1
|
Essid R, Damergi B, Fares N, Jallouli S, Limam F, Tabbene O. Synergistic combination of Cinnamomum verum and Syzygium aromaticum treatment for cutaneous leishmaniasis and investigation of their molecular mechanism of action. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2687-2701. [PMID: 37855230 DOI: 10.1080/09603123.2023.2267470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
Combination therapy at appropriately suitable doses presents a promising alternative to monotherapeutic drugs. In this study, Cinnamomum verum and Syzygium aromaticum essential oils and their major compounds have exhibited substantial leishmaniacidal potential against both promastigote and amastigote forms of Leishmania (L.) major. However, they displayed high cytotoxicity against Raw264.7 macrophage cells. Interestingly, when combined with each other or with amphotericin B, they demonstrated a synergistic effect (FIC<0.5) with low cytotoxicity. These combinations are able to modulate the production of nitric oxide (NO) by macrophages. Notably, the combination of S. aromaticum Essential oil with amphotericin B stimulates macrophage cells by increasing NO production to eliminate leishmanial parasites. Furthermore, investigation of the molecular mechanism of action of these synergistic combinations reveals potent inhibition of the sterol pathway through the inhibition of the CYP51 gene expression. The findings suggest that combination therapy may offer significant therapeutic benefits in both food and pharmaceutical fields.
Collapse
Affiliation(s)
- Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj-Cedria Technopole, Hammam-Lif, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj-Cedria Technopole, Hammam-Lif, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj-Cedria Technopole, Hammam-Lif, Tunisia
| | - Selim Jallouli
- Laboratory of Bioactive Substances, Biotechnology Center of Borj-Cedria Technopole, Hammam-Lif, Tunisia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj-Cedria Technopole, Hammam-Lif, Tunisia
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj-Cedria Technopole, Hammam-Lif, Tunisia
| |
Collapse
|
2
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Mattioli LB, Frosini M, Corazza I, Fiorino S, Zippi M, Micucci M, Budriesi R. Long COVID-19 gastrointestinal related disorders and traditional Chinese medicine: A network target-based approach. Phytother Res 2024; 38:2323-2346. [PMID: 38421118 DOI: 10.1002/ptr.8163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The significant number of individuals impacted by the pandemic makes prolonged symptoms after COVID-19 a matter of considerable concern. These are numerous and affect multiple organ systems. According to the World Health Organization (WHO), prolonged gastrointestinal issues are a crucial part of post-COVID-19 syndrome. The resulting disruption of homeostasis underscores the need for a therapeutic approach based on compounds that can simultaneously affect more than one target/node. The present review aimed to check for nutraceuticals possessing multiple molecular mechanisms helpful in relieving Long COVID-19-specific gastrointestinal symptoms. Specific plants used in Keywords Chinese Medicine (TCM) expected to be included in the WHO Global Medical Compendium were selected based on the following criteria: (1) they are widely used in the Western world as natural remedies and complementary medicine adjuvants; (2) their import and trade are regulated by specific laws that ensure quality and safety (3) have the potential to be beneficial in alleviating intestinal issues associated with Long COVID-19. Searches were performed in PubMed, Elsevier, Google Scholar, Scopus, Science Direct, and ResearchGate up to 2023. Cinnamomum cassia, Glycyrrhiza uralensis, Magnolia officinalis, Poria cocos, Salvia miltiorrhiza, Scutellaria baicalensis, and Zingiber officinalis were identified as the most promising for their potential impact on inflammation and oxidative stress. Based on the molecular mechanisms of the phytocomplexes and isolated compounds of the considered plants, their clinical use may lead to benefits in gastrointestinal diseases associated with Long COVID-19, thanks to a multiorgan and multitarget approach.
Collapse
Affiliation(s)
- Laura Beatrice Mattioli
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ivan Corazza
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sirio Fiorino
- Internal Medicine Unit, Azienda USL, Budrio Hospital, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Matteo Micucci
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Palmioli A, Forcella M, Oldani M, Angotti I, Sacco G, Fusi P, Airoldi C. Adjuvant Effect of Cinnamon Polyphenolic Components in Colorectal Cancer Cell Lines. Int J Mol Sci 2023; 24:16117. [PMID: 38003308 PMCID: PMC10670979 DOI: 10.3390/ijms242216117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer death, with a worldwide incidence rate constantly increasing; thus, new strategies for its prevention or treatment are needed. Here, we describe the adjuvant effect of the polyphenol-enriched fractions of cinnamon, from cinnamon bark and buds, when co-administered with a potent anticancer drug, cetuximab, used for CRC therapy. The co-administration significantly reduces the cetuximab dose required for the antiproliferative activity against colorectal cancer cell line E705, which is sensitive to EGFR-targeted therapy. The anticancer activity of these cinnamon-derived fractions, whose major components (as assessed by UPLC-HRMS analysis) are procyanidins and other flavonoids, strictly correlates with their ability to induce apoptosis in cancer cell lines through ERK activation and the mitochondrial membrane potential impairment. Due to the severe side effects of cetuximab administration, our results suggest the use of nutraceuticals based on the polyphenolic fractions of cinnamon extracts as adjuvants in the therapy of CRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (A.P.); (M.F.); (M.O.)
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; (A.P.); (M.F.); (M.O.)
| |
Collapse
|
5
|
Song Y, Jung YS, Park S, Park HS, Lee SJ, Maeng S, Kim H, Kim DO, Park KW, Kang H. Anti-Inflammatory Effects and Macrophage Activation Induced by Bioavailable Cinnamon Polyphenols in Mice. Mol Nutr Food Res 2023; 67:e2200768. [PMID: 37658489 DOI: 10.1002/mnfr.202200768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/02/2023] [Indexed: 09/03/2023]
Abstract
SCOPE Cinnamon is a commonly used spice and herb that is rich in polyphenols. Due to the limited bioavailability of oral polyphenols, it remains unclear to which extent they can reach cells and exert a biological effect. This study aims to investigate the impact of bioavailable cinnamon polyphenols on lipopolysaccharide (LPS)-stimulated macrophages. METHODS AND RESULTS A polyphenol fraction is prepared from cinnamon (Cinnamomi ramulus) (CRPF) by boiling cinnamon in water and adsorbing the extract onto a hydrophobic resin. Mice are orally administered CRPF for 7 days and then subjected to three independent experiments: endotoxemia, serum collection, and macrophage isolation. Upon intraperitoneal lipopolysaccharide challenge, CRPF decreases serum levels of inflammatory cytokines, involving suppression of liver and spleen macrophages. When normal macrophages are cultured in serum obtained from CRPF-treated mice, they exhibit an anti-inflammatory phenotype. However, macrophages from CRPF-treated mice show an increased production of inflammatory cytokines when cultured in fetal bovine serum and stimulated with LPS. CONCLUSION The study provides evidence for the presence of bioavailable cinnamon polyphenols with anti-inflammatory properties and macrophage activation. These findings suggest that cinnamon polyphenols have the potential to modulate macrophage function, which could have implications for reducing inflammation and improving immune function.
Collapse
Affiliation(s)
- Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Sunghyun Park
- Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Hong Shik Park
- Department of Physical Education, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Se Jung Lee
- Department of Genetic Engineering, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Sungho Maeng
- Graduate School of East-West Medical Science, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, Kyung Hee University, 26, Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, 1732 Deogyeongdae-ro, Yongin, 17104, Republic of Korea
| |
Collapse
|
6
|
Li W, Qiao J, Lin K, Sun P, Wang Y, Peng Q, Ye X, Liu W, Sun B. Ethyl-acetate fraction from a cinnamon-cortex extract protects pancreatic β-cells from oxidative stress damage. Front Pharmacol 2023; 14:1111860. [PMID: 36950010 PMCID: PMC10025376 DOI: 10.3389/fphar.2023.1111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Background: The pathogenesis of diabetes mellitus is mediated mainly by oxidative stress produced by damaged pancreatic β-cells. We identified that an ethyl-acetate fraction (EA) from a cinnamon-cortex extract (CCE) is rich in flavonoid, and showed no toxicity to β cells. Objective: In this study, we evaluated the pharmacologic activities of EA on pancreatic β cells using a model of oxidative stress induced by H2O2 or alloxan. Results: The results showed that EA could significantly reduce reactive oxygen (ROS) accumulation to improve the survival of cells. Western blot showed that EA treatment upregulated expression of nuclear factor erythroid 2 related factor 2, heme oxygenase-1, and gamma glutamylcysteine synthetase. The same model study found that EA also can protect β cells against the apoptosis induced by oxidative stress. Furthermore, EA can enhance insulin secretion in rat and mouse β cell lines treated or not with alloxan or H2O2. The expression of the insulin transcription factor PDX-1 increased in an EA concentration-dependent manner. At last, the major functional compounds of EA analysis showed that three compounds, cinnamyl alcohol, coumarin, and cinnamic acid, had similar effects as EA. Conclusions: In sum, our data suggested that EA fraction from CCE can protect β cells from oxidative stress, and increase insulin secretion to improve the function of β cells. This function might be due to these three compounds found in EA. Our findings provide a theoretical basis and functional molecules for the use of CCE against diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Liu
- *Correspondence: Binlian Sun, ; Wei Liu,
| | | |
Collapse
|
7
|
Salahi M, Parsa S, Nourmohammadi D, Razmkhah Z, Salimi O, Rahmani M, Zivary S, Askarzadeh M, Tapak MA, Vaezi A, Sadeghsalehi H, Yaghoobpoor S, Mottahedi M, Garousi S, Deravi N. Immunologic aspects of migraine: A review of literature. Front Neurol 2022; 13:944791. [PMID: 36247795 PMCID: PMC9554313 DOI: 10.3389/fneur.2022.944791] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Migraine headaches are highly prevalent, affecting 15% of the population. However, despite many studies to determine this disease's mechanism and efficient management, its pathophysiology has not been fully elucidated. There are suggested hypotheses about the possible mediating role of mast cells, immunoglobulin E, histamine, and cytokines in this disease. A higher incidence of this disease in allergic and asthma patients, reported by several studies, indicates the possible role of brain mast cells located around the brain vessels in this disease. The mast cells are more specifically within the dura and can affect the trigeminal nerve and cervical or sphenopalatine ganglion, triggering the secretion of substances that cause migraine. Neuropeptides such as calcitonin gene-related peptide (CGRP), neurokinin-A, neurotensin (NT), pituitary adenylate-cyclase-activating peptide (PACAP), and substance P (SP) trigger mast cells, and in response, they secrete pro-inflammatory and vasodilatory molecules such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) as a selective result of corticotropin-releasing hormone (CRH) secretion. This stress hormone contributes to migraine or intensifies it. Blocking these pathways using immunologic agents such as CGRP antibody, anti-CGRP receptor antibody, and interleukin-1 beta (IL-1β)/interleukin 1 receptor type 1 (IL-1R1) axis-related agents may be promising as potential prophylactic migraine treatments. This review is going to summarize the immunological aspects of migraine.
Collapse
Affiliation(s)
- Mehrnaz Salahi
- Student Research Committee, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Parsa
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Delaram Nourmohammadi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razmkhah
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Salimi
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Najafabad, Isfahan, Iran
| | | | - Saeid Zivary
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Monireh Askarzadeh
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Tapak
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Vaezi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Newerli-Guz J, Śmiechowska M. Health Benefits and Risks of Consuming Spices on the Example of Black Pepper and Cinnamon. Foods 2022; 11:2746. [PMID: 36140874 PMCID: PMC9498169 DOI: 10.3390/foods11182746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study is to present the benefits and risks associated with the consumption of black pepper and cinnamon, which are very popular spices in Poland. The article presents the current state of knowledge about health properties and possible dangers, such as liver damage, associated with their consumption. The experimental part presents the results of the research on the antioxidant properties against the DPPH radical, which was 80.85 ± 3.84-85.42 ± 2.34% for black pepper, and 55.52 ± 7.56-91.87 ± 2.93% for cinnamon. The total content of polyphenols in black pepper was 10.67 ± 1.30-32.13 ± 0.24 mg GAE/g, and in cinnamon 52.34 ± 0.96-94.71 ± 3.34 mg GAE/g. In addition, the content of piperine and pepper oil in black pepper was determined, as well as the content of coumarin in cinnamon. The content of piperine in the black pepper samples was in the range of 3.92 ± 0.35-9.23 ± 0.05%. The tested black pepper samples contained 0.89 ± 0.08-2.19 ± 0.15 mL/100 g d.m. of essential oil. The coumarin content in the cinnamon samples remained in the range of 1027.67 ± 50.36-4012.00 ± 79.57 mg/kg. Taking into account the content of coumarin in the tested cinnamon samples, it should be assumed that the majority of cinnamon available in Polish retail is Cinnamomum cassia (L.) J. Presl.
Collapse
Affiliation(s)
- Joanna Newerli-Guz
- Department of Quality Management, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland
| | | |
Collapse
|
9
|
Arisha SM, Saif ME, Kandil EH. Histological, ultrastructural and immunohistochemical studies on the ameliorative role of Cinnamon zeylanicum against high cholesterol diet-induced hypercholesterolemia in the kidney of adult male albino rats. Heliyon 2022; 8:e10401. [PMID: 36090212 PMCID: PMC9449651 DOI: 10.1016/j.heliyon.2022.e10401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Cholesterol is an important type of lipid as it is involved in the structure of cell membrane, synthesis of steroid hormones, bile acid and vitamin D. Many diseases affect various mammalian organs, including the kidney, as a result of high cholesterol levels (hypercholesterolemia). Cinnamon zeylanicum (C. zeylanicum) proves its efficiency as it has anti-inflammatory and antioxidant prosperities. This study aimed to investigate the possible ameliorative role of C. zeylanicum on hypercholesterolemia-induced the renal toxicity in albino rats. Forty adult male albino rats were equally divided into four groups. The first group served as the control one. The second group was supplemented with C. zeylanicum powder (15% w/w) with the standard diet. The third group was fed high cholesterol diet (HCD) to induce acute hypercholesterolemia. The fourth group was fed HCD provided with C. zeylanicum powder (15% w/w). At the end of the experiment (8th weeks), kidneys were removed and prepared for histological, immunohistochemical and ultrastructure studies. Rats-fed HCD showed degenerated glomeruli and tubular cells with vacuolated or coagulated cytoplasm and pyknotic nuclei. Moreover, the renal cortex ultrastructural examination showed degenerated podocytes, parietal and mesangial cells, as well as the proximal and distal tubular cells appeared with rarified cytoplasm, degenerated mitochondria, large fat vacuoles and complete damaged microvilli. The same group showed a significant increase in the expression of desmin and inducible nitric oxide synthase. On the other hand, animals fed HCD provided with C. zeylanicum showed an obvious improvement in the observed histological, ultrastructural and immunohistochemical changes. The architecture of the renal cortex appeared mostly similar to the control one. This study concluded that C. zeylanicum has a promising role in treating the nephron-toxicity of HCD due to its natural constituent that is responsible for its pharmaceutical effects.
Collapse
Affiliation(s)
- Samah M. Arisha
- Zoology Department, Faculty of Science, Menoufia University, Egypt
| | - Mona E. Saif
- Histopathology Department, National Organization for Drug Control and Research, Egypt
| | - Eman H. Kandil
- Zoology Department, Faculty of Science, Menoufia University, Egypt
- Corresponding author.
| |
Collapse
|
10
|
Ataie Z, Fatehi-Hassanabad Z, Nakhaee S, Foadoddini M, Farrokhfall K. Sex-specific endothelial dysfunction induced by high-cholesterol diet in rats: The role of protein tyrosine kinase and nitric oxide. Nutr Metab Cardiovasc Dis 2022; 32:745-754. [PMID: 35144857 DOI: 10.1016/j.numecd.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic process playing a crucial role in the pathogenesis of cardiovascular disease. Sex-specific differences in the incidence of atherosclerosis indicate that estrogen has a protective effect on the cardiovascular disease. However, the role of sex on endothelium responses in animal models of high cholesterol (HC) diet-induced atherosclerosis has not been fully investigated. This study was aimed to investigate vascular responses in HC-fed rats. METHODS AND RESULTS Male and female Sprague rats (12-week-old) were treated with either a standard diet (n = 12 of each sex) or an HC enriched diet (n = 12 of each sex) containing 2% cholesterol for 24 weeks. HC treated animals (both sexes) showed increased levels of total cholesterol, LDL-cholesterol, triglyceride and blood pressure (BP) compared to control rats. While the BP of control rats (both sexes) was increased following aminoguanidine administration (AG, 100 mg/kg i.p.), it was not changed in HC animals (both sexes). The hypotensive effect of acetylcholine was significantly impaired in male HC-treated rats. In vitro experiments demonstrated that aortic rings from HC group (both sexes) had an increased contractile response to phenylephrine and a decreased vasodilatory response to acetylcholine. The vasorelaxant effect of acetylcholine in HC rats (only male) was improved by applying 10-5 M genistein (tyrosine kinase inhibitor) or AG. CONCLUSION HC diet alters endothelium function through Nitric oxide (NO) and tyrosine kinase pathways in male rats.
Collapse
Affiliation(s)
- Zomorrod Ataie
- Health Clinical Science Research Center, Zahedan Branch, Islamic Azad University, Zahedan, Iran; Student Research Committee, Islamic Azad University, Zahedan Branch, Zahedan, Iran
| | | | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mohsen Foadoddini
- Cardiovascular Disease Research Center, Department of Physiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Khadijeh Farrokhfall
- Cardiovascular Disease Research Center, Department of Physiology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
11
|
Lee JH, Park DH, Lee S, Seo HJ, Park SJ, Jung K, Kim SY, Kang KS. Potential and beneficial effects of Cinnamomum cassia on gastritis and safety: Literature review and analysis of standard extract. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:95. [DOI: 10.1186/s13765-021-00661-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2025]
Abstract
AbstractThe prevalence of gastritis in South Korea is rapidly increasing owing to the prevalence of Helicobacter pylori infection and fast eating habit. The usual treatment for acute gastritis following a long intake of non-steroidal anti-inflammatory drugs (NSAIDs) or alcohol is to stop the causal factors. Metronidazole and lansoprazole are recommended for the treatment of H. pylori infection gastritis. Omeprazole a proton pump inhibitor, is used to decrease gastric acid production. However, owing to the side effects and refractoriness of the drug, a safe and efficient treatment is required. Plant-derived phytochemicals have emerged as novel agents against chronic disorders. In this study, firstly, to explore the potential of pharmacological activities, including efficacy and mechanisms of Cinnamomum cassia against gastritis, a literature review was performed based on 20 studies out of a total of 749 records obtained using a search strategy. From the literature review, the therapeutic targets of C. cassia extract and cinnamaldehyde, a compound of C. cassia, were found to be related with NFκB activity, and their signaling pathway were verified by experiments. C. cassia extract plays a role in protection of gastric ulcers induced in four ways (immersion stress-induced, ethanol-induced, hydrochloric acid-induced, or NSAIDs-induced ulcer). None of the clinical studies on C. cassia extracts or compounds met our criteria. When the standardized extract of C. cassia (ECC) was orally administered repeatedly to Beagle Dog for 4 weeks, no toxicologically harmful changes were observed. Therefore, under the test condition, the no observed adverse effect level (NOAEL) of ECC was judged to be 1000 mg/kg/day for both sexes, and no toxic target organ was observed. Administration of ECC in the Sprague–Dawley rat model of acute gastric injury caused by indomethacin administration significantly increased gastric mucus volume. Administration of ECC in the acute gastric injury model caused by indomethacin administration is considered effective in improving gastric injury. However, research and efforts to develop a reliable ‘standardization of natural drugs’ by establishing the best quality evaluation system are limited. Despite the pharmacological potential of ECC, further well-designed experimental studies such as in vitro, in vivo, and clinical trials are required to validate these findings and the underlying mechanisms of ECC.
Collapse
|
12
|
Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284:119201. [PMID: 33607159 PMCID: PMC7884924 DOI: 10.1016/j.lfs.2021.119201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | | | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
13
|
Naert R, López-Requena A, Talavera K. TRPA1 Expression and Pathophysiology in Immune Cells. Int J Mol Sci 2021; 22:ijms222111460. [PMID: 34768891 PMCID: PMC8583806 DOI: 10.3390/ijms222111460] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022] Open
Abstract
The non-selective cation channel TRPA1 is best known as a broadly-tuned sensor expressed in nociceptive neurons, where it plays key functions in chemo-, thermo-, and mechano-sensing. However, in this review we illustrate how this channel is expressed also in cells of the immune system. TRPA1 has been detected, mainly with biochemical techniques, in eosinophils, mast cells, macrophages, dendritic cells, T cells, and B cells, but not in neutrophils. Functional measurements, in contrast, remain very scarce. No studies have been reported in basophils and NK cells. TRPA1 in immune cells has been linked to arthritis (neutrophils), anaphylaxis and atopic dermatitis (mast cells), atherosclerosis, renal injury, cardiac hypertrophy and inflammatory bowel disease (macrophages), and colitis (T cells). The contribution of TRPA1 to immunity is dual: as detector of cell stress, tissue injury, and exogenous noxious stimuli it leads to defensive responses, but in conditions of aberrant regulation it contributes to the exacerbation of inflammatory conditions. Future studies should aim at characterizing the functional properties of TRPA1 in immune cells, an essential step in understanding its roles in inflammation and its potential as therapeutic target.
Collapse
Affiliation(s)
- Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
| | - Alejandro López-Requena
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Ablynx, Technologiepark 21, 9052 Zwijnaarde, Belgium
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Center for Brain & Disease Research, 3000 Leuven, Belgium; (R.N.); (A.L.-R.)
- Correspondence: ; Tel.: +32-16-330469
| |
Collapse
|
14
|
Lee J, Lim S. Anti-inflammatory, and anti-arthritic effects by the twigs of Cinnamomum cassia on complete Freund's adjuvant-induced arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114209. [PMID: 34015366 DOI: 10.1016/j.jep.2021.114209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The young branches of C. cassia Blume (Cinnamomi Ramulus; Guizhi; ; C. cassia twigs) have long been used as an anti-pyretic, anti-rheumatic, anti-spasmodic and stomachic in traditional medicine. AIM OF THE STUDY The aim of this study was to test the anti-inflammatory, anti-nociceptive, and anti-arthritic effects of Cinnamomum cassia twigs in acute and chronic arthritis rats. MATERIALS AND METHODS Subcutaneous injection of carrageenan for acute inflammation and complete Freund's adjuvant (CFA) for chronic arthritis was carried out in the hind paw of SD rats. The paw volume was measured by a plethysmometer; thermal hyperalgesia was tested using a thermal plantar tester; hyperalgesia was evaluated by ankle flexion evoked vocalizations. The c-Fos expression in the lumbar spinal cord was measured with the avidin-biotin-peroxidase technique. The nitric oxide (NO) generation in lipopolysaccharide (LPS)-induced RAW 264.7 cells was tested by Griess assay. RESULTS AND DISCUSSION An 80% ethanoic extract of the C. cassia twigs exhibited chronic anti-inflammatory and anti-arthritic activities by reducing the edema volume in the paws of CFA-induced chronic arthritis in rats. In addition, it showed analgesic effects through the recovery of the paw withdrawal latency stimulated by thermal hyperalgesia, and suppressing the vocalization scores evoked by ankle flexion in the hind paws of the arthritis rats. It also controlled c-Fos expression in the lumbar spinal cord of the arthritis rats. Moreover, the addition its 80%-ethanoic extract, specifically, its ethyl acetate fraction, powerfully suppressed the paw swelling in carrageenan-stimulated arthritis and the NO production in LPS-induced murine immune cells. CONCLUSION C. cassia twigs may act as a viably sufficient therapeutic or preventive candidate for osteoarthritis and rheumatoid arthritis; additionally, it could prevent gastrointestinal damage with its gastric protection.
Collapse
Affiliation(s)
- JiSuk Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Sabina Lim
- Research Group of Pain and Neuroscience, East-West Medical Research Institute, WHO Collaborating Center, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
15
|
The Effect of Cinnamaldehyde on iNOS Activity and NO-Induced Islet Insulin Secretion in High-Fat-Diet Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9970678. [PMID: 34335851 PMCID: PMC8292039 DOI: 10.1155/2021/9970678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 10/28/2022]
Abstract
Introduction Obesity and insulin resistance are associated with alterations in nitric oxide level and insulin secretion. Previous studies demonstrated that cinnamaldehyde (CNMA) improved islet insulin secretion and restored nitric oxide (NO) level, but its underlying mechanisms have not been investigated. This study aimed to investigate the effect of CNMA on inducible nitric oxide synthase (iNOS) activity and NO-induced islet insulin secretion in high-fat-diet (HFD) treated rats. Materials and Methods Forty male Wistar rats (12 weeks old) were randomly divided into four equal groups, namely, control, CNMA, HFD, and HFD + CNMA. Control and CNMA groups were treated with standard laboratory animals' diet, while HFD and HDF + CNMA groups were fed with an HFD diet enriched with 25% W/W tail fat for 16 weeks. CNMA was administrated orally (20 mg/kg body weight, daily) during the study period. Islet insulin secretion and the inducible NOS activity in the presence or absence of L-NAME (NO synthase inhibitor, 5 mmol/L) were evaluated. Results L-NAME-suppressed insulin secretion in control, HFD, and HFD + CNMA groups; however, in the CNMA group, it could not exhibit such effect (P < 0.01). Islets of HFD-treated animals showed significantly higher iNOS activity than controls. CNMA treatment significantly suppressed iNOS activities in CNMA and HFD + CNMA groups compared with control and HFD, respectively. Conclusion These results suggest that the beneficial effect of CNMA on insulin secretion might be due to its inhibitory effect on iNOS activity.
Collapse
|
16
|
Rao L, You YX, Su Y, Fan Y, Liu Y, He Q, Chen Y, Meng J, Hu L, Li Y, Xu YK, Lin B, Zhang CR. Lignans and Neolignans with Antioxidant and Human Cancer Cell Proliferation Inhibitory Activities from Cinnamomum bejolghota Confirm Its Functional Food Property. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8825-8835. [PMID: 32806126 DOI: 10.1021/acs.jafc.0c02885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the aim to evaluate the functional food property of Cinnamomum bejolghota, seven new lignans and neolignans, bejolghotins A-G (1-4 and 9-11), along with 14 known ones (5-8 and 12-21), were isolated and their structures including absolute configurations were elucidated by extensive spectroscopic data and electronic circular dichroism (ECD) analyses. All of the isolates were tested for antioxidant and human cancer cell proliferation inhibitory activities. Twenty compounds showed comparable antioxidant activity to the positive controls, and three significantly inhibited the growth of three cancer cell lines HCT-116, A549, and MDA-MB-231 with IC50 values of 0.78-2.93 μM, which confirmed its health benefits.
Collapse
Affiliation(s)
- Li Rao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yun-Xia You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yue Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Qian He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yi Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Jie Meng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - You-Kai Xu
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, P. R. China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Chuan-Rui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, and Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
17
|
Wenyang Jieyu Decoction Alleviates Depressive Behavior in the Rat Model of Depression via Regulation of the Intestinal Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3290450. [PMID: 32774410 PMCID: PMC7396094 DOI: 10.1155/2020/3290450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/05/2020] [Indexed: 12/26/2022]
Abstract
Background Intestinal microbiota plays an important role in the occurrence and treatment of depression. This study investigated whether Wenyang Jieyu decoction (WYJYD) alleviates depressive behavior in the rat model via regulation of the intestinal microbiota. Methods Rat model of depression was established by stress stimulus. SD male rats were randomly allocated into normal control, model, model + low-dose WYJYD (1.89 g/kg/d), model + medium-dose WYJYD (3.08 g/kg/d), model + high-dose WYJYD (7.56 g/kg/d), and model + fluoxetine (3.33 mg/kg/d) groups. Behavioral changes were observed using forced swim test. Histopathological changes in hippocampal tissue were examined by HE staining. Indicators in serum were detected by ELISA. Indicators in hippocampal tissue were detected by qPCR and western blot. Microbiota distribution in feces was detected using high-throughput 16S rRNA gene sequencing. Results Compared with the model group, the immobility time in WYJYD and fluoxetine groups was significantly decreased (P < 0.05), and the cell structure was significantly improved. Compared with the model group, the 5-hydroxytryptamine (5-HT) and norepinephrine (NE) levels in medium- and high-dose WYJYD groups and the brain-derived neurotrophic factor (BDNF) level in the high-dose WYJYD group were significantly increased (P < 0.05, all), and the fibroblast growth factor-2 (FGF2), forkhead box protein G1 (FOXG1), and phospho-protein kinase B/protein kinase B (p-AKT/AKT) expressions were increased with WYJYD treatments. The Chao1 and ACE indices in high-dose WYJYD and the Simpson and Shannon indices in medium-dose WYJYD were significantly different than the model group. The similarity of the intestinal microbial community of each group after WYJYD treatment tended to be closer to the control group. Compared with the model group, as the dosage of WYJYD increased, the abundance of genera Coprococcus, Lachnospira, and rc4-4 was significantly increased, while the abundance of genera Desulfovibrio, Burkholderia, and Enterococcus was significantly decreased. Conclusion WYJYD may alleviate the depressive behavior of the rat model by regulating the intestinal microbiota and neurotransmitters.
Collapse
|
18
|
Zareie A, Sahebkar A, Khorvash F, Bagherniya M, Hasanzadeh A, Askari G. Effect of cinnamon on migraine attacks and inflammatory markers: A randomized double-blind placebo-controlled trial. Phytother Res 2020; 34:2945-2952. [PMID: 32638445 DOI: 10.1002/ptr.6721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/10/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023]
Abstract
Migraine is the most common type of primary headaches. Increased levels of interleukin-6 (IL-6), calcitonin-gene-related peptide (CGRP) and nitric oxide (NO) lead to inflammation and neurogenic pain. Cinnamon has anti-inflammatory and neuroprotective properties. Thus, the aim of this study was to assess the effect of cinnamon on migraine attacks and inflammatory status. Fifty patients with migraine were randomized to receive either cinnamon powder (three capsules/day each containing 600 mg of cinnamon) or three placebo capsules/day each containing 100 mg of corn starch (control group) for 2 months. Serum levels of IL-6, CGRP and NO were measured at baseline and at the end of the study. The frequency, severity and duration of pain attacks were also recorded using questionnaire. Serum concentrations of IL-6 and NO were significantly reduced in the cinnamon group compared with the control group (p < .05). However, serum levels of CGRP remained unchanged in both groups. The frequency, severity and duration of migraine attacks were significantly decreased in the cinnamon group compared with the control group. Cinnamon supplementation reduced inflammation as well as frequency, severity and duration of headache in patients with migraine. Cinnamon could be regarded as a safe supplement to relieve pain and other complications of migraine.
Collapse
Affiliation(s)
- Azadeh Zareie
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariborz Khorvash
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Hasanzadeh
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Ramazani E, YazdFazeli M, Emami SA, Mohtashami L, Javadi B, Asili J, Tayarani-Najaran Z. Protective effects of Cinnamomum verum, Cinnamomum cassia and cinnamaldehyde against 6-OHDA-induced apoptosis in PC12 cells. Mol Biol Rep 2020; 47:2437-2445. [DOI: 10.1007/s11033-020-05284-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
|
20
|
Wojnicki SJ, Morris A, Smith BN, Maddox CW, Dilger RN. Immunomodulatory effects of whole yeast cells and capsicum in weanling pigs challenged with pathogenic Escherichia coli1. J Anim Sci 2019; 97:1784-1795. [PMID: 30753502 DOI: 10.1093/jas/skz063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/08/2019] [Indexed: 12/23/2022] Open
Abstract
An experiment was conducted to evaluate growth performance, fecal bacterial counts, frequency of diarrhea, and clinical blood parameters in weanling pigs inoculated with enterotoxigenic Escherichia coli (ETEC) who were fed a whole yeast cell (WYC) product and capsicum, a plant essential oil. Weanling pigs (34 barrows and 30 gilts, 21 d of age, 5.90 ± 1.03 kg BW) were allotted to experimental treatments in a randomized complete block design based on litter, sex, and initial BW. Four pigs were individually housed within each containment chamber and assigned to 1 of 4 dietary treatments, which included a control diet without or with 0.2% WYC (CitriStim; ADM, Decatur, IL) or 10 ppm of capsicum (XTract 6933; Pancosma, Geneva, Switzerland), provided either alone or in combination. After receiving diets for 13 d, pigs were orally inoculated with F18+ ETEC and maintained on their assigned diets for an additional 10 d; a separate cohort of 12 pigs receiving the control diet was sham-inoculated using PBS. Body and feeder weights were recorded, and fecal swabs collected, on 0, 5, and 10 d postinoculation (DPI), with blood sampled at 0, 2, 7, and 10 DPI for isolation of peripheral blood mononuclear cells. Pigs challenged with ETEC and fed diets containing WYC or capsicum alone had a higher frequency of diarrhea when compared with pigs receiving diets without those compounds (P < 0.05). Total fecal bacterial counts in pigs fed the combination of additives were highest when compared with either additive alone (interaction, P = 0.03) at 10 DPI. Blood leukocyte counts were increased in challenged pigs receiving the combination of additives compared with all other challenged treatment groups (interaction, P = 0.04). The addition of WYC increased (main effect, P = 0.01) lymphocyte counts at 7 DPI. Proportions of CD8+ and CD4+CD8+ cells were lower in pigs fed the combination of additives compared with pigs fed either additive alone at 0 and 7 DPI. In conclusion, these data indicate that the combination of the 2 additives elicited higher ETEC shedding and circulating leukocyte counts, and reduced the proportions of cytotoxic and memory T-cells than either additive alone.
Collapse
Affiliation(s)
| | - Antrison Morris
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | | | - Carol W Maddox
- Department of Pathobiology, University of Illinois, Urbana, IL
| | - Ryan Neil Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL
| |
Collapse
|
21
|
Huang H, Chen R, Ma H, Yuan Z. Quality attributes and chemical composition of commercial cinnamon oils. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- H. Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China P.R
| | - R. Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China P.R
| | - H. Ma
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China P.R
| | - Z. Yuan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China P.R
| |
Collapse
|
22
|
Patil VM, Anand P, Bhardwaj M, Masand N. Cinnamaldehyde Analogs: Docking Based Optimization, COX-2 Inhibitory In Vivo and In Vitro Studies. Curr Drug Discov Technol 2019; 17:154-165. [PMID: 30686258 DOI: 10.2174/1570163816666190125153951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/08/2018] [Accepted: 01/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past decade CADD has emerged as a rational approach in drug development so with the help molecular docking approach we planned to perform virtual screening of the designed data set of Schiff bases of cinnamaldehyde. The research work will be helpful to put some light on the drug receptor interactions required for anti-inflammatory activity. METHODS For carrying out virtual screening of the developed cinnamaldehyde Schiff base data set, AutoDock 4.0 was used. The active hits identified through in silico screening were synthesized. Anti-inflammatory evaluation was carried out using Carrageenan-induced paw oedema method. RESULTS Compounds V2A44, V2A55, V2A76, V2A82, V2A119, V2A141 and V2A142 has shown highest binding energy (-4.84, -4.76, -4.59, -4.78, -4.74, -4.85 and -4.72 kcal/mol, respectively) and the binding interactions with amino acids namely, Phe478, Glu479, Lys492, Ala493, Asp497 and Ile498. Some of the analogs have shown significant activity and were comparable to Indomethacin (standard drug). CONCLUSION Five new compounds have shown significant activity and the results obtained from in silico studies are parallel to those of in vivo studies.
Collapse
Affiliation(s)
- Vaishali M Patil
- Department of Pharmaceutical Chemistry, School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Preeti Anand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| | - Monika Bhardwaj
- Department of Pharmaceutical Chemistry, School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
23
|
Murakami Y, Kawata A, Suzuki S, Fujisawa S. Cytotoxicity and Pro-/Anti-inflammatory Properties of Cinnamates, Acrylates and Methacrylates Against RAW264.7 Cells. In Vivo 2019; 32:1309-1322. [PMID: 30348683 DOI: 10.21873/invivo.11381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIM Periodontitis is a chronic inflammatory disease linked to various systemic age-related conditions. It is known that α,β-unsaturated carbonyl compounds such as dietary cinnamates (β-phenyl acrylates) and related (meth)acrylates can have various positive and negative health effects, including cytotoxicity, allergic activity, pro-and anti-inflammatory activity, and anticancer activity. To clarify the anti-inflammatory properties of α,β-unsaturated carbonyl compounds without a phenolic group in the context of periodontal tissue inflammation and alveolar bone loss, we investigated the cytotoxicity and up-regulatory/down-regulatory effect of three trans-cinnamates (trans-cinnamic acid, methyl cinnamate, trans-cinnamaldehyde), two acrylates (ethyl acrylate, 2-hydroxyethyl acrylate), and three methacrylates (methyl methacrylate, 2-hydroxyethyl methacrylate, and triethyleneglycol dimethacrylate) using RAW264.7 cells. MATERIALS AND METHODS Cytotoxicity was determined using a cell counting kit (CCK-8) and mRNA expression was determined using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Pro-inflammatory and anti-inflammatory properties were assessed in terms of expression of mRNAs for cyclo-oxygenase-2 (Cox2), nitric oxide synthase 2 (Nos2), tumor necrosis factor-alpha (Tnfa) and heme oxygenase 1 (Ho1). RESULTS The most cytotoxic compound was 2-hydroxyethyl acrylate, followed by ethyl acrylate and cinnamaldehyde (50% lethal cytotoxic concentration, LC50=0.2-0.5 mM). Cox2 mRNA expression was up-regulated by cinnamaldehyde and 2-hydroxyethyl acrylate, particularly by the former. In contrast, the up-regulatory effect on Nos2 mRNA expression was in the order: cinnamaldehyde >> ethyl acrylate ≈ triethyleneglycol dimethacrylate >> methyl methacrylate ≈ methyl cinnamate. On the other hand, cinnamic acid and 2-hydroxyethyl methacrylate had no effect on gene expression. The two acrylates, but not cinnamates and methacrylates, up-regulated the expression of Ho1 mRNA at a non-cytotoxic concentration of 0.1 mM. Expression of Cox2, Nos2 and Tnfa mRNAs induced by Porphyromonas gingivalis lipopolysaccharide was greatly suppressed by cinnamaldehyde, methyl cinnamate and the two acrylates at 0.1 mM (p<0.05), and slightly, but significantly suppressed by cinnamic acid and methacrylates at 0.1-1 mM (p<0.05). CONCLUSION Cinnamaldehyde and acrylates exhibited both anti-inflammatory and pro-inflammatory properties, possibly due to their marked ability to act as Michael reaction acceptors, as estimated from the beta-carbon 13C-nuclear magnetic resonance spectra. Methyl cinnamate exhibited potent anti-inflammatory activity with less cytotoxicity and pro-inflammatory activity, suggesting that this compound may be useful for treatment of periodontal disease and related systemic diseases.
Collapse
Affiliation(s)
- Yukio Murakami
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Akifumi Kawata
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Seiji Suzuki
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Seiichiro Fujisawa
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
24
|
Structural Moieties Required for Cinnamaldehyde-Related Compounds to Inhibit Canonical IL-1β Secretion. Molecules 2018; 23:molecules23123241. [PMID: 30544610 PMCID: PMC6321442 DOI: 10.3390/molecules23123241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022] Open
Abstract
Suppressing canonical NOD-like receptor protein 3 (NLRP3) inflammasome-mediated interleukin (IL)-1β secretion is a reliable strategy for the development of nutraceutical to prevent chronic inflammatory diseases. This study aimed to find out the functional group responsible for the inhibitory effects of cinnamaldehyde-related compounds on the canonical IL-1β secretion. To address this, the suppressing capacities of six cinnamaldehyde-related compounds were evaluated and compared by using the lipopolysaccharide (LPS)-primed and adenosine 5′-triphosphate (ATP)-activated macrophages. At concentrations of 25~100 μM, cinnamaldehyde and 2-methoxy cinnamaldehyde dose-dependently inhibited IL-1β secretion. In contrast, cinnamic acid, cinnamyl acetate, cinnamyl alcohol and α-methyl cinnamaldehyde did not exert any inhibition. Furthermore, cinnamaldehyde and 2-methoxy cinnamaldehyde diminished expressions of NLRP3 and pro-IL-1β. Meanwhile, cinnamaldehyde and 2-methoxy cinnamaldehyde prevented the ATP-induced reduction of cytosolic pro-caspase-1 and increase of secreted caspase-1. In conclusion, for cinnamaldehyde-related compounds to suppress NLRP3 inflammasome-mediated IL-1β secretion, the propenal group of the side chain was essential, while the substituted group of the aromatic ring played a modifying role. Cinnamaldehyde and 2-methoxy cinnamaldehyde exerted dual abilities to inhibit canonical IL-1β secretion at both stages of priming and activation. Therefore, there might be potential to serve as complementary supplements for the prevention of chronic inflammatory diseases.
Collapse
|
25
|
He TF, Wang LH, Niu DB, Wen QH, Zeng XA. Cinnamaldehyde inhibit Escherichia coli associated with membrane disruption and oxidative damage. Arch Microbiol 2018; 201:451-458. [PMID: 30293114 DOI: 10.1007/s00203-018-1572-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/29/2018] [Accepted: 09/09/2018] [Indexed: 01/17/2023]
Abstract
In this study, the antimicrobial mechanism of cinnamaldehyde (CIN) against Gram-negative Escherichia coli ATCC 25922 (E. coli) based on membrane and gene regulation was investigated. Treatment with low concentration (0, 1/8, 1/4, 3/8 MIC) of CIN can effectively suppress the growth of E. coli by prolonging its lag phase and Raman spectroscopy showed obvious distinction of the E. coli after being treated with these concentration of CIN. The determination of relative conductivity indicated that CIN at relatively high concentration (0, 1, 2, 4 MIC) can increase the cell membrane permeability, causing the leakage of cellular content. Besides, the content of malondialdehyde (MDA) and the activity of total superoxide dismutase (SOD) of E. coli increased with increasing treatment concentration of CIN, implying that CIN can cause oxidative damage on E. coli cell membrane and induce the increase of total SOD activity to resist this oxidative harm. Moreover, quantitative real-time RT-PCR (qRT-PCR) analysis revealed the relationship between expression of antioxidant genes (SODa, SODb, SODc) and treatment CIN concentration, suggesting that SOD, especially SODc, played a significant role in resistance of E. coli to CIN. The underlying inactivation processing of CIN on E. coli was explored to support CIN as a potential and natural antimicrobial agent in food industry.
Collapse
Affiliation(s)
- Tian-Fu He
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Lang-Hong Wang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - De-Bao Niu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qing-Hui Wen
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xin-An Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
26
|
Danggui Sini Decoction Protected Islet Endothelial Cell Survival from Hypoxic Damage via PI3K/Akt/eNOS Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5421023. [PMID: 30108656 PMCID: PMC6077529 DOI: 10.1155/2018/5421023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023]
Abstract
Danggui Sini decoction (DSD) is a traditional Chinese decoction, which is wildly applied and showed to be effective in ameliorating ischemia-related symptoms. However, the mechanisms of DSD action in ischemic damage remain to be fully clarified. Pancreatic islet endothelial cells are pivotal constituent of islet microvasculature, with high vulnerability to hypoxic injuries. Here, using MST1 cell, a pancreatic islet endothelial cell-line, as a model, we investigated the effects of DSD on hypoxia-stimulated endothelial cell lesions and its underlying mechanisms. We found that DSD-Containing Serum (DSD-CS), collected from DSD-treated rats, could efficiently protect MST1 survival and proliferation from Cobalt chloride (CoCl2) induced damage, including cell viability, proliferation, and tube formation. Furthermore, DSD-CS restored the activity of PI3K/Akt/eNOS signaling inhibited by CoCl2 in MST1 cells. The protective effect of DSD-CS could be blocked by the specific PI3K/Akt/eNOS inhibitor LY294002, suggesting that DSD-CS protection of MST1 cell survival from hypoxia was mediated by PI3K/Akt/eNOS pathway. In conclusion, DSD treatment protected MST1 survival from hypoxic injuries via PI3K/Akt/eNOS pathway, indicating its role in protecting microvascular endothelial cells.
Collapse
|
27
|
Park GH, Song HM, Park SB, Son HJ, Um Y, Kim HS, Jeong JB. Cytotoxic activity of the twigs of Cinnamomum cassia through the suppression of cell proliferation and the induction of apoptosis in human colorectal cancer cells. Altern Ther Health Med 2018; 18:28. [PMID: 29554905 PMCID: PMC5858136 DOI: 10.1186/s12906-018-2096-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/16/2018] [Indexed: 11/25/2022]
Abstract
Background Because twigs of Cinnamomum cassia (TC) have been reported to exert anti-cancer activity, the mechanistic study for TC’s anti-cancer activity is required. Thus, we elucidated the potential molecular mechanism of TC’s anti-proliferative effect and the induction of apoptosis in human colorectal cancer cells. Methods How water extracts form TC (TC-HW) was used in this study. Anti-cell proliferative effect of TC-HW was evaluated by MTT assay. The change of protein or mRNA level by TC-HW was evaluated by Western blot and RT-RCR, respectively. The promoter construct for ATF3, NF-κB, TOP-FLASH or FOP-FLASH was used for the investigation of the transcriptional activity for ATF3, NF-κB or Wnt. siRNA for ATF3 or p65 was used for the knockdown of ATF3 and p65. Results TC-HW reduced the cell viability in human colorectal cancer cells. TC-HW decreased cyclin D1 protein level through cyclin D1 degradation via GSK3β-dependent threonine-286 (T286) phosphorylation of cyclin D1, indicating that cyclin D1 degradation may contribute to TC-HW-mediated decrease of cyclin D1 protein level. TC-HW downregulated the expression of cyclin D1 mRNA level and inhibited Wnt activation through the downregulation of β-catenin and TCF4 expression, indicating that inhibition of cyclin D1 transcription may also result in TC-HW-mediated decrease of cyclin D1 protein level. In addition, TC-HW was observed to induce apoptosis through ROS-dependent DNA damage. TC-HW-induced ROS increased NF-κB and ATF3 activation, and inhibition of NF-κB and ATF3 activation attenuated TC-HW-mediated apoptosis. Conclusions Our results suggest that TC-HW may suppress cell proliferation through the downregulation of cyclin D1 via proteasomal degradation and transcriptional inhibition, and may induce apoptosis through ROS-dependent NF-κB and ATF3 activation. These effects of TC-HW may contribute to the reduction of cell viability in human colorectal cancer cells. From these findings, TC-HW has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.
Collapse
|
28
|
trans-Cinnamaldehyde Inhibits Microglial Activation and Improves Neuronal Survival against Neuroinflammation in BV2 Microglial Cells with Lipopolysaccharide Stimulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4730878. [PMID: 29234401 PMCID: PMC5671715 DOI: 10.1155/2017/4730878] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/03/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Background Microglial activation contributes to neuroinflammation and neuronal damage in neurodegenerative disorders including Alzheimer's and Parkinson's diseases. It has been suggested that neurodegenerative disorders may be improved if neuroinflammation can be controlled. trans-cinnamaldehyde (TCA) isolated from the stem bark of Cinnamomum cassia possesses potent anti-inflammatory capability; we thus tested whether TCA presents neuroprotective effects on improving neuronal survival by inhibiting neuroinflammatory responses in BV2 microglial cells. Results To determine the molecular mechanism behind TCA-mediated neuroprotective effects, we assessed the effects of TCA on lipopolysaccharide- (LPS-) induced proinflammatory responses in BV2 microglial cells. While LPS potently induced the production and expression upregulation of proinflammatory mediators, including NO, iNOS, COX-2, IL-1β, and TNF-α, TCA pretreatment significantly inhibited LPS-induced production of NO and expression of iNOS, COX-2, and IL-1β and recovered the morphological changes in BV2 cells. TCA markedly attenuated microglial activation and neuroinflammation by blocking nuclear factor kappa B (NF-κB) signaling pathway. With the aid of microglia and neuron coculture system, we showed that TCA greatly reduced LPS-elicited neuronal death and exerted neuroprotective effects. Conclusions Our results suggest that TCA, a natural product, has the potential of being used as a therapeutic agent against neuroinflammation for ameliorating neurodegenerative disorders.
Collapse
|
29
|
Extraction time and temperature affect the extraction efficiencies of coumarin and phenylpropanoids from Cinnamomum cassia bark using a microwave-assisted extraction method. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:196-203. [DOI: 10.1016/j.jchromb.2017.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
|
30
|
Sharma H, Mendiratta S, Agrawal RK, Gurunathan K, Kumar S, Singh TP. Use of various essential oils as bio preservatives and their effect on the quality of vacuum packaged fresh chicken sausages under frozen conditions. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.048] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Chang WL, Cheng FC, Wang SP, Chou ST, Shih Y. Cinnamomum cassia essential oil and its major constituent cinnamaldehyde induced cell cycle arrest and apoptosis in human oral squamous cell carcinoma HSC-3 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:456-468. [PMID: 26919256 DOI: 10.1002/tox.22250] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 01/26/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Cinnamomum cassia essential oil (CC-EO) has various functional properties, such as anti-microbial, hypouricemic, anti-tyrosinase and anti-melanogenesis activities. The present study aimed to evaluate the anti-cancer activities of CC-EO and its major constituent, cinnamaldehyde, in human oral squamous cell carcinoma HSC-3 cells. Determination of the cell viability, apoptotic characteristics, DNA damage, cell cycle analysis, reactive oxygen species (ROS) production, mitochondrial membrane potential, cytosolic Ca2+ level and intracellular redox status were performed. Our results demonstrated that CC-EO and cinnamaldehyde significantly decreased cell viability and caused morphological changes. The cell cycle analysis revealed that CC-EO and cinnamaldehyde induced G2/M cell cycle arrest in HSC-3 cells. The apoptotic characteristics (DNA laddering and chromatin condensation) and DNA damage were observed in the CC-EO-treated and cinnamaldehyde-treated HSC-3 cells. Moreover, CC-EO and cinnamaldehyde promoted an increase in cytosolic Ca2+ levels, induced mitochondrial dysfunction and activated cytochrome c release. The results of ROS production and intracellular redox status demonstrated that CC-EO and cinnamaldehyde significantly increased the ROS production and thiobarbituric acid reactive substance levels, and the cellular glutathione content and glutathione peroxidase activity were significantly reduced in HSC-3 cells. Our results suggest that CC-EO and cinnamaldehyde may possess anti-oral cancer activity in HSC-3 cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 456-468, 2017.
Collapse
Affiliation(s)
- Wen-Lun Chang
- Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
| | - Fu-Chou Cheng
- Stem Cell Center, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan, Republic of China
| | - Shu-Ping Wang
- Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
| | - Su-Tze Chou
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
- Department of Food and Nutrition, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
| | - Ying Shih
- Department of Applied Chemistry, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
- Department of Cosmetic Science, Providence University, 200, Sec. 7, Taiwan Boulevard, Taichung, 43301, Taiwan, Republic of China
| |
Collapse
|
32
|
Yang H, Cheng X, Yang YL, Wang YH, Du GH. Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural Regen Res 2017; 12:1860-1864. [PMID: 29239332 PMCID: PMC5745840 DOI: 10.4103/1673-5374.219048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ramulus Cinnamomi (RC), a traditional Chinese herb, has been used to attenuate inflammatory responses. The purpose of this study was to investigate the effect of RC extract on lipopolysaccharide (LPS)-induced neuroinflammation in BV2 microglial cells and the underlying mechanisms involved. BV2 cells were incubated with normal medium (control group), LPS, LPS plus 30 μg/mL RC extract, or LPS plus 100 μg/mL RC extract. The BV2 cell morphology was observed under an optical microscope and cell viability was detected by MTT assay. Nitric oxide level in BV2 cells was detected using Griess regents, and the levels of interleukin-6, interleukin-1β, and tumor necrosis factor α in BV2 cells were determined by ELISA. The expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 proteins were detected by western blot assay. Compared with the LPS group, both 30 and 100 μg/mL RC extract had no significant effect on the viability of BV2 cells. The levels of nitric oxide, interleukin-6, interleukin-1β and tumor necrosis factor α in BV2 cells were all significantly increased after LPS induction, and the levels were significantly reversed after treatment with 30 and 100 μg/mL RC extract. Furthermore, RC extract significantly inhibited the protein expression levels of cyclooxygenase-2, Toll-like receptor 4 and myeloid differentiation factor 88 in LPS-induced BV2 cells. Our findings suggest that RC extract alleviates neuroinflammation by downregulating the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Huan Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Cheng
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying-Lin Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue-Hua Wang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Kim GJ, Lee JY, Choi HG, Kim SY, Kim E, Shim SH, Nam JW, Kim SH, Choi H. Cinnamomulactone, a new butyrolactone from the twigs of Cinnamomum cassia and its inhibitory activity of matrix metalloproteinases. Arch Pharm Res 2016; 40:304-310. [DOI: 10.1007/s12272-016-0877-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/15/2016] [Indexed: 12/31/2022]
|
34
|
Trans-Cinnamaldehyde, An Essential Oil in Cinnamon Powder, Ameliorates Cerebral Ischemia-Induced Brain Injury via Inhibition of Neuroinflammation Through Attenuation of iNOS, COX-2 Expression and NFκ-B Signaling Pathway. Neuromolecular Med 2016; 18:322-33. [DOI: 10.1007/s12017-016-8395-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/09/2016] [Indexed: 01/10/2023]
|
35
|
Bae WY, Choi JS, Kim JE, Jeong JW. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression. Biochem Pharmacol 2015; 98:41-50. [DOI: 10.1016/j.bcp.2015.08.095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/17/2015] [Indexed: 12/27/2022]
|
36
|
Neuroprotective effect of gui zhi (ramulus cinnamomi) on ma huang- (herb ephedra-) induced toxicity in rats treated with a ma huang-gui zhi herb pair. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:913461. [PMID: 25691910 PMCID: PMC4321680 DOI: 10.1155/2015/913461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 01/17/2023]
Abstract
Herb Ephedra (Ma Huang in Chinese) and Ramulus Cinnamomi (Gui Zhi in Chinese) are traditional Chinese herbs, often used together to treat asthma, nose and lung congestion, and fever with anhidrosis. Due to the adverse effects of ephedrine, clinical use of Ma Huang is restricted. However, Gui Zhi extract has been reported to decrease spontaneous activity in rats and exert anti-inflammatory and neuroprotective effects. The present study explored the possible inhibitory effect of Gui Zhi on Ma Huang-induced neurotoxicity in rats when the two herbs were used in combination. All Ma Huang and Ma Huang-Gui Zhi herb pair extracts were prepared using methods of traditional Chinese medicine and were normalized based on the ephedrine content. Two-month-old male Sprague-Dawley rats (n = 6 rats/group) were administered Ma Huang or the Ma Huang-Gui Zhi herb pair extracts for 7 days (ephedrine = 48 mg/kg), and locomotor activity was measured. After 7 days, oxidative damage in the prefrontal cortex was measured. Gui Zhi decreased hyperactivity and sensitization produced by repeated Ma Huang administration and attenuated oxidative stress induced by Ma Huang. The results of this study demonstrate the neuroprotective potential of Gui Zhi in Ma Huang-induced hyperactivity and oxidative damage in the prefrontal cortex of rats when used in combination.
Collapse
|
37
|
Raffai G, Kim B, Park S, Khang G, Lee D, Vanhoutte PM. Cinnamaldehyde and cinnamaldehyde-containing micelles induce relaxation of isolated porcine coronary arteries: role of nitric oxide and calcium. Int J Nanomedicine 2014; 9:2557-66. [PMID: 24904214 PMCID: PMC4039418 DOI: 10.2147/ijn.s56578] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background and purpose Cinnamaldehyde, a major component of cinnamon, induces the generation of reactive oxygen species and exerts vasodilator and anticancer effects, but its short half-life limits its clinical use. The present experiments were designed to compare the acute relaxing properties of cinnamaldehyde with those of self-assembling polymer micelles either loaded with cinnamaldehyde or consisting of a polymeric prodrug [poly(cinnamaldehyde)] that incorporates the compound in its backbone. Methods Rings of porcine coronary arteries were contracted with the thromboxane A2 receptor agonist U46619 or 40 mM KCl, and changes in isometric tension were recorded. Results Cinnamaldehyde induced concentration-dependent but endothelium-independent, nitric oxide synthase (NOS)-independent, cyclooxygenase-independent, soluble guanylyl cyclase (sGC)-independent, calcium-activated potassium-independent, and TRPA1 channel-independent relaxations. Cinnamaldehyde also inhibited the contractions induced by 40 mM KCl Ca2+ reintroduction in 40 mM KCl Ca2+-free solution or by the Ca2+ channel opener Bay K8644. Cinnamaldehyde-loaded control micelles induced complete, partly endothelium-dependent relaxations sensitive to catalase and inhibitors of NOS or sGC, but not cyclooxygenase or TRPA1, channels. Cinnamaldehyde-loaded micelles also inhibited contractions induced by 40 mM KCl Ca2+ reintroduction or Bay K8644. Poly(cinnamaldehyde) micelles induced only partial, endothelium-dependent relaxations that were reduced by inhibitors of NOS or sGC and by catalase and the antioxidant tiron, but not by indomethacin or TRPA1 channel blockers. Conclusion The present findings demonstrate that cinnamaldehyde-loaded and poly(cinnamaldehyde) micelles possess vasodilator properties, but that the mechanism underlying the relaxation that they cause differs from that of cinnamaldehyde, and thus could be used both to relieve coronary vasospasm and for therapeutic drug delivery.
Collapse
Affiliation(s)
- Gábor Raffai
- World Class University, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Byungkuk Kim
- World Class University, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Sanga Park
- World Class University, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Gilson Khang
- World Class University, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Dongwon Lee
- World Class University, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Paul M Vanhoutte
- World Class University, Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, South Korea ; Department of Pharmacology and Pharmacy and State Key Laboratory for Pharmaceutical Biotechnology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
38
|
Cinnamon: a multifaceted medicinal plant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:642942. [PMID: 24817901 PMCID: PMC4003790 DOI: 10.1155/2014/642942] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 03/12/2014] [Indexed: 12/11/2022]
Abstract
Cinnamon (Cinnamomum zeylanicum, and Cinnamon cassia), the eternal tree of tropical medicine, belongs to the Lauraceae family. Cinnamon is one of the most important spices used daily by people all over the world. Cinnamon primarily contains vital oils and other derivatives, such as cinnamaldehyde, cinnamic acid, and cinnamate. In addition to being an antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, lipid-lowering, and cardiovascular-disease-lowering compound, cinnamon has also been reported to have activities against neurological disorders, such as Parkinson's and Alzheimer's diseases. This review illustrates the pharmacological prospective of cinnamon and its use in daily life.
Collapse
|
39
|
Treatment of stress urinary incontinence by cinnamaldehyde, the major constituent of the chinese medicinal herb ramulus cinnamomi. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:280204. [PMID: 24711852 PMCID: PMC3966347 DOI: 10.1155/2014/280204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/03/2014] [Indexed: 12/02/2022]
Abstract
Stress urinary incontinence (SUI) is a common disorder in middle-aged women and the elderly population. Although surgical treatment of SUI has progressed, pharmacological therapies remain unelucidated. We screened potential herbal medicines against SUI with an ex vivo organ bath assay. Ramulus Cinnamomi and its major constituent cinnamaldehyde cause a high contractile force of the urethra and a low contractile force of blood vessels. Cinnamaldehyde dose-dependently reduced lipopolysaccharide-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. In the vaginal distension- (VD-) induced SUI model in mice, cinnamaldehyde significantly reversed the VD-induced SUI physical signs and reduced blood pressure. Cinnamaldehyde may offer therapeutic potential against SUI without the possible side effect of hypertension. The modulation of several SUI-related proteins including myosin, iNOS, survival motor neuron (SMN) protein, and superoxide dismutase 3 (SOD3) may play some crucial roles in the therapeutic approach against SUI. This information may offer clues to the pathogenesis of SUI and open additional avenues for potential therapy strategies.
Collapse
|
40
|
Chang CT, Chang WL, Hsu JC, Shih Y, Chou ST. Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil. BOTANICAL STUDIES 2013; 54:10. [PMID: 28510850 PMCID: PMC5432840 DOI: 10.1186/1999-3110-54-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/27/2012] [Indexed: 05/13/2023]
Abstract
BACKGROUND Essential oils extracted from aromatic plants exhibit important biological activities and have become increasingly important for scientific research. The essential oil extracted from Cinnamomum cassia Presl (CC-EO) has various functional properties, however, little information is available regarding the tyrosinase inhibitory activity. Therefore, the objectives of this study were to investigate the chemical composition and tyrosinase inhibitory activity of the CC-EO. RESULTS cis-2-methoxycinnamic acid (43.06%) and cinnamaldehyde (42.37%) were found to be the two major components of the CC-EO identified by gas chromatography-mass spectrometry (GC-MS). The inhibitory activities of CC-EO and its major constituents were further evaluated against mushroom tyrosinase. The results showed that CC-EO and cinnamaldehyde exhibited anti-tyrosinase activities with IC50 values of 6.16 ± 0.04 mg/mL and 4.04 ± 0.08 mg/mL, respectively. However, cis-2-methoxycinnamic acid did not show any anti-tyrosinase activity. The inhibition kinetics were analyzed by Lineweaver-Burk plots and second replots, which revealed that CC-EO and cinnamaldehyde were mixed-type inhibitors. The inhibition constants (Ki) for CC-EO and cinnamaldehyde were calculated to be 4.71 ± 0.09 mg/mL and 2.38 ± 0.09 mg/mL, respectively. CONCLUSION These results demonstrate that CC-EO and its major component, cinnamaldehyde, possess potent anti-tyrosinase activities and may be a good source for skin-whitening agents.
Collapse
Affiliation(s)
- Chen-Tien Chang
- Department of Food and Nutrition, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301 Taiwan, R.O.C
| | - Wen-Lun Chang
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301 Taiwan, R.O.C
| | - Jaw-Cherng Hsu
- Department of Applied Cosmetology, Master Program of Cosmetic science, HungKuang University, 34 Chung-Chi Road, Shalu, Taichung, 44302 Taiwan, R.O.C
| | - Ying Shih
- Department of Cosmetic Science, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301 Taiwan, R.O.C
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, 200 Chung-Chi Road, Shalu, Taichung, 43301 Taiwan, R.O.C
| |
Collapse
|
41
|
Lin IJ, Cham TM, Wu SM. Simultaneous Determination of Hesperidin, Ferulic Acid, Cinnamic Acid and Cinnamaldehyde in Chinese Tonic Wine by High Performance Liquid Chromatography. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201000064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. Int J Mol Sci 2013; 14:19186-201. [PMID: 24051402 PMCID: PMC3794828 DOI: 10.3390/ijms140919186] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/24/2023] Open
Abstract
Essential oils extracted from aromatic plants exhibit important biological activities and have become increasingly important for the development of aromatherapy for complementary and alternative medicine. The essential oil extracted from Cinnamomum cassia Presl (CC-EO) has various functional properties; however, little information is available regarding its anti-tyrosinase and anti-melanogenic activities. In this study, 16 compounds in the CC-EO have been identified; the major components of this oil are cis-2-methoxycinnamic acid (43.06%) and cinnamaldehyde (42.37%). CC-EO and cinnamaldehyde exhibited anti-tyrosinase activities; however, cis-2-methoxycinnamic acid did not demonstrate tyrosinase inhibitory activity. In murine B16 melanoma cells stimulated with α-melanocyte-stimulating hormone (α-MSH), CC-EO and cinnamaldehyde not only reduced the melanin content and tyrosinase activity of the cells but also down-regulated tyrosinase expression without exhibiting cytotoxicity. Moreover, CC-EO and cinnamaldehyde decreased thiobarbituric acid-reactive substance (TBARS) levels and restored glutathione (GSH) and catalase activity in the α-MSH-stimulated B16 cells. These results demonstrate that CC-EO and its major component, cinnamaldehyde, possess potent anti-tyrosinase and anti-melanogenic activities that are coupled with antioxidant properties. Therefore, CC-EO may be a good source of skin-whitening agents and may have potential as an antioxidant in the future development of complementary and alternative medicine-based aromatherapy.
Collapse
|
43
|
Kim MG, Yang JY, Lee HS. Acaricidal potentials of active properties isolated from Cynanchum paniculatum and acaricidal changes by introducing functional radicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:7568-7573. [PMID: 23855621 DOI: 10.1021/jf402330p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study evaluated the acaricidal activities of acetophenone and its derivatives for their potentials as natural acaricides using an impregnated fumigant bioassay against Dermatophagoides spp. and Tyrophagus putrescentiae . On the basis of the LD50 values against D. farinae, 3'-methoxyacetophenone (0.41 μg/cm(2)) was 89.9 times more toxic than DEET (36.87 μg/cm(2)), followed by 4'-methoxyacetophenone (0.52 μg/cm(2)), 2'-methoxyacetophenone (0.75 μg/cm(2)), 2'-hydroxy-5'-methoxyacetophenone (1.03 μg/cm(2)), 2'-hydroxy-4'-methoxyacetophenone (1.29 μg/cm(2)), acetophenone (1.48 μg/cm(2)), 2'-hydroxyacetophenone (1.74 μg/cm(2)), 2',5'-dimethoxyacetophenone (1.87 μg/cm(2)), 2',4'-dimethoxyacetophenone (2.10 μg/cm(2)), and benzyl benzoate (9.92 μg/cm(2)). In regard to structure-activity relationships between acaricidal activity and functional radicals (hydroxyl and methoxy groups) on the acetophenone skeleton, a monomethoxy group (2'-, 3'-, and 4'-methoxyacetone) on the acetophenone skeleton was more toxic than were the other groups (2',4'- and 2',5'-dimethoxyacetophenone, 2'- and 4'-hydroxyacetophenone, 2'-hydroxy-4'-methoxyacetophenone, 2'-hydroxy-5'-methoxyacetophenone, and 4'-hydroxy-3'-methoxyacetophenone). These results indicated that acaricidal activity against three mite species changed with the introduction of functional radicals (hydroxyl and methoxy groups) onto the acetophenone skeleton.
Collapse
Affiliation(s)
- Min-Gi Kim
- Department of Bioenvironmental Chemistry and Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University , Jeonju 561-756, Republic of Korea
| | | | | |
Collapse
|
44
|
Ho SC, Chang KS, Chang PW. Inhibition of neuroinflammation by cinnamon and its main components. Food Chem 2012; 138:2275-82. [PMID: 23497886 DOI: 10.1016/j.foodchem.2012.12.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
Uncontrolled activation of microglia contributes to neuroinflammation, which is highly involved in the development of neurodegenerative diseases. Although cinnamon has neuro-protective properties, its capacity to inhibit neuroinflammation has not been investigated and its active compounds remain unclear. Therefore, the composition of cinnamon extract was analysed by LC-MS and the ability of cinnamon and its main constituents to inhibit neuroinflammation was evaluated using a lipopolysaccharide (LPS)-activated BV2 microglia culture system. In total, 50 μg/mL cinnamon extract decreased significantly the production and expression of nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in LPS-activated BV2 microglia. Blocking of nuclear factor-κB (NF-κB) activation was the most likely mechanism responsible for inhibition by cinnamon of neuroinflammation. Among the eight tested compounds, cinnamaldehyde had the greatest anti-neuroinflammatory capacity. Experimental results suggest that cinnamon may have a potential therapeutic effect against neurodegenerative diseases and its potent anti-neuroinflammatory capacity was primarily attributed to cinnamaldehyde.
Collapse
Affiliation(s)
- Su-Chen Ho
- Department of Food Science, Yuanpei University, Hsinchu, Taiwan, ROC.
| | | | | |
Collapse
|
45
|
Abstract
Background Cinnamon bark is one of the most popular herbal ingredients in traditional oriental medicine and possesses diverse pharmacological activities including anti-bacterial, anti-viral, and anti-cancer properties. The goal of this study is to investigate the in vivo and in vitro inhibitory effect of cinnamon water extract (CWE) on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α and its underlying intracellular mechanisms. Methods CWE was orally administrated to mice for 6 days prior to intraperitoneal injection of LPS. Serum levels of TNF-α and interleukin (IL)-6 were determined 1 hour after LPS stimulation. Peritoneal macrophages from thioglycollate-injected mice were isolated and assayed for viability, cytokine expression and signaling molecules upon LPS stimulation. CWE was further fractioned according to molecular size, and the levels of total polyphenols and biological activities of each fraction were measured. Results The oral administration of CWE to mice significantly decreased the serum levels of TNF-α and IL-6. CWE treatment in vitro decreased the mRNA expression of TNF-α. CWE blocked the LPS-induced degradation of IκBα as well as the activation of JNK, p38 and ERK1/2. Furthermore, size-based fractionation of CWE showed that the observed inhibitory effect of CWE in vitro occurred in the fraction containing the highest level of total polyphenols. Conclusions Treatment with CWE decreased LPS-induced TNF-α in serum. In vitro inhibition of TNF-α gene by CWE may occur via the modulation of IκBα degradation and JNK, p38, and ERK1/2 activation. Our results also indicate that the observed anti-inflammatory action of CWE may originate from the presence of polyphenols.
Collapse
|
46
|
Liu CL, Cheng L, Ko CH, Wong CW, Cheng WH, Cheung DWS, Leung PC, Fung KP, Bik-San Lau C. Bioassay-guided isolation of anti-inflammatory components from the root of Rehmannia glutinosa and its underlying mechanism via inhibition of iNOS pathway. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:867-875. [PMID: 23034094 DOI: 10.1016/j.jep.2012.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/09/2012] [Accepted: 08/11/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Rehmannia glutinosa (RR) is commonly used to reduce inflammation in various traditional Chinese herbal formulae; however, little is known regarding its active component(s). AIM OF STUDY The objective of the present study was to examine the active component(s) responsible for the anti-inflammatory activity of RR via anti-nitric oxide production assay-guided fractionation; and the underlying anti-inflammatory mechanism of action of such component(s) was further investigated. MATERIALS AND METHODS Anti-nitric oxide (NO) activities with lipopolysaccharides (LPS)-stimulated RAW264.7 murine macrophages was used as screening platform. Gene, protein and inflammatory mediators' expression were also studied using real-time PCR, western blotting and ELISA, respectively. RESULTS Using anti-NO assay-guided fractionation, sub-fraction C3 (from 31.25 to 62.5 μg/ml, p=0.001 to 0.01) possessed 100-fold more potent anti-inflammatory effect than that of the aqueous extract of RR. Characterization of C3 showed that the anti-inflammatory effect could be partly due to the presence of rehmapicrogenin, which could significantly inhibit NO production (p<0.001). C3 was further demonstrated in blocking inflammation by inhibiting gene (p<0.001) and protein expression of inducible NO synthase (iNOS) dose-dependently. Besides, C3 also significantly inhibited the production of prostaglandin E(2) (p<0.001 to 0.01), IL-6 (p<0.001 to 0.05) and COX-2 (p<0.05). CONCLUSIONS Rehmapicrogenin was, for the first time, shown to possess nitric oxide inhibitory activities. Bioassay-guided fractionation demonstrated that rehmapicrogenin-containing subfraction C3 exhibited potent anti-inflammatory effect by inhibiting iNOS, COX-2 and IL-6, while rehmapicrogenin was only partially responsible for the anti-inflammatory effect of RR.
Collapse
Affiliation(s)
- Cheuk-Lun Liu
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Berberine decreases cell growth but increases the side population fraction of H460 lung cancer cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2119-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Evaluation of antioxidant and antibacterial activities of morin isolated from mulberry fruits (Morus alba L.). ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2110-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Yang CH, Li RX, Chuang LY. Antioxidant activity of various parts of Cinnamomum cassia extracted with different extraction methods. Molecules 2012; 17:7294-304. [PMID: 22695234 PMCID: PMC6268419 DOI: 10.3390/molecules17067294] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the antioxidant activities of various parts (barks, buds, and leaves) of Cinnamomum cassia extracted with ethanol and supercritical fluid extraction (SFE). For the antioxidant activity comparison, IC50 values ofthe SFE and ethanol extracts in the DPPH scavenging assay were 0.562–10.090 mg/mL and 0.072–0.208 mg/mL, and the Trolox equivalent antioxidant capacity (TEAC) values were 6.789–58.335 mmole Trolox/g and 133.039–335.779 mmole Trolox/g, respectively. In addition, the total flavonoid contents were 0.031–1.916 g/ 100 g dry weight of materials (DW) and 2.030–3.348 g/ 100 g DW, and the total phenolic contents were 0.151–2.018 g/ 100 g DW and 6.313–9.534 g/ 100 g DW in the SFE and ethanol extracts, respectively. Based on the results, the ethanol extracts of Cinnamon barks have potential value as an antioxidant substitute and this study also provide a better technique to extract the natural antioxidant substances from C. cassia.
Collapse
Affiliation(s)
- Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan
| | - Rong-Xian Li
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Li-Yeh Chuang
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 840, Taiwan
- Author to whom correspondence should be addressed; ; Tel.: +886-07-657-7711 (ext. 3402); Fax: +886-07-657-8945
| |
Collapse
|
50
|
Liu Y, Song M, Che TM, Bravo D, Pettigrew JE. Anti-inflammatory effects of several plant extracts on porcine alveolar macrophages in vitro. J Anim Sci 2012; 90:2774-83. [PMID: 22328722 DOI: 10.2527/jas.2011-4304] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Certain plant extracts are bioactive substances of some foods or traditional herbs, known to possess antioxidant, antibacterial, and perhaps immunoregulatory effects. This study investigated the in vitro anti-inflammatory effects of 7 plant extracts (anethol, capsicum oleoresin, carvacrol, cinnamaldehyde, eugenol, garlicon, and turmeric oleoresin) on porcine alveolar macrophages collected from weaned pigs (n = 6 donor pigs) by bronchoalveolar lavage. The experimental design for this assay was a 2 [with or without 1 μg lipopolysaccharide (LPS)/mL] × 5 (5 different amounts of each plant extract) factorial arrangements in a randomized complete block design. The application of plant extracts were 0, 25, 50, 100, and 200 μg/mL, except for cinnamaldehyde and turmeric oleoresin, which were 0, 2.5, 5, 10, and 20 μg/mL. The 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay was used to determine the number of live cells, Griess assay was applied to detect nitric oxide (NO) production, and ELISA was used to measure tumor necrosis factor-α (TNF-α), IL-1β, transforming growth factor-β (TGF-β), and IL-10 in the cell culture supernatants of macrophages. The LPS increased (P < 0.001) the secretion of TNF-α, IL-1β, and TGF-β. Without LPS, anethol and capsicum oleoresin increased (linear, P < 0.001) cell viability of macrophages, whereas other plant extracts reduced (linear, P < 0.001) it. Anethol, capsicum oleoresin, and carvacrol enhanced (linear, P < 0.001) the cell proliferation of LPS-treated macrophages. Without LPS, anethol, capsicum oleoresin, cinnamaldehyde, or turmeric oleoresin stimulated TNF-α secretion, whereas all plant extracts except eugenol enhanced IL-1β concentration in the supernatants of macrophages. However, all plant extracts suppressed (linear, P < 0.001) TNF-α, and all plant extracts except turmeric oleoresin decreased (linear, P < 0.05) IL-1β secretion from LPS-treated macrophages. Anethol and capsicum oleoresin decreased (linear, P < 0.001) TGF-β from macrophages in the absence of LPS, but the other plant extracts increased it. Anethol, capsicum oleoresin, and carvacrol also suppressed (linear, P < 0.001) TGF-β from macrophages with LPS stimulation; the other plant extracts enhanced or did not affect it. The anti-inflammatory cytokine, IL-10, was not detected in any supernatants. Only very low amounts of NO were detected in the supernatants of macrophages. In conclusion, the TNF-α results indicate all plant extracts tested here may have anti-inflammatory effects to varying degrees.
Collapse
Affiliation(s)
- Y Liu
- Department of Animal Sciences, University of Illinois at Urbana-Champagne, Urbana, IL, USA
| | | | | | | | | |
Collapse
|