rehabilitation Medicine, Huashan Hospital, Institute for Translational
Brain Research, State Key Laboratory of Medical Neurobiology and Ministry
of Education Frontiers Centre for Brain Science, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Tian-Le Xu
- Centre
for Brain Science and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yiyun Chen
- State
Key Laboratory of Chemical Biology, Shanghai Institute of Organic
Chemistry, University of Chinese Academy
of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
- School
of Physical Science and Technology, ShanghaiTech
University, 100 Haike Road, Shanghai 201210, China
- School
of Chemistry and Material Sciences, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
16
|
Wei H, Zhang T, Li Y, Zhang G, Li Y. Covalent Capture and Selection of DNA-Encoded Chemical Libraries via Photo-Activated Lysine-Selective Crosslinkers. Chem Asian J 2023; 18:e202300652. [PMID: 37721712 DOI: 10.1002/asia.202300652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
Covalent crosslinking probes have arisen as efficient toolkits to capture and elucidate biomolecular interaction networks. Exploiting the potential of crosslinking in DNA-encoded chemical library (DEL) selection methods significantly boosted bioactive ligand discovery in complex physiological contexts. Herein, we incorporated o-nitrobenzyl alcohol (o-NBA) as a photo-activated lysine-selective crosslinker into divergent DEL formats and achieved covalent capture of ligand-target interactions featuring improved crosslinking efficiency and site-specificity. In addition, covalent DEL selection was realized with the modularly designed o-NBA-functionalized mock libraries.
Collapse
Affiliation(s)
- Haimei Wei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Tianyang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
17
|
Lin Z, Schaefer K, Lui I, Yao Z, Fossati A, Swaney DL, Palar A, Sali A, Wells JA. Multi-scale photocatalytic proximity labeling reveals cell surface neighbors on and between cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564055. [PMID: 37961561 PMCID: PMC10634877 DOI: 10.1101/2023.10.28.564055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The cell membrane proteome is the primary biohub for cell communication, yet we are only beginning to understand the dynamic protein neighborhoods that form on the cell surface and between cells. Proximity labeling proteomics (PLP) strategies using chemically reactive probes are powerful approaches to yield snapshots of protein neighborhoods but are currently limited to one single resolution based on the probe labeling radius. Here, we describe a multi-scale PLP method with tunable resolution using a commercially available histological dye, Eosin Y, which upon visible light illumination, activates three different photo-probes with labeling radii ranging from ∼100 to 3000 Å. We applied this platform to profile neighborhoods of the oncogenic epidermal growth factor receptor (EGFR) and orthogonally validated >20 neighbors using immuno-assays and AlphaFold-Multimer prediction that generated plausible binary interaction models. We further profiled the protein neighborhoods of cell-cell synapses induced by bi-specific T-cell engagers (BiTEs) and chimeric antigen receptor (CAR)T cells at longer length scales. This integrated multi-scale PLP platform maps local and distal protein networks on cell surfaces and between cells. We believe this information will aid in the systematic construction of the cell surface interactome and reveal new opportunities for immunotherapeutics.
Collapse
|
18
|
Pan S, Ding A, Li Y, Sun Y, Zhan Y, Ye Z, Song N, Peng B, Li L, Huang W, Shao H. Small-molecule probes from bench to bedside: advancing molecular analysis of drug-target interactions toward precision medicine. Chem Soc Rev 2023; 52:5706-5743. [PMID: 37525607 DOI: 10.1039/d3cs00056g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Over the past decade, remarkable advances have been witnessed in the development of small-molecule probes. These molecular tools have been widely applied for interrogating proteins, pathways and drug-target interactions in preclinical research. While novel structures and designs are commonly explored in probe development, the clinical translation of small-molecule probes remains limited, primarily due to safety and regulatory considerations. Recent synergistic developments - interfacing novel chemical probes with complementary analytical technologies - have introduced and expedited diverse biomedical opportunities to molecularly characterize targeted drug interactions directly in the human body or through accessible clinical specimens (e.g., blood and ascites fluid). These integrated developments thus offer unprecedented opportunities for drug development, disease diagnostics and treatment monitoring. In this review, we discuss recent advances in the structure and design of small-molecule probes with novel functionalities and the integrated development with imaging, proteomics and other emerging technologies. We further highlight recent applications of integrated small-molecule technologies for the molecular analysis of drug-target interactions, including translational applications and emerging opportunities for whole-body imaging, tissue-based measurement and blood-based analysis.
Collapse
Affiliation(s)
- Sijun Pan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yisi Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yaxin Sun
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Yueqin Zhan
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Zhenkun Ye
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Ning Song
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
19
|
Ogorek AN, Zhou X, Martell JD. Switchable DNA Catalysts for Proximity Labeling at Sites of Protein-Protein Interactions. J Am Chem Soc 2023; 145:16913-16923. [PMID: 37463457 DOI: 10.1021/jacs.3c05578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Proximity labeling (PL) has emerged as a powerful approach to elucidate proteomes within a defined radius around a protein of interest (POI). In PL, a catalyst is attached to the POI and tags nearby endogenous proteins, which are then isolated by affinity purification and identified by mass spectrometry. Although existing PL methods have yielded numerous biological insights, proteomes with greater spatial resolution could be obtained if PL catalysts could be activated at more specific subcellular locations, such as sites where both the POI and a chemical stimulus are present or sites of protein-protein interactions (PPIs). Here, we report DNA-based switchable PL catalysts that are attached to a POI and become activated only when a secondary molecular trigger is present. The DNA catalysts consist of a photocatalyst and a spectral quencher tethered to a DNA oligomer. They are catalytically inactive by default but undergo a conformational change in response to a specific molecular trigger, thus activating PL. We designed a system in which the DNA catalyst becomes activated on living mammalian cells specifically at sites of Her2-Her3 heterodimers and c-Met homodimers, PPIs known to increase the invasion and growth of certain cancers. While this study employs a Ru(bpy)3-type complex for tagging proteins with biotin phenol, the switchable DNA catalyst design is compatible with diverse synthetic PL photocatalysts. Furthermore, the switchable DNA PL catalysts can be constructed from conformation-switching DNA aptamers that respond to small molecules, ions, and proteins, opening future opportunities for PL in highly specific subcellular locations.
Collapse
Affiliation(s)
- Ashley N Ogorek
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Xu Zhou
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| |
Collapse
|
20
|
Hope TO, Reyes-Robles T, Ryu KA, Mauries S, Removski N, Maisonneuve J, Oslund RC, Fadeyi OO, Frenette M. Targeted proximity-labelling of protein tyrosines via flavin-dependent photoredox catalysis with mechanistic evidence for a radical-radical recombination pathway. Chem Sci 2023; 14:7327-7333. [PMID: 37416718 PMCID: PMC10321502 DOI: 10.1039/d3sc00638g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Flavin-based photocatalysts such as riboflavin tetraacetate (RFT) serve as a robust platform for light-mediated protein labelling via phenoxy radical-mediated tyrosine-biotin phenol coupling on live cells. To gain insight into this coupling reaction, we conducted detailed mechanistic analysis for RFT-photomediated activation of phenols for tyrosine labelling. Contrary to previously proposed mechanisms, we find that the initial covalent binding step between the tag and tyrosine is not radical addition, but rather radical-radical recombination. The proposed mechanism may also explain the mecha-nism of other reported tyrosine-tagging approaches. Competitive kinetics experiments show that phenoxyl radicals are generated with several reactive intermediates in the proposed mechanism-primarily with the excited riboflavin-photocatalyst or singlet oxygen-and these multiple pathways for phenoxyl radical generation from phenols increase the likelihood of radical-radical recombination.
Collapse
Affiliation(s)
- Taylor O Hope
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | | | - Keun Ah Ryu
- Exploratory Science Center, Merck & Co., Inc. Cambridge MA USA
| | - Steven Mauries
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Nicole Removski
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Jacinthe Maisonneuve
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| | - Rob C Oslund
- Exploratory Science Center, Merck & Co., Inc. Cambridge MA USA
| | | | - Mathieu Frenette
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| |
Collapse
|
21
|
Kisty EA, Saart EC, Weerapana E. Identifying Redox-Sensitive Cysteine Residues in Mitochondria. Antioxidants (Basel) 2023; 12:992. [PMID: 37237858 PMCID: PMC10215197 DOI: 10.3390/antiox12050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The mitochondrion is the primary energy generator of a cell and is a central player in cellular redox regulation. Mitochondrial reactive oxygen species (mtROS) are the natural byproducts of cellular respiration that are critical for the redox signaling events that regulate a cell's metabolism. These redox signaling pathways primarily rely on the reversible oxidation of the cysteine residues on mitochondrial proteins. Several key sites of this cysteine oxidation on mitochondrial proteins have been identified and shown to modulate downstream signaling pathways. To further our understanding of mitochondrial cysteine oxidation and to identify uncharacterized redox-sensitive cysteines, we coupled mitochondrial enrichment with redox proteomics. Briefly, differential centrifugation methods were used to enrich for mitochondria. These purified mitochondria were subjected to both exogenous and endogenous ROS treatments and analyzed by two redox proteomics methods. A competitive cysteine-reactive profiling strategy, termed isoTOP-ABPP, enabled the ranking of the cysteines by their redox sensitivity, due to a loss of reactivity induced by cysteine oxidation. A modified OxICAT method enabled a quantification of the percentage of reversible cysteine oxidation. Initially, we assessed the cysteine oxidation upon treatment with a range of exogenous hydrogen peroxide concentrations, which allowed us to differentiate the mitochondrial cysteines by their susceptibility to oxidation. We then analyzed the cysteine oxidation upon inducing reactive oxygen species generation via the inhibition of the electron transport chain. Together, these methods identified the mitochondrial cysteines that were sensitive to endogenous and exogenous ROS, including several previously known redox-regulated cysteines and uncharacterized cysteines on diverse mitochondrial proteins.
Collapse
|
22
|
Zhang Y, Tan J, Chen Y. Visible-light-induced protein labeling in live cells with aryl azides. Chem Commun (Camb) 2023; 59:2413-2420. [PMID: 36744609 DOI: 10.1039/d2cc06987c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chemical labeling of proteins in live cells helps to probe their native functions in biological systems. Aryl azides are chemically inert under physiological conditions, but they are activated by certain external stimuli. Recently, photocatalytic live-cell applications of aryl azides by visible light irradiation have become a burgeoning new field in chemical biology. In this Feature Article, we focus on the recent progress of protein labeling in live cells with aryl azides induced by visible-light irradiation. Light irradiation activates aryl azides to generate highly reactive intermediates, which enables protein labeling for protein functionalization, crosslinking, and profiling. The activation mechanism of aryl azides by light irradiation is categorized as photolysis, energy-transfer, and electron-transfer. The extracellular and intracellular protein labeling applications in live cells with aryl azides induced by visible light are discussed, including recent advances in red-light-induced extracellular protein labeling.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Jiawei Tan
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China. .,School of Physical Science and Technology ShanghaiTech University, 100 Haike Road, Shanghai 201210, P. R. China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
23
|
Tay NES, Ryu KA, Weber JL, Olow AK, Cabanero DC, Reichman DR, Oslund RC, Fadeyi OO, Rovis T. Targeted activation in localized protein environments via deep red photoredox catalysis. Nat Chem 2023; 15:101-109. [PMID: 36216892 PMCID: PMC9840673 DOI: 10.1038/s41557-022-01057-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/02/2022] [Indexed: 01/17/2023]
Abstract
State-of-the-art photoactivation strategies in chemical biology provide spatiotemporal control and visualization of biological processes. However, using high-energy light (λ < 500 nm) for substrate or photocatalyst sensitization can lead to background activation of photoactive small-molecule probes and reduce its efficacy in complex biological environments. Here we describe the development of targeted aryl azide activation via deep red-light (λ = 660 nm) photoredox catalysis and its use in photocatalysed proximity labelling. We demonstrate that aryl azides are converted to triplet nitrenes via a redox-centric mechanism and show that its spatially localized formation requires both red light and a photocatalyst-targeting modality. This technology was applied in different colon cancer cell systems for targeted protein environment labelling of epithelial cell adhesion molecule (EpCAM). We identified a small subset of proteins with previously known and unknown association to EpCAM, including CDH3, a clinically relevant protein that shares high tumour-selective expression with EpCAM.
Collapse
Affiliation(s)
| | - Keun Ah Ryu
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - John L Weber
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Aleksandra K Olow
- Genetics and Pharmacogenomics, Merck & Co., Inc., San Francisco, CA, USA
| | | | | | - Rob C Oslund
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.
- InduPro, Cambridge, MA, USA.
| | - Olugbeminiyi O Fadeyi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA.
- InduPro, Cambridge, MA, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
24
|
Wang H, Wang Z, Gao H, Liu J, Qiao Z, Zhao B, Liang Z, Jiang B, Zhang L, Zhang Y. A photo-oxidation driven proximity labeling strategy enables profiling of mitochondrial proteome dynamics in living cells. Chem Sci 2022; 13:11943-11950. [PMID: 36320915 PMCID: PMC9580500 DOI: 10.1039/d2sc04087e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/27/2022] [Indexed: 07/21/2023] Open
Abstract
Mapping the proteomic landscape of mitochondria with spatiotemporal precision plays a pivotal role in elucidating the delicate biological functions and complex relationship with other organelles in a variety of dynamic physiological processes which necessitates efficient and controllable chemical tools. We herein report a photo-oxidation driven proximity labeling strategy to profile the mitochondrial proteome by light dependence in living cells with high spatiotemporal resolution. Taking advantage of organelle-localizable organic photoactivated probes generating reactive species and nucleophilic substrates for proximal protein oxidation and trapping, mitochondrial proteins were selectively labeled by spatially limited reactions in their native environment. Integration of photo-oxidation driven proximity labeling and quantitative proteomics facilitated the plotting of the mitochondrial proteome in which up to 310 mitochondrial proteins were identified with a specificity of 64% in HeLa cells. Furthermore, mitochondrial proteome dynamics was deciphered in drug resistant Huh7 and LPS stimulated HMC3 cells which were hard-to-transfect. A number of differential proteins were quantified which were intimately linked to critical processes and provided insights into the related molecular mechanisms of drug resistance and neuroinflammation in the perspective of mitochondria. The photo-oxidation driven proximity labeling strategy offers solid technical support to a highly precise proteomic platform in time and finer space for more knowledge of subcellular biology.
Collapse
Affiliation(s)
- He Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhiting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hang Gao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianhui Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zichun Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
25
|
Switching of Photocatalytic Tyrosine/Histidine Labeling and Application to Photocatalytic Proximity Labeling. Int J Mol Sci 2022; 23:ijms231911622. [PMID: 36232972 PMCID: PMC9569449 DOI: 10.3390/ijms231911622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Weak and transient protein interactions are involved in dynamic biological responses and are an important research subject; however, methods to elucidate such interactions are lacking. Proximity labeling is a promising technique for labeling transient ligand–binding proteins and protein–protein interaction partners of analytes via an irreversible covalent bond. Expanding chemical tools for proximity labeling is required to analyze the interactome. We developed several photocatalytic proximity-labeling reactions mediated by two different mechanisms. We found that numerous dye molecules can function as catalysts for protein labeling. We also identified catalysts that selectively modify tyrosine and histidine residues and evaluated their mechanisms. Model experiments using HaloTag were performed to demonstrate photocatalytic proximity labeling. We found that both ATTO465, which catalyzes labeling by a single electron transfer, and BODIPY, which catalyzes labeling by singlet oxygen, catalyze proximity labeling in cells.
Collapse
|
26
|
Abstract
A longstanding challenge in fundamental functional group interconversion has been the direct transformation of benzene into pyridine via nitrogen insertion and carbon deletion. Herein, we report a protocol for the transformation of aryl azides, easily accessible from their corresponding anilines, to 2-aminopyridines using blue light and oxygen. Mechanistic studies corroborate that the arene to pyridine conversion is achieved by nitrogen insertion into the benzene ring followed by oxidative carbon extrusion.
Collapse
Affiliation(s)
- Sajan C Patel
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
27
|
Pan Y, Liu Z, Zou P, Chen Y, Chen Y. Hypervalent Iodine Reagents Enable C(sp 2)-H Amidation of (Hetero)arenes with Iminophenylacetic Acids. Org Lett 2022; 24:6681-6685. [PMID: 36043941 DOI: 10.1021/acs.orglett.2c02751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfonamide-containing (hetero)arenes are widely present in bioactive molecules. Here, we report the sulfonamidyl (hetero)arenes synthesis by the C(sp2)-H amidation from bench-stable amidyl-iminophenylacetic acids. The hypervalent iodine reagents covalently activated iminophenylacetic acids for the facile sulfonamidyl radical generation under mild photocatalytic oxidative conditions. Diversified indoles, pyrroles, imidazopyridines, and fused arenes underwent the C(sp2)-H amidation with excellent chemoselectivity and regioselectivity. This reaction performs well under neutral aqueous conditions with potential biological applications.
Collapse
Affiliation(s)
- Yue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China.,Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 China
| | - Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Peng Zou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China
| | - Yali Chen
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210 China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
28
|
Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform. Proc Natl Acad Sci U S A 2022; 119:e2203027119. [PMID: 35914173 PMCID: PMC9371666 DOI: 10.1073/pnas.2203027119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The elucidation of protein interaction networks is critical to understanding fundamental biology as well as developing new therapeutics. Proximity labeling platforms (PLPs) are state-of-the-art technologies that enable the discovery and delineation of biomolecular networks through the identification of protein-protein interactions. These platforms work via catalytic generation of reactive probes at a biological region of interest; these probes then diffuse through solution and covalently "tag" proximal biomolecules. The physical distance that the probes diffuse determines the effective labeling radius of the PLP and is a critical parameter that influences the scale and resolution of interactome mapping. As such, by expanding the degrees of labeling resolution offered by PLPs, it is possible to better capture the various size scales of interactomes. At present, however, there is little quantitative understanding of the labeling radii of different PLPs. Here, we report the development of a superresolution microscopy-based assay for the direct quantification of PLP labeling radii. Using this assay, we provide direct extracellular measurements of the labeling radii of state-of-the-art antibody-targeted PLPs, including the peroxidase-based phenoxy radical platform (269 ± 41 nm) and the high-resolution iridium-catalyzed µMap technology (54 ± 12 nm). Last, we apply these insights to the development of a molecular diffusion-based approach to tuning PLP resolution and introduce a new aryl-azide-based µMap platform with an intermediate labeling radius (80 ± 28 nm).
Collapse
|
29
|
Zeng K, Han L, Chen Y. Endogenous Proteins Modulation in Live Cells with Small Molecules and Light. Chembiochem 2022; 23:e202200244. [PMID: 35822393 DOI: 10.1002/cbic.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Indexed: 11/05/2022]
Abstract
The protein modulation by light illumination enables the biological role investigation in high spatiotemporal precision. Compared to genetic methods, the small molecules approach is uniquely suited for modulating endogenous proteins. The endogenous protein modulation in live cells with small molecules and light has recently advanced on three distinctive frontiers: i) the infrared-light-induced or localized decaging of small molecules by photolysis, ii) the visible-light-induced photocatalytic releasing of small molecules, and iii) the small-molecule-ligand-directed caging for photo-modulation of proteins. Together, these methods provide powerful chemical biology tool kits for spatiotemporal modulation of endogenous proteins with potential therapeutic applications. This Concept aims to inspire organic chemists and chemical biologists to delve into this burgeoning endogenous protein modulation field for new biological discoveries.
Collapse
Affiliation(s)
- Kaixing Zeng
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Lili Han
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry, BNPC, CHINA
| | - Yiyun Chen
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, BNPC, 345 Lingling Road, 200032, Shanghai, CHINA
| |
Collapse
|
30
|
Liu Z, Xie X, Huang Z, Lin F, Liu S, Chen Z, Qin S, Fan X, Chen PR. Spatially resolved cell tagging and surfaceome labeling via targeted photocatalytic decaging. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Zhang Y, Han L, Tian X, Peng C, Chen Y. Ligand‐Directed Caging Enables the Control of Endogenous DNA Alkyltransferase Activity with Light inside Live Cells. Angew Chem Int Ed Engl 2022; 61:e202115472. [DOI: 10.1002/anie.202115472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lili Han
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Chao Peng
- National Facility for Protein Science in Shanghai Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
32
|
Buksh BF, Knutson SD, Oakley JV, Bissonnette NB, Oblinsky DG, Schwoerer MP, Seath CP, Geri JB, Rodriguez-Rivera FP, Parker DL, Scholes GD, Ploss A, MacMillan DWC. μMap-Red: Proximity Labeling by Red Light Photocatalysis. J Am Chem Soc 2022; 144:6154-6162. [PMID: 35363468 PMCID: PMC9843638 DOI: 10.1021/jacs.2c01384] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Modern proximity labeling techniques have enabled significant advances in understanding biomolecular interactions. However, current tools primarily utilize activation modes that are incompatible with complex biological environments, limiting our ability to interrogate cell- and tissue-level microenvironments in animal models. Here, we report μMap-Red, a proximity labeling platform that uses a red-light-excited SnIV chlorin e6 catalyst to activate a phenyl azide biotin probe. We validate μMap-Red by demonstrating photonically controlled protein labeling in vitro through several layers of tissue, and we then apply our platform in cellulo to label EGFR microenvironments and validate performance with STED microscopy and quantitative proteomics. Finally, to demonstrate labeling in a complex biological sample, we deploy μMap-Red in whole mouse blood to profile erythrocyte cell-surface proteins. This work represents a significant methodological advance toward light-based proximity labeling in complex tissue environments and animal models.
Collapse
Affiliation(s)
- Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Noah B Bissonnette
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Michael P Schwoerer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey08544, United States
| | - Ciaran P Seath
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | | | - Dann L Parker
- Discovery Chemistry, Merck & Co., Kenilworth, New Jersey07033, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey08544, United States
| |
Collapse
|
33
|
Guo S, Yuan C, Lang W, Hong D, Liu J, Huang J, Dong J, Ge J. Photocontrollable Probes for Mitochondrial Protein Profiling. Chembiochem 2022; 23:e202200066. [PMID: 35344259 DOI: 10.1002/cbic.202200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/21/2022] [Indexed: 11/10/2022]
Abstract
Mitochondrion is the core site of cell signaling, energy metabolism and biosynthesis. Here, taking advantage of activitybased probes, we synthesized two photocontrollable probes ( YGH-1 and YGH-2 ), composed of a mitochondrial localization moiety "triphenylphosphonium", a photo triggered group to achieve spatial and temporal controlled protein capture and an alkyne group to enrich the labeled protein. Proteomic validation was further carried out to facilitate identifications of mitochondrial proteomes in HeLa cells. The results showed that half of identified protein hits (~300) labeled by probes YGH-1 and YGH-2 belong to mitochondria, mostly localizing in mitochondrial matrix and inner mitochondrial membrane. Our research results provide a new tool for spatial and temporal analysis of subcellular proteome.
Collapse
Affiliation(s)
- Shuhong Guo
- Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology, College of Biotechnology and Bioengineering, CHINA
| | - Chaonan Yuan
- Zhejiang University of Technology, College of Biotechnology and Bioengineering, CHINA
| | - Wenjie Lang
- Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology, College of Biotechnology and Bioengineering, CHINA
| | - Danqi Hong
- Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology, College of Biotechnology and Bioengineering, CHINA
| | - Jian Liu
- Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology, College of Biotechnology and Bioengineering, CHINA
| | - Jintao Huang
- Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology, College of Biotechnology and Bioengineering, CHINA
| | - Jia Dong
- Zhejiang University of Technology Chaohui Campus: Zhejiang University of Technology, College of Biotechnology and Bioengineering, CHINA
| | - Jingyan Ge
- Zhejiang University of Technology, College of Biotechnology and Bioengineering, Chaowang Road 18, Hangzhou, China, 310014, Hangzhou, CHINA
| |
Collapse
|
34
|
Zhang Y, Han L, Tian X, Peng C, Chen Y. Ligand‐Directed Caging Enables the Control of Endogenous DNA Alkyltransferase Activity with Light inside Live Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lili Han
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiaoxu Tian
- National Facility for Protein Science in Shanghai Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Chao Peng
- National Facility for Protein Science in Shanghai Zhangjiang Lab Shanghai Advanced Research Institute Chinese Academy of Science Shanghai 201210 China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry Centre of Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Physical Science and Technology ShanghaiTech University 100 Haike Road Shanghai 201210 China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
35
|
Nakane K, Niwa T, Tsushima M, Tomoshige S, Taguchi H, Nakamura H, Ishikawa M, Sato S. BODIPY Catalyzes Proximity‐Dependent Histidine Labelling. ChemCatChem 2022. [DOI: 10.1002/cctc.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Keita Nakane
- Tohoku University: Tohoku Daigaku Graduate School of Life Science JAPAN
| | - Tatsuya Niwa
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Cell Biology Center, Institute of Innovative research JAPAN
| | - Michihiko Tsushima
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Laboratory for Chemistry and Life Science, Institute of Innovative Research JAPAN
| | - Shusuke Tomoshige
- Tohoku University: Tohoku Daigaku Graduate School of Life Sciences JAPAN
| | - Hideki Taguchi
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Cell Biology Center, Institute of Innovative Research JAPAN
| | - Hiroyuki Nakamura
- Tokyo Institute of Technology: Tokyo Kogyo Daigaku Laboratory for Chemistry and Life Science, Institute of Innovative Research JAPAN
| | - Minoru Ishikawa
- Tohoku University: Tohoku Daigaku Graduate School of Life Sciences JAPAN
| | - Shinichi Sato
- Tohoku University: Tohoku Daigaku Frontier Research Institute for Interdisciplinary Sciences 2-1-1 Katahira, Aoba-ku, Sendai-shi 980-8577 Miyagi JAPAN
| |
Collapse
|
36
|
Sato S. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chem Pharm Bull (Tokyo) 2022; 70:95-105. [PMID: 35110442 DOI: 10.1248/cpb.c21-00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein bioconjugation has become an increasingly important research method for introducing artificial functions in to protein with various applications, including therapeutics and biomaterials. Due to its amphiphilic nature, only a few tyrosine residues are exposed on the protein surface. Therefore, tyrosine residue has attracted attention as suitable targets for site-specific modification, and it is the most studied amino acid residue for modification reactions other than lysine and cysteine residues. In this review, we present the progress of our tyrosine chemical modification studies over the past decade. We have developed several different catalytic approaches to selectively modify tyrosine residues using peroxidase, laccase, hemin, and ruthenium photocatalysts. In addition to modifying tyrosine residues by generating radical species through single-electron transfer, we have developed a histidine modification method that utilizes singlet oxygen generated by photosensitizers. These highly reactive chemical species selectively modify proteins in close proximity to the enzyme/catalyst. Taking advantage of the spatially controllable reaction fields, we have developed novel methods for site-specific antibody modification, detecting hotspots of oxidative stress, and target identification of bioactive molecules.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
37
|
Taylor MT. Photochemical protein modification in complex biological environments: recent advances and considerations for future chemical methods development. Biol Chem 2022; 403:413-420. [PMID: 35073619 PMCID: PMC10163948 DOI: 10.1515/hsz-2021-0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022]
Abstract
Abstract
The development of organic reactions that covalently modify biological matter in complex biological mixtures has become an invaluable asset in drug discovery. Out of the techniques developed to date, optically controlled chemistries are of particular utility owing to both the spatiotemporal control afforded by optical control as well as the impressive array of transformations that are driven by the highly reactive intermediates generated upon excitation. This minireview discusses recent advances in the development of photochemical reactions for use in complex mixtures and highlights key considerations for future photochemical reaction designs.
Collapse
Affiliation(s)
- Michael T Taylor
- Department of Chemistry, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA
| |
Collapse
|
38
|
Toh K. Proximity-dependent Labeling by Using Energy Transfer Processes. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kohei Toh
- Graduate School of Medicine, Kyoto University
| |
Collapse
|