1
|
Cominelli E, Pilu R, Sparvoli F. Phytic Acid and Transporters: What Can We Learn from low phytic acid Mutants. PLANTS 2020; 9:plants9010069. [PMID: 31948109 PMCID: PMC7020491 DOI: 10.3390/plants9010069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 01/22/2023]
Abstract
Phytic acid has two main roles in plant tissues: Storage of phosphorus and regulation of different cellular processes. From a nutritional point of view, it is considered an antinutritional compound because, being a cation chelator, its presence reduces mineral bioavailability from the diet. In recent decades, the development of low phytic acid (lpa) mutants has been an important goal for nutritional seed quality improvement, mainly in cereals and legumes. Different lpa mutations affect phytic acid biosynthetic genes. However, other lpa mutations isolated so far, affect genes coding for three classes of transporters: A specific group of ABCC type vacuolar transporters, putative sulfate transporters, and phosphate transporters. In the present review, we summarize advances in the characterization of these transporters in cereals and legumes. Particularly, we describe genes, proteins, and mutants for these different transporters, and we report data of in silico analysis aimed at identifying the putative orthologs in some other cereal and legume species. Finally, we comment on the advantage of using such types of mutants for crop biofortification and on their possible utility to unravel links between phosphorus and sulfur metabolism (phosphate and sulfate homeostasis crosstalk).
Collapse
Affiliation(s)
- Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-022-369-9421
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy;
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche, Via E. Bassini 15, 20133 Milan, Italy;
| |
Collapse
|
2
|
Colombo F, Paolo D, Cominelli E, Sparvoli F, Nielsen E, Pilu R. MRP Transporters and Low Phytic Acid Mutants in Major Crops: Main Pleiotropic Effects and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2020; 11:1301. [PMID: 32973854 PMCID: PMC7481554 DOI: 10.3389/fpls.2020.01301] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 05/15/2023]
Abstract
Phytic acid (PA) represents the major storage form of seed phosphate (P). During seed maturation, it accumulates as phytate salts chelating various mineral cations, therefore reducing their bioavailability. During germination, phytase dephosphorylates PA releasing both P and cations which in turn can be used for the nutrition of the growing seedling. Animals do not possess phytase, thus monogastric animals assimilate only 10% of the phytate ingested with feed, whilst 90% is excreted and may contribute to cause P pollution of the environment. To overcome this double problem, nutritional and environmental, in the last four decades, many low phytic acid (lpa) mutants (most of which affect the PA-MRP transporters) have been isolated and characterized in all major crops, showing that the lpa trait can increase the nutritional quality of foods and feeds and improve P management in agriculture. Nevertheless, these mutations are frequently accompanied by negative pleiotropic effects leading to agronomic defects which may affect either seed viability and germination or plant development or in some cases even increase the resistance to cooking, thus limiting the interest of breeders. Therefore, although some significant results have been reached, the isolation of lpa mutants improved for their nutritional quality and with a good field performance remains a goal so far not fully achieved for many crops. Here, we will summarize the main pleiotropic effects that have been reported to date in lpa mutants affected in PA-MRP transporters in five productive agronomic species, as well as addressing some of the possible challenges to overcome these hurdles and improve the breeding efforts for lpa mutants.
Collapse
Affiliation(s)
- Federico Colombo
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Dario Paolo
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Pavia, Italy
| | - Roberto Pilu
- Department of Agricultural and Environmental Sciences—Production Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Roberto Pilu,
| |
Collapse
|
3
|
Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 from Glycine max (L) Merr.: comprehending its evolutionary conservancy at functional level. 3 Biotech 2018; 8:50. [PMID: 29354361 DOI: 10.1007/s13205-017-1076-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/26/2017] [Indexed: 01/20/2023] Open
Abstract
Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 (GmItpk2), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or Inositol 1,3,4,6 tetra phosphate, is a key enzyme diverting the flux of inositol phosphate pool towards phytate biosynthesis. Although considerable research on characterizing genes involved in phytate biosynthesis is accomplished at genomic and transcript level, characterization of the proteins is yet to be explored. In the present study, we report the isolation and expression of single copy Itpk2 (948 bp) from Glycine max cv Pusa-16 predicted to encode 315 amino acid protein with an isoelectric point of 5.9. Sequence analysis revealed that GmITPK2 shared highest similarity (80%) with Phaseolus vulgaris. The predicted 3D model confirmed 12 α helices and 14 β barrel sheets with ATP-binding site close to β sheet present towards the C-terminus of the protein molecule. Spatio-temporal transcript profiling signified GmItpk2 to be seed specific, with higher transcript levels in the early stage of seed development. The present study using various molecular and bio-computational tools could, therefore, help in improving our understanding of this key enzyme and prove to be a potential target towards generating low phytate trait in nutritionally rich crop like soybean.
Collapse
|
4
|
Sparvoli F, Cominelli E. Seed Biofortification and Phytic Acid Reduction: A Conflict of Interest for the Plant? PLANTS 2015; 4:728-55. [PMID: 27135349 PMCID: PMC4844270 DOI: 10.3390/plants4040728] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Most of the phosphorus in seeds is accumulated in the form of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, InsP6). This molecule is a strong chelator of cations important for nutrition, such as iron, zinc, magnesium, and calcium. For this reason, InsP6 is considered an antinutritional factor. In recent years, efforts to biofortify seeds through the generation of low phytic acid (lpa) mutants have been noteworthy. Moreover, genes involved in the biosynthesis and accumulation of this molecule have been isolated and characterized in different species. Beyond its role in phosphorus storage, phytic acid is a very important signaling molecule involved in different regulatory processes during plant development and responses to different stimuli. Consequently, many lpa mutants show different negative pleitotropic effects. The strength of these pleiotropic effects depends on the specific mutated gene, possible functional redundancy, the nature of the mutation, and the spatio-temporal expression of the gene. Breeding programs or transgenic approaches aimed at development of new lpa mutants must take into consideration these different aspects in order to maximize the utility of these mutants.
Collapse
Affiliation(s)
- Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| | - Eleonora Cominelli
- Institute of Agricultural Biology and Biotechnology, CNR, Via Bassini 15, 20133 Milan, Italy.
| |
Collapse
|
5
|
|
6
|
Ali N, Paul S, Gayen D, Sarkar SN, Datta SK, Datta K. RNAi mediated down regulation of myo-inositol-3-phosphate synthase to generate low phytate rice. RICE (NEW YORK, N.Y.) 2013; 6:12. [PMID: 24280240 PMCID: PMC4883737 DOI: 10.1186/1939-8433-6-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 05/07/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Phytic acid (InsP6) is considered as the major source of phosphorus and inositol phosphates in cereal grains. Reduction of phytic acid level in cereal grains is desirable in view of its antinutrient properties to maximize mineral bioavailability and minimize the load of phosphorus waste management. We report here RNAi mediated seed-specific silencing of myo-inositol-3-phosphate synthase (MIPS) gene catalyzing the first step of phytic acid biosynthesis in rice. Moreover, we also studied the possible implications of MIPS silencing on myo-inositol and related metabolism, since, first step of phytic acid biosynthesis is also the rate limiting step of myo-inositol synthesis, catalyzed by MIPS. RESULTS The resulting transgenic rice plants (T3) showed a 4.59 fold down regulation in MIPS gene expression, which corresponds to a significant decrease in phytate levels and a simultaneous increment in the amount of inorganic phosphate in the seeds. A diminution in the myo-inositol content of transgenic plants was also observed due to disruption of the first step of phytic acid biosynthetic pathway, which further reduced the level of ascorbate and altered abscisic acid (ABA) sensitivity of the transgenic plants. In addition, our results shows that in the transgenic plants, the lower phytate levels has led to an increment of divalent cations, of which a 1.6 fold increase in the iron concentration in milled rice seeds was noteworthy. This increase could be attributed to reduced chelation of divalent metal (iron) cations, which may correlate to higher iron bioavailability in the endosperm of rice grains. CONCLUSION The present study evidently suggests that seed-specific silencing of MIPS in transgenic rice plants can yield substantial reduction in levels of phytic acid along with an increase in inorganic phosphate content. However, it was also demonstrated that the low phytate seeds had an undesirable diminution in levels of myo-inositol and ascorbate, which probably led to sensitiveness of seeds to abscisic acid during germination. Therefore, it is suggested that though MIPS is the prime target for generation of low phytate transgenic plants, down-regulation of MIPS can have detrimental effect on myo-inositol synthesis and related pathways which are involved in key plant metabolism.
Collapse
Affiliation(s)
- Nusrat Ali
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| | - Soumitra Paul
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| | - Dipak Gayen
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| | - Sailendra Nath Sarkar
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| | - Swapan K Datta
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
- />Division of Crop Science, Indian Council of Agricultural Research (ICAR), Krishi Bhavan, Dr. Rajendra Prasad Road, New Delhi, 110001 India
| | - Karabi Datta
- />Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular road, Kolkata, 700019 WB India
| |
Collapse
|
7
|
Ma D, Zuo Y, Sun D, Wang C, Guo T. Characterization of the TaMIPS gene from winter wheat (Triticum aestivum L.) and changes in its expression pattern with phytic acid accumulation in seeds during grain filling. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Huang Y, Chen L, Wang L, Vijayan K, Phan S, Liu Z, Wan L, Ross A, Xiang D, Datla R, Pan Y, Zou J. Probing the endosperm gene expression landscape in Brassica napus. BMC Genomics 2009; 10:256. [PMID: 19490642 PMCID: PMC2702316 DOI: 10.1186/1471-2164-10-256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 06/02/2009] [Indexed: 12/24/2022] Open
Abstract
Background In species with exalbuminous seeds, the endosperm is eventually consumed and its space occupied by the embryo during seed development. However, the main constituent of the early developing seed is the liquid endosperm, and a significant portion of the carbon resources for the ensuing stages of seed development arrive at the embryo through the endosperm. In contrast to the extensive study of species with persistent endosperm, little is known about the global gene expression pattern in the endosperm of exalbuminous seed species such as crucifer oilseeds. Results We took a multiparallel approach that combines ESTs, protein profiling and microarray analyses to look into the gene expression landscape in the endosperm of the oilseed crop Brassica napus. An EST collection of over 30,000 entries allowed us to detect close to 10,000 unisequences expressed in the endosperm. A protein profile analysis of more than 800 proteins corroborated several signature pathways uncovered by abundant ESTs. Using microarray analyses, we identified genes that are differentially or highly expressed across all developmental stages. These complementary analyses provided insight on several prominent metabolic pathways in the endosperm. We also discovered that a transcription factor LEAFY COTYLEDON (LEC1) was highly expressed in the endosperm and that the regulatory cascade downstream of LEC1 operates in the endosperm. Conclusion The endosperm EST collection and the microarray dataset provide a basic genomic resource for dissecting metabolic and developmental events important for oilseed improvement. Our findings on the featured metabolic processes and the LEC1 regulatory cascade offer new angles for investigation on the integration of endosperm gene expression with embryo development and storage product deposition in seed development.
Collapse
Affiliation(s)
- Yi Huang
- Plant Biotechnology Institute, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Doria E, Galleschi L, Calucci L, Pinzino C, Pilu R, Cassani E, Nielsen E. Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:967-78. [PMID: 19204030 DOI: 10.1093/jxb/ern345] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A maize mutant defective in the synthesis of phytic acid during seed maturation was used as a tool to study the consequences of the lack of this important reserve substance on seed survival. Data on germinability, free iron level, free radical relative abundance, protein carbonylation level, damage to DNA, degree of lipid peroxidation, alpha- and gamma-tocopherol amount and antioxidant capacity were recorded on seeds of maize B73 and of an isogenic low phytic acid mutant (lpa1-241), either unaged or incubated for 7 d in accelerated ageing conditions (46 degrees C and 100% relative humidity). The lpa1-241 mutant, compared to wild type (wt), showed a lower germination capacity, which decreased further after accelerated ageing. Whole lpa1-241 mutant kernels contained about 50% more free or weakly bound iron than wt ones and showed a higher content of free radicals, mainly concentrated in embryos; in addition, upon accelerated ageing, lpa1-241 seed proteins were more carbonylated and DNA was more damaged, whereas lipids did not appear to be more peroxidated, but the gamma-tocopherol content was decreased by about 50%. These findings can be interpreted in terms of previously reported but never proven antioxidant activity of phytic acid through iron complexation. Therefore, a novel role in plant seed physiology can be assigned to phytic acid, that is, protection against oxidative stress during the seed's life span. As in maize kernels the greater part of phytic acid (and thus of metal ions) is concentrated in the embryo, its antioxidant action may be of particular relevance in this crop.
Collapse
Affiliation(s)
- Enrico Doria
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait. Heredity (Edinb) 2008; 102:236-45. [PMID: 18781168 DOI: 10.1038/hdy.2008.96] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
So far, in maize, three classes of mutants involved in phytic acid biosynthesis have been isolated: lpa1, lpa2 and lpa3. In 2007, a gene tagging experiment performed by Shi et al. found that mutations in ZmMRP4 (multidrug resistance-associated proteins 4) gene cause lpa1 phenotype. In previous studies, we isolated and described a single recessive lpa mutation (originally named lpa241), which was allelic to the lpa1-1 mutant, and was consequently renamed lpa1-241. It showed a decrease in the expression of the myo-inositol (Ins)-3-phosphate synthase gene (mips1S). In this study, we present genetic and molecular analyses of the lpa1-241 mutation that indicate an epigenetic origin of this trait, that is, a paramutagenic interaction that results in meiotically heritable changes in ZmMRP4 gene expression, causing a strong pleiotropic effect on the whole plant. The use of a 5-Azacytidine treatment provided data suggesting an association between gene methylation and the lpa1-241 phenotype. To our knowledge, this is the first report of a paramutagenic activity not involving flavonoid biosynthesis in maize, but regarding a key enzyme of an important metabolic pathway in plants.
Collapse
|
11
|
Zhao J, Jamar DCL, Lou P, Wang Y, Wu J, Wang X, Bonnema G, Koornneef M, Vreugdenhil D. Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa. PLANT, CELL & ENVIRONMENT 2008; 31:887-900. [PMID: 18266904 DOI: 10.1111/j.1365-3040.2008.01791.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Phytate, being the major storage form of phosphorus in plants, is considered to be an anti-nutritional substance for human, because of its ability to complex essential micronutrients. In the present study, we describe the genetic analysis of phytate and phosphate concentrations in Brassica rapa using five segregating populations, involving eight parental accessions representing different cultivar groups. A total of 25 quantitative trait loci (QTL) affecting phytate and phosphate concentrations in seeds and leaves were detected, most of them located in linkage groups R01, R03, R06 and R07. Two QTL affecting seed phytate (SPHY), two QTL affecting seed phosphate (SPHO), one QTL affecting leaf phosphate and one major QTL affecting leaf phytate (LPHY) were detected in at least two populations. Co-localization of QTL suggested single or linked loci to be involved in the accumulation of phytate or phosphate in seeds or leaves. Some co-localizing QTL for SPHY and SPHO had parental alleles with effects in the same direction suggesting that they control the total phosphorus concentration. For other QTL, the allelic effect was opposite for phosphate and phytate, suggesting that these QTL are specific for the phytate pathway.
Collapse
Affiliation(s)
- Jianjun Zhao
- Laboratory of Plant Physiology, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suzuki M, Tanaka K, Kuwano M, Yoshida KT. Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene 2007; 405:55-64. [PMID: 17961936 DOI: 10.1016/j.gene.2007.09.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/13/2007] [Accepted: 09/06/2007] [Indexed: 11/29/2022]
Abstract
Phytic acid, myo-inositol-hexakisphosphate (InsP(6)), is a storage form of phosphorus in plants. Despite many physiological investigations of phytic acid accumulation and storage, little is known at the molecular level about its biosynthetic pathway in plants. Recent work has suggested two pathways. One is an inositol lipid-independent pathway that occurs through the sequential phosphorylation of 1D-myo-inositol 3-phosphate (Ins(3)P). The second is a phospholipase C (PLC)-mediated pathway, in which inositol 1,4,5-tris-phosphate (Ins(1,4,5)P(3)) is sequentially phosphorylated to InsP(6). We identified 12 genes from rice (Oryza sativa L.) that code for the enzymes that may be involved in the metabolism of inositol phosphates. These enzymes include 1D-myo-inositol 3-phosphate synthase (MIPS), inositol monophosphatase (IMP), inositol 1,4,5-tris-phosphate kinase/inositol polyphosphate kinase (IPK2), inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1), and inositol 1,3,4-triskisphosphate 5/6-kinase (ITP5/6K). The quantification of absolute amounts of mRNA by real-time RT-PCR revealed the unique expression patterns of these genes. Outstanding up-regulation of the four genes, a MIPS, an IPK1, and two ITP5/6Ks in embryos, suggested that they play a significant role in phytic acid biosynthesis and that the lipid-independent pathway was mainly active in developing seeds. On the other hand, the up-regulation of a MIPS, an IMP, an IPK2, and an ITP5/6K in anthers suggested that a PLC-mediated pathway was active in addition to a lipid-independent pathway in the anthers.
Collapse
Affiliation(s)
- Makoto Suzuki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Victor Raboy
- USDA-ARS and University of Idaho, Aberdeen, Idaho 83210, USA
| | | |
Collapse
|
14
|
Bastida M, Graziano E, Roca R, López I, Sánchez-Pons N, Puigdoménech P, Vicient CM. A maize defective-kernel mutant (longcell) characterized by tubular cells, severe morphological alterations and induction of cell death. PLANTA 2006; 223:755-68. [PMID: 16231157 DOI: 10.1007/s00425-005-0136-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 08/15/2005] [Indexed: 05/04/2023]
Abstract
Seeds of the longcell mutant in maize (Zea mays L) have a defective-kernel phenotype: the embryo aborts at the early coleoptilar stage and the endosperm is reduced in size. Mutant embryos have severe alterations in morphogenesis. They have a suspensor-, an embryo axis- and a scutellum-like structure, but the shoot apical meristem (SAM) is not formed. Scanning electron microscopy showed that most of the cells in longcell embryos are tubular and abnormally enlarged. The level of expression of several genes involved in basic metabolism is not severely affected during early and mid embryogenesis, but storage molecule accumulation is reduced. Genes which in normal conditions are only expressed after germination, are expressed during kernel development in the longcell seeds. Mutant embryos undergo cell death in late embryogenesis. Nuclei in dying embryos are TUNEL positive, and different genes coding for hydrolytic enzymes are up-regulated. The expression of genes related to oxidative stress is also altered in longcell embryos. These results lead us to suggest that the longcell mutant may be cytokinesis-defective.
Collapse
Affiliation(s)
- M Bastida
- Laboratori de Genetica Molecular i Vegetal, CSIC-IRTA, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Andaya CB, Tai TH. Fine mapping of the rice low phytic acid (Lpa1) locus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:489-95. [PMID: 15940509 DOI: 10.1007/s00122-005-2038-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 04/11/2005] [Indexed: 05/02/2023]
Abstract
Phytic acid is the primary storage form of phosphorus (P) in cereal grains. In addition to being essential for normal seedling growth and development, phytic acid plays an important role in human and animal nutrition. The rice low phytic acid mutation lpa1 results in a 45% reduction in seed phytic acid with a molar equivalent increase in inorganic P. The Lpa1 locus was previously mapped to the long arm of chromosome 2. Using microsatellite markers and a recombinant inbred line population, we fine mapped this locus between the markers RM3542 and RM482, which encompass a region of 135 kb. Additional markers were developed from the DNA sequence of this region. Two of these markers further delimited the locus to a 47-kb region containing eight putative open reading frames. Cloning and molecular characterization of the Lpa1 gene will provide insight into phytic acid biosynthesis in plants. The markers reported here should also be useful in introgressing the low phytic acid phenotype into other rice cultivars.
Collapse
Affiliation(s)
- Cynthia B Andaya
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|