1
|
SHINYA S, YOHANNES YB, IKENAKA Y, NAKAYAMA SMM, ISHIZUKA M, FUJITA S. Characteristics of cytochrome P450-dependent metabolism in the liver of the wild raccoon, Procyon lotor. J Vet Med Sci 2022; 84:1665-1672. [PMID: 36328483 PMCID: PMC9791232 DOI: 10.1292/jvms.22-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Wildlife is exposed to a wide range of xenobiotics in the natural environment. In order to appropriately assess xenobiotic-induced toxicity in wildlife, it is necessary to understand metabolic capacities. Carnivores, in general, have low metabolic abilities, making them vulnerable to a variety of chemicals. Raccoons (Procyon lotor) in the wild have been found to have high levels of xenobiotics. However, little is known about the metabolic capacity of the cytochrome P450 (CYP) enzymes in this species. Thus, this study used liver samples to investigate the characteristics of CYP enzymes in wild raccoons. In 22 wild raccoons, CYP concentrations in hepatic microsomes were examined. To better understand the properties of CYP-dependent metabolism, in vitro metabolic activity studies were performed using ethoxyresorufin, pentoxyresorufin and testosterone as substrates. In addition, three raccoons were fed commercial dog food in the laboratory for one week, and the effects on CYP-dependent metabolism were investigated. In comparison to other mammalian species, raccoons had very low concentrations of CYP in their livers. In an in vitro enzymatic analysis, raccoons' ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-depentylase (PROD) metabolic capacities were less than one-fifth and one-tenth of rats', respectively. These results indicate the possible high risk in raccoons if exposed to high levels of environmental xenobiotics because of their poor CYP activity. In this study, the features of CYP-dependent metabolism in wild raccoons are described for the first time.
Collapse
Affiliation(s)
- So SHINYA
- Laboratory of Toxicology, Graduate School of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan
| | - Yared Beyene YOHANNES
- Laboratory of Toxicology, Graduate School of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan
| | - Yoshinori IKENAKA
- Laboratory of Toxicology, Graduate School of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan,Translational Research Unit, Veterinary Teaching Hospital,
Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, Japan,One Health Research Center, Hokkaido University, Hokkaido,
Japan,Water Research Group, Unit for Environmental Sciences and
Management, North-West University, Potchefstroom, South Africa
| | - Shouta MM NAKAYAMA
- Laboratory of Toxicology, Graduate School of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan,Biomedical Sciences Department, School of Veterinary
Medicine, The University of Zambia, Lusaka, Zambia
| | - Mayumi ISHIZUKA
- Laboratory of Toxicology, Graduate School of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan,Correspondence to: Ishizuka M: ,
Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University,
Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Shoichi FUJITA
- Laboratory of Toxicology, Graduate School of Veterinary
Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
2
|
Swigonska S, Molcan T, Nynca A, Ciereszko RE. The involvement of CYP1A2 in biodegradation of dioxins in pigs. PLoS One 2022; 17:e0267162. [PMID: 35617319 PMCID: PMC9135293 DOI: 10.1371/journal.pone.0267162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the most harmful chemicals showing resistance to biodegradation. The majority of TCDD effects is mediated by the aryl hydrocarbon receptor (AhR) pathway. TCDD binding to AhR results in the activation of cytochrome P450 enzymes (CYP1A1, CYP1A2, CYP1B1) involved in dioxin biodegradation. The goal of the study was to explore the potentialrole of CYP1A2 in the metabolism of TCDD. We investigated a molecular structure of CYP1A2 and the binding selectivity and affinity between the pig CYP1A2 and: 1/ DiCDD or TCDD (dioxins differing in toxicity and biodegradability) or 2/ their selected metabolites. pCYP1A2 demonstrated higher affinity towards DiCDD and TCDD than other pCYP1 enzymes. All dioxin-pCYP1A2 complexes were found to be stabilized by hydrophobic interactions. The calculated distances between the heme oxygen and the dioxin carbon nearest to the oxygen, reflecting the hydroxylating potential of CYP1A2, were higher than in other pCYP1 enzymes. The distances between the heme iron and the nearest dioxin carbon exceeded 5 Å, a distance sufficient to allow the metabolites to leave the active site. However, the molecular dynamics simulations revealed that two access channels of CYP1A2 were closed upon binding the majority of the examined dioxins. Moreover, the binding of dioxin metabolites did not promote opening of channel S–an exit for hydroxylated products. It appears that the undesired changes in the behavior of access channels prevail over the hydroxylating potential of CYP1A2 towards TCDD and the favorable distances, ultimately trapping the metabolites at the enzyme’s active site.
Collapse
Affiliation(s)
- Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- * E-mail:
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Renata E. Ciereszko
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
3
|
Karengera A, Sterken MG, Kammenga JE, Riksen JAG, Dinkla IJT, Murk AJ. Differential expression of genes in C. elegans reveals transcriptional responses to indirect-acting xenobiotic compounds and insensitivity to 2,3,7,8-tetrachlorodibenzodioxin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113344. [PMID: 35219257 DOI: 10.1016/j.ecoenv.2022.113344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 05/14/2023]
Abstract
Caenorhabditis elegans is a well-established model organism for toxicity testing of chemical substances. We recently demonstrated its potential for bioanalysis of the toxic potency of chemical contaminants in water. While many detoxification genes are homologues to those in mammalians, C. elegans is reported to be deficient in cytochrome CYP1-like P450 metabolism and that its aryl hydrocarbon receptor (AhR) homolog encoded by ahr-1 purportedly does not interact with dioxins or any other known xenobiotic ligand. This suggests that C. elegans is insensitive for compounds that require bioactivation (indirectly acting compounds) and for dioxins or dioxin-like compounds. This study analysed genome-wide gene expression of the nematode in response to 30 μM of aflatoxin B1 (AFB1), benzo(a)pyrene (B(a)P), Aroclor 1254 (PCB1254), and 10 μM of 2,3,7,8-tetrachlorodibenzodioxin (TCDD). After 24 h of exposure in the early L4 larval stage, microarray analysis revealed 182, 86, and 321 differentially expressed genes in the nematodes treated with 30 μM of AFB1, B(a)P, and PCB1254, respectively. Among these genes, many encode xenobiotic-metabolizing enzymes, and their transcription levels were among the highest-ranked fold-changed genes. Interestingly, only one gene (F59B1.8) was upregulated in the nematodes exposed to 10 μM TCDD. Genes related to metabolic processes and catalytic activity were the most induced by exposure to 30 μM of AFB1, B(a)P, and PCB1254. Despite the genotoxic nature of AFB1 and B(a)P, no differential expression was found in the genes encoding DNA repair and cell cycle checkpoint proteins. Analysis of concentration-response curves was performed to determine the Lowest Observed Transcriptomic Effect Levels (LOTEL) of AFB1, B(a)P, and PCB1254. The obtained LOTEL values showed that gene expression changes in C. elegans are more sensitive to toxicants than reproductive effects. Overall, transcriptional responses of metabolic enzymes suggest that the nematode does metabolize AFB1, B(a)P, and PCB1254. Our findings also support the assumption that the transcription factor AhR homolog in C. elegans does not bind typical xenobiotic ligands, rendering the nematode transcriptionally insensitive to TCDD effects.
Collapse
Affiliation(s)
- Antoine Karengera
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708 WD Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Mark G Sterken
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Joost A G Riksen
- Wageningen University, Plant Sciences, Laboratory of Nematology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Inez J T Dinkla
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albertinka J Murk
- Wageningen University, Department of Animal Sciences, Marine Animal Ecology Group, De Elst 1, 6708 WD Wageningen, The Netherlands.
| |
Collapse
|
4
|
Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: safeguarding barrier function. Nat Rev Gastroenterol Hepatol 2021; 18:559-570. [PMID: 33742166 PMCID: PMC7611426 DOI: 10.1038/s41575-021-00430-8] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/01/2023]
Abstract
Mammalian aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that belongs to the basic helix-loop-helix (bHLH)-PAS family of transcription factors, which are evolutionarily conserved environmental sensors. In the absence of ligands, AHR resides in the cytoplasm in a complex with molecular chaperones such as HSP90, XAP2 and p23. Upon ligand binding, AHR translocates into the nuclear compartment, where it dimerizes with its partner protein, AHR nuclear translocator (ARNT), an obligatory partner for the DNA-binding and functional activity. Historically, AHR had mostly been considered as a key intermediary for the detrimental effects of environmental pollutants on the body. However, following the discovery of AHR-mediated functions in various immune cells, as well as the emergence of non-toxic 'natural' AHR ligands, this view slowly began to change, and the study of AHR-deficient mice revealed a plethora of important beneficial functions linked to AHR activation. This Review focuses on regulation of the AHR pathway and the barrier-protective roles AHR has in haematopoietic, as well as non-haematopoietic, cells within the intestinal microenvironment. It covers the nature of AHR ligands and feedback regulation of the AHR pathway, outlining the currently known physiological functions in immune, epithelial, endothelial and neuronal cells of the intestine.
Collapse
Affiliation(s)
| | | | - Emma Wincent
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Mahfouz S, Mansour G, Murphy DJ, Hanano A. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractDioxins are the most toxic known environmental pollutants and are mainly formed by human activities. Due to their structural stability, dioxins persist for extended periods and can be transported over long distances from their emission sources. Thus, dioxins can be accumulated to considerable levels in both human and animal food chains. Along with sediments, soils are considered the most important reservoirs of dioxins. Soil microorganisms are therefore highly exposed to dioxins, leading to a range of biological responses that can impact the diversity, genetics and functional of such microbial communities. Dioxins are very hydrophobic with a high affinity to lipidic macromolecules in exposed organisms, including microbes. This review summarizes the genetic, molecular and biochemical impacts of dioxins on the lipid metabolism of soil microbial communities and especially examines modifications in the composition and architecture of cell membranes. This will provide a useful scientific benchmark for future attempts at soil ecological risk assessment, as well as in identifying potential dioxin-specific-responsive lipid biomarkers. Finally, potential uses of lipid-sequestering microorganisms as a part of biotechnological approaches to the bio-management of environmental contamination with dioxins are discussed.
Collapse
|
6
|
Finnigan JD, Young C, Cook DJ, Charnock SJ, Black GW. Cytochromes P450 (P450s): A review of the class system with a focus on prokaryotic P450s. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:289-320. [PMID: 32951814 DOI: 10.1016/bs.apcsb.2020.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochromes P450 (P450s) are a large superfamily of heme-containing monooxygenases. P450s are found in all Kingdoms of life and exhibit incredible diversity, both at sequence level and also on a biochemical basis. In the majority of cases, P450s can be assigned into one of ten classes based on their associated redox partners, domain architecture and cellular localization. Prokaryotic P450s now represent a large diverse collection of annotated/known enzymes, of which many have great potential biocatalytic potential. The self-sufficient P450 classes (Class VII/VIII) have been explored significantly over the past decade, with many annotated and biochemically characterized members. It is clear that the prokaryotic P450 world is expanding rapidly, as the number of published genomes and metagenome studies increases, and more P450 families are identified and annotated (CYP families).
Collapse
Affiliation(s)
| | - Carl Young
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | - Darren J Cook
- Prozomix Limited, Haltwhistle, Northumberland, United Kingdom
| | | | - Gary W Black
- Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Yamazoe Y, Yoshinari K. Prediction of regioselectivity and preferred order of CYP1A1-mediated metabolism: Solving the interaction of human and rat CYP1A1 forms with ligands on the template system. Drug Metab Pharmacokinet 2020; 35:165-185. [DOI: 10.1016/j.dmpk.2019.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
|
8
|
Yamazoe Y, Yoshinari K. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions part 3: Difference in substrate specificity of human and rodent CYP1A2 and the refinement of predicting system. Drug Metab Pharmacokinet 2019; 34:217-232. [DOI: 10.1016/j.dmpk.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/04/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
|
9
|
Sotnichenko A, Pantsov E, Shinkarev D, Okhanov V. Hydrophobized Reversed-Phase Adsorbent for Protection of Dairy Cattle against Lipophilic Toxins from Diet. Efficiensy in Vitro and in Vivo. Toxins (Basel) 2019; 11:toxins11050256. [PMID: 31067794 PMCID: PMC6563209 DOI: 10.3390/toxins11050256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023] Open
Abstract
The steady growth of inflammatory diseases of the udder in dairy cattle forces us to look for the causes of this phenomenon in the context of growing chemical pollution of the environment and feeds. Within the framework of this concept, an analysis was made of the polarity level of the three toxic impurity groups, which are commonly present in dairy cattle feeds. These impurities are presented by mycotoxins, polyaromatic hydrocarbons (PAH) and persistent organic pollutants (POP). It has been determined that 46% of studied mycotoxins (n = 1500) and 100% of studied polyaromatic hydrocarbons (n = 45) and persistent organic pollutants (n = 55) are lipophilic compounds, prone to bioaccumulation. A comparative evaluation of the sorption capacity of four adsorbents of a different nature and polarity with respect to the simplest PAH, naphthalene and lipophilic estrogenic mycotoxin, zearalenone in vitro has been carried out. The highest efficiency in these experiments was demonstrated by the reversed-phase polyoctylated polysilicate hydrogel (POPSH). The use of POPSH in a herd of lactating cows significantly reduced the transfer of aldrin, dieldrin and heptachlor, typical POPs from the “dirty dozen”, to the milk. The relevance of protecting the main functional systems of animals from the damaging effects of lipophilic toxins from feeds using non-polar adsorbents, and the concept of evaluating the effectiveness of various feed adsorbents for dairy cattle by their influence on the somatic cell count in the collected milk are discussed.
Collapse
Affiliation(s)
- Alexander Sotnichenko
- Research and Production Center "Fox & Co" Ltd., 117149, Simferopol Boulevard, 8, 117149 Moscow, Russia.
| | - Evgeny Pantsov
- Research and Production Center "Fox & Co" Ltd., 117149, Simferopol Boulevard, 8, 117149 Moscow, Russia.
| | - Dmitry Shinkarev
- Research and Production Center "Fox & Co" Ltd., 117149, Simferopol Boulevard, 8, 117149 Moscow, Russia.
| | - Victor Okhanov
- Research and Production Center "Fox & Co" Ltd., 117149, Simferopol Boulevard, 8, 117149 Moscow, Russia.
| |
Collapse
|
10
|
Yamazoe Y, Goto T, Tohkin M. Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition. Drug Metab Pharmacokinet 2019; 34:113-125. [DOI: 10.1016/j.dmpk.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023]
|
11
|
Hanano A, Shaban M, Almutlk D, Almousally I. The cytochrome P450 BM-1 of Bacillus megaterium A14K is induced by 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin: Biophysical, molecular and biochemical determinants. CHEMOSPHERE 2019; 216:258-270. [PMID: 30384294 DOI: 10.1016/j.chemosphere.2018.10.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
The current study describes biological changes in Bacillus megaterium A14K cells growing in the presence of 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin (TCDD), the most potent congener of dioxins. The results indicate that the metabolizing of 2,3,7,8-TCDD by BmA14K was accompanied with a novel morphological and biophysical profile typified by the growth of single cells with high levels of biosurfactant production, surface hydrophobicity and cell membrane permeability. Moreover, the TCDD-grown bacteria exhibited a specific fatty acid profile characterized by low ratios of branched/straight chain fatty acids (BCFAs/SCFAs) and saturated/unsaturated fatty acids (SFAs/USFAs) with a specific "signature" due to the presence of branched chain unsaturated fatty acids (BCUFAs). This was synchronized with a significant induction of P450BM-1, an unsaturated fatty acid-metabolizing enzyme in B. megaterium. Subsequently, the profile of oxygenated fatty acids in the TCDD-grown bacteria was typified by the presence of 5,6-epoxy derived from unsaturated C15, C16 and C17 fatty acids, that were absent in control bacteria. A net increase was also detected in both hydroxylated and epoxidized fatty acids, especially those derived from C15:0 and C16:1, respectively, suggesting a specific TCDD-induced "signature" of oxygenated fatty acids in BmA14K. Overall, this study sheds light on the use of B. megaterium A14K as a promising bioindicator/biodegrader of dioxins.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Douaa Almutlk
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| |
Collapse
|
12
|
Molcan T, Swigonska S, Nynca A, Sadowska A, Ruszkowska M, Orlowska K, Ciereszko RE. Is CYP1B1 involved in the metabolism of dioxins in the pig? Biochim Biophys Acta Gen Subj 2018; 1863:291-303. [PMID: 30278240 DOI: 10.1016/j.bbagen.2018.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most difficult to biodegradate and the most toxic dioxin congener. Previously, we demonstrated in silico the ability of pig CYP1A1 to hydroxylate 2,7-dichlorodibenzo-p-dioxin (DiCDD), but not TCDD. To increase our knowledge concerning the low effectiveness of TCDD biodegradability, we analyzed in silico the binding selectivity and affinity between pig CYP1B1 and the two dioxins by means of molecular modeling. We also compared the effects of TCDD and DiCDD on CYP1B1 gene expression (qRT-PCR) and catalytic (EROD) activity in porcine granulosa cells. It was found that DiCDD and TCDD were stabilized within the pig CYP1B1 active site by hydrophobic interactions. The analysis of substrate channel availability revealed that both dioxins opened the exit channel S, allowing metabolites to leave the enzyme active site. Moreover, DiCDD and TCDD increased the CYP1B1 gene expression and catalytic activity in porcine granulosa cells. On the other hand, TCDD demonstrated higher than DiCDD calculated affinity to pig CYP1B1, hindering TCDD exit from the active site. The great distance between CYP1B1's heme and TCDD also might contribute to the lower hydroxylation effectiveness of TCDD compared to that of DiCDD. Moreover, the narrow active site of pig CYP1B1 may immobilize TCDD molecule, inhibiting its hydroxylation. The results of the access channel analysis and the distance from pig CYP1B1's heme to TCDD suggest that the metabolizing potential of pig CYP1B1 is higher than that of pig CYP1A1. However, this potential is probably not sufficiently high to considerably improve the slow TCDD biodegradation.
Collapse
Affiliation(s)
- Tomasz Molcan
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Agnieszka Sadowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Karina Orlowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
13
|
Molcan T, Swigonska S, Orlowska K, Myszczynski K, Nynca A, Sadowska A, Ruszkowska M, Jastrzebski JP, Ciereszko RE. Structural-functional adaptations of porcine CYP1A1 to metabolize polychlorinated dibenzo-p-dioxins. CHEMOSPHERE 2017; 168:205-216. [PMID: 27783961 DOI: 10.1016/j.chemosphere.2016.10.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are widespread by-products of human industrial activity. They accumulate in tissues of animals and humans, exerting numerous adverse effects on different systems. In living organisms, dioxins are metabolized by enzymes of the cytochrome P450 family, including CYP1A1. Particular dioxin congeners differ in their toxicity level and ability to undergo biodegradation. Since the molecular mechanisms underlying dioxin susceptibility or resistance to biodegradation are unknown, in the present study the molecular interactions between five selected dioxins and porcine CYP1A1 protein were investigated. It was found that the ability of a dioxin to undergo CYP1A1-mediated degradation is associated mainly with the number and position of chlorine atoms in the dioxin molecule. Among all examined congeners, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) demonstrated the highest affinity to CYP1A1 and, at the same time, the greatest distance to the active site of the enzyme. Interestingly, in contrast to other dioxins, the binding of the TCDD molecule to the porcine CYP1A1 active site resulted in a rapid and continuous closure of substrate channels. All the information may help to explain the extended half-life of TCDD in living organisms as well as its high toxicity.
Collapse
Affiliation(s)
- Tomasz Molcan
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Sylwia Swigonska
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland.
| | - Karina Orlowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Kamil Myszczynski
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Anna Nynca
- Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Agnieszka Sadowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Monika Ruszkowska
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Jan Pawel Jastrzebski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Renata E Ciereszko
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland; Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
14
|
Yamazoe Y, Ito K, Yamamura Y, Iwama R, Yoshinari K. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 1. Focusing on polycyclic arenes and the related chemicals. Drug Metab Pharmacokinet 2016; 31:363-384. [DOI: 10.1016/j.dmpk.2016.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|
15
|
Maldonado-Rojas W, Rivera-Julio K, Olivero-Verbel J, Aga DS. Mechanisms of interaction between persistent organic pollutants (POPs) and CYP2B6: An in silico approach. CHEMOSPHERE 2016; 159:113-125. [PMID: 27281544 DOI: 10.1016/j.chemosphere.2016.05.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/14/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Human Cytochrome P450s (CYP450) are a group of heme-containing metalloenzymes responsible for recognition and metabolism of numerous xenobiotics, including drugs and environmental contaminants. CYP2B6, a member of CYP450, is well known for being a highly inducible and polymorphic enzyme and for its important role in the oxidative metabolism of environmental pollutants, such as the Polybrominated Diphenyl Ethers (PBDEs) and Polychlorinated Biphenyls (PCBs). However the mechanisms of interaction of PBDEs and PCBs with CYP2B6 is not entirely known. In this work, a computational approach was carried out to study the interactions of 41 POPs (17 PBDEs, 17 PCBs, and 7 Dioxins) with four CYP2B6 protein structures downloaded from PDB data base (PDB: 3UA5, 3QOA, 3QU8 and 4I91) using molecular docking protocols with AutoDock Vina. The best binding affinity values (kcal/mol) were obtained for PBDE-99 (-8.5), PCB-187 (-9.6), and octachloro-dibenzo-dioxin (-9.8) that can be attributed to the hydrophobic interactions with important residues, such as Phe-363, in the catalytic site of CYP2B6. Molecular docking validation revealed the best values for PDB: 3UA5 (R = 0.622, p = 0.001) demonstrating the reliability of molecular docking predictions. The information obtained in this work can be useful in evaluating the modes of interaction of xenobiotic compounds with the catalytic site of CYP2B6 and provide insights on the important role of these enzymes in the metabolism of potentially toxic compounds in humans.
Collapse
Affiliation(s)
- Wilson Maldonado-Rojas
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014 Cartagena, Colombia
| | - Karen Rivera-Julio
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014 Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014 Cartagena, Colombia.
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
16
|
Fu Z, Wang Y, Chen J, Wang Z, Wang X. How PBDEs Are Transformed into Dihydroxylated and Dioxin Metabolites Catalyzed by the Active Center of Cytochrome P450s: A DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8155-8163. [PMID: 27363260 DOI: 10.1021/acs.est.6b00524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Predicting metabolism of chemicals and potential toxicities of relevant metabolites remains a vital and difficult task in risk assessment. Recent findings suggested that polybrominated diphenyl ethers (PBDEs) can be transformed into dihydroxylated and dioxin metabolites catalyzed by cytochrome P450 enzymes (CYPs), whereas the mechanisms pertinent to these transformations remain largely unknown. Here, by means of density functional theory (DFT) calculations, we probed the metabolic pathways of 2,2',4,4'-tetraBDE (BDE-47) using the active center model of CYPs (Compound I). Results show that BDE-47 is first oxidized to monohydroxylated products (HO-BDEs), wherein a keto-enol tautomerism is identified for rearrangement of the cyclohexenone intermediate. Dihydroxylation with HO-BDEs as precursors, has a unique phenolic H-abstraction and hydroxyl rebound pathway that is distinct from that for monohydroxylation, which accounts for the absence of epoxides in in vitro studies. Furthermore, we found only dihydroxylated PBDEs with heterophenyl -OH substituents ortho- and meta- to the ether bond serve as precursors for dioxins, which are evolved from aryl biradical coupling of diketone intermediates that are produced from dehydrogenation of the dihydroxylated PBDEs by Compound I. This study may enlighten the development of computational models that afford mechanism-based prediction of the xenobiotic biotransformation catalyzed by CYPs.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Xingbao Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
17
|
Iwata H, Yamaguchi K, Takeshita Y, Kubota A, Hirakawa S, Isobe T, Hirano M, Kim EY. Enzymatic characterization of in vitro-expressed Baikal seal cytochrome P450 (CYP) 1A1, 1A2, and 1B1: implication of low metabolic potential of CYP1A2 uniquely evolved in aquatic mammals. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:138-151. [PMID: 25814058 DOI: 10.1016/j.aquatox.2015.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to elucidate the catalytic function of cytochrome P450 (CYP) 1 enzymes in aquatic mammals. Alkoxyresorufin O-dealkylation (AROD) activities including methoxy- (MROD), ethoxy- (EROD), pentoxy- (PROD), and benzyloxyresorufin O-dealkylation (BROD), and 2- and 4-hydroxylation activities of 17β-estradiol (E2) were measured by using yeast-expressed Baikal seal (Pusa sibirica) CYP1A1, 1A2, and 1B1 proteins. Heterologous protein expression of the Baikal seal CYP1s (bsCYP1s) in yeast microsomes was confirmed by reduced CO-difference spectra and immunoblotting. Heterologously expressed human CYP1 enzyme (hCYP1) activities were simultaneously measured and compared with those of bsCYP1 isozymes. Recombinant bsCYP1A1 protein showed the highest Vmax of EROD, followed by MROD, PROD, and BROD, similar to that of hCYP1A1. Vmax/Km ratios of all AROD activities catalyzed by bsCYP1A1 were lower than those catalyzed by hCYP1A1, suggesting less potential for AROD by bsCYP1A1. Enzymatic assays for bsCYP1A2 showed no or minimal AROD activities, while hCYP1A2 displayed MROD and EROD activities. bsCYP1B1 showed an AROD profile (EROD>BROD>MROD>>PROD) similar to that of hCYP1B1; however, Vmax/Km ratios of all AROD activities by bsCYP1B1 were higher. Yeast microsomes containing bsCYP1A1 and 1B1 and hCYP1A1, 1A2, and 1B1 metabolized E2 to 2-OHE2 and 4-OHE2, whereas bsCYP1A2 showed no such activity. Comparison of 4- and 2-hydroxylations of E2 by CYP1As suggests that bsCYP1A1, hCYP1A1, and 1A2 preferentially catalyze 2- rather than 4-hydroxylation. As for CYP1B1, the Vmax/Km ratios suggest that both Baikal seal and human CYPs catalyze 4- rather than 2-hydroxylation. Interspecies comparison showed that bsCYP1B1 has higher metabolic potencies for both E2 hydroxylations than does hCYP1B1, whereas the activity of bsCYP1A1 was lower than that of hCYP1A1. Messenger RNA expression levels of bsCYP1s in the liver of Baikal seals indicated that bsCYP1A1 and 1A2 enzymes contributed to 16.2% and 83.7% of total CYP1s, respectively; bsCYP1B1 accounted for only 0.06%. Addition of anti-human CYP1A1 antibody in seal liver microsomes suppressed EROD activity more than did anti-human CYP1A2 antibody. Therefore, EROD may be catalyzed by hepatic bsCYP1A1 but not bsCYP1A2, consistent with the results of yeast-expressed bsCYP1A1 and 1A2. In silico substrate-docking models of bsCYP1s suggested that the defect in bsCYP1A2 enzymatic activities may be accounted for by the Pro substitution of highly conserved Thr in the I-helix, which is involved in formation of a hydrogen bond with the hydroperoxy intermediate on the heme. This Thr-Pro substitution is evolutionarily conserved across aquatic mammals and could explain their lower metabolic potential for persistent organic pollutants.
Collapse
Affiliation(s)
- Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | - Keisuke Yamaguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Yoko Takeshita
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Akira Kubota
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Japan
| | - Shusaku Hirakawa
- Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu, Fukuoka 818-0135, Japan
| | - Tomohiko Isobe
- Center for Environmental Health Sciences, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, South Korea.
| |
Collapse
|
18
|
de Solla SR. Exposure, Bioaccumulation, Metabolism and Monitoring of Persistent Organic Pollutants in Terrestrial Wildlife. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2015. [DOI: 10.1007/698_2015_450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Mammalian cytochrome P450-dependent metabolism of polychlorinated dibenzo-p-dioxins and coplanar polychlorinated biphenyls. Int J Mol Sci 2014; 15:14044-57. [PMID: 25123135 PMCID: PMC4159838 DOI: 10.3390/ijms150814044] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 02/02/2023] Open
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and coplanar polychlorinated biphenyls (PCBs) contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP)-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high activities toward monoCDDs, diCDDs, and triCDDs but no detectable activity toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD). Large amino acids located at putative substrate-recognition sites and the F-G loop in rat CYP1A1 contributed to the successful metabolism of 2,3,7,8-tetraCDD. Rat, but not human, CYP1A1 metabolized 3,3',4,4',5-pentachlorobiphenyl (CB126) to two hydroxylated metabolites. These metabolites are probably less toxic than is CB126, due to their higher solubility. Homology models of human and rat CYP1A1s and CB126 docking studies indicated that two amino acid differences in the CB126-binding cavity were important for CB126 metabolism. In this review, the importance of CYPs in the metabolism of dioxins and PCBs in mammals and the species-based differences between humans and rats are described. In addition, the authors reveal the molecular mechanism behind the binding modes of dioxins and PCBs in the heme pocket of CYPs.
Collapse
|
20
|
Shiizaki K, Kawanishi M, Yagi T. Dioxin suppresses benzo[a]pyrene-induced mutations and DNA adduct formation through cytochrome P450 1A1 induction and (±)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide inactivation in human hepatoma cells. Mutat Res 2013; 750:77-85. [PMID: 23036853 DOI: 10.1016/j.mrgentox.2012.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 06/01/2023]
Abstract
Benzo[a]pyrene (BaP) is metabolically activated by cytochrome P450 enzymes, and forms DNA adduct leading to mutations. Cytochrome P450 1A1 plays a central role in this activation step, and this enzyme is strongly induced by chemical agents that bind to the aryl hydrocarbon receptor (AhR), which is also known as a dioxin receptor. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand has not been shown to form any DNA adduct, but has a possibility to aggravate the toxicity of precarcinogenic polycyclic hydrocarbons through the induction of metabolic enzymes. We treated human hepatoma cells (HepG2) with TCDD, and subsequently exposed them to BaP to elucidate the synergistic effects on mutations. Surprisingly, mutant frequency induced by BaP at the hypoxanthine-guanine phosphribosyltransferase (HPRT) locus was decreased by pretreatment with TCDD. In correlation with decrease in the mutant frequencies, BaP-DNA adduct formation was also decreased by TCDD pretreatment. This suppressive effect of TCDD was more potent when the cells were exposed to (±)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), a reactive metabolic intermediate of BaP. Among the enzymes catalyzing BaP oxidation and conjugation, cytochrome P450 1A1, 1A2, 3A4 and UDP-glucuronosyltransferase 1A1 mRNAs were induced by the exposure to TCDD. In cytochrome P450 1A1-deficient murine cells and cytochrome P450 1A1-uninducible human cells, TCDD could not suppress BPDE-DNA adduct formation. Further experiments using "Tet-On" cytochrome P450 1A1-overexpressing cells and a recombinant cytochrome P450 1A1 enzyme demonstrated that this is the key enzyme involved in the biotransformation of BaP, that is, both production and inactivation of BPDE. We conclude that TCDD-induced cytochrome P450 catalyzes the metabolism of BPDE to as yet-unidentified products that are not apparently DNA-reactive, thereby reducing mutations in hepatoma cells.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Laboratory of Environmental Genetics, Frontier Science Innovation Center, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka, Japan
| | | | | |
Collapse
|
21
|
Sakaki T, Yamamoto K, Ikushiro S. Possibility of application of cytochrome P450 to bioremediation of dioxins. Biotechnol Appl Biochem 2013; 60:65-70. [PMID: 23586993 DOI: 10.1002/bab.1067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/20/2012] [Indexed: 11/07/2022]
Abstract
Dioxins, including polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans, and coplanar polychlorinated biphenyls, are known to be metabolized by enzymes such as cytochrome (CYP) P450, angular dioxygenase, lignin peroxidase, and dehalogenase. It is noted that all of these enzymes have metal ions in their active centers, and the enzyme systems except for peroxidase each have a distinct electron transport chain. Among these enzyme systems, we have focused on cytochrome P450-dependent metabolism of dioxins from the viewpoint of practical use for bioremediation. Mammalian and fungal cytochromes P450 showed remarkable activity toward low-chlorinated PCDDs. In particular, mammalian cytochromes P450 belonging to the CYP1 family showed high activity. Rat CYP1A1 showed high activity toward 2,3,7-trichloro-dibenzo-p-dioxin but no detectable activity for 2,3,7,8-tetrachloro-dibenzo-p-dioxin (2,3,7,8-TCDD). On the basis of these results, we assumed that enlarging the space of the substrate-binding pocket of rat CYP1A1 might generate TCDD-metabolizing enzyme. Large-sized amino acids located at putative substrate-recognition sites and F-G loop were substituted for alanine by site-directed mutagenesis. Finally, we successfully generated 2,3,7,8-TCDD-metabolizing enzyme by site-directed mutagenesis of rat CYP1A1. We hope that recombinant microorganisms harboring genetically engineered cytochrome P450 will be used for bioremediation of soil contaminated with PCDDs, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls in the future.
Collapse
Affiliation(s)
- Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan.
| | | | | |
Collapse
|
22
|
Nakamura R, Kondo R, Shen MH, Ochiai H, Hisamatsu S, Sonoki S. Identification of cytochrome P450 monooxygenase genes from the white-rot fungus Phlebia brevispora. AMB Express 2012; 2:8. [PMID: 22273259 PMCID: PMC3292997 DOI: 10.1186/2191-0855-2-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/25/2012] [Indexed: 11/23/2022] Open
Abstract
Three cytochrome P450 monooxygenase (CYP) genes, designated pb-1, pb-2 and pb-3, were isolated from the white-rot fungus, Phlebia brevispora, using reverse transcription PCR with degenerate primers constructed based on the consensus amino acid sequence of eukaryotic CYPs in the O2-binding, meander and heme-binding regions. Individual full-length CYP cDNAs were cloned and sequenced, and the relative nucleotide sequence similarity of pb-1 (1788 bp), pb-2 (1881 bp) and pb-3 (1791 bp) was more than 58%. Alignment of the deduced amino acid (aa) sequences of pb-1-pb-3 showed that these three CYPs belong to the same family with > 40% aa sequence similarity, and pb-1 and pb-3 are in the same subfamily, with > 55% aa sequence similarity. Furthermore, pb-1-pb-3 appeared to be a subfamily of CYP63A (CYP63A1-CYP63A4), found in Phanerochaete chrysosporium. The phylogenetic tree constructed by 500 bootstrap replications using the neighbor-joining method showed that the evolutionary distance between pb-1 and pb-3 was shorter than that between pb-2 and pb-1 (or pb-3). Exon-intron analysis of pb-1 and pb-3 showed that both genes have nearly the same number, size and order of exons and the types of introns, also indicating both genes appear to be evolutionarily close. It is interesting that the transcription level of pb-3 was evidently increased above the pb-1 transcription level by exposure to 12 coplanar PCB congeners and 2,3,7,8-tetrachlorodibenzo-p-dioxin, though the two genes were evolutionarily close.
Collapse
|
23
|
Chopra M, Schrenk D. Dioxin toxicity, aryl hydrocarbon receptor signaling, and apoptosis-persistent pollutants affect programmed cell death. Crit Rev Toxicol 2011; 41:292-320. [PMID: 21323611 DOI: 10.3109/10408444.2010.524635] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exogenous ligands of the aryl hydrocarbon receptor (AhR) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related substances are highly toxic pollutants ubiquitously present in the environment. They cause a variety of toxic effects to different organs and tissues. Among other effects, TCDD exposure to laboratory animals leads to thymus atrophy and immunosuppression on the one hand, and to tumor formation on the other. Apoptosis appears to be involved in both these toxic effects: AhR activation by TCDD was discussed to induce apoptosis of immune cells, leading to the depletion of thymocytes and ultimately immunosuppression. This mechanism could help to explain the highly immunotoxic actions of TCDD but it is nevertheless under debate whether this is the mode of action for immunosuppression by this class of chemical substances. In other cell types, especially liver cells, TCDD inhibits apoptosis induced by genotoxic treatment. In initiation-promotion studies, TCDD was shown to be a potent liver tumor promoter. Among other theories it was hypothesized that TCDD acts as a tumor promoter by preventing initiated cells from undergoing apoptosis. The exact mechanisms of apoptosis inhibition by TCDD are not fully understood, but both in vivo and in vitro studies consistently showed an involvement of the tumor suppressor p53 in this effect. Various strings of evidence have been established linking apoptosis to the detrimental effects of exogenous activation of the AhR. Within this article, studies elucidating the effects of TCDD and related substances on apoptosis signaling, be it inducing or repressing, is to be reviewed.
Collapse
Affiliation(s)
- Martin Chopra
- Institute of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
24
|
Yamazaki K, Suzuki M, Itoh T, Yamamoto K, Kanemitsu M, Matsumura C, Nakano T, Sakaki T, Fukami Y, Imaishi H, Inui H. Structural basis of species differences between human and experimental animal CYP1A1s in metabolism of 3,3′,4,4′,5-pentachlorobiphenyl. ACTA ACUST UNITED AC 2011; 149:487-94. [DOI: 10.1093/jb/mvr009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Yasuda K, Ikushiro S, Kamakura M, Ohta M, Sakaki T. Metabolism of Sesamin by Cytochrome P450 in Human Liver Microsomes. Drug Metab Dispos 2010; 38:2117-23. [DOI: 10.1124/dmd.110.035659] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Metabolism of mono- and dichloro-dibenzo-p-dioxins by Phanerochaete chrysosporium cytochromes P450. Appl Microbiol Biotechnol 2010; 86:773-80. [DOI: 10.1007/s00253-009-2413-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Hakk H, Diliberto JJ, Birnbaum LS. The effect of dose on 2,3,7,8-TCDD tissue distribution, metabolism and elimination in CYP1A2 (-/-) knockout and C57BL/6N parental strains of mice. Toxicol Appl Pharmacol 2009; 241:119-26. [PMID: 19695277 DOI: 10.1016/j.taap.2009.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/03/2009] [Accepted: 08/10/2009] [Indexed: 11/29/2022]
Abstract
Numerous metabolism studies have demonstrated that the toxic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is poorly metabolized. A hallmark feature of TCDD exposure is induction of hepatic CYP1A2 and subsequent sequestration leading to high liver-to-fat concentration ratios. This study was initiated to determine whether TCDD was inherently poorly metabolized or unavailable for metabolism because of sequestration to CYP1A2. [(3)H]TCDD was administered as a single, oral dose (0.1 and 10 microg/kg) to 12 male C57BL/6N mice or 12 CYP1A2 (-/-) mice. At 96 h, less than 5% of the dose was eliminated in the urine of all groups, and TCDD detected in urine was bound to mouse major urinary protein (mMUP). Feces were the major elimination pathway (24-31% of dose), and fecal extracts and non-extractables were quantitated by HPLC for metabolites. No great differences in urinary or fecal elimination (% dose) were observed between the high and low dose treatments. TCDD concentrations were the highest in adipose tissue for CYP1A2 knockout mice but in liver for C57BL/6N mice supporting the role of hepatic CYP1A2 in the sequestration of TCDD. Overall metabolism between parental and knockout strains showed no statistical differences at either the high or low doses. The data suggested that metabolism of TCDD is inherently slow, due principally to CYP1A1, and that hepatic CYP1A2 is not an active participant in the metabolism of TCDD in male mice. Rather, CYP1A2 governs the pharmacokinetics of TCDD by making it unavailable for hepatic CYP1A1 through sequestration and attenuating extrahepatic tissue disposition.
Collapse
Affiliation(s)
- Heldur Hakk
- USDA-ARS Biosciences Research Laboratory, P.O. Box 5674, Fargo, ND, USA
| | | | | |
Collapse
|
28
|
Goldstone HMH, Stegeman JJ. Molecular Mechanisms of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Cardiovascular Embryotoxicity. Drug Metab Rev 2008; 38:261-89. [PMID: 16684661 DOI: 10.1080/03602530600570099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons are widespread environmental contaminants and potent developmental toxicants. Hallmarks of embryonic exposure include edema, hemorrhage, and mortality. Recent studies in zebrafish and chicken have revealed direct impairment of cardiac muscle growth that may underlie these overt symptoms. TCDD toxicity is mediated by the aryl hydrocarbon receptor, but downstream targets remain unclear. Oxidative stress and growth factor modulation have been implicated in TCDD cardiovascular toxicity. Gene expression profiling is elucidating additional pathways by which TCDD might act. We review our understanding of the mechanism of TCDD embryotoxicity at morphological and molecular levels.
Collapse
Affiliation(s)
- Heather M H Goldstone
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
29
|
Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem Toxicol 2008; 46:813-41. [DOI: 10.1016/j.fct.2007.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/25/2007] [Accepted: 12/03/2007] [Indexed: 01/16/2023]
|
30
|
Shinkyo R, Kamakura M, Ikushiro SI, Inouye K, Sakaki T. Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant. Appl Microbiol Biotechnol 2006; 72:584-90. [PMID: 16489453 DOI: 10.1007/s00253-005-0286-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 10/25/2022]
Abstract
Among polychlorinated dibenzo-p-dioxins (PCDDs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is the most toxic one. Recently, we reported that rat CYP1A1 mutant, F240A, expressed in yeast showed metabolic activity toward 2,3,7,8-TetraCDD. In this study, we successfully expressed N-terminal truncated P450s (Delta1A1 and DeltaF240A) in Escherichia coli cells. Kinetic analysis using membrane fractions prepared from the recombinant E. coli cells revealed that DeltaF240A has enzymatic properties similar to F240A expressed in yeast. The metabolism of PCDDs by recombinant E. coli cells expressing both DeltaF240A and human NADPH-P450 reductase was also examined. When 2,3,7-TriCDD was added to the E. coli cell culture at a final concentration of 10 microM, approximately 90% of the 2,3,7-TriCDD was converted into multiple metabolites within 8 h. These results indicate the possible application of prokaryotic cells expressing DeltaF240A to the bioremediation of PCDD-contaminated soil.
Collapse
Affiliation(s)
- Raku Shinkyo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
31
|
Sulistyaningdyah WT, Ogawa J, Li QS, Shinkyo R, Sakaki T, Inouye K, Schmid RD, Shimizu S. Metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 BM-3 and its mutant. Biotechnol Lett 2004; 26:1857-60. [PMID: 15672228 DOI: 10.1007/s10529-004-5317-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/15/2004] [Indexed: 10/25/2022]
Abstract
The metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 BM-3 from Bacillus megaterium and a mutant enzyme of it (AL4V; Ala74Gly, Phe87Val, Leu188Gln triple mutant) was examined. Both purified enzymes metabolized 1-monochloro-, 2,3-dichloro-, and 2,3,7-trichloro-dibenzo-p-dioxin, but not 2,3,7,8-tetrachloro-dibenzo-p-dioxin. The mutant AL4V had 2-12 times higher activity than the wild-type P450 BM-3 towards polychlorinated dibenzo-p-dioxins. The products were hydroxylated at an unsubstituted position and/or showing migration of the chloride and were less toxic derivatives with lower than 10% toxicity of the original compounds.
Collapse
|
32
|
Kasai N, Sakaki T, Shinkyo R, Ikushiro SI, Iyanagi T, Kamao M, Okano T, Ohta M, Inouye K. SEQUENTIAL METABOLISM OF 2,3,7-TRICHLORODIBENZO-P-DIOXIN (2,3,7-triCDD) BY CYTOCHROME P450 AND UDP-GLUCURONOSYLTRANSFERASE IN HUMAN LIVER MICROSOMES. Drug Metab Dispos 2004; 32:870-5. [PMID: 15258113 DOI: 10.1124/dmd.32.8.870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabolism of polychlorinated dibenzo-p-dioxins by cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) was examined using a recombinant enzyme system and human liver microsomes. We analyzed the glucuronidation of 2,3,7-trichlorodibenzo-p-dioxin (2,3,7-triCDD) by rat CYP1A1 expressed in yeast microsomes and human UGT expressed in baculovirus-infected insect cells. Multiple UGT isozymes showed glucuronidation activity toward 8-hydroxy-2,3,7-triCDD (8-OH-2,3,7-triCDD), which was produced by CYP1A1. Of these UGTs, UGT1A1, 1A9, and 2B7, which are constitutively expressed in human livers, showed remarkable activity toward 8-OH-2,3,7-triCDD. The apparent kinetic parameters of glucuronidation, K(m) and k(cat), were estimated to be 0.8 microM and 1.8 min(-1), respectively, for UGT1A1, 0.8 microM and 1.8 min(-1), respectively, for UGT1A9, and 3.9 microM and 7.0 min(-1), respectively, for UGT2B7. In human liver microsomes with NADPH and UDP-glucuronic acid, 2,3,7-triCDD was first converted to 8-OH-2,3,7-triCDD, then further converted to its glucuronide. We compared the ability of 10 human liver microsomes to metabolize 2,3,7-triCDD and observed a significant difference in the glucuronidation of 2,3,7-triCDD that originated from the difference of the P450-dependent hydroxylation of 2,3,7-triCDD.
Collapse
Affiliation(s)
- Noriyuki Kasai
- Graduate School of Agrculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Shinkyo R, Sakaki T, Takita T, Ohta M, Inouye K. Generation of 2,3,7,8-TCDD-metabolizing enzyme by modifying rat CYP1A1 through site-directed mutagenesis. Biochem Biophys Res Commun 2003; 308:511-7. [PMID: 12914780 DOI: 10.1016/s0006-291x(03)01439-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are known as g environmental contaminants on account of the extreme toxicity. Among these compounds, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is regarded as the most toxic one. The extremely high toxicity of 2,3,7,8-TetraCDD is based on its high affinity for Ah receptor and nearly undetectable metabolism in mammalian body. Based on our previous studies, we assumed that enlarging the space of substrate-binding pocket of rat CYP1A1 might generate the catalytic activity toward 2,3,7,8-TetraCDD. Large-sized amino acid residues located at putative substrate-binding sites of rat CYP1A1 were substituted for alanine by site-directed mutagenesis. Among eight mutants examined, the mutant in the putative F-G loop, F240A, showed metabolic activity toward 2,3,7,8-TetraCDD. HPLC and GC-MS analyses strongly suggested that the metabolite was 8-hydroxy-2,3,7-TriCDD. Ah receptor assay revealed that the affinity of 8-hydroxy-2,3,7-TriCDD for Ah receptor was less than 0.01% of 2,3,7,8-TetraCDD, indicating that the F240A-dependent metabolism resulted in remarkable detoxification of 2,3,7,8-TetraCDD. The novel 2,3,7,8-TetraCDD-metabolizing enzyme could be applicable to bioremediation of contaminated soils with dioxin, elimination of dioxin from foods, and clinical treatment for people who accidentally take dioxin into their systems.
Collapse
Affiliation(s)
- Raku Shinkyo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|