1
|
Li J, Hu H, Chen X, Zhu H, Zhang W, Tai Z, Yu X, He Q. A novel ACE inhibitory peptide from Douchi hydrolysate: Stability, inhibition mechanism, and antihypertensive potential in spontaneously hypertensive rats. Food Chem 2024; 460:140734. [PMID: 39106751 DOI: 10.1016/j.foodchem.2024.140734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Angiotensin I-converting enzyme (ACE) regulates blood pressure through the renin-angiotensin system. Douchi, a traditional fermented soybean condiment, may have antihypertensive effects, but research on ACE inhibitory peptides from Douchi hydrolysates is limited. We hypothesized that enzymatic treatment could enhance ACE inhibitory peptide diversity and efficacy. We tested ten single enzymes and four combinations, finding pepsin-trypsin-chymotrypsin most effective. Hydrolysates were purified using Sephadex G-15 and reversed-phase HPLC, and peptides were identified via LC-MS/MS. Five peptides (LF, VVF, VGAW, GLFG, NGK) were identified, with VGAW as the most potent ACE inhibitor (IC50 46.6 ± 5.2 μM) showing excellent thermal and pH stability. Lineweaver-Burk plots confirmed competitive inhibition, and molecular docking revealed eight hydrogen bonds between VGAW and ACE. In hypertensive rats, VGAW significantly reduced blood pressure at 12.5, 25, and 50 mg/kg. These findings highlight Douchi as a source of ACE inhibitory peptides and suggest VGAW as a promising functional food ingredient.
Collapse
Affiliation(s)
- Jianfei Li
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Haohan Hu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xiya Chen
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Haiting Zhu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Wenhao Zhang
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Zhiyuan Tai
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xiaodong Yu
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Qiyi He
- Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
2
|
Lacto-Fermented and Unfermented Soybean Differently Modulate Serum Lipids, Blood Pressure and Gut Microbiota during Hypertension. FERMENTATION 2023. [DOI: 10.3390/fermentation9020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Soy consumption may reduce hypertension but the impact of food processing on the antihypertensive effect is unclear. Hence, we ascertained the effects of lacto-fermented (FSB) and unfermented soybean (USB) consumption on serum atherogenic lipids, hypertension and gut microbiota of spontaneous hypertensive rats (SHR). FSB displayed a strong in vitro angiotensin converting enzyme (ACE) inhibitory ability of 70 ± 5% while USB inhibited 5 ± 3% of the enzyme activity. Consumption of USB reduced serum ACE activity by 19.8 ± 12.85 U while FSB reduced the enzyme activity by 47.6 ± 11.35 U, respectively. FSB significantly improved cholesterol levels and reduced systolic and diastolic blood pressures by 14 ± 3 mmHg and 10 ± 3 mmHg, respectively, while USB only had a marginal impact on blood pressure. Analysis of FSB showed the abundance of ACE inhibitory peptides EGEQPRPFPFP and AIPVNKP (which were absent in USB) and 30 phenolic compounds (only 12 were abundant in USB). Feeding SHR with FSB promoted the growth of Akkermansia, Bacteroides, Intestinimonas, Phocaeicola, Lactobacillus and Prevotella (short chain fatty acid producers) while USB promoted only Prevotellamassilia, Prevotella and Intestimonas levels signifying the prebiotic ability of FSB. Our results show that, relative to USB, FSB are richer in bioactive compounds that reduce hypertension by inhibiting ACE, improving cholesterol levels and mitigating gut dysbiosis.
Collapse
|
3
|
Sharma K, Sharma KK, Mahindra A, Sehra N, Bagra N, Aaghaz S, Parmar R, Rathod GK, Jain R. Design, synthesis, and applications of ring-functionalized histidines in peptide-based medicinal chemistry and drug discovery. Med Res Rev 2023. [PMID: 36710510 DOI: 10.1002/med.21936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023]
Abstract
Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.
Collapse
Affiliation(s)
- Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Krishna K Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Amit Mahindra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Nitin Bagra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Nagar, Punjab, India
| |
Collapse
|
4
|
Ramlal A, Nautiyal A, Baweja P, Kumar V, Mehta S, Mahto RK, Tripathi S, Shanmugam A, Pujari Mallikarjuna B, Raman P, Lal SK, Raju D, Rajendran A. Angiotensin-converting enzyme inhibitory peptides and isoflavonoids from soybean [ Glycine max (L.) Merr.]. Front Nutr 2022; 9:1068388. [PMID: 36505231 PMCID: PMC9730416 DOI: 10.3389/fnut.2022.1068388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Angiotensin-converting enzyme I (ACE I) is a zinc-containing metallopeptidase involved in the renin-angiotensin system (RAAS) that helps in the regulation of hypertension and maintains fluid balance otherwise, which results in cardiovascular diseases (CVDs). One of the leading reasons of global deaths is due to CVDs. RAAS also plays a central role in maintaining homeostasis of the CV system. The commercial drugs available to treat CVDs possess several fatal side effects. Hence, phytochemicals like peptides having plant-based origin should be explored and utilized as alternative therapies. Soybean is an important leguminous crop that simultaneously possesses medicinal properties. Soybean extracts are used in many drug formulations for treating diabetes and other disorders and ailments. Soy proteins and its edible products such as tofu have shown potential inhibitory activity against ACE. Thus, this review briefly describes various soy proteins and products that can be used to inhibit ACE thereby providing new scope for the identification of potential candidates that can help in the design of safer and natural treatments for CVDs.
Collapse
Affiliation(s)
- Ayyagari Ramlal
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Aparna Nautiyal
- Department of Botany, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pooja Baweja
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Vikash Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sahil Mehta
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | - Rohit Kumar Mahto
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
- School of Biotechnology, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Shikha Tripathi
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology (NIPB), New Delhi, India
- Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Aravindam Shanmugam
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bingi Pujari Mallikarjuna
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), Regional Research Centre, Dharwad, Karnataka, India
| | - Pushpa Raman
- Department of Plant Breeding and Genetics, Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - S. K. Lal
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Dhandapani Raju
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Ambika Rajendran
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
5
|
Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res Int 2022; 158:111575. [PMID: 35840260 DOI: 10.1016/j.foodres.2022.111575] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Yan Sun
- Heilongjiang Tobacco Industry Co., Ltd. Harbin Cigarette Factory, Harbin 150027, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
6
|
Owusu-Kwarteng J, Agyei D, Akabanda F, Atuna RA, Amagloh FK. Plant-Based Alkaline Fermented Foods as Sustainable Sources of Nutrients and Health-Promoting Bioactive Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.885328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traditional food fermentation is a practice that precedes human history. Acidic products such as yogurts and sourdoughs or alcoholic beverages produced through lactic acid or yeast fermentations, respectively, are widely described and documented. However, a relatively less popular group of fermented products known as alkaline fermented foods are common traditional products in Africa and Asia. These products are so called “alkaline” because the pH tends to increase during fermentation due to the formation of ammonia resulting from protein degradation by Bacillus species. Plant-based alkaline fermented foods (AFFs) are generally produced from legumes including soybean, non-soybean leguminous seeds, and other non-legume plant raw materials. Alkaline fermented food products such as natto, douchi, kinema, doenjang, chongkukjang, thua nao, meitauza, yandou, dawadawa/iru, ugba, kawal, okpehe, otiru, oso, ogiri, bikalga, maari/tayohounta, ntoba mbodi, cabuk, and owoh are produced at small industrial scale or household levels and widely consumed in Asia and Africa where they provide essential nutrients and health-promoting bioactive compounds for the population. Alkaline food fermentation is important for sustainable food security as it contributes to traditional dietary diversity, significantly reduces antinutritional components in raw plant materials thereby improving digestibility, improves health via the production of vitamins, and may confer probiotic and post-biotic effects onto consumers. In this review, we present currently available scientific information on plant-based AFFs and their role as sustainable sources of nutrients and bioactive compounds for improved health. Finally, we provide perspectives on research needs required to harness the full potential of AFFs in contributing to nutrition and health.
Collapse
|
7
|
Correlation Analysis of Microbiota and Volatile Flavor Compounds of Caishiji Soybean Paste. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microbial diversity plays a crucial part in the fermentation of Caishiji soybean paste (CSP). In the current study, the microbiota and volatile flavor compounds (VFCs) in CSP were identified through Illumina MiSeq sequencing and headspace gas chromatography–mass spectrometry. Five bacterial (Bacillus, Tetragenococcus, Salinivibrio, Halomonas, and Staphylococcus) and four fungal genera (Aspergillus, Debaryomyces, Nigrospora, and Curvularia) were revealed as dominant among the entire microbiome of CSP. More than 70 VFCs, including 8 acids, 15 esters, 8 alcohols, 14 aldehydes, 4 ketones, 5 phenols, and 20 miscellaneous VFCs were detected during the fermentation process. A total of 12 kinds of VFCs were identified in the odor activity value (OAV) analysis. The results of the correlation analysis between microbiota and VFCs indicated that Bacillus, Tetragenococcus, Staphylococcus, and Aspergillus were the main microbiota affecting the flavor of CSP. These results may serve as a reference for enhancing the quality of CSP.
Collapse
|
8
|
Wang W, Liu Z, Liu Y, Su Z, Liu Y. Plant polypeptides: A review on extraction, isolation, bioactivities and prospects. Int J Biol Macromol 2022; 207:169-178. [PMID: 35257730 DOI: 10.1016/j.ijbiomac.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 01/09/2023]
Abstract
The application of traditional Chinese medicine has a long history in China with unique advantages and functions. With the rapid development of separation and purification technologies, more and more polypeptide compounds with specific biological activity and medicinal value were isolated from natural plants. The plant polypeptides have a lot of biological activities, such as antitumor effect, antioxidize effect, antibacterial effect, hypoglycemic effect, blood pressure lowering effect, lipid-lowering effect, anti-fatigue effect, and so on. This review summarized the extraction method, purification method, biological activities, and prospects of plant polypeptides, providing a basis for further study of plant polypeptides.
Collapse
Affiliation(s)
- Wenqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhicheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhijun Su
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
9
|
SUSILOWATI E, SANJAYA BRL, NUGRAHA AS, UBAIDILLAH M, SISWOYO TA. Revealing of free radical scavenging and angiotensin I-converting enzyme inhibitor potency of pigmented rice seed protein. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.66520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Ari Satia NUGRAHA
- University of Jember, Indonesia; University of Jember, Indonesia; University of Jember, Indonesia
| | - Mohammad UBAIDILLAH
- University of Jember, Indonesia; University of Jember, Indonesia; University of Jember, Indonesia
| | - Tri Agus SISWOYO
- University of Jember, Indonesia; University of Jember, Indonesia; University of Jember, Indonesia
| |
Collapse
|
10
|
Li M, Fan W, Xu Y. Identification of angiotensin converting enzyme (ACE) inhibitory and antioxidant peptides derived from Pixian broad bean paste. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Yi SH, Hong SP. Characteristics of Bacterial Strains with Desirable Flavor Compounds from Korean Traditional Fermented Soybean Paste ( Doenjang). Molecules 2021; 26:5067. [PMID: 34443655 PMCID: PMC8399581 DOI: 10.3390/molecules26165067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
To identify and analyze the characteristics of the microorganisms involved in the formation of the desirable flavor of Doenjang, a total of 179 strains were isolated from ninety-four Doenjang collected from six regions in South Korea, and fourteen strains were selected through a sensory evaluation of the aroma of each culture. The enzyme activities of amylase, protease and lipase was shown in the various strains. Bacillus sp.-K3, Bacillus sp.-K4 and Bacillus amyloliquefaciens-J2 showed relatively high protease activity, at 317.1 U, 317.3 U and 319.5 U, respectively. The Bacillus sp.-K1 showed the highest lipase activity at 2453.6 U. In the case of amylase, Bacillus subtilis-H6 showed the highest activity at 4105.5 U. The results of the PCA showed that Bacillus subtilis-H2, Bacillus subtilis-H3, and Bacillus sp.-K2 were closely related to the production of 3-hydroxy-2-butanone (23.51%~43.37%), and that Bacillus subtilis-H5 and Bacillus amyloliquefaciens-J2 were significantly associated with the production of phenethyl alcohol (0.39% and 0.37%). The production of peptides was observed to vary among the Bacillus cultures such as Val-Val-Pro-Pro-Phe-Leu and Pro-Ala-Glu-Val-Leu-Asp-Ile. These peptides are precursors of related volatile flavor compounds created in Doenjang via the enzymatic or non-enzymatic route; it is expected that these strains could be used to enhance the flavor of Doenjang.
Collapse
Affiliation(s)
| | - Sang-Pil Hong
- Principal Researcher, Division of Strategic Food Research, Korea Food Research Institute (KFRI), 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea;
| |
Collapse
|
12
|
Kim IS, Yang WS, Kim CH. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int J Mol Sci 2021; 22:8570. [PMID: 34445273 PMCID: PMC8395274 DOI: 10.3390/ijms22168570] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022] Open
Abstract
Peptides present in foods are involved in nutritional functions by supplying amino acids; sensory functions related to taste or solubility, emulsification, etc.; and bioregulatory functions in various physiological activities. In particular, peptides have a wide range of physiological functions, including as anticancer agents and in lowering blood pressure and serum cholesterol levels, enhancing immunity, and promoting calcium absorption. Soy protein can be partially hydrolyzed enzymatically to physiologically active soy (or soybean) peptides (SPs), which not only exert physiological functions but also help amino acid absorption in the body and reduce bitterness by hydrolyzing hydrophobic amino acids from the C- or N-terminus of soy proteins. They also possess significant gel-forming, emulsifying, and foaming abilities. SPs are expected to be able to prevent and treat atherosclerosis by inhibiting the reabsorption of bile acids in the digestive system, thereby reducing blood cholesterol, low-density lipoprotein, and fat levels. In addition, soy contains blood pressure-lowering peptides that inhibit angiotensin-I converting enzyme activity and antithrombotic peptides that inhibit platelet aggregation, as well as anticancer, antioxidative, antimicrobial, immunoregulatory, opiate-like, hypocholesterolemic, and antihypertensive activities. In animal models, neuroprotective and cognitive capacity as well as cardiovascular activity have been reported. SPs also inhibit chronic kidney disease and tumor cell growth by regulating the expression of genes associated with apoptosis, inflammation, cell cycle arrest, invasion, and metastasis. Recently, various functions of soybeans, including their physiologically active functions, have been applied to health-oriented foods, functional foods, pharmaceuticals, and cosmetics. This review introduces some current results on the role of bioactive peptides found in soybeans related to health functions.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bioresource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Seoul 16419, Gyunggi-Do, Korea
- Samsung Advanced Institute of Health Science and Technology, Seoul 16419, Gyunggi-Do, Korea
| |
Collapse
|
13
|
Shobako N. Hypotensive peptides derived from plant proteins. Peptides 2021; 142:170573. [PMID: 34023396 DOI: 10.1016/j.peptides.2021.170573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
Hypertension is a risk factor for arteriosclerosis development and is recognized as a silent killer. Certain processed food materials, digested by protease or through the use of fermentation, have shown exertion of hypotensive effects in human clinical or animal studies, and hypotensive peptides were isolated from them. This review discusses the hypotensive peptides derived from plant proteins, such as grain, soy, vegetables, and seaweeds, and their hypotensive mechanisms. Although angiotensin I-converting enzyme (ACE) inhibition is often noted as one of the mechanisms that may exert antihypertensive effects, ACE inhibitory activity measured by in vitro studies is not associated with the actual hypotensive effect. Thus, this review only highlights the peptide hypotensive effect determined by in vivo studies. This review also discusses the tendency of the amino acid sequence of ACE-inhibitory hypotensive peptides and the possible additional effects of hypotensive peptides independent of ACE inhibition.
Collapse
Affiliation(s)
- Naohisa Shobako
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
14
|
Abstract
Legumes are an essential food source worldwide. Their high-quality proteins, complex carbohydrates, dietary fiber, and relatively low-fat content make these an important functional food. Known to possess a multitude of health benefits, legume consumption is associated with the prevention and treatment of cardiovascular diseases (CVD). Legume crude protein isolates and purified peptides possess many cardiopreventive properties. Here, we review selected economically valued legumes, their taxonomy and distribution, biochemical composition, and their protein components and the mechanism(s) of action associated with cardiovascular health. Most of the legume protein studies had shown upregulation of low-density lipoprotein (LDL) receptor leading to increased binding and uptake, in effect significantly reducing total lipid levels in the blood serum and liver. This is followed by decreased biosynthesis of cholesterol and fatty acids. To understand the relationship of identified genes from legume studies, we performed gene network analysis, pathway, and gene ontology (GO) enrichment. Results showed that the genes were functionally interrelated while enrichment and pathway analysis revealed involvement in lipid transport, fatty acid and triglyceride metabolic processes, and regulatory processes. This review is the first attempt to collate all known mechanisms of action of legume proteins associated with cardiovascular health. This also provides a snapshot of possible targets leading to systems-level approaches to further investigate the cardiometabolic potentials of legumes.
Collapse
|
15
|
Zhao J, Fan R, Jia F, Huang Y, Huang Z, Hou Y, Hu SQ. Enzymatic Properties of Recombinant Ligase Butelase-1 and Its Application in Cyclizing Food-Derived Angiotensin I-Converting Enzyme Inhibitory Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5976-5985. [PMID: 34003638 DOI: 10.1021/acs.jafc.1c01755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Butelase-1 is an efficient ligase from Clitoria ternatea with wide applications in the food and biopharmaceutical fields. This research aimed to achieve high-efficiency expression of butelase-1 and explore its application in food-derived angiotensin I-converting enzyme (ACE) inhibitory peptides. The recombinant butelase-1 zymogen was prepared at a yield of 100 mg/L in Escherichia coli and successfully activated at pH 4.5, resulting in a 6973.8 U/L yield of activated butelase-1 with a specific activity of 348.69 U/mg and a catalytic efficiency of 9956 M-1 s-1. Activated butelase-1 exhibited considerable resistance to Tween-20, Triton X-100, and methanol. The "traceless" cyclization of ACE inhibitory peptides was realized using activated butelase-1, which resulted in higher stability and ACE inhibitory activity than those of the linear peptides. Our work proposed an efficient method for the preparation of butelase-1 and provided a promising model for its application in food fields.
Collapse
Affiliation(s)
- Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Renshui Fan
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Jia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbo Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhiqiang Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
16
|
Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M. Antiviral activity of fermented foods and their probiotics bacteria towards respiratory and alimentary tracts viruses. Food Control 2021; 127:108140. [PMID: 33867696 PMCID: PMC8036130 DOI: 10.1016/j.foodcont.2021.108140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
Collapse
Affiliation(s)
- Belal J Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia.,Natural Medicines and Product Research Laboratory, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Jamilah Bakar
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Mohammad Zarei
- Department of Food Science and Technology, School of Industrial Technology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
17
|
A discovery-based metabolomic approach using UHPLC Q-TOF MS/MS unveils a plethora of prospective antihypertensive compounds in Korean fermented soybeans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Yoo D, Park Y. Association between the Intake of Fermented Soy Products and Hypertension Risk in Postmenopausal Women and Men Aged 50 Years or Older: The Korea National Health and Nutrition Examination Survey 2013-2018. Nutrients 2020; 12:nu12123621. [PMID: 33255738 PMCID: PMC7760241 DOI: 10.3390/nu12123621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
Sodium intake is positively associated with hypertension risk; however, it is not clear whether there is an association between the intake of fermented soy products, a major source of salt, and blood pressure (BP). This study aimed to investigate the hypothesis that hypertension risk and BP were negatively associated with the intake of fermented soy products but not with the intake of sodium from fermented soy products. This cross-sectional study was performed using data from the Korea National Health and Nutrition Examination Survey (2013–2018). In total, 11,566 men and postmenopausal women aged ≥50 years were divided according to quintiles of sodium or fermented soy product intake. The intake of fermented soy products was negatively associated with hypertension risk (odds ratio: 0.81, 95% confidence interval: 0.66–0.98; p-trend = 0.023) and systolic BP (SBP; p-trend = 0.043) in postmenopausal women. Mediation analysis showed that the intake of fermented soy products had total and direct effects on SBP; however, there was no indirect effect because soy nutrients, such as protein, fiber, calcium, and potassium, had no significant effects on SBP. Among men, fermented soy product intake was not associated with hypertension risk and BP. Additionally, the intake of sodium from fermented soy products was not significantly associated with hypertension risk and BP in both postmenopausal women and men. This study suggests that hypertension risk and BP were not associated with the intake of sodium from fermented soy products; further, hypertension risk and BP were inversely associated with fermented soy product intake in postmenopausal women. Further clinical studies are needed to confirm the effect of fermented soy product intake on hypertension risk and BP.
Collapse
|
19
|
Soy bioactive peptides and the gut microbiota modulation. Appl Microbiol Biotechnol 2020; 104:9009-9017. [PMID: 32945899 DOI: 10.1007/s00253-020-10799-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
The balance of protein, carbohydrate, and fat affect the composition and functions of the gut microbiota. The complexities involved thereof require insights into the roles and impacts of individual dietary components due to the difficulty of defining such in a group of others. Peptides and proteins from several animal and plant sources have been widely explored in relation to the gut microbiome modulation, but the effects of soy peptides and other soy derivatives on the gut microbiota are largely unexplored. This piece considered an overview of the production and interventions of soy bioactive peptides on gut, as they affect the composition and functions of the gut microorganisms. A mini review on the production of soy protein hydrolysates/peptides and highlights of the most recent knowledge regarding their physiological effects on host's gut microbiota cum health were investigated. Overall deductions and research gaps were critically evaluated for futuristic interventions and relevance. Key points • Diet affects the composition of gut microorganisms. • Modulation of the gut microbiota by soy biopeptides is described. • Critical deductions on personal and commercial use are provided.
Collapse
|
20
|
Alim A, Song H, Zou T. Analysis of meaty aroma and umami taste in thermally treated yeast extract by means of sensory-guided screening. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03561-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Ajeigbe OF, Ademosun AO, Oboh G. Relieving the tension in hypertension: Food-drug interactions and anti-hypertensive mechanisms of food bioactive compounds. J Food Biochem 2020; 45:e13317. [PMID: 32537763 DOI: 10.1111/jfbc.13317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/26/2022]
Abstract
Hypertension is a global health problem. Statistics report from the World Health Organization reveals its prevalence in about a quarter of the world global population. Due to the complications associated with hypertension, it is required to be well managed or prevented pharmacologically or non-pharmacologically. Pharmacologically, the major antihypertensive drugs used are centrally acting sympatholytic drugs, diuretics, vasodilators, angiotensin converting enzyme inhibitors, and angiotensin II receptor blockers while non-pharmacological means of management include lifestyle changes, intake of diet or supplements with antihypertensive effects. Interestingly, the use of diet as a complement with drug intake has become very popular due to occurring side effects over time. Recent research efforts have revealed that foods such as fruits and vegetables contain bioactive substances that modulate the activities of macromolecules involved in the development, complications, and management of hypertension. PRACTICAL APPLICATIONS: Recent research efforts have suggested the efficacy of diets rich in fruits and vegetables in the management of hypertension. This review examines some of the mechanisms involved in the dietary management or prevention of hypertension by bioactive compounds found in foods. This review promotes the use of diet in the management of the condition and also suggests that precautions to be taken in the combined use of food and drugs.
Collapse
Affiliation(s)
- Olufunke Florence Ajeigbe
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ayokunle Olubode Ademosun
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
22
|
Daliri EBM, Ofosu FK, Chelliah R, Lee BH, An H, Elahi F, Barathikannan K, Kim JH, Oh DH. Influence of fermented soy protein consumption on hypertension and gut microbial modulation in spontaneous hypertensive rats. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:199-208. [PMID: 33117618 PMCID: PMC7573110 DOI: 10.12938/bmfh.2020-001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Plant proteins are known to possess important bioactive peptides and have a positive
impact on gut microbial modulation. In this study, we studied the ability of a single dose
of a fermented soy protein product (P-SPI) to reduce high blood pressure in spontaneous
hypertensive rats (SHR) and how it modulates the gut microbiota after six weeks of
feeding. SHRs were fed with P-SPI, Captopril or distilled water once, and their blood
pressures were monitored from the first to twelfth-hour post-administration. Consumption
of P-SPI significantly reduced systolic and diastolic blood pressures up to the sixth hour
by 25 ± 4 mmHg and 40 ± 5 mmHg respectively. P-SPI consumption inhibited serum ACE
activity, increased superoxide dismutase activity and nitric oxide levels and reduced
malondialdehyde levels in serum. Analysis of fecal microbial 16S rRNA of hypertensive rats
revealed a significant reduction in microbial richness and diversity in the gut, while
P-SPI consumption improved microbial richness and increased diversity. Also, P-SPI feeding
significantly reduced the Firmicutes/Bacteroidetes
ratio, increased propionate- and H2S-producing bacteria and reduced
Streptococcaceae and Erysipelotrichales levels. Our
results show that P-SPI is a potential antihypertensive functional food which could
remodel the altered gut microbiota of hypertensive patients.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | - Fred Kwame Ofosu
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | - Byong H Lee
- Department of Microbiology/Immunology, McGill University, Montreal, QC, H3A 2B4, Canada.,SportBiomics, Inc., Sacramento, CA, USA
| | | | - Fazle Elahi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| | - Joong-Hark Kim
- R&D, Erom Company Limited, R&D Center, 111, Toegye Nonggong-ro, Chuncheon-si, Gangwon-do 24427, Korea.,Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 200-701, Korea
| |
Collapse
|
23
|
Mun EG, Park JE, Cha YS. Effects of Doenjang, a Traditional Korean Soybean Paste, with High-Salt Diet on Blood Pressure in Sprague-Dawley Rats. Nutrients 2019; 11:nu11112745. [PMID: 31726743 PMCID: PMC6893577 DOI: 10.3390/nu11112745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Fermented foods in Korea contain a lot of salt. Although salt is reported to exacerbate health trouble, fermented foods have beneficial effects. We hypothesized that doenjang could reduce blood pressure in Sprague-Dawley (SD) rats fed a high-salt diet. Eighteen SD rats were divided into three groups: normal-salt (NS) group, high-salt (HS) group, and high-salt with doenjang (HSD) group. The salinity of doenjang and saltwater was adjusted to 8% using Mohr's method. Blood pressure was significantly reduced in the HSD group compared with the HS group. Water intake and urine excretion volume has significantly increased in the HS group compared with the HSD group. The excreted concentrations of urine sodium, urine potassium, and feces potassium significantly increased in the HSD group compared with the HS and NS groups. Renin level was significantly decreased in the HSD group compared to the other groups. These results indicate that eating traditional salty fermented food is not a direct cause of hypertension, and the intake of doenjang in normal healthy animals improved blood pressure.
Collapse
|
24
|
Jayathilake C, Visvanathan R, Deen A, Bangamuwage R, Jayawardana BC, Nammi S, Liyanage R. Cowpea: an overview on its nutritional facts and health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4793-4806. [PMID: 29656381 DOI: 10.1002/jsfa.9074] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/16/2018] [Accepted: 04/04/2018] [Indexed: 05/23/2023]
Abstract
Cowpea (Vigna unguiculata) is a legume consumed as a high-quality plant protein source in many parts of the world. High protein and carbohydrate contents with a relatively low fat content and a complementary amino acid pattern to that of cereal grains make cowpea an important nutritional food in the human diet. Cowpea has gained more attention recently from consumers and researchers worldwide as a result of its exerted health beneficial properties, including anti-diabetic, anti-cancer, anti-hyperlipidemic, anti-inflammatory and anti-hypertensive properties. Among the mechanisms that have been proposed in the prevention of chronic diseases, the most proven are attributed to the presence of compounds such as soluble and insoluble dietary fiber, phytochemicals, and proteins and peptides in cowpea. However, studies on the anti-cancer and anti-inflammatory properties of cowpea have produced conflicting results. Some studies support a protective effect of cowpea on the progression of cancer and inflammation, whereas others did not reveal any. Because there are only a few studies addressing health-related effects of cowpea consumption, further studies in this area are suggested. In addition, despite the reported favorable effects of cowpea on diabetes, hyperlipidemia and hypertension, a long-term epidemiological study investigating the association between cowpea consumption and diabetes, cardiovascular disease and cancer is also recommended. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chathuni Jayathilake
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Rizliya Visvanathan
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Afka Deen
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Ruksheela Bangamuwage
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| | | | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia
- National Institute of Complementary Medicine (NICM), Western Sydney University, Sydney, NSW, Australia
| | - Ruvini Liyanage
- Division of Nutritional Biochemistry, National Institute of Fundamental Studies, Kandy, Sri Lanka
| |
Collapse
|
25
|
Drapała A, Bielińska K, Konopelski P, Pączek L, Ufnal M. His-Leu, an angiotensin I-derived peptide, does not affect haemodynamics in rats. J Renin Angiotensin Aldosterone Syst 2018; 19:1470320318808879. [PMID: 30370829 PMCID: PMC6207977 DOI: 10.1177/1470320318808879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION: The dipeptide histidine-leucine (His-Leu) is formed in the process of converting angiotensin I into angiotensin II. Several studies show that short peptides containing His-Leu may produce significant haemodynamic effects; however, to the best of our knowledge, data on haemodynamic effects of His-Leu are not available in medical databases. MATERIALS AND METHODS: We evaluated acute haemodynamic effects of intravenous administration of either 0.9% NaCl (vehicle) or His-Leu at a dose of 3-15 mg/kg body weight in anaesthetized 15-16-week-old, male, normotensive Wistar Kyoto and spontaneously hypertensive rats. Chronic effects of treatment with either the vehicle or His-Leu at a dose of 15 mg/kg body weight given subcutaneously daily were determined during continuous telemetry recordings in freely moving rats. RESULTS: In anaesthetized rats both the vehicle and His-Leu produced a mild and transient increase in blood pressure and no change in plasma renin activity. There was no significant difference in haemodynamics between the rats infused with the vehicle and the rats infused with His-Leu. In chronic studies, seven-day treatment with vehicle and with His-Leu did not affect arterial blood pressure in freely moving rats. CONCLUSION: His-Leu does not produce either acute or chronic changes in arterial blood pressure in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Adrian Drapała
- Department of Experimental Physiology
and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical
University of Warsaw, Poland
| | - Klaudia Bielińska
- Department of Experimental Physiology
and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical
University of Warsaw, Poland
| | - Piotr Konopelski
- Department of Experimental Physiology
and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical
University of Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology,
Transplantation and Internal Medicine, Medical University of Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology
and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical
University of Warsaw, Poland
| |
Collapse
|
26
|
Chatterjee C, Gleddie S, Xiao CW. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018; 10:E1211. [PMID: 30200502 PMCID: PMC6164536 DOI: 10.3390/nu10091211] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Soy consumption has been associated with many potential health benefits in reducing chronic diseases such as obesity, cardiovascular disease, insulin-resistance/type II diabetes, certain type of cancers, and immune disorders. These physiological functions have been attributed to soy proteins either as intact soy protein or more commonly as functional or bioactive peptides derived from soybean processing. These findings have led to the approval of a health claim in the USA regarding the ability of soy proteins in reducing the risk for coronary heart disease and the acceptance of a health claim in Canada that soy protein can help lower cholesterol levels. Using different approaches, many soy bioactive peptides that have a variety of physiological functions such as hypolipidemic, anti-hypertensive, and anti-cancer properties, and anti-inflammatory, antioxidant, and immunomodulatory effects have been identified. Some soy peptides like lunasin and soymorphins possess more than one of these properties and play a role in the prevention of multiple chronic diseases. Overall, progress has been made in understanding the functional and bioactive components of soy. However, more studies are required to further identify their target organs, and elucidate their biological mechanisms of action in order to be potentially used as functional foods or even therapeutics for the prevention or treatment of chronic diseases.
Collapse
Affiliation(s)
- Cynthia Chatterjee
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, 251 Sir Frederick Banting Drive, Ottawa, ON K1A 0K9, Canada.
- Ottawa Research & Development Centre, Central Experimental Farm, Agriculture and Agri-Food Canada, 960 Carling Avenue Building#21, Ottawa, ON K1A 0C6, Canada.
| | - Stephen Gleddie
- Ottawa Research & Development Centre, Central Experimental Farm, Agriculture and Agri-Food Canada, 960 Carling Avenue Building#21, Ottawa, ON K1A 0C6, Canada.
| | - Chao-Wu Xiao
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Banting Research Centre, 251 Sir Frederick Banting Drive, Ottawa, ON K1A 0K9, Canada.
- Food and Nutrition Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
27
|
Daliri EBM, Lee BH, Park MH, Kim JH, Oh DH. Novel angiotensin I-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Li S, Liu L, He G, Wu J. Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food Funct 2018; 9:42-52. [PMID: 29188845 DOI: 10.1039/c7fo01323j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioactive peptides are present in all living organisms and have critical roles ranging from protection against infection as the key element of innate immunity, regulating blood pressure and glucose levels, to reducing signs of ageing by killing senescent cells. Bioactive peptides are also encrypted within food protein sequences that can be released during proteolysis or food processing. These specific food protein fragments are reported to have potential for improving human health and preventing metabolic diseases through their impact on inflammation, blood pressure, obesity, and type-2 diabetes. This review mainly focuses on the molecular targets and the underlying mechanisms of bioactive peptides against various metabolic syndromes including inflammation, high blood pressure, obesity, and type-2 diabetes, to provide new insights and perspectives on the potential of bioactive peptides for management of metabolic syndromes.
Collapse
Affiliation(s)
- Shanshan Li
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | | | | | | |
Collapse
|
29
|
Lin H, Yu X, Fang J, Lu Y, Liu P, Xing Y, Wang Q, Che Z, He Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules 2018; 23:E1299. [PMID: 29843477 PMCID: PMC6100464 DOI: 10.3390/molecules23061299] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 11/23/2022] Open
Abstract
Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.
Collapse
Affiliation(s)
- Hongbin Lin
- College of Light Industry and Food Engineering, Sichuan University, Chengdu 610065, China.
| | - Xiaoyu Yu
- College of Food and Bio-engineering, Xihua University, Chengdu 610039, China.
| | - Jiaxing Fang
- College of Food and Bio-engineering, Xihua University, Chengdu 610039, China.
| | - Yunhao Lu
- College of Light Industry and Food Engineering, Sichuan University, Chengdu 610065, China.
| | - Ping Liu
- College of Food and Bio-engineering, Xihua University, Chengdu 610039, China.
| | - Yage Xing
- College of Food and Bio-engineering, Xihua University, Chengdu 610039, China.
| | - Qin Wang
- College of Food and Bio-engineering, Xihua University, Chengdu 610039, China.
- Department of Nutrition and Food Science, Maryland University, College Park, MD 20742, USA.
| | - Zhenming Che
- College of Food and Bio-engineering, Xihua University, Chengdu 610039, China.
| | - Qiang He
- College of Light Industry and Food Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
30
|
Liang Y, Lin Q, Huang P, Wang Y, Li J, Zhang L, Cao J. Rice Bioactive Peptide Binding with TLR4 To Overcome H 2O 2-Induced Injury in Human Umbilical Vein Endothelial Cells through NF-κB Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:440-448. [PMID: 29276944 DOI: 10.1021/acs.jafc.7b04036] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species-induced vessel endothelium injury is crucial in cardiovascular diseases progression. Rice-derived bran bioactive peptides (RBAP) might exert antioxidant effect through unknown mechanisms. Herein, we validated the antioxidant effect and mechanism of RBAP on H2O2-induced oxidative injury in human umbilical vein endothelial cells (HUVECs). Here, HUVECs were treated with RBAP under H2O2 stimulation; the effects of RBAP on HUVECs oxidative injury were evaluated. H2O2 injury-induced cell morphology changes were ameliorated by RBAP. The effect of H2O2- on HUVEC apoptosis (percentage of apoptotic cell: 38.00 ± 2.00 in H2O2 group vs 21.07 ± 2.06 in RBAP + H2O2 group, P = 0.0013 compared to H2O2 group), the protein levels of cleaved caspase-3 (relative protein expression: 2.90 ± 0.10 in H2O2 group vs 1.82 ± 0.09 in RBAP + H2O2 group, P < 0.0001 compared to H2O2 group) and p-p65 (relative protein expression: 1.86 ± 0.09 in H2O2 group vs 1.35 ± 0.08 in RBAP + H2O2 group, P < 0.0001 compared to H2O2 group) could be attenuated by RBAP. RBAP exerts its protective function through binding with Toll-like receptor 4 (TLR4). Taken together, RBAP protects HUVECs against H2O2-induced oxidant injury, which provided the theoretical basis for the molecular mechanism of rice deep processing and exploitation of functional peptides.
Collapse
Affiliation(s)
- Ying Liang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and Byproduct Deep Processing and ‡College of Food Science and Engineering, Central South University of Forestry and Technology , Changsha 410004, Hunan China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and Byproduct Deep Processing and ‡College of Food Science and Engineering, Central South University of Forestry and Technology , Changsha 410004, Hunan China
| | - Ping Huang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and Byproduct Deep Processing and ‡College of Food Science and Engineering, Central South University of Forestry and Technology , Changsha 410004, Hunan China
| | - Yuqian Wang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and Byproduct Deep Processing and ‡College of Food Science and Engineering, Central South University of Forestry and Technology , Changsha 410004, Hunan China
| | - Jiajia Li
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and Byproduct Deep Processing and ‡College of Food Science and Engineering, Central South University of Forestry and Technology , Changsha 410004, Hunan China
| | - Lin Zhang
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and Byproduct Deep Processing and ‡College of Food Science and Engineering, Central South University of Forestry and Technology , Changsha 410004, Hunan China
| | - Jianzhong Cao
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and Byproduct Deep Processing and ‡College of Food Science and Engineering, Central South University of Forestry and Technology , Changsha 410004, Hunan China
| |
Collapse
|
31
|
Martin M, Deussen A. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension. Crit Rev Food Sci Nutr 2017; 59:1264-1283. [PMID: 29244531 DOI: 10.1080/10408398.2017.1402750] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases are the leading cause of death. The underlying pathophysiology is largely contributed by an overactivation of the renin-angiotensin-aldosterone-system (RAAS). Herein, angiotensin II (AngII) is a key mediator not only in blood pressure control and vascular tone regulation, but also involved in inflammation, endothelial dysfunction, atherosclerosis, hypertension and congestive heart failure. Since more than three decades suppression of AngII generation by inhibition of the angiotensin-converting enzyme (ACE) or blockade of the AngII-receptor has shown clinical benefit by reducing hypertension, atherosclerosis and other inflammation-associated cardiovascular diseases. Besides pharmaceutical ACE-inhibitors some natural peptides derived from food proteins reduce in vitro ACE activity. Several animal studies and a few human clinical trials have shown antihypertensive effects of such peptides, which might be attractive as food additives to prevent age-related RAAS activation. However, their inhibitory potency on in vitro ACE activity does not always correlate with an antihypertensive impact. While some peptides with high inhibitory activity on ACE-activity in vitro show no antihypertensive effect in vivo, other peptides with only a moderate ACE inhibitory activity in vitro cause such effects. The explanation for this conflicting phenomenon between inhibitory activity and antihypertensive effect remains unclear to date. This review shall critically address the effects of natural peptides derived from different food proteins on the cardiovascular system and the possible underlying mechanisms. A central aspect will be to point to conceptual gaps in the current understanding of the action of these peptides with respect to in vivo blood pressure lowering effects.
Collapse
Affiliation(s)
- Melanie Martin
- a Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Germany
| | - Andreas Deussen
- a Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden , Germany
| |
Collapse
|
32
|
Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr 2017; 58:3097-3129. [PMID: 29020461 DOI: 10.1080/10408398.2017.1352564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed.
Collapse
Affiliation(s)
- Mona Hajfathalian
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Sakhi Ghelichi
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark.,b Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - Pedro J García-Moreno
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Ann-Dorit Moltke Sørensen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Charlotte Jacobsen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
33
|
Lin Q, Liao W, Bai J, Wu W, Wu J. Soy protein-derived ACE-inhibitory peptide LSW (Leu-Ser-Trp) shows anti-inflammatory activity on vascular smooth muscle cells. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
34
|
Sharma KK, Mandloi M, Jain R. Regioselective Access to 1,2-Diarylhistidines through the Copper-Catalyzed N1-Arylation of 2-Arylhistidines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Krishna K. Sharma
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67, S. A. S. 160062 Nagar Punjab India
| | - Meenakshi Mandloi
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67, S. A. S. 160062 Nagar Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; Sector 67, S. A. S. 160062 Nagar Punjab India
| |
Collapse
|
35
|
Manoharan S, Shuib AS, Abdullah N. STRUCTURAL CHARACTERISTICS AND ANTIHYPERTENSIVE EFFECTS OF ANGIOTENSIN-I-CONVERTING ENZYME INHIBITORY PEPTIDES IN THE RENIN-ANGIOTENSIN AND KALLIKREIN KININ SYSTEMS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2017; 14:383-406. [PMID: 28573254 PMCID: PMC5446464 DOI: 10.21010/ajtcam.v14i2.39] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The commercially available synthetic angiotensin-I-converting enzyme (ACE) inhibitors are known to exert negative side effects which have driven many research groups globally to discover the novel ACE inhibitors. METHOD Literature search was performed within the PubMed, ScienceDirect.com and Google Scholar. RESULTS The presence of proline at the C-terminal tripeptide of ACE inhibitor can competitively inhibit the ACE activity. The effects of other amino acids are less studied leading to difficulties in predicting potent peptide sequences. The broad specificity of the enzyme may be due to the dual active sites observed on the somatic ACE. The inhibitors may not necessarily competitively inhibit the enzyme which explains why some reported inhibitors do not have the common ACE inhibitor characteristics. Finally, the in vivo assay has to be carried out before the peptides as the antihypertensive agents can be claimed. The peptides must be absorbed into circulation without being degraded, which will affect their bioavailability and potency. Thus, peptides with strong in vitro IC50 values do not necessarily have the same effect in vivo and vice versa. CONCLUSION The relationship between peptide amino acid sequence and inhibitory activity, in vivo studies of the active peptides and bioavailability must be studied before the peptides as antihypertensive agents can be claimed.
Collapse
Affiliation(s)
- Sivananthan Manoharan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
| | - Adawiyah Suriza Shuib
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
- University of Malaya Centre for Proteomic Research, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur
| | - Noorlidah Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
| |
Collapse
|
36
|
Correlation of Volatile Compounds and Sensory Attributes of Chinese Traditional Sweet Fermented Flour Pastes Using Hierarchical Cluster Analysis and Partial Least Squares-Discriminant Analysis. J CHEM-NY 2017. [DOI: 10.1155/2017/3213492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aroma compositions, sensory attributes, and their correlations of various traditional Chinese sweet fermented flour pastes (SFFPs) were investigated. SFFPs, including LEEJ, LEEH, and XH6, showed high overall acceptance scores of 8.00, 8.21, and 7.50, respectively. Ninety-six volatile compounds were detected using solid-phase microextraction gas chromatography mass spectrometry. Hierarchical cluster analysis grouped SFFPs into three clusters according to their concentrations and compositions of volatile components. Partial least squares-discriminant analysis showed that volatile compounds, including ethyl phenylacetate, 5-methyl furfural, amyl cinnamal, ethyl myristate, decyl aldehyde, 1-phenylethyl acetate, 1-octen-3-ol, 3-buten-2-ol, butanoic acid, and caproaldehyde, were highly negatively correlated with saltiness, sourness, and bitterness, while they were positively correlated with sweetness, umami, richness, and acceptance. The obvious correlation between flavor profiles and sensory attributes could help online monitoring of SFFPs’ flavor quality during production.
Collapse
|
37
|
Nagai T, Suzuki N, Nagashima T. Antioxidative Activities and Angiotensin I-converting Enzyme Inhibitory Activities of Enzymatic Hydrolysates from Commercial Kamaboko Type Samples. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013206067933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enzymatic hydrolysates were prepared from commercially available kamaboko type samples using three gastrointestinal proteases and protein proteases. The yields of these hydrolysates were about 10–31% and these protein contents ranged from 62 to 533 g/mg per sample powder on their wet weight basis. The hydrolysates showed higher antioxidative activities and scavenging activities against active oxygen species such as hydroxyl radical and superoxide anion radical. Moreover, these hydrolysates exhibited high angiotensin I-converting enzyme inhibitory activites that were similar or higher than those from various fermented foods such as fish sauce, sake, soy sauce, vinegar, miso and natto. The antioxidative and antihypertensive activities of commercially available kamaboko type samples were not related to the colour of the samples. The results indicated that enzymatic hydrolysates from commercially available kamaboko type samples, whose health benefits are scientifically supported, have the potential to be an increasingly important component of a healthy lifestyle and to be beneficial to the public and the food industry.
Collapse
Affiliation(s)
- T. Nagai
- Department of Food Science and Technology, Tokyo University of Agriculture, Hokkaido 0992493, Japan
| | - N. Suzuki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 7398528, Japan
| | - T. Nagashima
- Department of Food Science and Technology, Tokyo University of Agriculture, Hokkaido 0992493, Japan
| |
Collapse
|
38
|
Maestri E, Marmiroli M, Marmiroli N. Bioactive peptides in plant-derived foodstuffs. J Proteomics 2016; 147:140-155. [DOI: 10.1016/j.jprot.2016.03.048] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/14/2016] [Accepted: 03/29/2016] [Indexed: 01/07/2023]
|
39
|
Li F, Liu W, Yamaki K, Liu Y, Fang Y, Li Z, Chen M, Wang C. Angiotensin I-Converting Enzyme Inhibitory Effect of Chinese Soypaste Along Fermentation and Ripening: Contribution of Early Soybean Protein Borne Peptides and Late Maillard Reaction Products. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1136941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fengjuan Li
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Wanlu Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Kohji Yamaki
- National Food Research Institute, National Agricultural and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Yanhong Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Yuanyuan Fang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Zhenjing Li
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Mianhua Chen
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| | - Changlu Wang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, China
| |
Collapse
|
40
|
Bao Z, Chi Y. In Vitro and In Vivo Assessment of Angiotensin-Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Milk by Lactobacillus casei Strains. Curr Microbiol 2016; 73:214-9. [PMID: 27139252 DOI: 10.1007/s00284-016-1051-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/14/2016] [Indexed: 10/21/2022]
Abstract
Angiotensin-converting enzyme (ACE) inhibitory activity of fermented soybean milk (FSM) by Lactobacillus casei strains in vitro was investigated in this study. Effects of fermented soybean milk administration by gavage on systolic blood pressure and diastolic blood pressure was also evaluated in spontaneously hypertensive rats (SHR) rats and Wistar-Kyoto (WKY) rats. Results showed that, CICC 20280 and CICC 23184 FSM showed high ACE inhibitory activity in vitro test and ACE inhibitory activity of CICC 23184 FSM was higher than CICC 20280 FSM. The bioactive substances of FSM were peptide and γ-aminobutyric acid (GABA). Their contents in CICC 20280 FSM and CICC 23184 FSM were 3.97 ± 0.67 mg/ml (peptide), 1.71 ± 0.36 mg/ml (GABA) and 5.17 ± 0.22 mg/ml (peptide), 1.57 ± 0.21 mg/ml (GABA), respectively. Moreover, CICC 20280 and CICC 23184 FSM administration by gavage could effectively lower the blood pressure of SHR to a normal level, while there was no effect on blood pressure of WKY rats. This result indicated that the bioactive substances could play an antihypertensive role when the blood pressure was not within the normal levels (high levels).
Collapse
Affiliation(s)
- Zhijie Bao
- Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yujie Chi
- Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
41
|
Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5846865. [PMID: 27478534 PMCID: PMC4960338 DOI: 10.1155/2016/5846865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 11/18/2022]
Abstract
Aim. We explored the effects of soy oligopeptides (SOP) in ultraviolet B- (UVB-) induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED) of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI), melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm(2)) for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs), p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage.
Collapse
|
42
|
|
43
|
Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.01.010] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Puchalska P, Marina Alegre ML, García López MC. Isolation and characterization of peptides with antihypertensive activity in foodstuffs. Crit Rev Food Sci Nutr 2016; 55:521-51. [PMID: 24915368 DOI: 10.1080/10408398.2012.664829] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hypertension is one of the main causes of cardiovascular diseases. Synthetic drugs inhibiting ACE activity present high effectiveness in the treatment of hypertension but cause undesirable side effects. Unlike these synthetic drugs, antihypertensive peptides do not show any adverse effect. These peptides are naturally present in some foods and since hypertension is closely related to modern diet habits, the interest for this kind of foods is increasing. Different methods for the purification, isolation, and characterization of antihypertensive peptides in foods have been developed. Nevertheless, there is no revision work summarizing and comparing these strategies. In this review, in vivo and in vitro pathways to obtain antihypertensive peptides have been summarized. The ACE mechanism and the methodologies developed to assay the ACE inhibitory activity have also been described. Moreover, a comprehensive overview on the isolation, purification, and identification techniques focusing on the discovery of new antihypertensive peptides with high activity has been included. Finally, it is worthy to highlight that the quantitation of antihypertensive peptides in foods is a new trend since genotype and processing conditions could affect their presence. Analytical methodologies using mass spectrometry constitute an interesting option for this purpose.
Collapse
Affiliation(s)
- Patrycja Puchalska
- a Department of Analytical Chemistry, Faculty of Chemistry University of Alcalá. Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares , 28871 , (Madrid) , Spain
| | | | | |
Collapse
|
45
|
Lim JS, Garcia CV, Lee SP. Optimized Production of GABA and γ-PGA in a Turmeric and Roasted Soybean Mixture Co-fermented by Bacillus subtilis and Lactobacillus plantarum. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jong-Soon Lim
- The Center for Traditional Microorganism Resources (TMR), Keimyung University
| | | | - Sam-Pin Lee
- The Center for Traditional Microorganism Resources (TMR), Keimyung University
- Department of Food Science and Technology, Keimyung University
| |
Collapse
|
46
|
Sharma KK, Mandloi M, Jain R. Regioselective copper-catalyzed N(1)-(hetero)arylation of protected histidine. Org Biomol Chem 2016; 14:8937-8941. [DOI: 10.1039/c6ob01753c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report regioselective N(1)-arylation of protected histidine using copper(i) iodide as a catalyst, trans-N,N′-dimethylcyclohexane-1,2-diamine as a ligand and readily available aryl iodides as coupling partners under microwave irradiation at 130 °C for 40 min.
Collapse
Affiliation(s)
- Krishna K. Sharma
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Meenakshi Mandloi
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| | - Rahul Jain
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- India
| |
Collapse
|
47
|
Shivanne Gowda SG, Narayan B, Gopal S. Bacteriological properties and health-related biochemical components of fermented fish sauce: An overview. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1057844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Abstract
Umami, the fifth basic taste, is the inimitable taste of Asian foods. Several traditional and locally prepared foods and condiments of Asia are rich in umami. In this part of world, umami is found in fermented animal-based products such as fermented and dried seafood, and plant-based products from beans and grains, dry and fresh mushrooms, and tea. In Southeast Asia, the most preferred seasonings containing umami are fish and seafood sauces, and also soybean sauces. In the East Asian region, soybean sauces are the main source of umami substance in the routine cooking. In Japan, the material used to obtain umami in dashi, the stock added to almost every Japanese soups and boiled dishes, is konbu or dried bonito. This review introduces foods and seasonings containing naturally high amount of umami substances of both animal and plant sources from different countries in Asia.
Collapse
Affiliation(s)
- P Hajeb
- a Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology , Universiti Putra Malaysia , 43400 UPM, Serdang , Selangor , Malaysia
| | | |
Collapse
|
49
|
Characterization and use of microbial communities in Doenjang to control the unpleasant odor of Ginkgo epicarp. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
50
|
Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Int J Mol Sci 2014; 16:256-83. [PMID: 25547491 PMCID: PMC4307246 DOI: 10.3390/ijms16010256] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides.
Collapse
|