1
|
Hu G, Wang L, Li X, Qi J. Rapidly and accurately screening histidine decarboxylase inhibitors from Radix Paeoniae alba using ultrafiltration-high performance liquid chromatography/mass spectrometry combined with enzyme channel blocking and directional enrichment technique. J Chromatogr A 2023; 1693:463859. [PMID: 36868086 DOI: 10.1016/j.chroma.2023.463859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Histidine Decarboxylase (HDC), an unique enzyme responsible for the synthesis of histamine, which is an important mediator in allergy. Inhibition of HDC activity to decrease histamine production is one way to alleviate allergic symptoms. Traditional Chinese medicines (TCMs) with reported anti-allergy effect is one of important source to search for natural HDC inhibitor. Ultrafiltration combined with high-performance liquid chromatography/mass spectrometry (UF-HPLC/MS) is an effective method for screening HDC inhibitor from TCMs. Nevertheless, false-positive and false-negative results caused by the non-specific binding and the neglection of the trace active compounds are major problems in this method. In this study, an integrated strategy that combined UF-HPLC/MS with enzyme channel blocking (ECB) technique and directional enrichment (DE) technique was developed to seek natural HDC inhibitors from Radix Paeoniae alba (RPA), and at the same time, to reduce false-positive and false-negative results. HDC activity was detected to determine the validity of the screened compounds by RP-HPLC-FD in vitro. Molecular docking was applied to assay the binding affinity and binding sites. As a result, three compounds were screened from low content components of RPA after the DE. Among them, two non-specific compounds were eliminated by ECB, and the specific compound was identified as catechin, which has obvious HDC inhibition activity with IC50 0.52 mM. Furthermore, gallic acid (IC50 1.8 mM) and paeoniflorin (IC50>2 mM) from high content components of RPA were determined having HDC inhibitory activity. In conclusion, the integrated strategy of UF-HPLC/MS combined with ECB and DE technique is an effective mode for rapid and accurate screening and identification of natural HDC inhibitors from TCMs.
Collapse
Affiliation(s)
- Guizhou Hu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Lu Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210012, PR China
| | - Xinqi Li
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
2
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
3
|
Morsy MA, Patel SS, Bakrania A, Kandeel M, Nair AB, Shah JN, Akrawi SH, El-Daly M. Ameliorative Effect of a Neoteric Regimen of Catechin plus Cetirizine on Ovalbumin-Induced Allergic Rhinitis in Rats. Life (Basel) 2022; 12:life12060820. [PMID: 35743851 PMCID: PMC9225010 DOI: 10.3390/life12060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022] Open
Abstract
Allergic rhinitis (AR) affects 20–50% of the global population. Available treatments are limited by their adverse effects. We investigated the anti-allergic effects of catechin alone and combined with cetirizine against ovalbumin-induced AR. Rats were sensitized with ovalbumin and received catechin (14 days) and then challenged with aerosolized ovalbumin (1%) to determine AR clinical scores. Histamine, histamine release, and histidine decarboxylase (HDC) activity were determined in blood, peritoneal mast cells, and stomachs, respectively. Vascular permeability and safety were assessed using Evans blue leakage and barbiturate-induced sleeping-time assays, respectively. Catechin and cetirizine binding with HDC was investigated by docking and binding energy analyses. The clinical scores of the combination regimen were superior to either drug alone. All treatments reduced vascular leakage, with no effect on barbiturate-induced sleeping time. Only the catechin-treated rats showed reduced histamine levels and HDC activity. Docking studies revealed that catechin has a 1.34-fold higher extra-precision docking score than L-histidine. The binding energy scores for catechin-HDC, L-histidine-HDC, and histamine-HDC were −50.86, −37.64, and −32.27 kcal/mol, respectively. The binding pattern of catechin was comparable to the standard HDC inhibitor, histidine methyl ester, but with higher binding free energy. Catechin binds the catalytic residue S354, unlike cetirizine. The anti-allergic effects of catechin can be explained by HDC inhibition and possible antihistaminic activity.
Collapse
Affiliation(s)
- Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
- Correspondence: (M.A.M.); (S.S.P.)
| | - Snehal S. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
- Correspondence: (M.A.M.); (S.S.P.)
| | - Anita Bakrania
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
| | - Jigar N. Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Sabah H. Akrawi
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (S.H.A.)
| | - Mahmoud El-Daly
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Minia University, El-Minia 61511, Egypt;
| |
Collapse
|
4
|
Kon M, Ishikawa T, Ohashi Y, Yamada H, Ogasawara M. Epigallocatechin gallate stimulated histamine production and downregulated histamine H1 receptor in oral cancer cell lines expressing histidine decarboxylase. J Oral Biosci 2022; 64:120-130. [PMID: 35031480 DOI: 10.1016/j.job.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Increased histamine production and the overexpression of receptors (H1R∼H4R) has been reported in several tumors. The effects of TGFβ1 and epigallocatechin gallate (EGCG) on histamine synthesizing enzymes (HDCs), and the histamine transporter systems and receptors were investigated in this study. METHODS Four oral cancer cell lines (HSC2, HSC3, HSC4, and SAS) were treated with or without TGFβ1 or EGCG for 24 h. The expression levels of HDC, SLC22A3, H1R∼H4R, and TAS2R14 were investigated by Western blotting. Histamine concentrations were determined using the enzyme immune assay. Bitter taste receptor (TAS2R14 and TAS2R39) mRNAs were investigated by RT-PCR. RESULTS Varying expression levels of HDC, SLC22A3, H1R∼H4R, and TAS2R14 were observed in the four cell lines, where histamine concentrations were found to be ∼500 fmol/ml in cell culture media and induced 2-2.5 times higher amounts of histamine following EGCG treatment. TGFβ1 increased HDC expression in three cell lines, SLC22A3 expression in three cell lines, H1R expression in two cell lines, H2R expression in three cell lines, H3R expression in three cell lines, and H4R expression in three cell lines. EGCG decreased HDC expression in all four cell lines, SLC22A3 expression in three expression, H1R expression in all four cell lines, H2R expression in two cell lines, H3R expression in three cell lines, and H4R expression in two cell lines. CONCLUSIONS EGCG upregulated histamine production and decreased the expression level of H1R in the oral cancer cell lines. It might prove useful for cancer therapy during histamine regulation.
Collapse
Affiliation(s)
- Masashi Kon
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan; Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University, Iwate, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Iwate, Japan
| | - Yu Ohashi
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan
| | - Hiroyuki Yamada
- Division of Oral and Maxillofacial Surgery, Department of Oral Surgery, Iwate Medical University, Iwate, Japan
| | - Masahito Ogasawara
- Division of Bioregulatory Pharmacology, Department of Pharmacology, Iwate Medical University, Iwate, Japan.
| |
Collapse
|
5
|
Monari S, Ferri M, Montecchi B, Salinitro M, Tassoni A. Phytochemical characterization of raw and cooked traditionally consumed alimurgic plants. PLoS One 2021; 16:e0256703. [PMID: 34437649 PMCID: PMC8389401 DOI: 10.1371/journal.pone.0256703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Abstract
In the past, wild edible alimurgic plants became an important alternative food source when poverty, wars or drought made it difficult to access crops. These plants were considered rich in highly nutritional compounds and also frequently used as food-medicine given their health-promoting properties. With the aim of improving our knowledge on the content of beneficial or detrimental compounds in relation with past local dietary and curative traditions, 12 wild food plant species were collected from two study areas selected for their very different degree of industrialization, urbanization, and conservation of local past traditions among the population: the Bologna province (Northern Italy) and the Middle Agri Valley (Southern Italy). Protein, polyphenol flavonoid and biogenic amine (both free and conjugated) contents and antioxidant activity of raw and boiled wild food plant extracts, and of cooking water were analyzed by means of spectrophotometric and high-performance liquid chromatography methods. The results demonstrated that most of the phenolic compounds were released in the cooking water which also showed the highest antioxidant activity. Seventeen different phenolic compounds were identified, of which the health-related luteolin, luteolin-7-glucoside and rutin were the most abundant (e.g., S. pratensis L. and C. intybus L.). On the other hand, biogenic amines were absent or present at very low levels in cooking water of those very same species (e.g., S. pratensis L., T. officinalis Weber, C. vesicaria subsp. taraxacifolia and C. intybus L.) of which traditionally a decoction is used for therapeutic purposes. Free and conjugated spermidine and spermine were generally the most abundant biogenic amines, while none of the known detrimental monoamines (e.g., histamine) was detected. In conclusion, the present results seem to support past local popular traditions which indicated beneficial medical properties of some wild edible plant, as well as of their cooking water.
Collapse
Affiliation(s)
- Stefania Monari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Maura Ferri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Bologna, Italy
- * E-mail: (MF); (AT)
| | - Beatrice Montecchi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mirko Salinitro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- * E-mail: (MF); (AT)
| |
Collapse
|
6
|
Badger-Emeka LI, Emeka PM, Thirugnanasambantham K, Ibrahim HIM. Anti-Allergic Potential of Cinnamaldehyde via the Inhibitory Effect of Histidine Decarboxylase (HDC) Producing Klebsiella pneumonia. Molecules 2020; 25:molecules25235580. [PMID: 33261109 PMCID: PMC7730296 DOI: 10.3390/molecules25235580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022] Open
Abstract
Allergy is an immunological disorder that develops in response to exposure to an allergen, and histamines mediate these effects via histidine decarboxylase (HDC) activity at the intracellular level. In the present study, we developed a 3D model of Klebsiella pneumoniae histidine decarboxylase (HDC) and analyzed the HDC inhibitory potential of cinnamaldehyde (CA) and subsequent anti-allergic potential using a bacterial and mammalian mast cell model. A computational and in vitro study using K. pneumonia revealed that CA binds to HDC nearby the pyridoxal-5'-phosphate (PLP) binding site and inhibited histamine synthesis in a bacterial model. Further study using a mammalian mast cell model also showed that CA decreased the levels of histamine in the stimulated RBL-2H3 cell line and attenuated the release of β-hexoseaminidase and cell degranulation. In addition, CA treatment also significantly suppressed the levels of pro-inflammatory cytokines TNF-α and IL-6 and the nitric oxide (NO) level in the stimulated mast cells. A gene expression and Western blotting study revealed that CA significantly downregulated the expressions of MAPKp38/ERK and its downstream pro-allergic mediators that are involved in the signaling pathway in mast cell cytokine synthesis. This study further confirms that CA has the potential to attenuate mast cell activation by inhibiting HDC and modifying the process of allergic disorders.
Collapse
Affiliation(s)
- Lorina I. Badger-Emeka
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-(0)5-3654-2793
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | | - Hairul Islam M. Ibrahim
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
7
|
Tanahashi N, Azama M, Otsuka M, Ogino F, Maeda R, Hirota T. Search for Substances That Inhibit Histamine Production Using Used Tea Leaves. J Food Prot 2020; 83:1789-1795. [PMID: 32463868 DOI: 10.4315/jfp-19-564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/26/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT As food waste has become a major problem in recent years, measures against food loss have become an urgent issue. When manufacturing or making green tea beverages, large quantities of tea leaves are subsequently disposed of, which results in potential food loss. Moreover, because many of the tea components remain in the used tea leaves, these continue to have value, as these leaves exhibit antibacterial action. Furthermore, histamine is produced from histidine via histidine decarboxylase that is produced by microorganisms, with histamine accumulation potentially causing histamine food poisoning. Although we have been trying to develop a simple method for detecting histamine, there has yet to be a quick detection method established. We examined whether a method using a low concentration of bromocresol indicator in the culture medium was capable of rapidly detecting histamine. Our results demonstrated that when using lower indicator concentrations, there was a faster detection of histamine production, within 4 h. Using this method, we also investigated whether used tea leaf components, which have antibacterial effects, could suppress histamine production. In this study, used leaves from green, oolong, and black teas were analyzed according to different extraction processes. Compared with green tea, oolong and black teas were able to suppress histamine production using lower concentrations, 25 and 12.5% extracts, respectively. In contrast, the inhibitory effect on histamine production by used green tea leaves required a high concentration of 50% used tea leaf extracts. Furthermore, our results suggested that used tea leaves suppress histamine production and that the inhibitory effects vary according to different extracts. Based on these findings, we propose that (i) a more rapid detection method for histamine should be established and (ii) used tea leaf extracts may have applications in the storage and processing of foods associated with an undesirable production of histamine. HIGHLIGHTS
Collapse
Affiliation(s)
- Nobuyuki Tanahashi
- Department of Clinical Nutrition, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka, Suzuka, Mie 510-0293, Japan (ORCID: https://orcid.org/0000-0003-1497-4685 [T.N.])
| | - Makoto Azama
- Urasoe General Hospital, Jinaikai, 16-1 Isao 4-chome, Urasoe-shi, Okinawa 901-2132, Japan
| | - Mai Otsuka
- Clinical Laboratory, Clinical Laboratory Division, Handa Citizen Medical Association Health Care Center, 1-chome, Kandamachi, Handa City, Aichi 475-8511, Japan
| | - Fumiya Ogino
- Physiological Technology Division, Medical Technology Department, Hamamatsu Red Cross Hospital, 1088-1 Kobayashi, Hamakita-ku, Hamamatsu City, Shizuoka 434-8533, Japan
| | - Ryuhei Maeda
- Third Laboratory, Central Inspection Department, Mie Prefectural General Medical Center, 5450-132, Hinaga, Yokkaichi City, Mie 510-0885, Japan
| | - Takayoshi Hirota
- Pathology and Oral Pathology Laboratory, City Shimada Municipal Hospital, 1200-5 Noda, Shimada City, Shizuoka, Shizuoka 427-8502, Japan
| |
Collapse
|
8
|
Nutraceutical Boom in Cancer: Inside the Labyrinth of Reactive Oxygen Species. Int J Mol Sci 2020; 21:ijms21061936. [PMID: 32178382 PMCID: PMC7139678 DOI: 10.3390/ijms21061936] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023] Open
Abstract
In recent years, epidemiological studies have shown that food is a very powerful means for maintaining a state of well-being and for health prevention. Many degenerative, autoimmune and neoplastic diseases are related to nutrition and the nutrient-organism interaction could define the balance between health and disease. Nutrients and dietary components influence epigenetic phenomena and modify drugs response; therefore, these food-host interactions can influence the individual predisposition to disease and its potential therapeutic response. Do nutraceuticals have positive or negative effects during chemotherapy? The use of nutraceutical supplements in cancer patients is a controversial debate without a definitive conclusion to date. During cancer treatment, patients take nutraceuticals to alleviate drug toxicity and improve long-term results. Some nutraceuticals may potentiate the effect of cytotoxic chemotherapy by inducing cell growth arrest, cell differentiation, and alteration of the redox state of cells, but in some cases, high levels of them may interfere with the effectiveness of chemotherapy, making cancer cells less reactive to chemotherapy. In this review, we highlighted the emerging opinions and data on the pros and cons on the use of nutraceutical supplements during chemotherapy.
Collapse
|
9
|
Nitta Y, Ito H, Komori H, Ueno H, Takeshima D, Ito M, Sakaue M, Kikuzaki H. The ellagitannin trimer rugosin G inhibits recombinant human histidine decarboxylase. Biosci Biotechnol Biochem 2019; 83:1315-1318. [PMID: 30995171 DOI: 10.1080/09168451.2019.1606695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Rugosin G, an ellagitannin trimer, was isolated from the water-soluble fraction of red rose petals, and its inhibitory activity against recombinant human histidine decarboxylase was investigated. Rugosin G showed potent inhibition compared to ellagitannin monomers and a dimer with macrocyclic structure (oenothein B), suggesting the potent inhibition of rugosin G was attributed to its linear oligomeric conformation. Abbreviations: HDC, histidine decarboxylase; Me2CO, acetone; EtOAc, ethyl acetate.
Collapse
Affiliation(s)
- Yoko Nitta
- a Department of Nutritional Science, Faculty of Health and Welfare Science , Okayama Prefectural University , Soja-shi, Okayama , Japan
| | - Hideyuki Ito
- a Department of Nutritional Science, Faculty of Health and Welfare Science , Okayama Prefectural University , Soja-shi, Okayama , Japan
| | - Hirohumi Komori
- b Faculty of Education , Kagawa University , Takamatsu, Kagawa , Japan
| | - Hiroshi Ueno
- c Laboratory of Applied Microbiology & Biochemistry , Ryukoku University , Ohtsu, Shiga , Japan
| | - Daiki Takeshima
- a Department of Nutritional Science, Faculty of Health and Welfare Science , Okayama Prefectural University , Soja-shi, Okayama , Japan
| | - Mikiko Ito
- d Graduate School of Human Science and Environment , University of Hyogo , Himeji, Hyogo , Japan
| | - Motoyoshi Sakaue
- d Graduate School of Human Science and Environment , University of Hyogo , Himeji, Hyogo , Japan
| | - Hiroe Kikuzaki
- e Department of Food Science and Nutrition , Nara Women's University , Kitauoyanishi-machi, Nara , Japan
| |
Collapse
|
10
|
Lee JY, Kim YG, Her JY, Kim MK, Lee KG. Reduction of biogenic amine contents in fermented soybean paste using food additives. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Basile T, Alba V, Suriano S, Savino M, Tarricone L. Effects of ageing on stilbenes and biogenic amines in red grape winemaking with stem contact maceration. J FOOD PROCESS PRES 2018. [DOI: 10.1111/jfpp.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Teodora Basile
- Consiglio per la Ricerca in Agricoltura e L'Analisi dell'Economia Agraria - Unità di Ricerca per l'Uva da Tavola e la Vitivinicoltura in Ambiente Mediterraneo; Via Casamassima 148, 70010 Turi Italy
| | - Vittorio Alba
- Consiglio per la Ricerca in Agricoltura e L'Analisi dell'Economia Agraria - Unità di Ricerca per l'Uva da Tavola e la Vitivinicoltura in Ambiente Mediterraneo; Via Casamassima 148, 70010 Turi Italy
| | - Serafino Suriano
- Consiglio per la Ricerca in Agricoltura e L'Analisi dell'Economia Agraria - Unità di Ricerca per l'Uva da Tavola e la Vitivinicoltura in Ambiente Mediterraneo; Via Casamassima 148, 70010 Turi Italy
| | - Michele Savino
- Consiglio per la Ricerca in Agricoltura e L'Analisi dell'Economia Agraria - Unità di Ricerca per l'Uva da Tavola e la Vitivinicoltura in Ambiente Mediterraneo; Via Casamassima 148, 70010 Turi Italy
| | - Luigi Tarricone
- Consiglio per la Ricerca in Agricoltura e L'Analisi dell'Economia Agraria - Unità di Ricerca per l'Uva da Tavola e la Vitivinicoltura in Ambiente Mediterraneo; Via Casamassima 148, 70010 Turi Italy
| |
Collapse
|
12
|
Valorisation of softwood bark through extraction of utilizable chemicals. A review. Biotechnol Adv 2017; 35:726-750. [PMID: 28739505 DOI: 10.1016/j.biotechadv.2017.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 01/31/2023]
Abstract
Softwood bark is an important source for producing chemicals and materials as well as bioenergy. Extraction is regarded as a key technology for obtaining chemicals in general, and valorizing bark as a source of such chemicals in particular. In this paper, properties of 237 compounds identified in various studies dealing with extraction of softwood bark were described. Finally, some challenges and perspectives on the production of chemicals from bark are discussed.
Collapse
|
13
|
Nitta Y, Yasukata F, Kitamoto N, Ito M, Sakaue M, Kikuzaki H, Ueno H. Inhibition of Morganella morganii Histidine Decarboxylase Activity and Histamine Accumulation in Mackerel Muscle Derived from Filipendula ulumaria Extracts. J Food Prot 2016; 79:463-7. [PMID: 26939657 DOI: 10.4315/0362-028x.jfp-15-313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Filipendula ulmaria, also known as meadowsweet, is an herb; its extract was examined for the prevention of histamine production, primarily that caused by contaminated fish. The efficacy of meadowsweet was assessed using two parameters: inhibition of Morganella morganii histidine decarboxylase (HDC) and inhibition of histamine accumulation in mackerel. Ellagitannins from F. ulmaria (rugosin D, rugosin A methyl ester, tellimagrandin II, and rugosin A) were previously shown to be potent inhibitors of human HDC; and in the present work, these compounds inhibited M. morganii HDC, with half maximal inhibitory concentration values of 1.5, 4.4, 6.1, and 6.8 μM, respectively. Application of the extracts (at 2 wt%) to mackerel meat yielded significantly decreased histamine accumulation compared with treatment with phosphate-buffered saline as a control. Hence, F. ulmaria exhibits inhibitory activity against bacterial HDC and might be effective for preventing food poisoning caused by histamine.
Collapse
Affiliation(s)
- Yoko Nitta
- Department of Nutritional Science, Okayama Prefectural University, Okayama 719-1197, Japan.
| | - Fumiko Yasukata
- School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Noritoshi Kitamoto
- School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Mikiko Ito
- School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Motoyoshi Sakaue
- School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Hiroe Kikuzaki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630-8506, Japan
| | - Hiroshi Ueno
- Laboratory of Applied Microbiology and Biochemistry, School of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| |
Collapse
|
14
|
Inami Y, Matsui Y, Hoshino T, Murayama C, Norimoto H. Inhibitory activity of the flower buds of Lonicera japonica Thunb. against histamine production and L-histidine decarboxylase in human keratinocytes. Molecules 2014; 19:8212-9. [PMID: 24941343 PMCID: PMC6271925 DOI: 10.3390/molecules19068212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 12/15/2022] Open
Abstract
In previous studies we found that anionic surfactants such as sodium laurate (SL) and/or sodium dodecylsulfate (SDS) exert actions on epidermal keratinocytes rather than mast cells to give rise of histamine production and skin itching through increasing the expression of the 53-kDa active form of L-histidine decarboxylase (HDC). In addition, with treatment of SL in a three-dimensional human keratinocyte culture, increases in both the 53-kDa HDC and histamine production are detected and thus this culture assay is applied to screen anti-itching materials from natural resources. In this study, the inhibitory activity of "Kin-gin-ka" (flower buds of Lonicera japonica Thunb., FLJ) against histamine production and expression of the active form of HDC were examined in this culture assay. FLJ is a well-known traditional Chinese medicine, being used to treat fevers, coughs and some infectious diseases. The result showed both FLJ and chlorogenic acid had inhibitory activities against the expression of 53-kDa HDC and histamine production. However, chlorogenic acid showed a weaker effect on histamine production than that of FLJ, suggesting that other chemical constituents besides chlorogenic acid could contribute to the inhibitory activities. Thus, a further chemical study of FLJ is now under investigation.
Collapse
Affiliation(s)
- Yoshihiro Inami
- Fundamental Research Laboratories, Hoyu Co., Ltd., Roboku 1-12, Nagakute City Aichi 480-1136, Japan.
| | - Yuko Matsui
- Fundamental Research Laboratories, Hoyu Co., Ltd., Roboku 1-12, Nagakute City Aichi 480-1136, Japan.
| | - Tomoko Hoshino
- Fundamental Research Laboratories, Hoyu Co., Ltd., Roboku 1-12, Nagakute City Aichi 480-1136, Japan.
| | - Chiaki Murayama
- Kampo Research Laboratories, Kracie Pharma., Ltd., Kanebo machi 3-1, Takaoka City Toyama 933-0856, Japan.
| | - Hisayoshi Norimoto
- Kampo Research Laboratories, Kracie Pharma., Ltd., Kanebo machi 3-1, Takaoka City Toyama 933-0856, Japan.
| |
Collapse
|
15
|
Pagotto RM, Pereyra EN, Monzón C, Mondillo C, Pignataro OP. Histamine inhibits adrenocortical cell proliferation but does not affect steroidogenesis. J Endocrinol 2014; 221:15-28. [PMID: 24424290 DOI: 10.1530/joe-13-0433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.
Collapse
Affiliation(s)
- Romina Maria Pagotto
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine, National Research Council (IByME-CONICET), Vuelta de Obligado 2490, CP 1428 Buenos Aires, Argentina Department of Biological Chemistry, School of Sciences, University of Buenos Aires (UBA), CP 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
16
|
Aminooxy analog of histamine is an efficient inhibitor of mammalian l-histidine decarboxylase: combined in silico and experimental evidence. Amino Acids 2013; 46:621-31. [DOI: 10.1007/s00726-013-1589-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022]
|
17
|
Tassoni A, Tango N, Ferri M. Comparison of biogenic amine and polyphenol profiles of grape berries and wines obtained following conventional, organic and biodynamic agricultural and oenological practices. Food Chem 2013; 139:405-13. [DOI: 10.1016/j.foodchem.2013.01.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/22/2012] [Accepted: 01/15/2013] [Indexed: 12/24/2022]
|
18
|
Pagotto RM, Monzón C, Moreno MB, Pignataro OP, Mondillo C. Proliferative effect of histamine on MA-10 Leydig tumor cells mediated through HRH2 activation, transient elevation in cAMP production, and increased extracellular signal-regulated kinase phosphorylation levels. Biol Reprod 2012; 87:150. [PMID: 23077168 DOI: 10.1095/biolreprod.112.102905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mast cells (MC) occur normally in the testis with a species-specific distribution, yet their precise role remains unclear. Testicular MC express histidine decarboxylase (HDC), the unique enzyme responsible for histamine (HA) generation. Evidence to date supports a role for HA as a local regulator of steroidogenesis via functional H₁ and H₂ receptor subtypes (HRH1 and HRH2, respectively) present in Leydig cells. Given that HA is a well-known modulator of physiological and pathological proliferation in many different cell types, we aimed in the present study to evaluate whether HA might contribute to the regulation of Leydig cell number as well as to the control of androgen production. Herein, we demonstrate, to our knowledge for the first time, that MA-10 Leydig tumor cells, but not normal immature Leydig cells (ILC), exhibit a proliferative response upon stimulation with HA that involves HRH2 activation, transient elevation of cAMP levels, and increased extracellular signal-regulated kinase (ERK) phosphorylation. Our results also reveal that MA-10 cells show significantly heightened HDC expression compared to normal ILC or whole-testicular lysate and that inhibition of HDC activity decreases MA-10 cell proliferation, suggesting a possible correlation between autocrine overproduction of HA and abnormally increased proliferation in Leydig cells. The facts that germ cells are also both source and target of HA and that multiple testicular cells are susceptible to HA action underline the importance of the present study, which we hope will serve as a first step for further research into regulation of non-MC-related HDC expression within the testis and its significance for testicular function.
Collapse
Affiliation(s)
- Romina María Pagotto
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine, National Research Council (IByME-CONICET), Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
19
|
Nitta Y, Kikuzaki H, Azuma T, Ye Y, Sakaue M, Higuchi Y, Komori H, Ueno H. Inhibitory activity of Filipendula ulmaria constituents on recombinant human histidine decarboxylase. Food Chem 2012; 138:1551-6. [PMID: 23411280 DOI: 10.1016/j.foodchem.2012.10.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 09/19/2012] [Accepted: 10/01/2012] [Indexed: 11/28/2022]
Abstract
Histidine decarboxylase (HDC) catalyses the formation of histamine, a bioactive amine. Agents that control HDC activity are beneficial for treating histamine-mediated symptoms, such as allergies and stomach ulceration. We searched for inhibitors of HDC from the ethyl acetate extract of the petal of Filipendula ulmaria, also called meadowsweet. Rugosin D, rugosin A, rugosin A methyl ester (a novel compound), and tellimagrandin II were the main components; these 4 ellagitannins exhibited a non-competitive type of inhibition, with K(i) values of approximately 0.35-1 μM. These K(i) values are nearly equal to that of histidine methyl ester (K(i)=0.46 μM), an existing substrate analogue inhibitor. Our results show that food products contain potent HDC inhibitors and that these active food constituents might be useful for designing clinically available HDC inhibitors.
Collapse
Affiliation(s)
- Yoko Nitta
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike honmachi, Himeji, Hyogo 670-0092, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Komori H, Nitta Y, Ueno H, Higuchi Y. Structural study reveals that Ser-354 determines substrate specificity on human histidine decarboxylase. J Biol Chem 2012; 287:29175-83. [PMID: 22767596 DOI: 10.1074/jbc.m112.381897] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is an important chemical mediator for a wide variety of physiological reactions. L-histidine decarboxylase (HDC) is the primary enzyme responsible for histamine synthesis and produces histamine from histidine in a one-step reaction. In this study, we determined the crystal structure of human HDC (hHDC) complexed with the inhibitor histidine methyl ester. This structure shows the detailed features of the pyridoxal-5'-phosphate inhibitor adduct (external aldimine) at the active site of HDC. Moreover, a comparison of the structures of hHDC and aromatic L-amino acid (L-DOPA) decarboxylase showed that Ser-354 was a key residue for substrate specificity. The S354G mutation at the active site enlarged the size of the hHDC substrate-binding pocket and resulted in a decreased affinity for histidine, but an acquired ability to bind and act on L-DOPA as a substrate. These data provide insight into the molecular basis of substrate recognition among the group II pyridoxal-5'-phosphate-dependent decarboxylases.
Collapse
Affiliation(s)
- Hirofumi Komori
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | |
Collapse
|
21
|
Kamii E, Terada G, Akiyama J, Isshiki K. [Inhibitory effect of essential oils, food additives, peracetic acid and detergents on bacterial histidine decarboxylase]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2011; 52:271-5. [PMID: 22200744 DOI: 10.3358/shokueishi.52.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study is to examine whether various essential oils, food additives, peracetic acid and detergents inhibit bacterial histidine decarboxylase. Crude extract of Morganella morganii NBRC3848 was prepared and incubated with various agents. Histidine decarboxylase activity was significantly inhibited (p<0.05) by 26 of 45 compounds tested. Among the 26 agents, sodium hypochlorite completely decomposed both histidine and histamine, while peracetic acid caused slight decomposition. Histidine and histamine were stable in the presence of the other 24 agents. These results indicated that 25 of the agents examined were inhibitors of histidine decarboxylase.
Collapse
Affiliation(s)
- Eri Kamii
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | | | | | |
Collapse
|
22
|
Melgarejo E, Medina MA, Sánchez-Jiménez F, Urdiales JL. Targeting of histamine producing cells by EGCG: a green dart against inflammation? J Physiol Biochem 2010; 66:265-70. [PMID: 20652470 DOI: 10.1007/s13105-010-0033-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 06/30/2010] [Indexed: 12/13/2022]
Abstract
The human body is made of some 250 different cell types. From them, only a small subset of cell types is able to produce histamine. They include some neurons, enterochromaffin-like cells, gastrin-containing cells, mast cells, basophils, and monocytes/macrophages, among others. In spite of the reduced number of these histamine-producing cell types, they are involved in very different physiological processes. Their deregulation is related with many highly prevalent, as well as emergent and rare diseases, mainly those described as inflammation-dependent pathologies, including mastocytosis, basophilic leukemia, gastric ulcer, Crohn disease, and other inflammatory bowel diseases. Furthermore, oncogenic transformation switches some non-histamine-producing cells to a histamine producing phenotype. This is the case of melanoma, small cell lung carcinoma, and several types of neuroendocrine tumors. The bioactive compound epigallocatechin-3-gallate (EGCG), a major component of green tea, has been shown to target histamine-producing cells producing great alterations in their behavior, with relevant effects on their proliferative potential, as well as their adhesion, migration, and invasion potentials. In fact, EGCG has been shown to have potent anti-inflammatory, anti-tumoral, and anti-angiogenic effects and to be a potent inhibitor of the histamine-producing enzyme, histidine decarboxylase. Herein, we review the many specific effects of EGCG on concrete molecular targets of histamine-producing cells and discuss the relevance of these data to support the potential therapeutic interest of this compound to treat inflammation-dependent diseases.
Collapse
Affiliation(s)
- Esther Melgarejo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga and CIBER de Enfermedades Raras (CIBERER), Málaga, Spain
| | | | | | | |
Collapse
|
23
|
Melgarejo E, Urdiales JL, Sánchez-Jiménez F, Medina MÁ. Targeting polyamines and biogenic amines by green tea epigallocatechin-3-gallate. Amino Acids 2009; 38:519-23. [DOI: 10.1007/s00726-009-0411-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/06/2009] [Indexed: 12/27/2022]
|
24
|
Moya-García AA, Pino-Ángeles A, Gil-Redondo R, Morreale A, Sánchez-Jiménez F. Structural features of mammalian histidine decarboxylase reveal the basis for specific inhibition. Br J Pharmacol 2009; 157:4-13. [PMID: 19413567 PMCID: PMC2697795 DOI: 10.1111/j.1476-5381.2009.00219.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 01/29/2009] [Indexed: 12/17/2022] Open
Abstract
For a long time the structural and molecular features of mammalian histidine decarboxylase (EC 4.1.1.22), the enzyme that produces histamine, have evaded characterization. We overcome the experimental problems for the study of this enzyme by using a computer-based modelling and simulation approach, and have now the conditions to use histidine decarboxylase as a target in histamine pharmacology. In this review, we present the recent (last 5 years) advances in the structure-function relationship of histidine decarboxylase and the strategy for the discovery of new drugs.
Collapse
Affiliation(s)
- AA Moya-García
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de MálagaCampus de Teatinos, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain
| | - A Pino-Ángeles
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de MálagaCampus de Teatinos, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain
| | - R Gil-Redondo
- Unidad de Bioinformática, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1Campus de Cantoblanco, Madrid, Spain
| | - A Morreale
- Unidad de Bioinformática, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1Campus de Cantoblanco, Madrid, Spain
| | - F Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de MálagaCampus de Teatinos, Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER)Valencia, Spain
| |
Collapse
|
25
|
Nitta Y, Kikuzaki H, Ueno H. Inhibitory activity of Pimenta dioica extracts and constituents on recombinant human histidine decarboxylase. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.07.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem Biophys 2009; 53:75-100. [DOI: 10.1007/s12013-009-9043-x] [Citation(s) in RCA: 633] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Perron NR, Hodges JN, Jenkins M, Brumaghim JL. Predicting How Polyphenol Antioxidants Prevent DNA Damage by Binding to Iron. Inorg Chem 2008; 47:6153-61. [DOI: 10.1021/ic7022727] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|