1
|
Devasia S, Joseph JT, P S S, Koizumi S, Clarke L, V T S, Kailas AP, Madhavan S. Management and Amelioration of Knee Joint Osteoarthritis in Adults Using a Novel High-Functional Bovine Collagen Peptide as a Nutritional Therapy: A Double-Blind, Prospective, Multicentric, Randomized, Active and Placebo Controlled, Five-Arm, Clinical Study to Evaluate the Efficacy, Safety, and Tolerability. Cartilage 2024; 15:363-374. [PMID: 38235711 DOI: 10.1177/19476035231221211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
OBJECTIVE The various functionalities of collagen peptides have generated a large interest in utilizing the bioactive peptides as a nutritional therapy to ameliorate various physiological degenerative conditions. Collagen peptides are observed to reduce the pain and aligned difficulties with respect to osteoarthritis. Here we report the enhanced ameliorating property of novel high-functional "Wellnex" Type J collagen peptides following a double-blind randomized active and placebo-controlled 5-arm clinical trial (n = 100) by using it as a nutritional supplement in subjects with knee joint osteoarthritis in comparison with conventional bovine collagen peptides. The efficacy, safety, and tolerability were also studied. DESIGN Dosages of 2.5, 5.0, and 10.0 g of high-functional Type J bovine collagen peptides, 10.0 g of conventional collagen peptides, and 10.0 g of placebo were given to the 5 groups for a period of 90 days. The Western Ontario McMaster Universities Arthritis Index (WOMAC) score, Pain Scale, Quality of Life (QoL), Physician's Impression of change Score (PICS), serum C-terminal cross-linked telopeptide of type II collagen (CTX-II) levels and Magnetic Resonance Imaging Osteoarthritis Knee Score (MOAKS) parameters were monitored. RESULTS Type J 2.5 g showed significant improvement in WOMAC, QoL, CTX, and MOAKS and observed to be equivalent to conventional collagen peptide 10-g supplementation in terms of efficacy. CONCLUSION The two significant outcomes of the study were that Type J 10.0 g, Type J 5.0 g, Type J 2.5 g and conventional collagen peptides 10.0 g supplementation were observed to be beneficial nutraceutical therapies for knee joint osteoarthritis, and Type J 2.5 g supplementation was equivalent to conventional collagen peptides 10.0-g supplementation in terms of efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Sriraam V T
- Aurous Health Care Research and Development India Private Limited, Chennai, India
| | | | | |
Collapse
|
2
|
Asai TT, Miyauchi S, Wijanarti S, Sekino A, Suzuki A, Maruya S, Mannari T, Tsuji A, Toyama K, Nakata R, Ogura Y, Takamura H, Sato K, Takachi R, Matsuda S. Hydroxyprolyl-Glycine in 24 H Urine Shows Higher Correlation with Meat Consumption than Prolyl-Hydroxyproline, a Major Collagen Peptide in Urine and Blood. Nutrients 2024; 16:3574. [PMID: 39458568 PMCID: PMC11510011 DOI: 10.3390/nu16203574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background. Urinary collagen peptides, the breakdown products of endogenous collagen, have been used as biomarkers for various diseases. These non-invasive biomarkers are easily measured via mass spectrometry, aiding in diagnostics and therapy effectiveness. Objectives. The objective of this study was to investigate the effects of consuming collagen-containing meat on collagen peptide composition in human blood and urine. Methods. Ten collagen peptides in 24 h urine were quantified. Results. Prolyl-hydroxyproline (Pro-Hyp) was the most abundant peptide. Except for hydroxyprolyl-glycine (Hyp-Gly), levels of other minor collagen peptides showed high correlation coefficients with Pro-Hyp (r = 0.42 vs. r > 0.8). Notably, 24 h urinary Hyp-Gly showed a correlation coefficient of r = 0.72 with meat consumption, significantly higher than the coefficient for Pro-Hyp (r = 0.37). Additionally, the levels of Pro-Hyp and Hyp-Gly in the blood of seven young women participants increased similarly after consuming fish meat, while before ingestion, only negligible amounts of Hyp-Gly were present. To examine which peptides are generated by the degradation of endogenous collagen, mouse skin was cultured. The amount of Pro-Hyp released from the skin was approximately 1000-fold higher than that of Hyp-Gly. Following consumption of collagen-containing meat, both Pro-Hyp and Hyp-Gly are released in blood and excreted into urine, although Pro-Hyp is primarily generated from endogenous collagen even under physiological conditions. Conclusions. Therefore, in 24 h urine samples, the non-negligible fraction of Pro-Hyp is contributed by endogenous collagen, making 24 h urine Hyp-Gly level a potential biomarker for evaluating meat consumption on the day.
Collapse
Affiliation(s)
- Tomoko T. Asai
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606 8502, Japan
| | - Satoshi Miyauchi
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606 8502, Japan
| | - Sri Wijanarti
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606 8502, Japan
| | - Ayaka Sekino
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Akiko Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Sachiko Maruya
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Takayo Mannari
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
- Kyousei Science Center for Life and Nature, Nara Women’s University, Kitauoya-Nishimachi, Nara 630 8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Kenji Toyama
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Hitoshi Takamura
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
- Kyousei Science Center for Life and Nature, Nara Women’s University, Kitauoya-Nishimachi, Nara 630 8506, Japan
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606 8502, Japan
| | - Ribeka Takachi
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Faculty of Human Life and Environment, Nara Women’s University, Nara 630 8506, Japan
| |
Collapse
|
3
|
Kawada T. A fish hydrolysate supplement and sleep quality. Clin Nutr ESPEN 2024; 63:1. [PMID: 38879878 DOI: 10.1016/j.clnesp.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/25/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan.
| |
Collapse
|
4
|
Dobenecker B, Böswald LF, Reese S, Steigmeier-Raith S, Trillig L, Oesser S, Schunck M, Meyer-Lindenberg A, Hugenberg J. The oral intake of specific Bioactive Collagen Peptides (BCP) improves gait and quality of life in canine osteoarthritis patients-A translational large animal model for a nutritional therapy option. PLoS One 2024; 19:e0308378. [PMID: 39298537 DOI: 10.1371/journal.pone.0308378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common joint disorder in humans and dogs. Due to its chronic progressive nature, the predominant clinical signs after a certain point are pain and immobility. The similar pathogenesis allows conclusions to be drawn from canine to human OA. Current treatments are limited and often attempt to treat OA symptoms rather than improve joint structure and function. Collagen hydrolysates as oral supplements are a promising therapeutic option to achieve this advanced therapeutic aim in both species. The effects of oral supplementation were therefore investigated in canine OA patients. METHOD In a systematic, placebo-controlled, double-blind interventional study in 31 dogs with naturally occurring OA, the efficacy of oral supplementation of specific bioactive collagen peptides (BCP) was tested in comparison to the approved combination of the active substances omega-3 fatty acids and vitamin E. The dogs were examined on a horizontal treadmill with 4 integrated piezoelectric force plates at the beginning and end of a twelve-week test period. At both points, the owners completed a specific questionnaire containing the validated Canine Brief Pain Inventory (CBPI) and the dogs were fitted with accelerometers to record total daily activity data. RESULTS Only the oral supplementation of BCP resulted in a significant improvement of several kinetic parameters measured using a force-plate fitted treadmill, and the quality of life assessed by CBPI, while accelerometry was unaffected by the intervention. CONCLUSION The results of this three-month BCP supplementation study using objective measurement parameters in dogs with naturally occurring OA demonstrate an efficacy, suggesting the therapeutic use of BCP in canine OA patients and demonstrating the relevance of this collagen hydrolysate formulation for the treatment of OA in human patients as well.
Collapse
Affiliation(s)
- Britta Dobenecker
- Department of Veterinary Science, Ludwig-Maximilians-Universität München, München, Germany
| | | | - Sven Reese
- Department of Veterinary Science, Ludwig-Maximilians-Universität München, München, Germany
| | - Stephanie Steigmeier-Raith
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität München, München, Germany
| | - Lukas Trillig
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität München, München, Germany
| | | | | | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität München, München, Germany
| | | |
Collapse
|
5
|
Kuwaba K, Kusubata M, Saito M, Mizuno K. Dietary Collagen Peptides Ameliorate the Mood Status of Fatigue and Vigor: A Randomized, Double-Blinded, Placebo-Controlled, Parallel-Group Comparative Trial. J Diet Suppl 2024; 21:791-807. [PMID: 39291817 DOI: 10.1080/19390211.2024.2399343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The mood status of fatigue can impact daily activities. Dietary collagen peptides have been reported to be beneficial for health conditions. A randomized, double-blinded, placebo-controlled, parallel-group study investigated the effects of collagen peptides on mood status including fatigue, physical condition, and immunological status. The participants who were healthy but easily fatigued consumed active food containing collagen peptides (10 g/day) (n = 33) or placebo food (n = 33) for eight weeks. POMS® 2 was used to assess the perceived fatigue and other mood status. The primary outcome was the T-scores of Fatigue-Inertias at eight weeks. In addition, their physical condition and immunological parameters were evaluated. The data set was a per protocol set of 31 participants each in both groups. As for POMS® 2, the T-score of Fatigue-Inertias at eight weeks was significantly lower in the active group than in the placebo group (47.0 ± 7.4 versus 51.5 ± 9.0, p = 0.045). The T-score of Vigor-Activity was significantly higher in the active group than in the placebo group after eight weeks (53.9 ± 10.7 versus 47.3 ± 9.6, p = 0.002). Regarding the questionnaire on the physical condition, the Likert scale score on fatigue after a night's sleep at eight weeks was significantly lower in the active group than in the placebo group (median; 3.0 versus 4.0, p = 0.038). There were no significant differences in the measured values of immunological parameters. No safety-related issues were reported in this trial. The intake of collagen peptides (10 g/day) for eight weeks ameliorated the mood status of fatigue and vigor and increased the feeling of sleep restfulness. Dietary collagen peptides were efficient and safe nutritional ingredients for healthy but easily fatigued individuals.Clinical trial registry number and website: UMIN-CTR, UMIN000042291 https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000048280.
Collapse
Affiliation(s)
- Kumiko Kuwaba
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Masashi Kusubata
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Maki Saito
- Gelatin Division, Nippi Inc., Adachi, Tokyo, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| |
Collapse
|
6
|
Byun KA, Lee SY, Oh S, Batsukh S, Jang JW, Lee BJ, Rheu KM, Li S, Jeong MS, Son KH, Byun K. Fermented Fish Collagen Attenuates Melanogenesis via Decreasing UV-Induced Oxidative Stress. Mar Drugs 2024; 22:421. [PMID: 39330302 PMCID: PMC11433465 DOI: 10.3390/md22090421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Excessive melanogenesis leads to hyperpigmentation-related cosmetic problems. UV exposure increases oxidative stress, which promotes melanogenesis-related signal pathways such as the PKA, microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2) pathways. Glycine is a source of endogenous antioxidants, including glutathione. Fermented fish collagen (FC) contains glycine; thus, we evaluated the effect of FC on decreasing melanogenesis via decreasing oxidative stress. The glycine receptor (GlyR) and glycine transporter-1 (GlyT1) levels were decreased in UV-irradiated keratinocytes; however, the expression levels of these proteins increased upon treatment with FC. The FC decreased oxidative stress, as indicated by the decreasing expression of NOX1/2/4, increased expression of GSH/GSSG, increased SOD activity, and decreased 8-OHdG expression in UV-irradiated keratinocytes. Administration of conditioned media from FC-treated keratinocytes to melanocytes led to decreased p38, PKC, MITF, TRP1, and TRP2 expression. These changes induced by the FC were also observed in UV-irradiated animal skin. FC treatment increased the expression of GlyR and GlyT, which was accompanied by decreased oxidative stress in the UV-irradiated skin. Moreover, the FC negatively regulated the melanogenesis signaling pathways, leading to decreased melanin content in the UV-irradiated skin. In conclusion, FC decreased UV-induced oxidative stress and melanogenesis in melanocytes and animal skin. FC could be used in the treatment of UV-induced hyperpigmentation problems.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Jong-Won Jang
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Bae-Jin Lee
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | | | - Sichao Li
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | - Min-Seok Jeong
- Marine Bioprocess Co., Ltd., Busan 46048, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
7
|
Arapidi GP, Urban AS, Osetrova MS, Shender VO, Butenko IO, Bukato ON, Kuznetsov AA, Saveleva TM, Nos GA, Ivanova OM, Lopukhov LV, Laikov AV, Sharova NI, Nikonova MF, Mitin AN, Martinov AI, Grigorieva TV, Ilina EN, Ivanov VT, Govorun VM. Non-human peptides revealed in blood reflect the composition of intestinal microbiota. BMC Biol 2024; 22:178. [PMID: 39183269 PMCID: PMC11346180 DOI: 10.1186/s12915-024-01975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The previously underestimated effects of commensal gut microbiota on the human body are increasingly being investigated using omics. The discovery of active molecules of interaction between the microbiota and the host may be an important step towards elucidating the mechanisms of symbiosis. RESULTS Here, we show that in the bloodstream of healthy people, there are over 900 peptides that are fragments of proteins from microorganisms which naturally inhabit human biotopes, including the intestinal microbiota. Absolute quantitation by multiple reaction monitoring has confirmed the presence of bacterial peptides in the blood plasma and serum in the range of approximately 0.1 nM to 1 μM. The abundance of microbiota peptides reaches its maximum about 5 h after a meal. Most of the peptides correlate with the bacterial composition of the small intestine and are likely obtained by hydrolysis of membrane proteins with trypsin, chymotrypsin and pepsin - the main proteases of the gastrointestinal tract. The peptides have physicochemical properties that likely allow them to selectively pass the intestinal mucosal barrier and resist fibrinolysis. CONCLUSIONS The proposed approach to the identification of microbiota peptides in the blood, after additional validation, may be useful for determining the microbiota composition of hard-to-reach intestinal areas and monitoring the permeability of the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Georgij P Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation.
| | - Anatoly S Urban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Maria S Osetrova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Victoria O Shender
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Ivan O Butenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| | - Olga N Bukato
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Alexandr A Kuznetsov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Tatjana M Saveleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Grigorii A Nos
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Olga M Ivanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
| | - Leonid V Lopukhov
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Alexander V Laikov
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Nina I Sharova
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Margarita F Nikonova
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Alexander N Mitin
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Alexander I Martinov
- National Research Center-Institute of Immunology Federal Medical-Biological Agency of Russia, Kashirskoe Highway 24, Moscow, 115522, Russian Federation
| | - Tatiana V Grigorieva
- Kazan Federal University, Kremlyovskaya Str. 18, Kazan, 420008, Russian Federation
| | - Elena N Ilina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| | - Vadim T Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Vadim M Govorun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, Moscow, 119435, Russian Federation
- Research Institute for Systems Biology and Medicine, Nauchny Proezd 18, Moscow, 117246, Russian Federation
| |
Collapse
|
8
|
Virgilio N, Schön C, Mödinger Y, van der Steen B, Vleminckx S, van Holthoon FL, Kleinnijenhuis AJ, Silva CIF, Prawitt J. Absorption of bioactive peptides following collagen hydrolysate intake: a randomized, double-blind crossover study in healthy individuals. Front Nutr 2024; 11:1416643. [PMID: 39149544 PMCID: PMC11325589 DOI: 10.3389/fnut.2024.1416643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/04/2024] [Indexed: 08/17/2024] Open
Abstract
Background Collagen hydrolysates (CH) in functional foods and supplements are dietary sources of amino acids (AAs) and di-and tripeptides linked to various health benefits. This study aimed to investigate the single-dose bioavailability of skin- and hide-derived CH from fish, porcine and bovine origin with different molecular weights (bovine 2,000 and 5,000 Da). Methods A randomized, double-blind crossover clinical study was performed with healthy volunteers assessing the plasma concentration of free and peptide-bound hydroxyproline (Hyp) as well as selected peptides reported to be abundantly present in collagen. Results The pharmacokinetic endpoints demonstrated comparable uptake of free Hyp from all CH. A higher amount of total compared to free Hyp indicated the uptake of substantial amounts of Hyp-containing di- or tripeptides. Conclusion Independently of source and molecular weight, all CH yielded relevant plasma concentrations of the investigated metabolites. Larger studies are needed to estimate an ideal level of selected circulating metabolites needed to trigger distinct physiological reactions in target tissues.
Collapse
|
9
|
Marzagalli M, Battaglia S, Raimondi M, Fontana F, Cozzi M, Ranieri FR, Sacchi R, Curti V, Limonta P. Anti-Inflammatory and Antioxidant Properties of a New Mixture of Vitamin C, Collagen Peptides, Resveratrol, and Astaxanthin in Tenocytes: Molecular Basis for Future Applications in Tendinopathies. Mediators Inflamm 2024; 2024:5273198. [PMID: 39108992 PMCID: PMC11303056 DOI: 10.1155/2024/5273198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024] Open
Abstract
Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1β) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1β secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | | | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Marco Cozzi
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | | | - Roberto Sacchi
- Department of Earth and Environmental SciencesUniversity of Pavia, Pavia 27100, Italy
| | - Valeria Curti
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| |
Collapse
|
10
|
Oztug M. Bioactive Peptide Profiling in Collagen Hydrolysates: Comparative Analysis Using Targeted and Untargeted Liquid Chromatography-Tandem Mass Spectrometry Quantification. Molecules 2024; 29:2592. [PMID: 38893467 PMCID: PMC11173644 DOI: 10.3390/molecules29112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The investigation of collagen hydrolysates (CHs) is essential due to their widespread use in health, cosmetic, and therapeutic industries, attributing to the presence of bioactive dipeptides (DPs) and tripeptides (TPs). This study developed a novel targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with propyl chloroformate (PCF) derivatization to measure three bioactive peptides-Hydroxyprolyl-glycine (Hyp-Gly), Glycyl-prolyl-hydroxyproline (Gly-Pro-Hyp), and Prolyl-hydroxyproline (Pro-Hyp)-in CHs, with strong correlation coefficients (0.992, 1.000, and 0.995, respectively) and low limits of detection (LODs) of 1.40, 0.14, and 1.16 µM, respectively. Untargeted data-dependent acquisition (DDA) analyses measured peptide size distribution, while amino acid analysis assessed nutritional content. The analysis of ten commercial CHs revealed similar amino acid profiles but varied peptide lengths, indicating diverse hydrolysis conditions. Products with higher proportions of smaller peptides showed elevated levels of the targeted bioactive peptides, suggesting that a smaller peptide size may increase bioactivity. These findings can inform the optimization of CH supplements, providing consumers with detailed peptide content for more informed choices. Data are available via ProteomeXchange with the identifier PXD051699.
Collapse
Affiliation(s)
- Merve Oztug
- TUBITAK National Metrology Institute (TUBITAK UME), Kocaeli 41470, Turkey;
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
11
|
Yang D, Liu Q, Xu Q, Zheng L, Zhang S, Lu S, Xiao G, Zhao M. Effects of collagen hydrolysates on UV-induced photoaging mice: Gly-Pro-Hyp as a potent anti-photoaging peptide. Food Funct 2024; 15:3008-3022. [PMID: 38411396 DOI: 10.1039/d3fo04949c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This work aimed to investigate the protective effects of collagen hydrolysates containing different contents of Gly-Pro-Xaa tripeptides on UV-induced photoaging mice and to identify potent anti-photoaging peptides. Results showed that oral ingestion of collagen hydrolysates with a higher content of Gly-Pro-Xaa tripeptides (∼11.4%, HCH) dramatically enhanced the absorption of Pro-Hyp, Hyp-Gly, and Gly-Pro-Hyp into the body, which were 1.77-, 2.18-, and 65.07-fold higher in area under the concentration-time curve (AUC) values than that of collagen hydrolysates with a lower content of Gly-Pro-Xaa tripeptides (∼3.8%, LCH), respectively. Furthermore, the protective effects of HCH on the photo-aged skin of mice were significantly stronger than those of LCH in terms of increases in the contents of hyaluronic acid and collagen, improvement in skin elasticity and epidermal thickness, alleviation in inflammation, and decreases in the contents of matrix metalloproteinase-1 (MMP-1) and MMP-3. More importantly, Gly-Pro-Hyp displayed potent anti-photoaging activities comparable to HCH based on an equivalent amount of Hyp. Network pharmacology analysis for potential mechanisms further indicated that Gly-Pro-Hyp might interact with JUN and FOS and regulate IL-17 and TNF signaling pathways. Collectively, our results suggested that HCH had great potential to be applied in functional foods for skin health and Gly-Pro-Hyp was found to be a potent collagen-derived anti-photoaging peptide, which might contribute to the excellent anti-photoaging effects of HCH.
Collapse
Affiliation(s)
- Danyin Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qiongyao Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Silu Zhang
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Shan Lu
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Guoxun Xiao
- Shenzhen Porshealth Bioengineering Co., Ltd, Shenzhen 518116, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Kuwaba K, Kusubata M, Taga Y, Igarashi H, Nakazato K, Mizuno K. Dietary collagen peptides alleviate exercise-induced muscle soreness in healthy middle-aged males: a randomized double-blinded crossover clinical trial. J Int Soc Sports Nutr 2023; 20:2206392. [PMID: 37133292 PMCID: PMC10158542 DOI: 10.1080/15502783.2023.2206392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Post-exercise muscle soreness and fatigue can negatively affect exercise performance. Thus, it is desirable to attenuate muscle soreness and fatigue and promote recovery even for daily exercise habits aimed at maintaining or improving health. METHODS This study investigated the effects of dietary collagen peptides (CPs) on post-exercise physical condition and fitness in healthy middle-aged adults unfamiliar with exercise. Middle-aged males (n = 20, 52.6 ± 5.8 years) received the active food (10 g of CPs per day) or the placebo food for 33 days in each period of the randomized crossover trial (registered at the University Hospital Medical Information Network Clinical Trials Registry with UMIN-CTR ID of UMIN000041441). On the 29th day, participants performed a maximum of five sets of 40 bodyweight squats. Muscle soreness as the primary outcome, fatigue, the maximum knee extension force during isometric muscle contraction of both legs, the range of motion (ROM), and the blood level of creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) were assessed before and after the exercise load. RESULTS The analysis set was the per-protocol set (n = 18, 52.6 ± 6.0 years) for efficacy and the full analysis set (n = 19, 52.8 ± 5.9 years) for safety. The visual analog scale (VAS) of muscle soreness immediately after the exercise load was significantly lower in the active group than in the placebo group (32.0 ± 25.0 mm versus 45.8 ± 27.6 mm, p < 0.001). The VAS of fatigue immediately after the exercise load was also significantly lower in the active group than in the placebo group (47.3 ± 25.0 mm versus 59.0 ± 22.3 mm, p < 0.001). Two days (48 hours) afterthe exercise load, muscle strength was significantly higher in the active group than in the placebo group (85.2 ± 27.8 kg versus 80.5 ± 25.3 kg, p = 0.035). The level of CPK did not change over time. The level of LDH increased slightly but was not different between the groups. No safety-related issues were observed. CONCLUSIONS These results showed that dietary CPs alleviated muscle soreness and fatigue and affected muscle strength after exercise load in healthy middle-aged males.
Collapse
Affiliation(s)
- Kumiko Kuwaba
- Nippi Inc, Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Masashi Kusubata
- Nippi Inc, Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Yuki Taga
- Nippi Inc, Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | | | - Koichi Nakazato
- Nippon Sport Science University, Research Institute for Sport Science, Tokyo, Japan
| | - Kazunori Mizuno
- Nippi Inc, Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| |
Collapse
|
13
|
Cho W, Park J, Kim J, Lee M, Park SJ, Kim KS, Jun W, Kim OK, Lee J. Low-Molecular-Weight Fish Collagen Peptide (Valine-Glycine-Proline-Hydroxyproline-Glycine-Proline-Alanine-Glycine) Prevents Osteoarthritis Symptoms in Chondrocytes and Monoiodoacetate-Injected Rats. Mar Drugs 2023; 21:608. [PMID: 38132929 PMCID: PMC10744650 DOI: 10.3390/md21120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
The objective of this study was to investigate the effect of low-molecular-weight fish collagen (valine-glycine-proline-hydroxyproline-glycine-proline-alanine-glycine; LMWCP) on H2O2- or LPS-treated primary chondrocytes and monoiodoacetate (MIA)-induced osteoarthritis rat models. Our findings indicated that LMWCP treatment exhibited protective effects by preventing chondrocyte death and reducing matrix degradation in both H2O2-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. This was achieved by increasing the levels of aggrecan, collagen type I, collagen type II, TIMP-1, and TIMP-3, while simultaneously decreasing catabolic factors such as phosphorylation of Smad, MMP-3, and MMP-13. Additionally, LMWCP treatment effectively suppressed the activation of inflammation and apoptosis pathways in both LPS-treated primary chondrocytes and cartilage tissue from MIA-induced osteoarthritis rats. These results suggest that LMWCP supplementation ameliorates the progression of osteoarthritis through its direct impact on inflammation and apoptosis in chondrocytes.
Collapse
Affiliation(s)
- Wonhee Cho
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (W.C.); (J.K.)
| | - Jeongjin Park
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Jinhee Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (W.C.); (J.K.)
| | - Minhee Lee
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - So Jung Park
- Suheung Co., Ltd., Seoul 02643, Republic of Korea; (S.J.P.); (K.S.K.)
| | - Kyung Seok Kim
- Suheung Co., Ltd., Seoul 02643, Republic of Korea; (S.J.P.); (K.S.K.)
| | - Woojin Jun
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea; (J.P.); (W.J.)
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin 17104, Republic of Korea; (W.C.); (J.K.)
- Department of Food Innovation and Health, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
14
|
Thomas DT, Prabhakar AJ, Eapen C, Patel VD, Palaniswamy V, Dsouza MC, R S, Kamat YD. Comparison of Single and Combined Treatment with Exercise Therapy and Collagen Supplementation on Early Knee Arthritis among Athletes-A Quasi-Randomized Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7088. [PMID: 38063519 PMCID: PMC10706409 DOI: 10.3390/ijerph20237088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/18/2023]
Abstract
Athletic injuries are commonly implicated in the development of early osteoarthritic (EOA) changes in the knee. These changes have a significant impact on athletic performance, and therefore the early detection of EOA is paramount. The objective of the study is to assess the impact of different interventions on individuals with EOA, particularly focusing on recreational athletes. The study aims to evaluate the effectiveness of three treatment groups in improving various aspects related to knee EOA, including pain, range of motion, strength, and function. A study was undertaken with 48 recreational athletes with EOA who were assigned to one of three groups by the referring orthopedic surgeon: collagen (Col), exercise (Ex), or collagen and exercise (ColEx) groups. All the participants received their respective group-based intervention for 12 weeks. Visual analog scale (VAS), knee flexion range of motion (ROM) knee flexors and extensors strength, and KOOS were assessed at baseline, and after 4 weeks, 8 weeks, and 12 weeks of intervention. VAS for activity improved in all treatment groups, with no difference between groups. The between-group analysis for knee ROM revealed a significant difference (p = 0.022) in the Col vs. Ex group at 12 weeks. The knee flexor and extensor strength and the KOOS scores improved considerably in the Ex and the ColEx group (p < 0.05) at 12 weeks. Exercise therapy improved pain, strength and function in subjects with EOA, whereas the association of collagen seems to have accentuated the effects of exercise in bringing about clinical improvements.
Collapse
Affiliation(s)
- Dias Tina Thomas
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India; (D.T.T.); (C.E.); (V.D.P.); (V.P.); (M.C.D.); (S.R.)
| | - Ashish John Prabhakar
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India; (D.T.T.); (C.E.); (V.D.P.); (V.P.); (M.C.D.); (S.R.)
| | - Charu Eapen
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India; (D.T.T.); (C.E.); (V.D.P.); (V.P.); (M.C.D.); (S.R.)
| | - Vivek D. Patel
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India; (D.T.T.); (C.E.); (V.D.P.); (V.P.); (M.C.D.); (S.R.)
| | - Vijayakumar Palaniswamy
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India; (D.T.T.); (C.E.); (V.D.P.); (V.P.); (M.C.D.); (S.R.)
| | - Molly Cynthia Dsouza
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India; (D.T.T.); (C.E.); (V.D.P.); (V.P.); (M.C.D.); (S.R.)
| | - Shruthi R
- Department of Physiotherapy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India; (D.T.T.); (C.E.); (V.D.P.); (V.P.); (M.C.D.); (S.R.)
| | - Yogeesh Dattakumar Kamat
- Adjunct Faculty, Department of Orthopaedics, Kasturba Medical College Hospital, Ambedkar Circle, Mangalore, India;
- Consultant Hip and Knee Surgeon, KMC Hospital, Ambedkar Circle, Mangalore, India
| |
Collapse
|
15
|
Bischof K, Stafilidis S, Bundschuh L, Oesser S, Baca A, König D. Influence of specific collagen peptides and 12-week concurrent training on recovery-related biomechanical characteristics following exercise-induced muscle damage-A randomized controlled trial. Front Nutr 2023; 10:1266056. [PMID: 38035363 PMCID: PMC10687431 DOI: 10.3389/fnut.2023.1266056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction It has been shown that short-term ingestion of collagen peptides improves markers related to muscular recovery following exercise-induced muscle damage. The objective of the present study was to investigate whether and to what extent a longer-term specific collagen peptide (SCP) supplementation combined with a training intervention influences recovery markers following eccentric exercise-induced muscle damage. Methods Fifty-five predominantly sedentary male participants were assigned to consume either 15 g SCP or placebo (PLA) and engage in a concurrent training (CT) intervention (30 min each of resistance and endurance training, 3x/week) for 12 weeks. Before (T1) and after the intervention (T2), eccentric muscle damage was induced by 150 drop jumps. Measurements of maximum voluntary contraction (MVC), rate of force development (RFD), peak RFD, countermovement jump height (CMJ), and muscle soreness (MS) were determined pre-exercise, immediately after exercise, and 24 and 48 h post-exercise. In addition, body composition, including fat mass (FM), fat-free mass (FFM), body cell mass (BCM) and extracellular mass (ECM) were determined at rest both before and after the 12-week intervention period. Results Three-way mixed ANOVA showed significant interaction effects in favor of the SCP group. MVC (p = 0.02, ηp2 = 0.11), RFD (p < 0.01, ηp2 = 0.18), peak RFD (p < 0.01, ηp2 = 0.15), and CMJ height (p = 0.046, ηp2 = 0.06) recovered significantly faster in the SCP group. No effects were found for muscle soreness (p = 0.66) and body composition (FM: p = 0.41, FFM: p = 0.56, BCM: p = 0.79, ECM: p = 0.58). Conclusion In summary, the results show that combining specific collagen peptide supplementation (SCP) and concurrent training (CT) over a 12-week period significantly improved markers reflecting recovery, specifically in maximal, explosive, and reactive strength. It is hypothesized that prolonged intake of collagen peptides may support muscular adaptations by facilitating remodeling of the extracellular matrix. This, in turn, could enhance the generation of explosive force. Clinical trial registration ClinicalTrials.gov, identifier ID: NCT05220371.
Collapse
Affiliation(s)
- Kevin Bischof
- Section for Nutrition, Exercise and Health, Department of Sports Science, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Savvas Stafilidis
- Department for Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
| | - Larissa Bundschuh
- Section for Nutrition, Exercise and Health, Department of Sports Science, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
| | | | - Arnold Baca
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Department for Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
| | - Daniel König
- Section for Nutrition, Exercise and Health, Department of Sports Science, Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Section for Nutrition, Exercise and Health, Department of Nutrition, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Kimira Y, Osawa K, Osawa Y, Mano H. Preventive Effects of Collagen-Derived Dipeptide Prolyl-Hydroxyproline against Dexamethasone-Induced Muscle Atrophy in Mouse C2C12 Skeletal Myotubes. Biomolecules 2023; 13:1617. [PMID: 38002299 PMCID: PMC10669392 DOI: 10.3390/biom13111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Glucocorticoids, commonly used to manage inflammatory diseases, can induce muscle atrophy by accelerating the breakdown of muscle proteins. This research delves into the influence of Prolyl-hydroxyproline (Pro-Hyp), a collagen-derived peptide, on muscle atrophy induced with dexamethasone (DEX), a synthetic glucocorticoid, in mouse C2C12 skeletal myotubes. Exposure to DEX (10 μM) for 6 days resulted in a decrease in myotube diameter, along with elevated mRNA and protein levels of two muscle-atrophy-related ubiquitin ligases, muscle atrophy F-box (MAFbx, also known as atrogin-1) and muscle ring finger 1 (MuRF-1). Remarkably, treatment with 0.1 mM of Pro-Hyp mitigated the reduction in myotube thickness caused by DEX, while promoting the phosphorylation of Akt, mammalian target of rapamycin (mTOR), and forkhead box O3a (Foxo3a). This led to the inhibition of the upregulation of the ubiquitin ligases atrogin-1 and MuRF-1. These findings indicate the potential significance of Pro-Hyp as a promising therapeutic target for countering DEX-induced muscle atrophy.
Collapse
Affiliation(s)
- Yoshifumi Kimira
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Japan
| | | | | | | |
Collapse
|
17
|
Leem KH, Kim S, Lim J, Park HJ, Shin YC, Lee JS. Hydrolyzed Collagen Tripeptide Promotes Longitudinal Bone Growth in Childhood Rats via Increases in Insulin-Like Growth Factor-1 and Bone Morphogenetic Proteins. J Med Food 2023; 26:809-819. [PMID: 37862561 DOI: 10.1089/jmf.2023.k.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
Previous studies have reported that collagen tripeptide (CTP) derived from collagen hydrolysate has various beneficial effects on health by protecting against skin aging and improving bone formation and cartilage regeneration. Collagen-Tripep20TM (CTP20), which is a low-molecular-weight CTP derived from fish skin, contains a bioactive CTP, Gly-Pro-Hyp >3.2% with a tripeptide content >20%. Herein, we investigated the osteogenic effects and mechanisms of CTP20 (<500 Da) on MG-63 osteoblast-like cells and SW1353 chondrocytes. And we measured promoting ratio of the longitudinal bone growth in childhood rats. First, CTP20 at 100 μg/mL elevated the proliferation (15.0% and 28.2%), alkaline phosphatase activity (29.3% and 32.0%), collagen synthesis (1.25- and 1.14-fold), and calcium deposition (1.18- and 1.15-fold) in MG-63 cells and SW1353, respectively. In addition, we found that CTP20 could promote the longitudinal growth and height of the growth plate of the tibia in childhood rats. CTP20 enhanced the protein expression of insulin-like growth factor-1 (IGF-1) in MG-63 and SW1353 cells, and in the growth plate of childhood rats, along with Janus Kinase 2, and signal transducer and activator of transcription 5 activation in MG-63 and SW1353 cells. CTP20 also elevated the expression levels of bone morphogenetic proteins (BMPs) in MG-63 and SW1353 cells and in the growth plates of childhood rats. These results indicate that CTP20 may promote the endochondral ossification and longitudinal bone growth, through enhancing of IGF-1 and BMPs. (Clinical Trial Registration number: smecae 19-09-01).
Collapse
Affiliation(s)
- Kang Hyun Leem
- College of Korean Medicine, Semyung University, Jecheon, Korea
| | - Sanga Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Junsik Lim
- College of Korean Medicine, Semyung University, Jecheon, Korea
| | - Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | |
Collapse
|
18
|
Larder CE, Iskandar MM, Kubow S. Collagen Hydrolysates: A Source of Bioactive Peptides Derived from Food Sources for the Treatment of Osteoarthritis. MEDICINES (BASEL, SWITZERLAND) 2023; 10:50. [PMID: 37755240 PMCID: PMC10538231 DOI: 10.3390/medicines10090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 09/28/2023]
Abstract
Osteoarthritis (OA) is the most common joint disorder, with a social and financial burden that is expected to increase in the coming years. Currently, there are no effective medications to treat it. Due to limited treatment options, patients often resort to supplements, such as collagen hydrolysates (CHs). CHs are products with low molecular weight (MW) peptides, often between 3 and 6 kDa, and are a result of industrialized processed collagen. Collagen extraction is often a by-product of the meat industry, with the main source for collagen-based products being bovine, although it can also be obtained from porcine and piscine sources. CHs have demonstrated positive results in clinical trials related to joint health, such as decreased joint pain, increased mobility, and structural joint improvements. The bioactivity of CHs is primarily attributed to their bioactive peptide (BAP) content. However, there are significant knowledge gaps regarding the digestion, bioavailability, and bioactivity of CH-derived BAPs, and how different CH products compare in that regard. The present review discusses CHs and their BAP content as potential treatments for OA.
Collapse
Affiliation(s)
- Christina E. Larder
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
- Corporation Genacol Canada Inc., Blainville, QC J7C 6B4, Canada
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
| | - Stan Kubow
- School of Human Nutrition, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada; (C.E.L.); (M.M.I.)
| |
Collapse
|
19
|
Koizumi S, Okada Y, Miura S, Imai Y, Igase K, Ohyagi Y, Igase M. Ingestion of a collagen peptide containing high concentrations of prolyl-hydroxyproline and hydroxyprolyl-glycine reduces advanced glycation end products levels in the skin and subcutaneous blood vessel walls: a randomized, double-blind, placebo-controlled study. Biosci Biotechnol Biochem 2023; 87:883-889. [PMID: 37245058 DOI: 10.1093/bbb/zbad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
In this randomized, double-blind, placebo-controlled study, we investigated the effects of collagen peptides (CP) containing high concentrations of prolyl-hydroxyproline and hydroxyprolyl-glycine on advanced glycation end products (AGEs) levels in the skin and subcutaneous blood vessel walls. A total of 31 individuals aged 47-87 years were randomly assigned to receive either 5 g/day of fish-derived CP or a placebo for 12 weeks. Body and blood compositions and AGEs levels were measured at the beginning and end of the study. No adverse events were observed, and both groups' blood and body compositions did not change significantly. However, the CP group had significantly lower AGEs levels and a slightly lower insulin resistance index (homeostasis model assessment ratio [HOMA-R]) than the placebo group. In addition, the percentage changes in AGEs and HOMA-R levels were positively and strongly correlated in both groups. These findings suggest that fish-derived CP may be effective in reducing AGEs levels and improving insulin resistance.
Collapse
Affiliation(s)
- Seiko Koizumi
- Research and Development Center, Nitta Gelatin Inc., Osaka, Japan
| | - Yoko Okada
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Shiroh Miura
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Yuuki Imai
- Department of Pathophysiology, Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Keiji Igase
- Department of Advanced Brain Therapy, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | - Michiya Igase
- Department of Anti-Aging Medicine, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| |
Collapse
|
20
|
Liu S, Zhang L, Li S. Advances in nutritional supplementation for sarcopenia management. Front Nutr 2023; 10:1189522. [PMID: 37492597 PMCID: PMC10365293 DOI: 10.3389/fnut.2023.1189522] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Sarcopenia is a syndrome characterized by a decline in muscular mass, strength, and function with advancing age. The risk of falls, fragility, hospitalization, and death is considerably increased in the senior population due to sarcopenia. Although there is no conclusive evidence for drug treatment, resistance training has been unanimously recognized as a first-line treatment for managing sarcopenia, and numerous studies have also pointed to the combination of nutritional supplementation and resistance training as a more effective intervention to improve quality of life for people with sarcopenia. People with both malnutrition and sarcopenia have a higher mortality rate, so identifying people at risk of malnutrition and intervening early is extremely important to avoid sarcopenia and its associated problems. This article provides important information for dietary interventions in sarcopenia by summarizing the discoveries and developments of nutritional supplements such as protein, leucine, β-hydroxy-β-methylbutyric acid, vitamin D, vitamin C, vitamin E, omega-3 fatty acids, creatine, inorganic nitrate, probiotics, minerals, collagen peptides, and polyphenols in the management of sarcopenia.
Collapse
Affiliation(s)
- Simin Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Kimira Y, Sato T, Sakamoto M, Osawa Y, Mano H. Collagen-Derived Dipeptide Pro-Hyp Enhanced ATDC5 Chondrocyte Differentiation under Hypoxic Conditions. Molecules 2023; 28:4664. [PMID: 37375217 DOI: 10.3390/molecules28124664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Chondrocytes are surrounded by a lower oxygen environment than other well-vascularized tissues with higher oxygenation levels. Prolyl-hydroxyproline (Pro-Hyp), one of the final collagen-derived peptides, has been previously reported to be involved in the early stages of chondrocyte differentiation. However, whether Pro-Hyp can alter chondrocyte differentiation under physiological hypoxic conditions is still unclear. This study aimed to investigate whether Pro-Hyp affects the differentiation of ATDC5 chondrogenic cells under hypoxic conditions. The addition of Pro-Hyp resulted in an approximately 18-fold increase in the glycosaminoglycan staining area compared to the control group under hypoxic conditions. Moreover, Pro-Hyp treatment significantly upregulated the expression of SOX9, Col2a1, Aggrecan, and MMP13 in chondrocytes cultured under hypoxic conditions. These results demonstrate that Pro-Hyp strongly promotes the early differentiation of chondrocytes under physiological hypoxic conditions. Therefore, Pro-Hyp, a bioactive peptide produced during collagen metabolism, may function as a remodeling factor or extracellular matrix remodeling signal that regulates chondrocyte differentiation in hypoxic cartilage.
Collapse
Affiliation(s)
- Yoshifumi Kimira
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| | - Takahiro Sato
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| | - Mayu Sakamoto
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| | - Yoshihiro Osawa
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| | - Hiroshi Mano
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi 350-0295, Saitama, Japan
| |
Collapse
|
22
|
Zhu X, Wang J, Lu Y, Zhao Y, Zhang N, Wu W, Zhang Y, Fu Y. Potential of Food Protein-Derived Bioactive Peptides against Sarcopenia: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5419-5437. [PMID: 36988097 DOI: 10.1021/acs.jafc.2c09094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sarcopenia is an age-related progressive muscle disorder characterized by accelerated loss of muscle mass, strength, and function, which are important causes of physiological dysfunctions in the elderly. At present, the main alleviating method includes protein supplements to stimulate synthesis of muscle proteins. Food protein-derived peptides containing abundant branched-chain amino acids have a remarkable effect on the improvement of sarcopenia. Understanding the underlying molecular mechanism and clarifying the structure-activity relationship is essential for the mitigation of sarcopenia. This present review recaps the epidemiology, pathogenesis, diagnosis, and treatment of sarcopenia, which facilitates a comprehensive understanding of sarcopenia. Moreover, the latest research progress on food-derived antisarcopenic peptides is reviewed, including their antisarcopenic activity, molecular mechanism as well as structural characteristics. Food-derived bioactive peptides can indeed alleviate/mitigate sarcopenia. These antisarcopenic peptides play a pivotal role mainly by activating the PI3K/Akt/mTOR and MAPK pathways and inhibiting the ubiquitin-proteasome system and AMPK pathway, thus promoting the synthesis of muscle proteins and inhibiting their degradation. Antisarcopenic peptides alleviate sarcopenia via specific peptides, which may be absorbed into the circulation and exhibit their bioactivity in intact forms. The present review provides a theoretical reference for mitigation and prevention of sarcopenia by food protein-derived bioactive peptides.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Tominaga T, Huang J, Wang S, Noguchi M, Tong Y, Asano-Oritani M, Suzuki K. Collagen-Derived Dipeptides and Amino Acids Have Immunomodulatory Effects in M1-Differentiated RAW264.7 Cells and PBMC. Int J Mol Sci 2023; 24:ijms24086925. [PMID: 37108094 PMCID: PMC10138886 DOI: 10.3390/ijms24086925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
A number of food components, such as polyphenols and phytonutrients, have immunomodulatory effects. Collagen has various bioactivities, such as antioxidative effects, the promotion of wound healing, and relieving symptoms of bone/joint disease. Collagen is digested into dipeptides and amino acids in the gastrointestinal tract and subsequently absorbed. However, the difference in immunomodulatory effects between collagen-derived dipeptides and amino acids is unknown. To investigate such differences, we incubated M1 macrophages or peripheral blood mononuclear cells (PBMC) with collagen-derived dipeptides (hydroxyproline-glycine (Hyp-Gly) and proline-hydroxyproline (Pro-Hyp)) and amino acids (proline (Pro), hydroxyproline (Hyp), and glycine (Gly)). We first investigated the dose dependency of Hyp-Gly on cytokine secretion. Hyp-Gly modulates cytokine secretion from M1 macrophages at 100 µM, but not at 10 µM and 1 µM. We then compared immunomodulatory effects between dipeptides and mixtures of amino acids on M1 macrophages and PBMC. There was, however, no difference in cytokine secretion between dipeptides and their respective amino acids. We conclude that collagen-derived dipeptides and amino acids have immunomodulatory effects on M1-differentiated RAW264.7 cells and PBMC and that there is no difference in the immunomodulatory effects between dipeptides and amino acids.
Collapse
Affiliation(s)
- Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shuo Wang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | | | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | | | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
24
|
Agustina L, Miatmoko A, Hariyadi DM. Challenges and strategies for collagen delivery for tissue regeneration. J Public Health Afr 2023. [PMID: 37492540 PMCID: PMC10365653 DOI: 10.4081/jphia.2023.2505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: Aged skin is characterized by wrinkles, hyperpigmentation, and roughness. Collagen is the most abundant protein in our body and it’s responsible for skin health and it’s mostly influenced by factors that accelerated aging such as UV.
Objective: This study aimed to identify the potential use of collagen as skin supplementation and the challenges and strategies for its delivery.
Methods: The articles were first searched through the existing database with the keyword of “collagen antiaging”. The 585 articles were then screened by year of publication (2012-2022) resulted in 475 articles. The articles were then selected based on the delivery of collagen either orally or topically, resulted in 12 articles for further analysis.
Results: Collagen has important roles in skin physiology by involving some mechanisms through inhibition of Mitogen-Activated Protein Kinase, induction of Tissue Growth Factor β (TGF-β), and inhibition of Nuclear Factor kappa beta (NF-κβ). The oral administration of collagen has an effective biological activity but requires large doses (up to 5 g daily). Meanwhile, the topical administration of collagen is limited by poor permeability due to high molecular weight (±300 kDa). Several strategies need to be carried out mainly by physical modification such as hydrolyzed collagen or entrapment of collagen using a suitable delivery system.
Conclusions: Collagen could improve the skin properties, but further research should be conducted to increase its penetration either by physical modification or entrapment into suitable carrier.
Collapse
|
25
|
Lee M, Kim E, Ahn H, Son S, Lee H. Oral intake of collagen peptide NS improves hydration, elasticity, desquamation, and wrinkling in human skin: a randomized, double-blinded, placebo-controlled study. Food Funct 2023; 14:3196-3207. [PMID: 36916504 DOI: 10.1039/d2fo02958h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Collagen hydrolysate, which contains bioactive peptides, is used as a dietary supplement for the refinement of elasticity, hydration, desquamation, and wrinkling of aging human skin. Here, we conducted a double-blind, randomized, and placebo-controlled oral administration study on the effects of a collagen peptide (CPNS) containing dipeptides, including Gly-Pro and Pro-Hyp, on skin wrinkling, desquamation, elasticity, and hydration. Our results show that an intake of 1650 mg per day of CPNS for 12 weeks had beneficial effects on skin health in a cohort of women aged from 30 to 60 years (n = 100). Compared with the placebo group, skin desquamation, hydration, skin wrinkling, and elasticity were significantly improved after 4, 4, 12, and 12 weeks of administration, respectively. In a safety test of CPNS ingestion, none of the participants showed any side effects during the clinical study period. These results demonstrate that the low molecular weight bioactive peptides contained in CPNS, such as Gly-Pro and Pro-Hyp, exert positive effects on skin hydration, elasticity, desquamation, and wrinkling.
Collapse
Affiliation(s)
- Miyeong Lee
- Mariedm Co., Ltd., 14, Pungseong-ro, Gangdong-gu, Seoul, Republic of Korea
| | - Eunjoung Kim
- Corederm Co., Ltd., 56, Jungdae-ro, Songpa-gu, Seoul, Republic of Korea
| | - Hyunwoo Ahn
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-820, Republic of Korea
| | - Seokjun Son
- Research & Development Center, Nong Shim Co., Ltd., 112, Yeouidaebang-ro, Dongjak-gu, Seoul, Republic of Korea.
| | - Hyunjun Lee
- Research & Development Center, Nong Shim Co., Ltd., 112, Yeouidaebang-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Martínez-Puig D, Costa-Larrión E, Rubio-Rodríguez N, Gálvez-Martín P. Collagen Supplementation for Joint Health: The Link between Composition and Scientific Knowledge. Nutrients 2023; 15:nu15061332. [PMID: 36986062 PMCID: PMC10058045 DOI: 10.3390/nu15061332] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, generating pain, disability, and socioeconomic costs worldwide. Currently there are no approved disease-modifying drugs for OA, and safety concerns have been identified with the chronic use of symptomatic drugs. In this context, nutritional supplements and nutraceuticals have emerged as potential alternatives. Among them, collagen is being a focus of particular interest, but under the same term different types of collagens coexist with different structures, compositions, and origins, leading to different properties and potential effects. The aim of this narrative review is to generally describe the main types of collagens currently available in marketplace, focusing on those related to joint health, describing their mechanism of action, preclinical, and clinical evidence. Native and hydrolyzed collagen are the most studied collagen types for joint health. Native collagen has a specific immune-mediated mechanism that requires the recognition of its epitopes to inhibit inflammation and tissue catabolism at articular level. Hydrolyzed collagen may contain biologically active peptides that are able to reach joint tissues and exert chondroprotective effects. Although there are preclinical and clinical studies showing the safety and efficacy of food ingredients containing both types of collagens, available research suggests a clear link between collagen chemical structure and mechanism of action.
Collapse
|
27
|
Campos LD, de Almeida Santos Junior V, Pimentel JD, Fernandes Carregã GL, Betim Cazarin CB. Collagen supplementation in skin and orthopedic diseases: A review of the literature. Heliyon 2023; 9:e14961. [PMID: 37064452 PMCID: PMC10102402 DOI: 10.1016/j.heliyon.2023.e14961] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Collagen is one of the main components of the extracellular matrix of the dermis and articular cartilage and influences the body's mechanical, organizational, and tissue formation properties. Produced from food industry by-products, it is considered a nutraceutical product widely used as an ingredient or supplement in food, pharmaceutical, and cosmetic industries. This study aimed to conduct a literature review on the scientific evidence regarding the beneficial effects of collagen consumption in the treatment of skin and orthopedic diseases. Literature data have shown that hydrolyzed collagen supplementation promotes skin changes, such as decreased wrinkle formation; increased skin elasticity; increased hydration; increased collagen content, density, and synthesis, which are factors closely associated with aging-related skin damage. Regarding orthopedic changes, collagen supplementation increases bone strength, density, and mass; improves joint stiffness/mobility, and functionality; and reduces pain. These aspects are associated with bone loss due to aging and damage caused by strenuous physical activity. Thus, this review addresses the economic and health potential of this source of amino acids and bioactive peptides extracted from food industry by-products.
Collapse
|
28
|
Newman C, Adriaens E, Virgilio N, Vleminckx S, de Pelsmaeker S, Prawitt J, Silva CIF. Development of a mobile application to monitor the effectiveness of a hydrolyzed cartilage matrix supplement on joint discomfort: a real-life study. JMIR Form Res 2023; 7:e42967. [PMID: 36848035 PMCID: PMC10131938 DOI: 10.2196/42967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Joint discomfort is a widespread and growing problem in active adults. The rising interest in preventative nutrition has increased the demand for supplements reducing joint discomfort. Protocols assessing the effect of a nutritional intervention on health commonly involve a series of face-to-face meetings between participants and study staff that can weigh on resources, participant availabilities and even increase drop-out rates. Digital tools are increasingly added to protocols to facilitate study conduct but fully digitally run studies are still scarce. With the increasing interest in real-life studies, the development of health applications for mobile devices to monitor study outcomes could be of great importance. OBJECTIVE The purpose of the current real-life study was to develop a specific mobile application, Ingredients for LifeTM, to conduct a 100% digital study testing the effectiveness of a hydrolyzed cartilage matrix (HCM) supplement on joint discomfort in a heterogeneous group of healthy, active consumers. METHODS The 'Ingredients for LifeTM ' mobile app using Visual Analog Scale (VAS) was specifically developed to monitor the variation in joint pain after exercise by the study participants. A total of 201 healthy and physically active, adult women and men (18 to 72 years old) with joint pain completed the study over a period of 16 weeks. Participants were randomly allocated to the study groups and did not receive any dietary or lifestyle advice. Each participant indicated one area of joint pain and logged the type and duration of their weekly activities. They received blinded study supplements and took a daily regimen of 1 g of hydrolyzed cartilage matrix (HCM-G) or 1g of maltodextrin (placebo group; P-G) for 12 weeks while weekly logging joint pain scores in the app. This was followed by a 4-week wash out period during which participants continued reporting their joint pain scores (until the end of week 16). RESULTS Joint pain was reduced within 3 weeks of taking a low dosage of HCM (1g/day), regardless of gender, age group and activity intensity when compared to the placebo-group. After stopping supplementation, joint pain scores gradually increased but still remained significantly lower than placebo after 4 weeks of washout. The low dropout rate (< 6% of participants, mainly in the P-G) demonstrates the digital study was well received by the study population. CONCLUSIONS The digital tool allowed to measure a heterogeneous group of active adults in a real-life setting (without any lifestyle intervention), thus promoting inclusivity and diversity. With low dropout rates, it demonstrates that mobile applications can generate qualitative, quantifiable, real-world data showcasing supplement effectiveness. The study confirmed that the oral intake of a low dose (1g/day) of HCM led to a significant reduction of joint pain from 3 weeks after starting supplementation. CLINICALTRIAL
Collapse
|
29
|
Cerrato A, Lammi C, Laura Capriotti A, Bollati C, Cavaliere C, Maria Montone C, Bartolomei M, Boschin G, Li J, Piovesana S, Arnoldi A, Laganà A. Isolation and functional characterization of hemp seed protein-derived short- and medium-chain peptide mixtures with multifunctional properties for metabolic syndrome prevention. Food Res Int 2023; 163:112219. [PMID: 36596148 DOI: 10.1016/j.foodres.2022.112219] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
This study aims to obtain a valuable mixture of short-chain peptides from hempseed as a new ingredient for developing nutraceutical and functional foods useful for preventing metabolic syndrome that represents the major cause of death globally. A dedicated analytical platform based on a purification step by size exclusion chromatography or ultrafiltration membrane and high-resolution mass spectrometry was developed to isolate and comprehensively characterize short-chain peptides leading to the identification of more than 500 short-chain peptides. Our results indicated that the short-chain peptide mixture was about three times more active than the medium-chain peptide mixture and total hydrolysate with respect to measured inhibition of the angiotensin-converting enzyme. The short-chain peptide mixture was also two times more active as a dipeptidyl peptidase IV, and twofold more active on the cholesterol metabolism pathway through the modulation of low-density lipoprotein receptor.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy.
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
30
|
Watanabe T, Nishime Y, Yuba R, Himeno A, Koizumi S. Reduced Visceral Fat Weight and Body Weight Due to Ingestion of Fermented Collagen Peptide in High-Fat Diet-Fed Obese Mice. J Nutr Sci Vitaminol (Tokyo) 2022; 68:533-539. [PMID: 36596552 DOI: 10.3177/jnsv.68.533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oral ingestion of collagen hydrolysate has various benecial effects. We developed a novel fermented collagen peptide (FCP), different from the conventional collagen peptides, by fermenting gelatin with Aspergillus sojae. This study aimed to investigate the effect of FCP in inhibiting fat accumulation under high-fat loading. Male C57BL/6J mice were fed a low- or high-fat diet, or a high-fat diet including 5% FCP for 28 d. Body weight, visceral fat weight, adiponectin levels, leptin concentration, fatty acid synthase (FAS) activity, and carnitine palmitoyltransferase 1A (CPT) activity were determined. FCP supplementation was found to significantly decrease the body weight, visceral fat weight, leptin concentration, and FAS activity, and increase adiponectin levels and CPT activity compared to that in the high-fat diet-fed group. In conclusion, FCP intake reduced visceral fat weight and body weight in high-fat diet-fed mice.
Collapse
|
31
|
Kviatkovsky SA, Hickner RC, Ormsbee MJ. Collagen peptide supplementation for pain and function: is it effective? Curr Opin Clin Nutr Metab Care 2022; 25:401-406. [PMID: 36044324 DOI: 10.1097/mco.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Connective tissue injuries are prevalent in active and aging populations, leading to chronic pain and decreased function. Turnover of this tissue is not well understood, especially as it relates to aging and injury. Supplementation of collagen peptides has been shown to improve connective tissue recovery and pain through increased collagen production. RECENT FINDINGS Collagen peptide supplementation improves pain and function, and upregulates metabolic pathways associated with muscle and tendon growth. Literature from the past 12-18 months supports that these pathways are also involved with increased synthesis and degradation of collagen and other elements of the extracellular matrix. Improvements in body composition and strength have been noted with collagen peptide supplementation when paired with resistance training. Collagen peptide supplements are hydrolyzed into small peptides, termed bioactive peptides, and individual amino acids. These bioactive peptides are associated with the benefits observed with collagen peptide supplementation and may play a critical role in the collagen turnover. SUMMARY Collagen peptide supplementation has been shown to promote recovery, decrease pain, and improve strength and body composition when paired with resistance training. These benefits may be attributed to bioactive peptides in collagen peptide supplements. Additional research is warranted to examine the specific effects of these bioactive peptides.
Collapse
Affiliation(s)
- Shiloah A Kviatkovsky
- Department of Nutrition and Integrative Physiology
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
- Center for Aging and Longevity, Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert C Hickner
- Department of Nutrition and Integrative Physiology
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
- Department of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Michael J Ormsbee
- Department of Nutrition and Integrative Physiology
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
- Department of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
32
|
Senadheera TRL, Hossain A, Dave D, Shahidi F. In Silico Analysis of Bioactive Peptides Produced from Underutilized Sea Cucumber By-Products-A Bioinformatics Approach. Mar Drugs 2022; 20:610. [PMID: 36286434 PMCID: PMC9605078 DOI: 10.3390/md20100610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 10/15/2023] Open
Abstract
Bioinformatic tools are widely used in predicting potent bioactive peptides from food derived materials. This study was focused on utilizing sea cucumber processing by-products for generating antioxidant and ACE inhibitory peptides by application of a range of in silico techniques. Identified peptides using LC-MS/MS were virtually screened by PepRank technique followed by in silico proteolysis simulation with representative digestive enzymes using BIOPEP-UWMTM data base tool. The resultant peptides after simulated digestion were evaluated for their toxicity using ToxinPred software. All digestive resistance peptides were found to be non-toxic and displayed favorable functional properties indicating their potential for use in a wide range of food applications, including hydrophobic and hydrophilic systems. Identified peptides were further assessed for their medicinal characteristics by employing SwissADME web-based application. Our findings provide an insight on potential use of undervalued sea cucumber processing discards for functional food product development and natural pharmaceutical ingredients attributed to the oral drug discovery process.
Collapse
Affiliation(s)
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Marine Institute, Memorial University, St. John’s, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
33
|
Liu W, Yang W, Li X, Qi D, Chen H, Liu H, Yu S, Wang G, Liu Y. Evaluating the Properties of Ginger Protease-Degraded Collagen Hydrolysate and Identifying the Cleavage Site of Ginger Protease by Using an Integrated Strategy and LC-MS Technology. Molecules 2022; 27:5001. [PMID: 35956951 PMCID: PMC9370692 DOI: 10.3390/molecules27155001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Methods: An integrated strategy, including in vitro study (degree of hydrolysis (DH) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity) and in vivo study (absorption after oral administration in rats), was developed to evaluate the properties of the fish skin gelatin hydrolysates prepared using different proteases (pepsin, alkaline protease, bromelain, and ginger protease). Meanwhile, in order to identify the hydrolysis site of ginger protease, the peptides in the ginger protease-degraded collagen hydrolysate (GDCH) were comprehensively characterized by liquid chromatography/tandem mass spectrometry (LC-MS) method. (2) Results: The GDCH exhibited the highest DH (20.37%) and DPPH radical scavenging activity (77.73%), and in vivo experiments showed that the GDCH was more efficiently absorbed by the gastrointestinal tract. Further oral administration experiments revealed that GDCH was not entirely degraded to free amino acids and can be partially absorbed as dipeptides and tripeptides in intact forms, including Pro-Hyp, Gly-Pro-Hyp, and X-Hyp-Gly tripeptides. LC-MS results determined the unique substrate specificity of ginger protease recognizing Pro and Hyp at the P2 position based on the amino acids at the P2 position from the three types of tripeptides (Gly-Pro-Y, X-Hyp-Gly, and Z-Pro-Gly) and 136 identified peptides (>4 amino acids). Interestingly, it suggested that ginger protease can also recognize Ala in the P2 position. (3) Conclusions: This study comprehensively evaluated the properties of GDCH by combining in vitro and in vivo strategies, and is the first to identify the cleavage site of ginger protease by LC-MS technique. It provides support for the follow-up study on the commercial applications of ginger protease and bioactivities of the hydrolysate produced by ginger protease.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wenning Yang
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xueyan Li
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dongying Qi
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Hongjiao Chen
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Huining Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shuang Yu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing 101500, China
| | - Yang Liu
- Department of Chemistry of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
34
|
Paradoxical Duel Role of Collagen in Rheumatoid Arthritis: Cause of Inflammation and Treatment. Bioengineering (Basel) 2022; 9:bioengineering9070321. [PMID: 35877372 PMCID: PMC9311863 DOI: 10.3390/bioengineering9070321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
In biology, collagen-biomaterial regulates several signaling mechanisms of bone and immune cells involved in tissue repair and any imbalance in collagen turnover may affect the homeostasis of cells, becoming a major cause of several complications. In this case, the administration of oral collagen may play a potential role in returning cells to their normal function. For several decades, the beneficial effects of collagen have been explored widely, and thus many commercial products are available in cosmetics, food, and biomedical fields. For instance, collagen-based-products have been widely used to treat the complications of cartilage-related-disorders. Many researchers are reporting the anti-arthritogenic properties of collagen-based materials. In contrast, collagen, especially type-II collagen (CII), has been widely used to induce arthritis by immunization in an animal-model with or without adjuvants, and the potentially immunogenic-properties of collagen have been continuously reported for a long time. Additionally, the immune tolerance of collagen is mainly regulated by the T-lymphocytes and B-cells. This controversial hypothesis is getting more and more evidence nowadays from both sides to support its mechanism. Therefore, this review links the gap between the arthritogenic and anti-arthritogenic effects of collagen and explored the actual mechanism to understand the fundamental concept of collagen in arthritis. Accordingly, this review opens-up several unrevealed scientific knots of collagen and arthritis and helps the researchers understand the potential use of collagen in therapeutic applications.
Collapse
|
35
|
Tedesco L, Rossi F, Ruocco C, Ragni M, Carruba MO, Valerio A, Nisoli E. A designer mixture of six amino acids promotes the extracellular matrix gene expression in cultured human fibroblasts. Biosci Biotechnol Biochem 2022; 86:1255-1261. [PMID: 35793559 DOI: 10.1093/bbb/zbac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022]
Abstract
The deterioration of the skin is caused by dermatological disorders, environmental conditions, and ageing processes. One incisive strategy for supervising the skin ageing process is implementing healthy nutrition, preserving a balanced diet and a good supply of food supplements. Here, we compared H-Pro-Hyp-OH peptide, hydrolysed collagen, and an original mixture of six amino acids (we named 6aa)-including glycine, l-alanine, l-proline, l-valine, l-leucine, and l-lysine-effects on the production of extracellular matrix (ECM) components, particularly the elastin, fibronectin, collagen 1, and collagen 4. Treatment of BJ human skin fibroblasts with the 6aa mixture upregulated elastin, fibronectin, and collagen 1 gene expression, without affecting the expression of anti-reactive oxygen species enzymes. Moreover, the mTOR signaling pathway seems to be involved, at least in part. Collectively, these results suggest that the six amino acid mixture exerts beneficial effects in human skin fibroblasts.
Collapse
Affiliation(s)
- Laura Tedesco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - Milan, Italy
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - Milan, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, viale Europa, 11-25123 Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, via Vanvitelli, 32 - Milan, Italy
| |
Collapse
|
36
|
Felim J, Chen CK, Tsou D, Kuo HP, Kong ZL. Effect of Different Collagen on Anterior Cruciate Ligament Transection and Medial Meniscectomy-Induced Osteoarthritis Male Rats. Front Bioeng Biotechnol 2022; 10:917474. [PMID: 35866033 PMCID: PMC9295145 DOI: 10.3389/fbioe.2022.917474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoarthritis (OA) is a common type of arthritis characterized by degeneration of the articular cartilage and joint dysfunction. Various pharmacological and non-pharmacological techniques have been used to manage these diseases. Due to the diverse therapeutic properties of marine collagen, it has received considerable attention in its pharmacological application. Thus, the purpose of this study was to compare the efficacy of jellyfish collagen, collagen peptide, other sources of marine collagen, and glycine in treating OA. In the OA rat model, an anterior cruciate ligament transection combined with medial meniscectomy surgery (ACLT + MMx) was used to induce osteoarthritis in rats. Two weeks before surgery, male Sprague-Dawley rats were fed a chow-fat diet. After 6 weeks of treatment with collagen, collagen peptide, and glycine, the results show that they could inhibit the production of proinflammatory cytokines and their derivatives, such as COX-2, MMP-13, and CTX-II levels; therefore, it can attenuate cartilage degradation. Moreover, collagen peptides can promote the synthesis of collagen type II in cartilage. These results demonstrate that collagen and glycine have been shown to have protective properties against OA cartilage degradation. In contrast, collagen peptides have been shown to show cartilage regeneration but less protective properties. Jellyfish collagen peptide at a dose of 5 mg/kg b. w. has the most significant potential for treating OA because it protects and regenerates cartilage in the knee.
Collapse
Affiliation(s)
- Jerrell Felim
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - Chun-Kai Chen
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | - David Tsou
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| | | | - Zwe-Ling Kong
- Laboratory of Cellular Immunology, Department of Food Science, National Taiwan Ocean University, Keelung City, Taiwan
| |
Collapse
|
37
|
Lampropoulou-Adamidou K, Karlafti E, Argyrou C, Makris K, Trovas G, Dontas IA, Tournis S, Triantafyllopoulos IK. Effect of Calcium and Vitamin D Supplementation With and Without Collagen Peptides on Volumetric and Areal Bone Mineral Density, Bone Geometry and Bone Turnover in Postmenopausal Women With Osteopenia. J Clin Densitom 2022; 25:357-372. [PMID: 34980546 DOI: 10.1016/j.jocd.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Collagen peptides (CPs) have been shown to potentially have a role as a treatment option in osteopenia. In the present randomized prospective study, we examined the effect of calcium, vitamin D with and without CPs supplementation on changes in volumetric bone mineral density (vBMD) and bone geometry assessed by peripheral quantitative computed tomography at the tibia, areal bone mineral density (aBMD) assessed by dual-energy X-ray absorptiometry at the lumbar spine and the hip and bone turnover markers over 12-mo. Fifty-one postmenopausal women with osteopenia were allocated to Group A who received orally 5 g CPs, 500 mg calcium and 400 IU vitamin D3 and Group B who received the same dose of calcium and vitamin D3 per day. The primary endpoint was the change of trabecular bone mineral content (BMC) and vBMD after 12-mo supplementation in Groups A and B. At the trabecular site (4% of the tibia length), Group A had a significant increase of total BMC by 1.96 ± 2.41% and cross-sectional area by 2.58 ± 3.91%, trabecular BMC by 5.24 ± 6.48%, cross-sectional area by 2.58 ± 3.91% and vBMD by 2.54 ± 3.43% and a higher % change of these parameters at 12 mo in comparison to Group B (p < 0.01, p = 0.04, p < 0.01, p = 0.04, p = 0.02, respectively). At the cortical site (38% of the tibia length), total and cortical vBMD increased by 1.01 ± 2.57% and 0.67 ± 1.71%. Furthermore, the mean aBMD at the spine was higher (p = 0.01), while bone markers decreased in Group A compared to Group B. The present study shows improvement of trabecular and cortical parameters as assessed by peripheral quantitative computed tomography at the tibia, prevention of aBMD decline and decrease of bone turnover after 12-mo supplementation with calcium, vitamin D with CPs.
Collapse
Affiliation(s)
- Kalliopi Lampropoulou-Adamidou
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece.
| | - Efthymia Karlafti
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Chrysoula Argyrou
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Konstantinos Makris
- Clinical Biochemistry Department, KAT General Hospital of Athens, Athens, Greece
| | - George Trovas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Symeon Tournis
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece
| | - Ioannis K Triantafyllopoulos
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", Medical School, National and Kapodistrian University of Athens, KAT General Hospital of Athens, Athens, Greece; 5th Orthopaedic Department, HYGEIA Hospital, Athens, Greece
| |
Collapse
|
38
|
Himeno A, Tsujikami M, Koizumi S, Watanabe T, Igase M. Effect of Reducing Pigmentation by Collagen Peptide Intake: A Randomized, Double-Blind, Placebo-Controlled Study. Dermatol Ther (Heidelb) 2022; 12:1577-1587. [PMID: 35696023 PMCID: PMC9189804 DOI: 10.1007/s13555-022-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction We examined the effect of 5.0 g/day of collagen peptide (CP) or collagen peptide fermented with Aspergillus sojae (FCP) on skin pigmentation in healthy participants. Methods In this randomized, double-blind, placebo-controlled study, 44 men and women aged 25–63 years were placed into three groups by stratified random allocation and treated with CP, FCP, or placebo (PL) at 5.0 g/day for 3 months. Their skin condition was measured monthly from baseline to 3 months of intake. Results No adverse events were identified in any group. The CP group showed a significant reduction in pigmented patches and redness after 1 and 3 months of intake, respectively. In the FCP group, pigmented macules were significantly reduced after 1 month, and pigmented patches after 2 months. Both the all-ages analysis and the hierarchical analysis below 55 years old yielded similar results. Conclusion Intake of 5.0 g/day of FCP for 3 months is safe. CP and FCP intake is useful for suppressing pigmentation. In addition, CP intake may be useful for reducing redness. These results suggest a new beneficial effect on the skin of CP supplementation. Trial Registration UMIN clinical trials registry system, UMIN000040736. Supplementary Information The online version contains supplementary material available at 10.1007/s13555-022-00748-4.
Collapse
Affiliation(s)
- Ai Himeno
- Nitta Gelatin Inc., R&D Center, 2-22 Futamata, Yao-City, Osaka, Japan.
| | - Masaya Tsujikami
- Nitta Gelatin Inc., R&D Center, 2-22 Futamata, Yao-City, Osaka, Japan
| | - Seiko Koizumi
- Nitta Gelatin Inc., R&D Center, 2-22 Futamata, Yao-City, Osaka, Japan
| | | | - Michiya Igase
- Department of Anti-Aging Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
39
|
Identification of a highly stable bioactive 3-hydroxyproline-containing tripeptide in human blood after collagen hydrolysate ingestion. NPJ Sci Food 2022; 6:29. [PMID: 35662250 PMCID: PMC9166765 DOI: 10.1038/s41538-022-00144-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
There are increasing reports demonstrating high bioavailability of 4-hydroxyproline (4Hyp)-containing oligopeptides after oral ingestion of collagen hydrolysate and their bioactivity. In contrast, no study investigates the fate of another collagen-specific but minor amino acid, 3Hyp. Here, we identified Gly-3Hyp-4Hyp tripeptide in human blood at high concentrations, comparable to other 4Hyp-containing oligopeptides, after ingesting porcine skin collagen hydrolysate. Additionally, Gly-3Hyp-4Hyp uniquely maintained the maximum concentration until 4 h after the ingestion due to its exceptionally high resistance to peptidase/protease demonstrated by incubation with mouse plasma. In mice, oral administration of collagen hydrolysate prepared from bovine tendon, which contains a higher amount of 3Hyp, further increased blood Gly-3Hyp-4Hyp levels compared to that from bovine skin. Furthermore, Gly-3Hyp-4Hyp showed chemotactic activity on skin fibroblasts and promoted osteoblast differentiation. These results highlight the specific nature of the Gly-3Hyp-4Hyp tripeptide and its potential for health promotion and disease treatment.
Collapse
|
40
|
Recent progress in preventive effect of collagen peptides on photoaging skin and action mechanism. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Detection of Balenine in Mouse Plasma after Administration of Opah-Derived Balenine by HPLC with PITC Pre-Column Derivatization. Foods 2022; 11:foods11040590. [PMID: 35206066 PMCID: PMC8871149 DOI: 10.3390/foods11040590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
We examined the absorption of balenine (Bal) in mouse blood after the administration of a high-purity Bal prepared from opah muscle. Using HPLC with phenyl isothiocyanate pre-column derivatization, we successfully isolated imidazole peptides and their constituents. We detected Bal and 3-methylhistidine (3-Me-His) in mouse blood 1 h after the administration of opah-derived Bal. The concentrations of Bal and 3-Me-His significantly increased to 128.27 and 69.09 nmol/mL in plasma, respectively, but were undetectable in control and carnosine (Car)-administrated mice. In contrast, β-alanine and histidine did not increase in mouse plasma 1 h after the administration of Car and opah-derived Bal. The present study is the first report on the absorption of food-derived Bal in mouse blood and serves as a pilot study for future clinical trials.
Collapse
|
42
|
Sato K. Metabolic Fate and Bioavailability of Food-Derived Peptides: Are Normal Peptides Passed through the Intestinal Layer To Exert Biological Effects via Proposed Mechanisms? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1461-1466. [PMID: 35104135 DOI: 10.1021/acs.jafc.1c07438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Previous studies have demonstrated that the oral administration of food-derived peptides exerts beneficial effects on human health beyond conventional nutritional functions. In vitro studies have suggested potential mechanisms and active peptides. However, the levels of most food-derived peptides in the body are far lower than the concentrations used in the in vitro assays, with some exceptions. These facts suggest that food-derived peptides might be metabolized into active compounds or function via different mechanisms than the proposed mechanisms. This work briefly discusses the perspectives related to the metabolites of the food-derived peptides in the body.
Collapse
Affiliation(s)
- Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606 8502, Japan
| |
Collapse
|
43
|
Iwasaki Y, Nakatogawa M, Shimizu A, Sato Y, Shigemura Y. Comparison of gelatin and low-molecular weight gelatin hydrolysate ingestion on hydroxyproline (Hyp), Pro-Hyp and Hyp-Gly concentrations in human blood. Food Chem 2022; 369:130869. [PMID: 34461513 DOI: 10.1016/j.foodchem.2021.130869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 02/01/2023]
Abstract
This study showed that gelatin ingestion significantly increased prolyl-hydroxyproline (Pro-Hyp) levels in plasma of 9 subjects, with maximum concentrations of 15.5 ± 3.0 nmol/mL 2 h post-ingestion. Hydroxyprolyl-glycine (Hyp-Gly) concentrations were significantly increased and reached a maximal level of 2.3 ± 0.5 nmol/mL 1 h post-ingestion of gelatin. A low molecular weight gelatin hydrolysate (LMW-GH) significantly enhanced concentrations of both peptides, while gelatin hydrolysate ingestion did not significantly enhance the maximum concentration and area under the plasma concentration-time curve (AUC) of Hyp-Gly relative to gelatin. The absorption of free Hyp following gelatin ingestion (94.4 ± 16.4 nmol/mL) was significantly lower relative to GH (150.9 ± 15.3 nmol/mL) and LMW-GH (169.1 ± 32.5 nmol/mL). The present study is the first report demonstrating that Hyp-containing peptides are elevated to μM levels in human plasma after gelatin ingestion. These results suggested that gelatin is useful as a functional food as effectively as GH.
Collapse
Affiliation(s)
- Yu Iwasaki
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| | - Mizuho Nakatogawa
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| | - Ayaka Shimizu
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| | - Yoshio Sato
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| | - Yasutaka Shigemura
- Department of Humanities and Life Sciences, Graduate School of Tokyo Kasei University, 1-18-1 Kaga, Itabashi-ku, Tokyo 173-8602, Japan.
| |
Collapse
|
44
|
Rahabi M, Salon M, Bruno-Bonnet C, Prat M, Jacquemin G, Benmoussa K, Alaeddine M, Parny M, Bernad J, Bertrand B, Auffret Y, Robert-Jolimaître P, Alric L, Authier H, Coste A. Bioactive fish collagen peptides weaken intestinal inflammation by orienting colonic macrophages phenotype through mannose receptor activation. Eur J Nutr 2022; 61:2051-2066. [PMID: 34999930 PMCID: PMC9106617 DOI: 10.1007/s00394-021-02787-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Particular interest is now given to the potential of dietary supplements as alternative non-pharmacological approaches in intestinal inflammation handling. In this aim, this study evaluates the efficiency of fish collagen peptides, Naticol®Gut, on colonic inflammation. METHODS Wild type and Mannose receptor-deficient in the myeloid lineage C57BL/6 mice were administered with Dextran Sodium Sulfate (DSS), Naticol®Gut, DSS, and Naticol®Gut or only water for 4 or 8 days. Inflammatory status was evaluated by establishing macroscopic and microscopic scores, by measuring cytokine and calprotectin production by ELISA and the myeloperoxidase activity by chemiluminescence. Colonic macrophages were phenotyped by measuring mRNA levels of specific markers of inflammation and oxidative status. Colonic immune populations and T-cell activation profiles were determined by flow cytometry. Mucosa-associated gut microbiota assessment was undertaken by qPCR. The phenotype of human blood monocytes from inflammatory bowel disease (IBD) subjects was characterized by RT-qPCR and flow cytometry and their oxidative activity by chemiluminescence. RESULTS Naticol®Gut-treated DSS mice showed attenuated colonic inflammation compared to mice that were only exposed to DSS. Naticol®Gut activity was displayed through its ability to orient the polarization of colonic macrophage towards an anti-inflammatory and anti-oxidant phenotype after its recognition by the mannose receptor. Subsequently, Naticol®Gut delivery modulated CD4 T cells in favor of a Th2 response and dampened CD8 T-cell activation. This immunomodulation resulted in an intestinal eubiosis. In human monocytes from IBD subjects, the treatment with Naticol®Gut also restored an anti-inflammatory and anti-oxidant phenotype. CONCLUSION Naticol®Gut acts as a protective agent against colitis appearing as a new functional food and an innovative and complementary approach in gut health.
Collapse
Affiliation(s)
- Mouna Rahabi
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.,Weishardt International, Rond-Point Georges Jolimaître, BP 259, 81305, Graulhet, France
| | - Marie Salon
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.,Weishardt International, Rond-Point Georges Jolimaître, BP 259, 81305, Graulhet, France
| | | | - Mélissa Prat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Godefroy Jacquemin
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Khaddouj Benmoussa
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Mohamad Alaeddine
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Mélissa Parny
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - José Bernad
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Bénédicte Bertrand
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Yannick Auffret
- Weishardt International, Rond-Point Georges Jolimaître, BP 259, 81305, Graulhet, France
| | | | - Laurent Alric
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.,Department of Internal Medicine and Digestive Diseases, Pôle Digestif, CHU Toulouse, Toulouse, France
| | - Hélène Authier
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France
| | - Agnès Coste
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France. .,RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Université P. Sabatier, Toulouse, France.
| |
Collapse
|
45
|
Trüeb R, Arias E, Floriach N, Moreno-Arias G, Camps A, Arias S. Targeted nutritional supplementation for telogen effluvium: Multicenter study on efficacy of a hydrolyzed collagen, vitamin., and mineral-based induction and maintenance treatment. Int J Trichology 2022; 14:49-54. [PMID: 35531488 PMCID: PMC9069902 DOI: 10.4103/ijt.ijt_57_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/30/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The condition of the hair is closely related to the nutritional state. Normal supply, uptake, and transport of nutrients are of fundamental importance in tissues with a high biosynthetic activity such as the hair follicle. Objective: The objective of the study was to evaluate the efficacy of a nutritional-based induction and maintenance treatment for telogen effluvium formulated with a combination of hydrolyzed collagen, amino acids, vitamins, and minerals. Patients and Methods: The clinical studies were conducted with each nutritional treatment individually, and both in sequential combination. Anagen/telogen ratio, hair density, and tolerability of treatment were assessed at baseline, 4 weeks of induction therapy, and another 12 weeks of maintenance treatment. Trichogram results showed a significant improvement of the anagen/telogen ratio between baseline and final visit at 16 weeks, with an increase of hair in anagen and a reduction of hair in telogen. Furthermore, a significant increase was observed in hair density. The effect size of the combination treatment was higher than that of each of the two products used separately as monotherapy. Conclusions: The study results provide a proof of concept for targeted nutritional supplementation for the treatment of telogen effluvium, with a special emphasis on the role of collagen, besides specific amino acids, vitamins, and minerals.
Collapse
|
46
|
Jung K, Kim SH, Joo KM, Lim SH, Shin JH, Roh J, Kim E, Park CW, Kim W. Oral Intake of Enzymatically Decomposed AP Collagen Peptides Improves Skin Moisture and Ceramide and Natural Moisturizing Factor Contents in the Stratum Corneum. Nutrients 2021; 13:4372. [PMID: 34959923 PMCID: PMC8707759 DOI: 10.3390/nu13124372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 01/04/2023] Open
Abstract
The stratum corneum (SC) is the outermost layer of the epidermis and plays an important role in maintaining skin moisture and protecting the skin from the external environment. Ceramide and natural moisturizing factor (NMF) are the major SC components that maintain skin moisture. In this study, we investigated whether the oral intake of enzymatically decomposed AP collagen peptides (APCPs) can improve skin moisture and barrier function by assessing changes in the ceramide and NMF contents in the SC after APCP ingestion with the aim to develop a skin functional food. Fifty participants orally ingested APCP (1000 mg) or placebo for 12 weeks, and then, skin hydration and skin texture were evaluated. SC samples were collected to analyze skin scaling, ceramide, and NMF contents. Participants in the APCP group exhibited improved skin moisture content by 7.33% (p = 0.031) and roughness by -4.09% (p = 0.036) when compared with those in the placebo group. NMF content; the amounts of amino acids (AA), including glycine and proline; and AA derivatives were significantly increased in the APCP group (31.98 μg/mg protein) compared to those in the placebo group (-16.01 μg/mg protein) (p = 0.006). The amounts of total ceramides and ceramide subclasses were significantly higher in the APCP group than in the placebo group (p = 0.014). In conclusion, our results demonstrate that APCP intake improves skin moisture and increase the ceramide and NMF contents in the SC, thereby enhancing the skin barrier function.
Collapse
Affiliation(s)
- Kyoungmi Jung
- Amorepacific Research and Development Center, 1920, Yonggu-daero, Giheung-gu, Yongin 17074, Korea; (S.-H.K.); (K.-M.J.); (S.-H.L.); (J.R.); (E.K.); (C.W.P.); (W.K.)
| | - Seung-Hun Kim
- Amorepacific Research and Development Center, 1920, Yonggu-daero, Giheung-gu, Yongin 17074, Korea; (S.-H.K.); (K.-M.J.); (S.-H.L.); (J.R.); (E.K.); (C.W.P.); (W.K.)
| | - Kyung-Mi Joo
- Amorepacific Research and Development Center, 1920, Yonggu-daero, Giheung-gu, Yongin 17074, Korea; (S.-H.K.); (K.-M.J.); (S.-H.L.); (J.R.); (E.K.); (C.W.P.); (W.K.)
| | - Sung-Hwan Lim
- Amorepacific Research and Development Center, 1920, Yonggu-daero, Giheung-gu, Yongin 17074, Korea; (S.-H.K.); (K.-M.J.); (S.-H.L.); (J.R.); (E.K.); (C.W.P.); (W.K.)
| | - Jin-Hee Shin
- P&K Skin Research Center, 25, Gukheo-daero 62-gil, Yeongdeungpo-gu, Seoul 07236, Korea;
| | - Jonghwa Roh
- Amorepacific Research and Development Center, 1920, Yonggu-daero, Giheung-gu, Yongin 17074, Korea; (S.-H.K.); (K.-M.J.); (S.-H.L.); (J.R.); (E.K.); (C.W.P.); (W.K.)
| | - Eunjoo Kim
- Amorepacific Research and Development Center, 1920, Yonggu-daero, Giheung-gu, Yongin 17074, Korea; (S.-H.K.); (K.-M.J.); (S.-H.L.); (J.R.); (E.K.); (C.W.P.); (W.K.)
| | - Chan Woong Park
- Amorepacific Research and Development Center, 1920, Yonggu-daero, Giheung-gu, Yongin 17074, Korea; (S.-H.K.); (K.-M.J.); (S.-H.L.); (J.R.); (E.K.); (C.W.P.); (W.K.)
| | - Wangi Kim
- Amorepacific Research and Development Center, 1920, Yonggu-daero, Giheung-gu, Yongin 17074, Korea; (S.-H.K.); (K.-M.J.); (S.-H.L.); (J.R.); (E.K.); (C.W.P.); (W.K.)
| |
Collapse
|
47
|
Mobasheri A, Mahmoudian A, Kalvaityte U, Uzieliene I, Larder CE, Iskandar MM, Kubow S, Hamdan PC, de Almeida CS, Favazzo LJ, van Loon LJ, Emans PJ, Plapler PG, Zuscik MJ. A White Paper on Collagen Hydrolyzates and Ultrahydrolyzates: Potential Supplements to Support Joint Health in Osteoarthritis? Curr Rheumatol Rep 2021; 23:78. [PMID: 34716494 PMCID: PMC8556166 DOI: 10.1007/s11926-021-01042-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is the most common forms of arthritis in the general population, accounting for more pain and functional disability than any other musculoskeletal disease. There are currently no approved disease modifying drugs for OA. In the absence of effective pharmacotherapy, many patients with OA turn to nutritional supplements and nutraceuticals, including collagen derivatives. Collagen hydrolyzates and ultrahydrolyzates are terms used to describe collagens that have been broken down into small peptides and amino acids in the presence of collagenases and high pressure. RECENT FINDINGS This article reviews the relevant literature and serves as a White Paper on collagen hydrolyzates and ultrahydrolyzates as emerging supplements often advertised to support joint health in OA. Collagen hydrolyzates have demonstrated some evidence of efficacy in a handful of small scale clinical trials, but their ability to treat and reverse advanced joint disease remains highly speculative, as is the case for other nutritional supplements. The aim of this White Paper is to stimulate research and development of collagen-based supplements for patients with OA and other musculoskeletal diseases at academic and industrial levels. This White Paper does not make any treatment recommendations for OA patients in the clinical context, but simply aims to highlight opportunities for scientific innovation and interdisciplinary collaboration, which are crucial for the development of novel products and nutritional interventions based on the best available and published evidence.
Collapse
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 Guangdong China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| | - Armaghan Mahmoudian
- Department of Clinical Sciences Lund, Orthopaedics, and Skeletal Biology, Clinical Epidemiology Unit, Lund University, Lund, Sweden
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute, Centre for Innovative Medicine, Vilnius, Lithuania
| | - Christina E. Larder
- School of Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC, H9X 3V9 Canada
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC, H9X 3V9 Canada
| | - Stan Kubow
- School of Human Nutrition, McGill University, 21,111 Lakeshore, Ste. Anne de Bellevue, QC, H9X 3V9 Canada
| | - Paulo Cesar Hamdan
- Hospital Universitário Clementino Fraga Filho, Department of Traumatolgy and Orthopedics of Medical Faculty of Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | | | - Lacey J. Favazzo
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Luc J.C. van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Pieter J. Emans
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pérola G. Plapler
- Divisão de Medicina Física, Instituto de Ortopedia e Traumatologia do Hospital das Clinicas da Faculdade de Medicina da, Universidade de São Paulo (FMUSP), São Paulo, SP Brazil
| | - Michael J. Zuscik
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
48
|
Study on the Mechanism of the Blood-Glucose-Lowering Effect of Collagen Peptides from Sturgeon By-Products. Mar Drugs 2021; 19:md19100584. [PMID: 34677483 PMCID: PMC8541525 DOI: 10.3390/md19100584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
In a previous study, we found that the collagen peptides prepared from the by-products of Bester sturgeon had an inhibitory effect on elevated blood glucose levels in a glucose tolerance test with ICR mice. In the present study, we examine the mechanism of the effect of sturgeon collagen peptides (SCPs) in detail. When glucose was orally administered to mice along with the SCPs, it was found that the glucose remained in the stomach for a longer time. In the above tests, the amount of glucose excreted in the feces of mice also increased. On the contrary, it was revealed that the SCPs have a dipeptidyl-peptidase-IV (DPP-IV) inhibitory ability in an in vitro test. In subsequent oral and intravenous glucose administration tests, glucagon-like peptide-1 (GLP-1) and insulin levels in the blood of mice were maintained at high levels. These results suggested the following three mechanisms: SCPs slow the rate of transportation of glucose from the stomach into the small intestine, resulting in delayed glucose absorption; SCPs suppress the absorption of glucose in the small intestine and excrete it from the body; SCPs inhibit DPP-IV in the blood and maintain a high GLP-1 level in blood, which in turn stimulates insulin secretion.
Collapse
|
49
|
Larder CE, Iskandar MM, Kubow S. Assessment of Bioavailability after In Vitro Digestion and First Pass Metabolism of Bioactive Peptides from Collagen Hydrolysates. Curr Issues Mol Biol 2021; 43:1592-1605. [PMID: 34698092 PMCID: PMC8928955 DOI: 10.3390/cimb43030113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Collagen hydrolysates (CHs) are composed of bioactive peptides (BAPs), which possess health enhancing properties. There is a knowledge gap regarding the bioavailability of these BAPs that involves intestinal transport and hepatic first pass effects. A simulated gastrointestinal model was used to generate digesta from two CHs (CH-GL and CH-OPT), which were applied to a novel transwell co-culture of human intestinal epithelium cell line-6 (HIEC-6) and hepatic (HepG2) cells to simulate in vivo conditions of absorption and first pass metabolism. Peptide transport, hepatic first pass effects, and bioavailability were determined by measuring BAPs (Gly-Pro, Hyp-Gly, Ala-Hyp, Pro-Hyp, Gly-Pro-Hyp) using an innovative capillary electrophoresis method. All peptides were transported across the intestinal cell layer to varying degrees with both CHs; however, Gly-Pro-Hyp was transported only with CH-GL, but not CH-OPT. Notable hepatic production was observed for Ala-Hyp with both CH treatments, and for Pro-Hyp and Gly-Pro with CH-GL only. All peptides were bioavailable (>10%), except for Gly-Pro-Hyp after CH-OPT. Overall, a high degree of transport and hepatic first pass effects on CH-derived BAPs were observed. Further research is needed to explore the hepatic mechanisms related to the production of BAPs and the bifunctional effects of the bioavailable BAPs noted in this study.
Collapse
|
50
|
Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed Pharmacother 2021; 144:112275. [PMID: 34628165 DOI: 10.1016/j.biopha.2021.112275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Food proteins are a source of hydrolysates with potentially useful biological attributes. Bioactive peptides from food-derived proteins are released from hydrolysates using exogenous industrial processes or endogenous intestinal enzymes. Current in vitro permeability assays have limitations in predicting the oral bioavailability (BA) of bioactive peptides in humans. There are also difficulties in relating the low blood levels of food-derived bioactive peptides detected in preclinical in vivo models to pharmacodynamic read-outs relevant for humans. SCOPE AND APPROACH In this review, we describe in vitro assays of digestion, permeation, and metabolism as indirect predictors of the potential oral BA of hydrolysates and their constituent bioactive peptides. We discuss the relationship between industrial hydrolysis processes and the oral BA of hydrolysates and their peptide by-products. KEY FINDINGS Hydrolysates are challenging for analytical detection methods due to capacity for enzymatic generation of peptides with novel sequences and also new modifications of these peptides during digestion. Mass spectrometry and peptidomics can improve the capacity to detect individual peptides released from complex hydrolysates in biological milieu.
Collapse
|