1
|
Gao Y, Liu W, Yan Q, Li C, Gu M, Bi S, Zheng W, Zhu J, Song L, Yu R. Isolation and characterization of phosphoglycerate kinase and creatine kinase from bighead carp (Aristichthys nobilis): Potential sources for antitumor agents. Drug Discov Ther 2025; 19:58-67. [PMID: 40010733 DOI: 10.5582/ddt.2025.01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bighead carp (Aristichthys nobilis) has garnered significant attention due to its potential health benefits, yet its bioactive protein components remain largely unexplored. In this study, two proteins S3 and Z1 were isolated from Aristichthys nobilis using ammonium sulfate precipitation and serial column chromatography guided by their in vitro antitumor activity. Both proteins were found to be homogeneous in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with a purity exceeding 95% as confirmed by reverse-phase high performance liquid chromatography (RP-HPLC). Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis revealed their precise molecular weights to be 44.335 kDa for S3 and 43.028 kDa for Z1. Their amino acid sequences were elucidated through tandem mass spectroscopy and transcriptome unigene analysis, identifying S3 as phosphoglycerate kinase and Z1 as creatine kinase. Furthermore, secondary structure was measured by circular dichroism and three-dimensional structure was predicted by modeling software. The antitumor potential of S3 was evaluated by an in vitro assay, yielding an IC50 value of 26.3 ± 2.9 μM against the HT-29 cell line. Z1 demonstrated antiproliferative activity in vitro with IC50 values of 21.8 ± 1.4, 22.3 ± 2.1, and 22.3 ± 2.5 μM against HT-29, HeLa, and HepG2 cell lines, respectively. Notably, Z1 was found to enhance glucose metabolism and significantly increase the production of lactic acid and CO2 in tumor cells. These findings suggest that bighead carp (A. nobilis) could serve as a promising source for both antitumor agents and functional food ingredients.
Collapse
Affiliation(s)
- Yue Gao
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, Guangdong, China
| | - Wanying Liu
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Qing Yan
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Chunlei Li
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, Guangdong, China
- Department of Pharmacy, Qilu Hospital, Cheeloo School of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengke Gu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sixue Bi
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, Guangdong, China
| | - Weiming Zheng
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Jianhua Zhu
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, Guangdong, China
- Department of Natural Product Chemistry, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Bao X, Zhang Y, Wang L, Dai Z, Zhu Y, Huo M, Li R, Hu Y, Shen Q, Xue Y. Machine learning discovery of novel antihypertensive peptides from highland barley protein inhibiting angiotensin I-converting enzyme (ACE). Food Res Int 2025; 202:115689. [PMID: 39967093 DOI: 10.1016/j.foodres.2025.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Hypertension is a major global health concern, and there is a need for new antihypertensive agents derived from natural sources. This study aims to identify novel angiotensin I-converting enzyme (ACE) inhibitors from bioactive peptides derived from food sources, particularly highland barley proteins, addressing the gap in effective natural ACE inhibitors. This research employs a machine learning-based pipeline combined with peptidomics to screen for ACE-inhibitory peptides, Gradient Boosted Decision Trees (GBDT) with the best performance among four tested models was used to predict the ACE-inhibitory capacity of peptides derived from papain-hydrolyzed highland barley protein. The selected peptides were validated through computer simulations and in vitro experiments, with FPRPFL identified as the most potent ACE-inhibitor (IC50 = 1.18 μM). Enzyme inhibition kinetics and digestion stability simulations were used to investigate its inhibition mode and stability. The binding mode and mechanism of action of FPRPFL with ACE were further analyzed using circular dichroism, molecular docking and molecular dynamics simulations. Network pharmacology revealed its multi-target and multi-pathway antihypertensive properties. The integration of machine learning and in vitro experiments enables accurate bioactive peptides identification and comprehensive their functionality analysis, establishing a valuable pipeline for elucidating peptide mechanisms and laying a solid foundation for industrial-scale production of natural ACE-inhibitors.
Collapse
Affiliation(s)
- Xin Bao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liyang Wang
- School of Clinical Medicine, Tsinghua University, Beijing 100084, PR China
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiqing Zhu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Mengyao Huo
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Rong Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Sichuan Chengdu, 610106, PR China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, PR China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, PR China.
| |
Collapse
|
3
|
Bauer M, Glowacka M, Kamysz W, Kleczkowska P. Marine Peptides: Potential Basic Structures for the Development of Hybrid Compounds as Multitarget Therapeutics for the Treatment of Multifactorial Diseases. Int J Mol Sci 2024; 25:12601. [PMID: 39684313 PMCID: PMC11641501 DOI: 10.3390/ijms252312601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Marine-derived peptides display potent antihypertensive, antioxidant, analgesic and antimicrobial biological effects. Some of them have also been found to have anticancer activity via various mechanisms differing from those of continental organisms. This diversity of properties-together with the peptides' efficacy, which has been confirmed in several in vitro and in vivo studies-make these compounds attractive as functional ingredients in pharmacy, especially in regard to multitarget drugs known as hybrids. Given the possibilities offered by chimeric structures, it is expected that a hybridization strategy based on a marine-derived compound could result in a long-awaited success in the development of new effective compounds to combat a range of complex diseases. However, despite the fact that the biological activity of such new hybrids may exceed that of their parent compounds, there is still an urgent need to carefully determine their potential off-targets and thus possible clinically important side effects. Given the above, the aim of this paper is to provide information on compounds of marine origin with peptide structures and to verify the occurrence and usage of hybrid compounds built from these structures. Furthermore, the authors believe that information presented here will serve to increase public awareness of the new opportunities arising from the combination of hybridization strategies with marine molecules with known structures and biological properties, thereby accelerating the development of effective drug candidates.
Collapse
Affiliation(s)
- Marta Bauer
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Magdalena Glowacka
- Institute of Psychology and Human Sciences, WSEI Academy, 20-209 Lublin, Poland;
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland;
| | - Patrycja Kleczkowska
- Institute of Psychology and Human Sciences, WSEI Academy, 20-209 Lublin, Poland;
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
| |
Collapse
|
4
|
Du J, Xiao M, Sudo N, Liu Q. Bioactive peptides of marine organisms: Roles in the reduction and control of cardiovascular diseases. Food Sci Nutr 2024; 12:5271-5284. [PMID: 39139935 PMCID: PMC11317662 DOI: 10.1002/fsn3.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 08/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) affect the quality of life or are fatal in the worst cases, resulting in a significant economic and social burden. Therefore, there is an urgent need to invent functional products or drugs for improving patient health and alleviating and controlling these diseases. Marine bioactive peptides reduce and control CVDs. Many of the predisposing factors triggering CVDs can be alleviated by consuming functional foods containing marine biopeptides. Therefore, improving CVD incidence through the use of effective biopeptide foods from marine sources has attracted increasing interest and attention. This review reports information on bioactive peptides derived from various marine organisms, focusing on the process of the separation, purification, and identification of biological peptides, biological characteristics, and functional food for promoting cardiovascular health. Increasing evidence shows that the bioactivity and safety of marine peptides significantly impact their storage, purification, and processing. It is feasible to develop further strategies involving functional foods to treat CVDs through effective safety testing methods. Future work should focus on producing high-quality marine peptides and applying them in the food and drug industry.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental EngineeringHangzhou Dianzi UniversityHangzhouChina
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Miao Xiao
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Naomi Sudo
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
| | - Qinghua Liu
- Suzhou Health‐originated Bio‐technology, Ltd.SuzhouChina
- Wisdom Lake Academy of PharmacyXi'an Jiaotong‐Liverpool UniversitySuzhouChina
| |
Collapse
|
5
|
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar Drugs 2024; 22:210. [PMID: 38786601 PMCID: PMC11123485 DOI: 10.3390/md22050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ageing represents a main risk factor for several pathologies. Among them, cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and often require prolonged use of multiple drugs due to their chronic nature and the high proportion of co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical structures and biological properties, represent interesting therapeutic candidates to treat these age-related diseases. This review summarizes the current state of research on marine compounds for the treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs, highlighting the potential of marine compounds in the development of new therapies, together with the limitations in translating pre-clinical results into human application.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20126 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| |
Collapse
|
6
|
Chamorro F, Cassani L, Garcia-Oliveira P, Barral-Martinez M, Jorge AOS, Pereira AG, Otero P, Fraga-Corral M, P. P. Oliveira MB, Prieto MA. Health benefits of bluefin tuna consumption: ( Thunnus thynnus) as a case study. Front Nutr 2024; 11:1340121. [PMID: 38628271 PMCID: PMC11018964 DOI: 10.3389/fnut.2024.1340121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/21/2024] [Indexed: 04/19/2024] Open
Abstract
Consumers are increasingly interested in food products with high nutritional value and health benefits. For instance, fish consumption is linked with diverse positive health benefits and the prevention of certain widespread disorders, such as obesity, metabolic syndrome, or cardiovascular diseases. These benefits have been attributed to its excellent nutritional value (large amounts of high-quality fatty acids, proteins, vitamins, and minerals) and bioactive compounds, while being relatively low-caloric. Atlantic bluefin tuna (Thunnus tynnus) is one of the most consumed species worldwide, motivated by its good nutritional and organoleptic characteristics. Recently, some organizations have proposed limitations on its consumption due to the presence of contaminants, mainly heavy metals such as mercury. However, several studies have reported that most specimens hold lower levels of contaminants than the established limits and that their richness in selenium effectively limits the contaminants' bioaccessibility in the human body. Considering this situation, this study aims to provide baseline data about the nutritional composition and the latest evidence regarding the beneficial effects of Atlantic bluefin tuna consumption. A review of the risk-benefit ratio was also conducted to evaluate the safety of its consumption, considering the current suggested limitations to this species' consumption.
Collapse
Affiliation(s)
- F. Chamorro
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - L. Cassani
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - P. Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - M. Barral-Martinez
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - A. O. S. Jorge
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
- REQUIMTE/Serviço de Bromatologia, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - A. G. Pereira
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | - M. Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
| | | | - M. A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)-CITEXVI, Universidade de Vigo, Vigo, Spain
- LAQV@REQUIMTE, Department of Chemical Sciences, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Chamorro F, Otero P, Carpena M, Fraga-Corral M, Echave J, Seyyedi-Mansour S, Cassani L, Prieto MA. Health Benefits of Oily Fish: Illustrated with Blue Shark ( Prionace glauca), Shortfin Mako Shark ( Isurus oxyrinchus), and Swordfish ( Xiphias gladius). Nutrients 2023; 15:4919. [PMID: 38068777 PMCID: PMC10708079 DOI: 10.3390/nu15234919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Oily fish is a rich source of energy, proteins, essential amino acids, lipids, vitamins, and minerals. Among the macronutrients with the highest contribution are lipids, mainly long-chain omega 3 polyunsaturated fatty acids (ω-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Both EPA and DHA play a beneficial role in promoting health and preventing many diseases, including cardiovascular diseases, such as stroke and acute myocardial infarction. They also contribute to the prevention of neurological, metabolic, and immune-system-related diseases, as well as supporting body-weight control. Oily fish consumption is also important at different stages of human life, from conception to old age. For example, DHA plays an important role in brain and retina development during fetal development and in the first two years of life, as it positively influences neurodevelopment, such as visual acuity, and cognitive functions. In contrast with the possible health benefits of the intake of oily fish, the presence of certain chemical pollutants, for example, heavy metals, can be a risk for the health of consumers, mainly in sensitive population groups such as pregnant women and children under 2 years of age. The presence of these pollutants is influenced to a greater extent by fish species, their role in the trophic chain, and their size. However, various studies state that the benefits outweigh the risk of consuming certain species. This review will be focused on the health benefits of the intake of three oily fish species, namely blue shark (Prionace glauca), shortfin mako shark (Isurus oxyrinchus), and swordfish (Xiphias gladius).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA)—CITEXVI, Universidade de Vigo, 36310 Vigo, Spain; (F.C.); (P.O.); (M.C.); (M.F.-C.); (J.E.); (S.S.-M.); (L.C.)
| |
Collapse
|
8
|
Berlian G, Riani C, Kurniati NF, Rachmawati H. Peptide derived C. striata albumin as a natural angiotensin-converting enzyme inhibitor. Heliyon 2023; 9:e15958. [PMID: 37187901 PMCID: PMC10176048 DOI: 10.1016/j.heliyon.2023.e15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
As one of the most popular sources for fish albumin, Channa striata has been considered as a promising substitute for human albumin. However, scientific information regarding its genomic and proteomic is very limited, making its identification rather complicated. In this study, we aimed to isolate, characterize, and examine the bioactivity of protein and peptide derivatives of C. striata albumin. Fractionation of albumin from C. striata extract was conducted using Cohn Process and the yield was evaluated. The peptides were further produced by enzymatic hydrolysis. All these proteins were studied using tricine-SDS PAGE and tested for in vitro ACE inhibition. Dry weights of the Fraction-5, where the albumin was more abundant and purer, was 3.8 ± 2.1%. Based on tricine-SDS PAGE analysis, two bands of protein, e.g., approximately 10 and 13 kDa, were detected with highest intensity found in Fraction-5, which might be albumin of C. striata. An increasing trend of ACE inhibition by the fractions was observed, ranging from 7.09 to 22.99%. The highest ACEI activity was found in peptides from alcalase hydrolysis with molecular size <3 kDa (56.65 ± 2.32%, IC50 36.93 μg/mL). This value was also statistically significant compared with the non-hydrolyzed Fraction-5 and Parental Fraction, which were 23.48 ± 3.11% (P < 0.05) and 13.02 ± 0.68% (P < 0.01), respectively. Taken together, these findings suggest a promising potential of peptide-derived C. striata albumin for natural antihypertensive agents.
Collapse
Affiliation(s)
- Guntur Berlian
- Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung 40132, Indonesia
- Mega Medica Pharmaceuticals, Kalideres, Jakarta Barat 11840, Indonesia
| | - Catur Riani
- Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung 40132, Indonesia
| | - Neng Fisheri Kurniati
- Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung 40132, Indonesia
| | - Heni Rachmawati
- Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Ganesha 10, Bandung 40132, Indonesia
- Corresponding author. Department of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung 40132, Indonesia.
| |
Collapse
|
9
|
Ma M, Feng Y, Miao Y, Shen Q, Tang S, Dong J, Zhang JZH, Zhang L. Revealing the Sequence Characteristics and Molecular Mechanisms of ACE Inhibitory Peptides by Comprehensive Characterization of 160,000 Tetrapeptides. Foods 2023; 12:foods12081573. [PMID: 37107368 PMCID: PMC10137938 DOI: 10.3390/foods12081573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic diseases, such as hypertension, cause great harm to human health. Conventional drugs have promising therapeutic effects, but also cause significant side effects. Food-sourced angiotensin-converting enzyme (ACE) inhibitory peptides are an excellent therapeutic alternative to pharmaceuticals, as they have fewer side effects. However, there is no systematic and effective screening method for ACE inhibitory peptides, and the lack of understanding of the sequence characteristics and molecular mechanism of these inhibitory peptides poses a major obstacle to the development of ACE inhibitory peptides. Through systematically calculating the binding effects of 160,000 tetrapeptides with ACE by molecular docking, we found that peptides with Tyr, Phe, His, Arg, and especially Trp were the characteristic amino acids of ACE inhibitory peptides. The tetrapeptides of WWNW, WRQF, WFRV, YYWK, WWDW, and WWTY rank in the top 10 peptides exhibiting significantly high ACE inhibiting behaviors, with IC50 values between 19.98 ± 8.19 μM and 36.76 ± 1.32 μM. Salt bridges, π-π stacking, π-cations, and hydrogen bonds contributed to the high binding characteristics of the inhibitors and ACE. Introducing eight Trp into rabbit skeletal muscle protein (no Trp in wide sequence) endowed the protein with a more than 90% ACE inhibition rate, further suggesting that meat with a high content of Trp could have potential utility in hypertension regulation. This study provides a clear direction for the development and screening of ACE inhibitory peptides.
Collapse
Affiliation(s)
- Mingzhe Ma
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yinghui Feng
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yulu Miao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Qiang Shen
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuting Tang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
10
|
Purcell D, Packer MA, Hayes M. Identification of Bioactive Peptides from a Laminaria digitata Protein Hydrolysate Using In Silico and In Vitro Methods to Identify Angiotensin-1-Converting Enzyme (ACE-1) Inhibitory Peptides. Mar Drugs 2023; 21:90. [PMID: 36827131 PMCID: PMC9967564 DOI: 10.3390/md21020090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023] Open
Abstract
Bioactive peptides range in size from 2-30 amino acids and may be derived from any protein-containing biomass using hydrolysis, fermentation or high-pressure processing. Pro-peptides or cryptides result in shorter peptide sequences following digestion and may have enhanced bioactivity. Previously, we identified a protein hydrolysate generated from Laminaria digitata that inhibited ACE-1 in vitro and had an ACE-1 IC50 value of 590 µg/mL compared to an ACE-1 IC50 value of 500 µg/mL (~2.3 µM) observed for the anti-hypertensive drug Captopril©. A number of peptide sequences (130 in total) were identified using mass spectrometry from a 3 kDa permeate of this hydrolysate. Predicted bioactivities for these peptides were determined using an in silico strategy previously published by this group utilizing available databases including Expasy peptide cutter, BIOPEP and Peptide Ranker. Peptide sequences YIGNNPAKGGLF and IGNNPAKGGLF had Peptide Ranker scores of 0.81 and 0.80, respectively, and were chemically synthesized. Synthesized peptides were evaluated for ACE-1 inhibitory activity in vitro and were found to inhibit ACE-1 by 80 ± 8% and 91 ± 16%, respectively. The observed ACE-1 IC50 values for IGNNPAKGGLF and YIGNNPAKGGLF were determined as 174.4 µg/mL and 133.1 µg/mL. Both peptides produced sequences following simulated digestion with the potential to inhibit Dipeptidyl peptidase IV (DPP-IV).
Collapse
Affiliation(s)
- Diane Purcell
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
- Cawthron Institute, 98 Halifax Street, Nelson 7010, New Zealand
| | | | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, Dublin 15, D15 DY05 Dublin, Ireland
| |
Collapse
|
11
|
Novel Peptide Sequences with ACE-Inhibitory and Antioxidant Activities Derived from the Heads and Bones of Hybrid Groupers ( Epinephelus lanceolatus × Epinephelus fuscoguttatus). Foods 2022; 11:foods11243991. [PMID: 36553733 PMCID: PMC9777584 DOI: 10.3390/foods11243991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
The heads and bones of hybrid groupers are potential precursors for angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides. The aim of this study was to isolate the dual-action peptides from the Alcalase-treated head and bone hydrolysate of hybrid groupers followed by identification of the novel peptides. The stability of these peptides against stimulated in vitro gastrointestinal digestion (SGID) was also determined. Fraction HB-IV (less than 1 kDa) obtained from ultrafiltration showed the strongest ACE-inhibition ability (IC50: 0.28 mg/mL), which was comparable to the potency of the commercial supplement, PeptACE (IC50: 0.22 mg/mL). This fraction also demonstrated the highest hydroxyl radical scavenging and metal-chelating activities. However, further fractionation of HB-IV by a series of chromatography resulted in peptide fractions of reduced ACE-inhibitory and antioxidant activities. The hydroxyl radical scavenging and reduction potential of HB-IV were enhanced, whereas ACE-inhibitory and metal-chelating activities were reduced following SGID. A total of 145 peptide sequences were identified from HB-IV, of which 137 peptides were novel to the BIOPEP database. The results suggested that the bioactive peptides isolated from the heads and bones of hybrid groupers could be used as functional foods/ingredients with potential ACE-inhibitory and antioxidant effects.
Collapse
|
12
|
Purification and Identification of a Novel Angiotensin Converting Enzyme Inhibitory Peptide from the Enzymatic Hydrolysate of Lepidotrigla microptera. Foods 2022; 11:foods11131889. [PMID: 35804705 PMCID: PMC9265830 DOI: 10.3390/foods11131889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, Lepidotrigla microptera were hydrolyzed with four different proteolytic enzymes (Papain, neutrase, flavourzyme, and alcalase), and their distribution of molecular weights and ACE-inhibitory activity were tested. The alcalase hydrolysates showed the maximum ACE-inhibitory activity. A novel ACE-inhibitory peptide was isolated and purified from Lepidotrigla microptera protein hydrolysate (LMPH) using ultrafiltration, gel filtration chromatography, and preparative high performance liquid chromatography (prep-HPLC). The amino acid sequence of the purified peptide was identified as Phe-Leu-Thr-Ala-Gly-Leu-Leu-Asp (DLTAGLLE), and the IC50 value was 0.13 mg/mL. The ACE-inhibitory activity of DLTAGLLE was stable across a range of temperatures (<100 °C) and pH values (3.0−11.0) and retained after gastrointestinal digestion. DLTAGLLE was further identified as a noncompetitive inhibitor by Lineweaver−Burk plot. The molecular docking simulation showed that DLTAGLLE showed a high binding affinity with ACE sites by seven short hydrogen bonds. As the first reported antihypertensive peptide extracted from alcalase hydrolysate of Lepidotrigla microptera, DLTAGLLE has the potential to develop functional food or novel ACE-inhibitor drugs.
Collapse
|
13
|
Shukla P, Chopada K, Sakure A, Hati S. Current Trends and Applications of Food-derived Antihypertensive
Peptides for the Management of Cardiovascular Disease. Protein Pept Lett 2022; 29:408-428. [DOI: 10.2174/0929866529666220106100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Food derived Antihypertensive peptides is considered as a natural supplement for controlling the hypertension. Food protein not only serve as a macronutrient but also act as raw material for biosynthesis of physiologically active peptides. Food sources like milk and milk products, animal protein such as meat, chicken, fish, eggs and plant derived proteins from soy, rice, wheat, mushroom, pumpkins contain high amount of antihypertensive peptides. The food derived antihypertensive peptides has ability to supress the action of rennin and Angiotesin converting enzyme (ACE) which is mainly involved in regulation of blood pressure by RAS. The biosynthesis of endothelial nitric oxide synthase is also improved by ACE inhibitory peptides which increase the production of nitric oxide in vascular walls and encourage vasodilation. Interaction between the angiotensin II and its receptor is also inhibited by the peptides which help to reduce hypertension. This review will explore the novel sources and applications of food derived peptides for the management of hypertension.
Collapse
Affiliation(s)
- Pratik Shukla
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Amar Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand- 388110, Gujarat,
India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| |
Collapse
|
14
|
Xing L, Wang Z, Hao Y, Zhang W. Marine Products As a Promising Resource of Bioactive Peptides: Update of Extraction Strategies and Their Physiological Regulatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3081-3095. [PMID: 35235313 DOI: 10.1021/acs.jafc.1c07868] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine products are a rich source of nutritional components and play important roles in promoting human health. Fish, mollusks, shellfish, as well as seaweeds are the major components of marine products with high-quality proteins. During the last several decades, bioactive peptides from marine products have gained much attention due to their diverse biological properties including antioxidant, antihypertensive, antimicrobial, antidiabetic, immunoregulation, and antifatigue. The structural characteristics of marine bioactive peptides largely determine the differences in signaling pathways that can be involved, which is also an internal mechanism to exert various physiological regulatory activities. In addition, the marine bioactive peptides may be used as ingredients in food or nutritional supplements with the function of treating or alleviating chronic diseases. This review presents an update of marine bioactive peptides with the highlights on the novel producing technologies, the physiological effects, as well as their regulation mechanisms. Challenges and problems are also discussed in this review to provide some potential directions for future research.
Collapse
Affiliation(s)
- Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zixu Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuejing Hao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
15
|
Xie D, Du L, Lin H, Su E, Shen Y, Xie J, Wei D. In vitro-in silico screening strategy and mechanism of angiotensin I-converting enzyme inhibitory peptides from α-lactalbumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Xiang L, Qiu Z, Zhao R, Zheng Z, Qiao X. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Crit Rev Food Sci Nutr 2021; 63:1437-1463. [PMID: 34521280 DOI: 10.1080/10408398.2021.1964433] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Food-derived antihypertensive peptides have attracted increasing attention in functional foods for health promotion, due to their high biological activity, low toxicity and easy metabolism in the human body. Angiotensin converting enzyme (ACE) is a key enzyme that causes the increase in blood pressure in mammals. However, few reviews have summarized the current understanding of ACE inhibitory peptides and their knowledge gaps. This paper focuses on the food origins and production methods of ACE inhibitory peptides. Compared with conventional methods, the advanced technologies and emerging bioinformatics approaches have recently been applied for efficient and targeted release of ACE inhibitory peptides from food proteins. Furthermore, the transport and underlying mechanisms of ACE inhibitory peptides are emphatically described. Molecular modeling and the Michaelis-Menten equation can provide information on how ACE inhibitors function. Finally, we discuss the structure-activity relationships and other bio-functional properties of ACE inhibitory peptides. Molecular weight, hydrophobic amino acid residues, charge, amino acid composition and sequence (especially at the C-terminal and N-terminal) have a significant influence on ACE inhibitory activity. Some studies are required to increase productivity, improve bioavailability of peptides, evaluate their bio-accessibility and efficiency on reducing blood pressure to provide a reference for the development and application of health products and auxiliary treatment drugs.
Collapse
Affiliation(s)
- Lu Xiang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhichang Qiu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Renjie Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuguang Qiao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
17
|
Liu WY, Miyakawa T, Lu J, Hsieh YH, Gu R, Miyauchi Y, Katsuno K, Cai MY, Tanokura M. Isolation and characterization of oligopeptides with vascular disease suppression effects derived from wheat gluten. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3504-3513. [PMID: 34366467 PMCID: PMC8292472 DOI: 10.1007/s13197-021-05040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/13/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Wheat gluten was hydrolyzed with both alkaline protease and neutral protease to produce high-protein and low-wheat-weight oligopeptides (WOP), which was subjected to a multistage purification. Then, high performance liquid chromatography was applied to separate WOP. In order to identify WOP sequences, six major fractions were gathered for mass spectrometry. A total of 15 peptides were synthesized for further in vitro analyses of their antithrombotic activity, vasorelaxation activity, and cholesterol reducing activity. Two antithrombotic peptides (ILPR and ILR), three vasorelaxant peptides (VN, FPQ, and FR), and four cholesterol-lowering peptides (QRQ, ILPR, FPQ, and ILR) were identified. These active peptides in WOP were also quantified. These peptides are novel candidate peptides with vascular disease suppressing effects. The results indicate WOP as good protein sources for multifunctional peptides.
Collapse
Affiliation(s)
- Wen-Ying Liu
- College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
- Beijing Engineering Research Center of Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing, 100015 People’s Republic of China
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Jun Lu
- Beijing Engineering Research Center of Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing, 100015 People’s Republic of China
| | - Yun Hua Hsieh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Ruizeng Gu
- Beijing Engineering Research Center of Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing, 100015 People’s Republic of China
| | - Yumiko Miyauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Kana Katsuno
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Mu-Yi Cai
- Beijing Engineering Research Center of Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing, 100015 People’s Republic of China
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
18
|
Extraction of low molecular weight peptides from bovine bone using ultrasound-assisted double enzyme hydrolysis: Impact on the antioxidant activities of the extracted peptides. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111470] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Ding Q, Sheikh AR, Chen Q, Hu Y, Sun N, Su X, Luo L, Ma H, He R. Understanding the Mechanism for the Structure-Activity Relationship of Food-Derived ACEI Peptides. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1936005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qingzhi Ding
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Arooj Rehman Sheikh
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Qian Chen
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Yize Hu
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Nianzhen Sun
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Xiaodong Su
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
| | - Lin Luo
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- Department of Food Science and biological engineering , Jiangsu University, Zhenjiang, China
- Department of Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Undhad Trupti J, Das S, Solanki D, Kinariwala D, Hati S. Bioactivities and ACE-inhibitory peptides releasing potential of lactic acid bacteria in fermented soy milk. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00056-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
This study was designed to evaluate the bioactivities such as β-glucosidase activity, α-galactosidase activity, and the growth behavior of the Lactobacillus cultures in soy milk medium. Ten Lactobacillus cultures were considered in this study. L. fermentum (M2) and L. casei (NK9) were selected due to their better α-galactosidase, β-glucosidase activity and growth behavior in soy milk medium during fermentation. Further, soy milk fermented with M2 showed higher proteolytic activity (0.67 OD) and ACE-inhibitory (48.44%) than NK9 (proteolytic activity: 0.48 OD and ACE-inhibitory activity: 41.33%). Bioactive peptides produced during the fermentation of soy milk using the selected Lactobacillus cultures were also identified with potent ACE-inhibitory activity by MALDI-TOF spectrometry, and the identified ACE inhibitory peptide sequences from fermented soy milk were characterized using Biopep database.
Graphical abstract
Collapse
|
21
|
Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem 2021; 359:129852. [PMID: 33940471 DOI: 10.1016/j.foodchem.2021.129852] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The generation of biologically active fish protein hydrolysates (FPH) is a useful technique to produce value-added products with potential application in the functional food and nutraceutical industries. Fish muscle is an attractive substrate for the production of protein hydrolysates due to its rich protein content, containing 15-25% of total fish protein. This paper reviews the production of protein hydrolysates from fish muscle, most commonly via enzymatic hydrolysis, and their subsequent bioactivities including anti-obesity, immunomodulatory, antioxidant, angiotensin I-converting enzyme (ACE)-inhibitory, anti-microbial, and anti-cancer activities as measured by in vitro testing methods. Disease prevention with FPH potentially offers a safe and natural alternative to synthetic drugs. Small molecular weight (MW) FPHs generally exhibit favourable bioactivity than large MW fractions via enhanced absorption through the gastrointestinal tract. This review also discusses the relationship between amino acid (AA) composition and AA sequence of FPH and peptides and their exhibited in vitro bioactivity.
Collapse
|
22
|
Rauf A, Khalil AA, Khan M, Anwar S, Alamri A, Alqarni AM, Alghamdi A, Alshammari F, Rengasamy KRR, Wan C. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health? Crit Rev Food Sci Nutr 2021; 62:7072-7116. [PMID: 33840324 DOI: 10.1080/10408398.2021.1910482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adel Alghamdi
- Pharmaceutical Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Farhan Alshammari
- Department Of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
23
|
Yu Z, Kan R, Wu S, Guo H, Zhao W, Ding L, Zheng F, Liu J. Xanthine oxidase inhibitory peptides derived from tuna protein: virtual screening, inhibitory activity, and molecular mechanisms. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1349-1354. [PMID: 32820534 DOI: 10.1002/jsfa.10745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There has been growing interest in the use of xanthine oxidase (XO) as a therapeutic agent to prevent gout and hyperuricemia. In the present study, XO inhibitory peptides were identified from tuna protein by virtual screening, and molecular docking was used to elicit the interaction mechanism between XO and peptides. RESULTS A novel tetrapeptide, EEAK, exhibited high XO inhibitory activity with an IC50 of 173.00 ± 0.06 μM. Molecular docking analysis revealed that EEAK bound with the pivotal residues of XO's active sites (i.e., Glu802, Arg880, Glu1261) through two conventional hydrogen bond interactions, two attractive charge interactions, and one salt bridge. EEAK could also bind with the residues Phe649, Leu648, Lys771, Ser876, Phe914, and Thr1010 of XO. CONCLUSION This study suggested that conventional hydrogen bond interactions and electrostatic interactions play an important role in XO inhibition. The novel XO inhibitory peptide EEAK from tuna protein could be used as potential candidate for controlling gout and hyperuricemia. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Ruotong Kan
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China
| | - Sijia Wu
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China
| | - Hui Guo
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China
| | - Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou, P.R. China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China
| | - Fuping Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Jingbo Liu
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun, P.R. China
| |
Collapse
|
24
|
Festa M, Sansone C, Brunet C, Crocetta F, Di Paola L, Lombardo M, Bruno A, Noonan DM, Albini A. Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. Int J Mol Sci 2020; 21:E8364. [PMID: 33171852 PMCID: PMC7664667 DOI: 10.3390/ijms21218364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Growing interest in hypertension-one of the main factors characterizing the cardiometabolic syndrome (CMS)-and anti-hypertensive drugs raised from the emergence of a new coronavirus, SARS-CoV-2, responsible for the COVID19 pandemic. The virus SARS-CoV-2 employs the Angiotensin-converting enzyme 2 (ACE2), a component of the RAAS (Renin-Angiotensin-Aldosterone System) system, as a receptor for entry into the cells. Several classes of synthetic drugs are available for hypertension, rarely associated with severe or mild adverse effects. New natural compounds, such as peptides, might be useful to treat some hypertensive patients. The main feature of ACE inhibitory peptides is the location of the hydrophobic residue, usually Proline, at the C-terminus. Some already known bioactive peptides derived from marine resources have potential ACE inhibitory activity and can be considered therapeutic agents to treat hypertension. Peptides isolated from marine vertebrates, invertebrates, seaweeds, or sea microorganisms displayed important biological activities to treat hypertensive patients. Here, we reviewed the anti-hypertensive activities of bioactive molecules isolated/extracted from marine organisms and discussed the associated molecular mechanisms involved. We also examined ACE2 modulation in sight of SARS2-Cov infection prevention.
Collapse
Affiliation(s)
- Marco Festa
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| | - Clementina Sansone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (C.S.); (C.B.)
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (C.S.); (C.B.)
| | - Fabio Crocetta
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Luisa Di Paola
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | | | - Antonino Bruno
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| | - Douglas M. Noonan
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Adriana Albini
- IRCCS MultiMedica, 30138 Milan, Italy; (M.F.); (M.L); (D.M.N.)
| |
Collapse
|
25
|
Jeyachandran S, Kiyun P, Ihn‐Sil K, Baskaralingam V. Identification and characterization of bioactive pigment carotenoids from shrimps and their biofilm inhibition. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Park Kiyun
- Fisheries Science Institute Chonnam National University Yeosu South Korea
| | - Kwak Ihn‐Sil
- Fisheries Science Institute Chonnam National University Yeosu South Korea
- Faculty of Marine Technology Chonnam National University Chonnam South Korea
| | | |
Collapse
|
26
|
Liu WY, Miyakawa T, Lu J, Gu RZ, Hsieh YH, Miyauchi Y, Katsuno K, Cai MY, Tanokura M. Low-molecular-weight peptides with potential cardiovascular regulatory functions from Atlantic salmon skin. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractSalmon skin collagen peptides (SSCPs) have potential for improving physiological conditions such as early alcoholic liver injury, type 2 diabetes and hypertension. Here, we focused on thein vitroeffects of SSCPs on vascular function. For the production of SSCPs, alcalase and papain were used to hydrolyse the skin of Atlantic salmon (Salmo salarL.), and their separation was made by reverse-phase high performance liquid chromatography. There were 10 low-molecular-weight peptides newly identified by mass spectrometry. In addition to five peptides previously identified, a total of 15 peptides were applied to anin vitroanalysis of cholesterol-reducing, vasorelaxant and antithrombotic activities. The results showed that the SSCPs contained six cholesterol-lowering peptides (Ala-Pro, Leu-Gln, Asn-Val-Gly, Arg-Glu-Arg, Pro-His and Gly-Pro-Arg), two vasorelaxant peptides (Leu-Gln and Pro-His), and four antithrombotic peptides (Gly-Pro-Arg, Arg-Glu-Arg, Val-Asp-Gly-Lys and Val-Arg) as novel candidate peptides with beneficial effects on vascular function. These active peptides were also quantified. This study reveals that several peptides from salmon skin possess bifunctional properties.
Collapse
Affiliation(s)
- Wen-Ying Liu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing, 100015, People’s Republic of China
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jun Lu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing, 100015, People’s Republic of China
| | - Rui-Zeng Gu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing, 100015, People’s Republic of China
| | - Yun Hua Hsieh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yumiko Miyauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kana Katsuno
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Mu-Yi Cai
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co. Ltd., Beijing, 100015, People’s Republic of China
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
27
|
Pavlicevic M, Maestri E, Marmiroli M. Marine Bioactive Peptides-An Overview of Generation, Structure and Application with a Focus on Food Sources. Mar Drugs 2020; 18:E424. [PMID: 32823602 PMCID: PMC7460072 DOI: 10.3390/md18080424] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
The biggest obstacles in the application of marine peptides are two-fold, as in the case of non-marine plant and animal-derived bioactive peptides: elucidating correlation between the peptide structure and its effect and demonstrating its stability in vivo. The structures of marine bioactive peptides are highly variable and complex and dependent on the sources from which they are isolated. They can be cyclical, in the form of depsipeptides, and often contain secondary structures. Because of steric factors, marine-derived peptides can be resistant to proteolysis by gastrointestinal proteases, which presents an advantage over other peptide sources. Because of heterogeneity, amino acid sequences as well as preferred mechanisms of peptides showing specific bioactivities differ compared to their animal-derived counterparts. This review offers insights on the extreme diversity of bioactivities, effects, and structural features, analyzing 253 peptides, mainly from marine food sources. Similar to peptides in food of non-marine animal origin, a significant percentage (52.7%) of the examined sequences contain one or more proline residues, implying that proline might play a significant role in the stability of bioactive peptides. Additional problems with analyzing marine-derived bioactive peptides include their accessibility, extraction, and purification; this review considers the challenges and proposes possible solutions.
Collapse
Affiliation(s)
- Milica Pavlicevic
- Institute for Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, 11070 Belgrade, Serbia;
| | - Elena Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
- Consorzio Italbiotec, Via Fantoli 16/15, 20138 Milan, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, and SITEIA.PARMA, University of Parma, 42123 Parma, Italy;
| |
Collapse
|
28
|
Jin SK, Choi JS, Yim DG. Hydrolysis Conditions of Porcine Blood Proteins and Antimicrobial Effects of Their Hydrolysates. Food Sci Anim Resour 2020; 40:172-182. [PMID: 32161913 PMCID: PMC7057041 DOI: 10.5851/kosfa.2020.e2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 11/08/2022] Open
Abstract
In the present study, we determined the degree of hydrolysis (DH) of porcine
blood plasma proteins, albumin, and globulin hydrolyzed by six proteases
(alcalase, neutrase, flavourzyme, protamex, trypsin, and papain) for various
reaction times. Moreover, antimicrobial activities of hydrolysates against five
pathogenic microorganisms (Bacillus cereus,Staphylococcus aureus, Salmonella Typhimurium,
Escherichia coli, and Shigella flexneri)
were investigated. Alcalase, trypsin, and papain hydrolysates of the three
porcine blood proteins showed higher DH values than hydrolysates produced by the
other three proteases. DH of the three porcine blood proteins hydrolyzed by the
six proteases failed to increase after 2 h of hydrolysis. In antimicrobial
tests, hydrolysates (hydrolysis time of 2 h) showed antibacterial activity only
against B. cereus. Albumin hydrolysates showed higher
antimicrobial activity than globulin and plasma hydrolysates. Albumin
hydrolysates obtained with flavourzyme, protamex, and trypsin showed higher
antimicrobial activity than those obtained with the other three proteases.
Collapse
Affiliation(s)
- Sang Keun Jin
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Dong-Gyun Yim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
29
|
Spontaneous Hinge-Bending Motions of Angiotensin I Converting Enzyme: Role in Activation and Inhibition. Molecules 2020; 25:molecules25061288. [PMID: 32178362 PMCID: PMC7146279 DOI: 10.3390/molecules25061288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/28/2022] Open
Abstract
The inhibition of human angiotensin I converting enzyme (ACE) has been regarded as a promising approach for the treatment of hypertension. Despite research attempts over many years, our understanding the mechanisms of activation and inhibition of ACE is still far from complete. Here, we present results of all atom molecular dynamics simulations of ACE with and without ligands. Two types of inhibitors, competitive and mixed non-competitive, were used to model the ligand bound forms. In the absence of a ligand the simulation showed spontaneous large hinge-bending motions of multiple conversions between the closed and open states of ACE, while the ligand bound forms were stable in the closed state. Our simulation results imply that the equilibrium between pre-existing backbone conformations shifts in the presence of a ligand. The hinge-bending motion of ACE is considered as an essential to the enzyme function. A mechanistic model of activation and the inhibition may provide valuable information for novel inhibitors of ACE.
Collapse
|
30
|
Kheeree N, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A. ACE inhibitory peptides derived from de-fatted lemon basil seeds: optimization, purification, identification, structure–activity relationship and molecular docking analysis. Food Funct 2020; 11:8161-8178. [DOI: 10.1039/d0fo01240h] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The study determines optimized process conditions to maximize ACE inhibitory peptide production. The two novel hexa-peptides (LGRNLPPI and GPAGPAGL) from de-fatted lemon basil seeds (DLBS) was achieved.
Collapse
Affiliation(s)
- Norhameemee Kheeree
- Program in Biotechnology
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics
- Faculty of Tropical Medicine
- Mahidol University
- Bangkok 10400
- Thailand
| | | | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production
- Institute of Biotechnology and Genetic Engineering
- Chulalongkorn University
- Bangkok 10330
- Thailand
| |
Collapse
|
31
|
Fish and fish side streams are valuable sources of high-value components. FOOD QUALITY AND SAFETY 2019. [DOI: 10.1093/fqsafe/fyz024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
The current practice of fish processing generates increasing quantities of side streams and waste, such as skin, heads, frames, viscera, and fillet cut offs. These may account for up to 70% of the fish used in industrial processing. Low-value fish catches, and under-utilized fish species comprise another source of side streams. These side streams have been discarded in the environment leading to environmental problems or they have ended up as low commercial value products, such as feed for fur animals and aquaculture. However, several studies have shown that fish side streams contain valuable bioactive ingredients and fractions, such as fish oils, proteins and peptides, collagen, gelatin, enzymes, chitin, and minerals. These compounds and fractions may provide the opportunity to develop novel applications in health promoting foods, special feeds, nutraceuticals, pharmaceuticals, and cosmetic products. Better utilization of side streams and low-value fish would simultaneously improve both the environmental and ecological sustainability of production. This review summarizes the current knowledge on fish and fish side streams as sources of high-value components such as peptides with antimicrobial, antioxidative, antihypertensive, and antihyperglycemic properties, proteins such as fish collagen and gelatin, fish enzymes, fish oils and fatty acids, polysaccharides like glucosaminoglycans, chitin and chitosan, vitamin D, and minerals. Production technologies for recovering the high-value fractions and potential product applications are discussed. Furthermore, safety aspects related to the raw material, technologies, and fractions are considered.
Collapse
|
32
|
Abachi S, Bazinet L, Beaulieu L. Antihypertensive and Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Fish as Potential Cardioprotective Compounds. Mar Drugs 2019; 17:E613. [PMID: 31671730 PMCID: PMC6891548 DOI: 10.3390/md17110613] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
The term metabolic/cardiometabolic/insulin resistance syndrome could generally be defined as the co-occurrence of several risk factors inclusive of systemic arterial hypertension. Not only that organizations, such as the world health organization (WHO) have identified high blood pressure as one of the main risk factors of the cardiometabolic syndrome, but there is also a link between the occurrence of insulin resistance/impaired glucose tolerance and hypertension that would consequently lead to type-2 diabetes (T2D). Hypertension is medicated by various classes of synthetic drugs; however, severe or mild adverse effects have been repeatedly reported. To avoid and reduce these adverse effects, natural alternatives, such as bioactive peptides derived from different sources have drawn the attention of researchers. Among all types of biologically active peptides inclusive of marine-derived ones, this paper's focus would solely be on fish and fishery by-processes' extracted peptides and products. Isolation and fractionation processes of these products alongside their structural, compositional and digestion stability characteristics have likewise been briefly discussed to better address the structure-activity relationship, expanding the reader's knowledge on research and discovery trend of fish antihypertensive biopeptides. Furthermore, drug-likeness of selected biopeptides was predicted by Lipinski's rules to differentiate a drug-like biopeptide from nondrug-like one.
Collapse
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada.
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada.
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, QC G1V 0A6, Canada.
| |
Collapse
|
33
|
Kasiwut J, Youravong W, Sirinupong N. Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor. J Food Biochem 2019; 43:e13058. [PMID: 31608485 DOI: 10.1111/jfbc.13058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/01/2022]
Abstract
Angiotensin I-converting enzyme (ACE) inhibitory peptides were derived from tuna cooking juice (TCJ) hydrolysis by alcalase in the continuous enzymatic membrane reactor (cEMR) coupling with 1 kDa MWCO membrane. The permeated sample from cEMR for 510 min of hydrolysis was purified by size exclusion chromatography in Sephadex G-25 column. A fraction exhibited the highest ACE inhibitory activity was further separated by RP-HPLC, resulting two fractions showed highest ACE inhibitory activities. The molecular weight (MW) and amino acid sequences of peptides from both fractions were determined using LC-MS/MS. Two potential ACE inhibitory peptides were obtained and showed molecular weight of 959.46 and 1,141.29 Da. PRACTICAL APPLICATIONS: Tuna cooking juice (TCJ) usually was either used as protein source of feed meal or directly discharged to wastewater treatment system. However, it contains water-soluble proteins in a group of sarcoplasmic protein, which is small water-soluble proteins and easily hydrolyzed to small peptides. In this study, the active peptides, angiotensin I-converting enzyme inhibitory peptides (MW of 959.46 and 1,141.29 Da), obtained from TCJ hydrolysate and identified by LC-MS/MS would be a beneficial ingredient for nutraceuticals and functional food against hypertension.
Collapse
Affiliation(s)
- Jirawadee Kasiwut
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand.,Interdisciplinary Graduate School of Nutraceutical and Functional Food, Prince of Songkla University, Hat Yai, Thailand
| | - Wirote Youravong
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand.,Membrane Science and Technology Research Center, Prince of Songkla University, Hat Yai, Thailand
| | - Nualpun Sirinupong
- Interdisciplinary Graduate School of Nutraceutical and Functional Food, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
34
|
Saisavoey T, Sangtanoo P, Reamtong O, Karnchanatat A. Free radical scavenging and anti-inflammatory potential of a protein hydrolysate derived from salmon bones on RAW 264.7 macrophage cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5112-5121. [PMID: 30982967 DOI: 10.1002/jsfa.9755] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Salmon bones, a waste by-product from the salmon industry, were used as a protein hydrolysate source for the production of bioactive peptides. The aim of this work was to evaluate the potential antioxidant and anti-inflammatory properties of salmon bone protein hydrolysate (SBPH). RESULTS Salmon bones were hydrolyzed by separately using one of four proteases (Alcalase, Favourzyme, Neutrase and papain) at various concentrations (10, 25 and 50 mg mL-1 ), where the SBPH derived from 10 mg mL-1 papain hydrolysis exhibited the highest nitric oxide (NO) radical scavenging activity. After ultrafiltration, the MW < 0.65 kDa fraction showed the strongest NO inhibitory activity and was further fractionated by gel filtration chromatography (G1 and G2 fractions) and reverse-phase high-performance liquid chromatographic fractionation of the G1 fraction, from which the three main peaks (H1, H2 and H3) were found to have a marked NO-inhibitory activity and their peptide sequences were determined. Moreover, the G1 fraction was shown to inhibit both the lipopolysaccharide (LPS)-induced NO production and the LPS-induced inducible NO synthase , interleukin-6, tumor necrosis factor-α and induced NO production and the LPSCOX-2 mRNA levels in RAW 264.7 cells. CONCLUSIONS Salmon bones from the salmon fisheries and farming industry were utilized by enzymatic hydrolysis for the production of valuable peptides. The results of this study suggested that bioactive peptides derived from salmon bones would be alternative anti-inflammation materials in functional resources. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tanatorn Saisavoey
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, Thailand
| |
Collapse
|
35
|
Musa-Veloso K, Paulionis L, Pelipyagina T, Evans M. A Randomized, Double-Blind, Placebo-Controlled, Multicentre Trial of the Effects of a Shrimp Protein Hydrolysate on Blood Pressure. Int J Hypertens 2019; 2019:2345042. [PMID: 31467699 PMCID: PMC6699271 DOI: 10.1155/2019/2345042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/18/2019] [Indexed: 11/18/2022] Open
Abstract
In this randomized, double-blind, placebo-controlled, multicentre, parallel, 8-week study, the efficacy of a daily dose of 1200 mg of protein hydrolysate from Coldwater Shrimp (Pandalus borealis) on ambulatory and office blood pressure was investigated in 144 free-living adults with mild to moderate hypertension. The primary outcomes of the study were daytime ambulatory systolic blood pressure and office blood pressure. During the 8-week intervention period and in the intention-to-treat analysis (n=144), there were significant reductions in the group consuming the shrimp-derived protein hydrolysate relative to the placebo group in daytime ambulatory systolic blood pressure at 4 weeks (p=0.014) and at 8 weeks (p=0.002), and in office systolic blood pressure at 2 weeks (p=0.031) and 4 weeks (p=0.010), with a trend toward significance at 8 weeks (p=0.087). By 8 weeks, significant and favourable improvements in the group consuming the shrimp-derived protein hydrolysate relative to the placebo group were also observed for several secondary outcomes, including 24-hour ambulatory systolic and diastolic blood pressure, daytime ambulatory diastolic blood pressure, and daytime and 24-hour ambulatory mean arterial pressure. Also by Week 8, there was a statistically significant difference between groups in the distribution of subjects across National Institutes of Health-defined blood pressure categories (i.e., Normotensive, Prehypertensive, Stage 1 hypertension, and Stage 2 hypertension), with a more favourable distribution in the shrimp-derived protein hydrolysate group than in the placebo group (p=0.006). Based on exploratory analyses conducted only in participants in the shrimp-derived protein hydrolysate group, angiotensin II levels were significantly reduced relative to baseline. This study is registered at ClinicalTrials.gov NCT01974570.
Collapse
Affiliation(s)
- Kathy Musa-Veloso
- Food & Nutrition Group, Intertek Scientific & Regulatory Consultancy, 2233 Argentia Road, Suite 201, Mississauga, ON, Canada L5N 2X7
| | - Lina Paulionis
- Food & Nutrition Group, Intertek Scientific & Regulatory Consultancy, 2233 Argentia Road, Suite 201, Mississauga, ON, Canada L5N 2X7
| | | | - Mal Evans
- KGK Science Inc., 255 Queens Avenue, Suite 1440, London, ON, Canada N6A 5R8
| |
Collapse
|
36
|
Preparation and Identification of Novel Antihypertensive Peptides from the In Vitro Gastrointestinal Digestion of Marine Cobia Skin Hydrolysates. Nutrients 2019; 11:nu11061351. [PMID: 31208053 PMCID: PMC6628374 DOI: 10.3390/nu11061351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/10/2023] Open
Abstract
This research focuses on cobia skin hydrolysates and their antihypertensive effects via the inhibitory activities of angiotensin I-converting enzyme (ACE). Marine fish Cobia (Rachycentron canadum) skin was hydrolysed for 5 h using Protamex and Protease N to obtain the cobia skin protein hydrolysates PX-5 and PN-5, respectively. The soluble protein and peptide contents of the PX-5 were 612 and 270 mg/g, respectively, and for the PN-5, 531 and 400 mg/g, respectively. The IC50 of PX-5 and PN-5 on ACE was 0.221 and 0.291 mg/mL, respectively. Increasing the IC50 from 0.221 to 0.044 mg/mL by simulated gastrointestinal digestion (PX-5G) reduced the ACE-inhibitory capacity of PX-5. Using gel filtration chromatography, the PX-5G was fractioned into eight fractions. The molecular weight of the fifth fraction from PX-5G was between 630 and 450 Da, and the highest inhibitory efficiency ratio on ACE was 1552.4%/mg/mL. We identified four peptide sequences: Trp-Ala-Ala, Ala-Trp-Trp, Ile-Trp-Trp, and Trp-Leu, with IC50 values for ACE of 118.50, 9.40, 0.51, and 26.80 μM, respectively. At a dose of 600 mg PX-5 powder/kg body weight, in spontaneously hypertensive rats PX-5's antihypertensive effect significantly reduced systolic and diastolic blood pressure by 21.9 and 15.5 mm Hg, respectively, after 4 h of oral gavage.
Collapse
|
37
|
Venegas-Ortega MG, Flores-Gallegos AC, Martínez-Hernández JL, Aguilar CN, Nevárez-Moorillón GV. Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Compr Rev Food Sci Food Saf 2019; 18:1039-1051. [PMID: 33336997 DOI: 10.1111/1541-4337.12455] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/14/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022]
Abstract
Traditional fermented foods where lactic acid bacteria (LAB) are present have been associated with beneficial effects on human health, and some of those benefits are related to protein-derived products. Peptides produced by LAB have attracted the interest of food industries because of their diverse applications. These peptides include ribosomally produced (bacteriocins) and protein hydrolysates by-products (bioactive peptides), which can participate as natural preservatives and nutraceuticals, respectively. It is essential to understand the biochemical pathways and the effect of growth conditions for the production of bioactive peptides and bacteriocins by LAB, in order to suggest strategies for optimization. LAB is an important food-grade expression system that can be used in the simultaneous production of peptide-based products for the food, animal, cosmetic, and pharmaceutical industries. This review describes the multifunctional proteinaceous compounds generated by LAB metabolism and discusses a strategy to use a single-step production process, using an alternative protein-based media. This strategy will provide economic advantages in fermentation processes and will also provide an environmental alternative to industrial waste valorization. New technologies that can be used to improve production and bioactivity of LAB-derived peptides are also analyzed.
Collapse
Affiliation(s)
- María G Venegas-Ortega
- Research Group of Bioprocesses and Bioproducts, Dept. of Food Research, School of Chemistry, Univ. Autónoma de Coahuila, Saltillo, 25280, Mexico
| | - Adriana C Flores-Gallegos
- Research Group of Bioprocesses and Bioproducts, Dept. of Food Research, School of Chemistry, Univ. Autónoma de Coahuila, Saltillo, 25280, Mexico
| | - José L Martínez-Hernández
- Research Group of Bioprocesses and Bioproducts, Dept. of Food Research, School of Chemistry, Univ. Autónoma de Coahuila, Saltillo, 25280, Mexico
| | - Cristóbal N Aguilar
- Research Group of Bioprocesses and Bioproducts, Dept. of Food Research, School of Chemistry, Univ. Autónoma de Coahuila, Saltillo, 25280, Mexico
| | - Guadalupe V Nevárez-Moorillón
- Facultad de Ciencias Químicas, Univ. Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II, Chihuahua, 31125, Mexico
| |
Collapse
|
38
|
Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Kharazmi-Khorassani J, Asoodeh A, Tanzadehpanah H. Antioxidant and angiotensin-converting enzyme (ACE) inhibitory activity of thymosin alpha-1 (Thα1) peptide. Bioorg Chem 2019; 87:743-752. [PMID: 30974297 DOI: 10.1016/j.bioorg.2019.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 01/25/2023]
Abstract
In this research, the antioxidant property of thymosin alpha-1 (Thα1) peptide was investigated through various antioxidant methods. Thα1 showed 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (IC50 = 20 µM) and its 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) scavenging reached 45.33% at 80 µM (IC50 = 85 µM). In addition, hydroxyl and superoxide radical scavenging of Thα1 peptide exhibited a concentration-depended manner. The IC50 values of hydroxyl and superoxide radical scavenging were estimated to be 82 µM and 20 µM, respectively. The effect of Thα1 on eliminating superoxide radicals was higher (62.23%) than other antioxidant assays. Moreover, the antioxidant activity of Thα1 peptide was evaluated by measuring cellular reactive oxygen species (ROS). Results indicated that Thα1 decreased the generation of ROS level in 1321 N1 human neural asterocytoma cells. The inhibitory effect of Thα1 on angiotensin-converting enzyme (ACE) was determined. The kinetic parameters (Km and Vmax) and the inhibition pattern were examined. Based on the Lineweaver-Burk plot, Thα1 displayed a mixed inhibition pattern. The IC50 and Ki values of Thα1 were 0.8 µM and 3.33 µM, respectively. Molecular modeling suggested that Thα1 binds to ACE-domains with higher affinity binding to N-domain with the binding energy of -22.87 kcal/mol. Molecular docking indicated that Thα1 interacted with ACE enzyme (N- and C-domains) due to electrostatic, hydrophobic, and hydrogen forces. Our findings suggested that Thα1 possess a multifunctional peptide with dual antioxidant and ACE-inhibitory properties. Further researches are needed to investigate the antioxidant and anti-hypertensive effect of Thα1 both in vitro and in vivo.
Collapse
Affiliation(s)
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hamid Tanzadehpanah
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Quah Y, Mohd Ismail NI, Ooi JLS, Affendi YA, Abd Manan F, Teh LK, Wong FC, Chai TT. Purification and identification of novel cytotoxic oligopeptides from soft coral Sarcophyton glaucum. J Zhejiang Univ Sci B 2019; 20:59-70. [PMID: 30614230 DOI: 10.1631/jzus.b1700586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Globally, peptide-based anticancer therapies have drawn much attention. Marine organisms are a reservoir of anticancer peptides that await discovery. In this study, we aimed to identify cytotoxic oligopeptides from Sarcophyton glaucum. Peptides were purified from among the S. glaucum hydrolysates produced by alcalase, chymotrypsin, papain, and trypsin, guided by a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay on the human cervical cancer (HeLa) cell line for cytotoxicity evaluation. Purification techniques adopted were membrane ultrafiltration, gel filtration chromatography, solid phase extraction (SPE), and reversed-phase high-performance liquid chromatography (RP-HPLC). Purified peptides were identified by de novo peptide sequencing. From papain hydrolysate, three peptide sequences were identified: AGAPGG, AERQ, and RDTQ (428.45, 502.53, and 518.53 Da, respectively). Peptides synthesized from these sequences exhibited cytotoxicity on HeLa cells with median effect concentration (EC50) values of 8.6, 4.9, and 5.6 mmol/L, respectively, up to 5.8-fold stronger than the anticancer drug 5-fluorouracil. When tested at their respective EC50, AGAPGG, AERQ, and RDTQ showed only 16%, 25%, and 11% cytotoxicity to non-cancerous Hek293 cells, respectively. In conclusion, AERQ, AGAPGG, and RDTQ are promising candidates for future development as peptide-based anticancer drugs.
Collapse
Affiliation(s)
- Yixian Quah
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Nor Ismaliza Mohd Ismail
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.,Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Jillian Lean Sim Ooi
- Department of Geography, Faculty of Arts and Social Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yang Amri Affendi
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
| | - Lai-Kuan Teh
- Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.,Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.,Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia.,Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia
| |
Collapse
|
41
|
Hassan MA, Xavier M, Gupta S, Nayak BB, Balange AK. Antioxidant properties and instrumental quality characteristics of spray dried Pangasius visceral protein hydrolysate prepared by chemical and enzymatic methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8875-8884. [PMID: 30715703 DOI: 10.1007/s11356-019-04144-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Fish protein hydrolysates are digested form of protein with various bioactive properties where, the cleavages of molecular bonds of proteins can be broken by the enzymatic and chemical process. In this study, antioxidant properties of spray dried protein hydrolysate prepared from Pangasius viscera by using enzymatic (papain and pepsin), and chemical methods (hydrochloric acid and sodium hydroxide) were evaluated. Among the different treatments, pepsin-derived visceral protein hydrolysate showed the maximum antioxidant activity when used at higher concentrations. Essential amino acids (EAA) and hydrophobic amino acids are higher in papain-derived visceral protein hydrolysate. In pepsin-derived visceral protein hydrolysate, major proportion was contributed by glycine (Gly), glutamine (Glu), proline (Pro), and asparagine (Asp). Higher amount of aromatic amino acids are found in alkali-derived FVPH. Scanning electron microscopy (SEM) images of pepsin fish visceral protein hydrolysate showed better globular structure than the other treatments. It can be concluded that among the different treatments, the visceral protein hydrolysate prepared with pepsin had better overall quality regarding antioxidant properties and papain in nutritional point of view.
Collapse
Affiliation(s)
- Mohammad Aman Hassan
- Department of Post-Harvest Technology, FRHPHM Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharastra, 400061, India
| | - Martin Xavier
- Department of Post-Harvest Technology, FRHPHM Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharastra, 400061, India
| | - Subodh Gupta
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, 400061, India
| | - Binaya Bhusan Nayak
- Department of Post-Harvest Technology, FRHPHM Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharastra, 400061, India
| | - Amjad Khansaheb Balange
- Department of Post-Harvest Technology, FRHPHM Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, Maharastra, 400061, India.
| |
Collapse
|
42
|
Borges-Contreras B, Martínez-Sánchez CE, Herman-Lara E, Rodríguez-Miranda J, Hernández-Santos B, Juárez-Barrientos JM, Guerra-Almonacid CM, Betancur-Ancona DA, Torruco-Uco JG. Angiotensin-Converting Enzyme Inhibition In Vitro by Protein Hydrolysates and Peptide Fractions from Mojarra of Nile Tilapia (Oreochromis niloticus) Skeleton. J Med Food 2019; 22:286-293. [DOI: 10.1089/jmf.2018.0163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
| | | | - Erasmo Herman-Lara
- National Technology of Mexico/Technological Institute of Tuxtepec, Tuxtepec, Mexico
| | | | | | | | - Carlos Martín Guerra-Almonacid
- Department of Chemistry, Research Group in Natural Products, Faculty of Sciences, University of Tolima, Ibague, Colombia
| | - David Abram Betancur-Ancona
- Department of Food Science, Faculty of Chemical Engineering, Autonomous University of Yucatan, Merida, Mexico
| | | |
Collapse
|
43
|
Acquah C, Agyei D, Obeng EM, Pan S, Tan KX, Danquah MK. Aptamers: an emerging class of bioaffinity ligands in bioactive peptide applications. Crit Rev Food Sci Nutr 2019; 60:1195-1206. [PMID: 30714390 DOI: 10.1080/10408398.2018.1564234] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The food and health applications of bioactive peptides have grown remarkably in the past few decades. Current elucidations have shown that bioactive peptides have unique structural arrangement of amino acids, conferring distinct functionalities, and molecular affinity characteristics. However, whereas interest in the biological potency of bioactive peptides has grown, cost-effective techniques for monitoring the structural changes in these peptides and how these changes affect the biological properties have not grown at the same rate. Due to the high binding affinity of aptamers for other biomolecules, they have a huge potential for use in tracking the structural, conformational, and compositional changes in bioactive peptides. This review provides an overview of bioactive peptides and their essential structure-activity relationship. The review further highlights on the types and methods of synthesis of aptamers before the discussion of the prospects, merits, and challenges in the use of aptamers for bioaffinity interactions with bioactive peptides.
Collapse
Affiliation(s)
- Caleb Acquah
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia.,School of Nutrition Sciences, Faculty of Health Sciences, Curtin University, Sarawak, Malaysia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Eugene Marfo Obeng
- Bioengineering Laboratory, Department of Chemical Engineering, Monash University, Victoria, Australia
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Kei Xian Tan
- Department of Chemical Engineering, Curtin University, Sarawak, Malaysia
| | - Michael Kobina Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, Tennessee, USA
| |
Collapse
|
44
|
Vildmyren I, Drotningsvik A, Oterhals Å, Ween O, Halstensen A, Gudbrandsen OA. Cod Residual Protein Prevented Blood Pressure Increase in Zucker fa/fa Rats, Possibly by Inhibiting Activities of Angiotensin-Converting Enzyme and Renin. Nutrients 2018; 10:nu10121820. [PMID: 30469459 PMCID: PMC6315726 DOI: 10.3390/nu10121820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
Abstract
Hypertension is the leading risk factor for cardiovascular disease, and prevention of high blood pressure through diet and lifestyle should be a preferred approach. High intake of fish is associated with lower blood pressure, possibly mediated through the proteins since peptides with angiotensin-converting enzyme (ACE) inhibiting capacities have been identified in fish skin, backbone, and fillet. The effects of cod meals made from residual materials and fillet on blood pressure were investigated in obese Zucker fa/fa rats which spontaneously develop high blood pressure. Rats were fed diets containing water-soluble (stickwater) or water-insoluble (presscake) fractions of protein-rich meals from cod residual materials (head, gut, backbone with muscle residuals, skin, trimmings) or fillet. Rats were fed diets containing 25% of total protein from cod meal and 75% of protein from casein, or casein as the sole protein source (control group) for four weeks. Results show that a diet containing residual presscake meal with high gut content prevented blood pressure increase, and this cod residual meal also showed the strongest in vitro inhibitions of ACE and renin activities. In conclusion, a diet containing water-insoluble proteins (presscake meal) with high gut content prevented increase in blood pressure in obese Zucker fa/fa rats.
Collapse
Affiliation(s)
- Iselin Vildmyren
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway.
- K. Halstensen AS, P.O. Box 103, 5399 Bekkjarvik, Norway.
| | - Aslaug Drotningsvik
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway.
- TripleNine Vedde AS, 6030 Langevåg, Norway.
| | - Åge Oterhals
- Nofima AS, P.B. 1425 Oasen, 5844 Bergen, Norway.
| | - Ola Ween
- Møreforsking Ålesund AS, P.O. Box 5075, 6021 Ålesund, Norway.
| | - Alfred Halstensen
- K. Halstensen AS, P.O. Box 103, 5399 Bekkjarvik, Norway.
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway.
| | - Oddrun Anita Gudbrandsen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway.
| |
Collapse
|
45
|
Ghanbari R. Review on the Bioactive Peptides from Marine Sources: Indication for Health Effects. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9766-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Yi Y, Lv Y, Zhang L, Yang J, Shi Q. High Throughput Identification of Antihypertensive Peptides from Fish Proteome Datasets. Mar Drugs 2018; 16:E365. [PMID: 30279337 PMCID: PMC6212880 DOI: 10.3390/md16100365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Antihypertensive peptides (AHTPs) are a group of small peptides with the main role to block key enzymes or receptors in the angiotensin genesis pathway. A great number of AHTPs have been isolated or digested from natural food resources; however, comprehensive studies on comparisons of AHTPs in various species from the perspective of big data are rare. Here, we established a simplified local AHTP database, and performed in situ mapping for high throughput identification of AHTPs with high antihypertensive activity from high-quality whole proteome datasets of 18 fish species. In the 35 identified AHTPs with reported high activity, we observed that Gly-Leu-Pro, Leu-Pro-Gly, and Val-Ser-Val are the major components of fish proteins, and AHTP hit numbers in various species demonstrated a similar distributing pattern. Interestingly, Atlantic salmon (Salmo salar) is in possession of far more abundant AHTPs compared with other fish species. In addition, collagen subunit protein is the largest group with more matching AHTPs. Further exploration of two collagen subunits (col4a5 and col8a1) in more fish species suggested that the hit pattern of these conserved proteins among teleost is almost the same, and their phylogeny is consistent with the evolution of these fish species. In summary, our present study provides basic information for the relationship of AHTPs with fish proteins, which sheds light on rapid discovery of marine drugs or food additives from fish protein hydrolysates to alleviate hypertension.
Collapse
Affiliation(s)
- Yunhai Yi
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China.
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Yunyun Lv
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| | - Lijun Zhang
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Jian Yang
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|
47
|
Daliri EBM, Lee BH, Park MH, Kim JH, Oh DH. Novel angiotensin I-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Anti-Inflammatory Effects of Lychee (Litchi chinensisSonn.) Seed Peptide Hydrolysate on RAW 264.7 Macrophage Cells. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1443821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Evaluation on performance of dead-end ultrafiltration membrane in fractionating tilapia by-product protein hydrolysate. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Mirzaei M, Mirdamadi S, Ehsani MR, Aminlari M. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates: Purification and molecular docking. J Food Drug Anal 2018; 26:696-705. [PMID: 29567240 PMCID: PMC9322238 DOI: 10.1016/j.jfda.2017.07.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/24/2017] [Accepted: 07/21/2017] [Indexed: 11/06/2022] Open
Abstract
Kluyveromyces marxianus protein hydrolysates were prepared by two different sonicated-enzymatic (trypsin and chymotrypsin) hydrolysis treatments to obtain antioxidant and ACE-inhibitory peptides. Trypsin and chymotrypsin hydrolysates obtained by 5 h, exhibited the highest antioxidant and ACE-inhibitory activities. After fractionation using ultra-filtration and reverse phase high performance liquid chromatography (RP-HPLC) techniques, two new peptides were identified. One fragment (LL-9, MW = 1180 Da) with the amino acid sequence of Leu-Pro-Glu-Ser-Val-His-Leu-Asp-Lys showed significant ACE inhibitory activity (IC50 = 22.88 μM) while another peptide fragment (VL-9, MW = 1118 Da) with the amino acid sequence of Val-Leu-Ser-Thr-Ser-Phe-Pro-Pro-Lys showed the highest antioxidant and ACE inhibitory properties (IC50 = 15.20 μM, 5568 μM TE/mg protein). The molecular docking studies revealed that the ACE inhibitory activities of VL-9 is due to interaction with the S2 (His513, His353, Glu281) and S’1 (Glu162) pockets of ACE and LL-9 can fit perfectly into the S1 (Thr345) and S2 (Tyr520, Lys511, Gln281) pockets of ACE.
Collapse
|