1
|
Eriksen RL, Padgitt-Cobb LK, Randazzo AM, Hendrix DA, Henning JA. Gene Expression of Agronomically Important Secondary Metabolites in cv. ‘USDA Cascade’ Hop (Humulus lupulus L.) Cones during Critical Developmental Stages. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1973328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Renée L. Eriksen
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| | | | - Angela M. Randazzo
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, U.S.A
| | - David A. Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, U.S.A
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, U.S.A
| | - John A. Henning
- Forage Seed and Cereal Research Unit, USDA Agricultural Research Service, Corvallis, OR, U.S.A
| |
Collapse
|
2
|
Geomorphometric Characterization of Pockmarks by Using a GIS-Based Semi-Automated Toolbox. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8050154] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Duraisamy GS, Mishra AK, Kocabek T, Matoušek J. Identification and characterization of promoters and cis-regulatory elements of genes involved in secondary metabolites production in hop (Humulus lupulus. L). Comput Biol Chem 2016; 64:346-352. [DOI: 10.1016/j.compbiolchem.2016.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
4
|
Matoušek J, Kocábek T, Patzak J, Bříza J, Siglová K, Mishra AK, Duraisamy GS, Týcová A, Ono E, Krofta K. The "putative" role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.). PLANT MOLECULAR BIOLOGY 2016; 92:263-77. [PMID: 27392499 DOI: 10.1007/s11103-016-0510-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/02/2016] [Indexed: 05/20/2023]
Abstract
Lupulin glands localized in female hop (Humulus lupulus L.) cones are valuable source of bitter acids, essential oils and polyphenols. These compounds are used in brewing industry and are important for biomedical applications. In this study we describe the potential effect of transcription factors from WRKY family in the activation of the final steps of lupulin biosynthesis. In particular, lupulin gland-specific transcription factor HlWRKY1 that shows significant similarity to AtWRKY75, has ability to activate the set of promoters driving key genes of xanthohumol and bitter acids biosynthesis such as chalcone synthase H1, valerophenone synthase, prenyltransferase 1, 1L and 2 and O-methyltransferase-1. When combined with co-factor HlWDR1 and silencing suppressor p19, HlWRKY1 is able to enhance transient expression of gus gene driven by Omt1 and Chs_H1 promoters to significant level as compared to 35S promoter of CaMV in Nicotiana. benthamiana. Transformation of hop with dual Agrobacterium vector bearing HlWRKY1/HlWDR1 led to ectopic overexpression of these transgenes and further activation of lupulin-specific genes expression in hop leaves. It was further showed that (1) HlWRKY1 is endowed with promoter autoactivation; (2) It is regulated by post-transcriptional gene silencing (PTGS) mechanism; (3) It is stimulated by kinase co-expression. Since HlWRKY1 promotes expression of lupulin-specific HlMyb3 gene therefore it can constitute a significant component in hop lupulin regulation network. Putative involvement of HlWRKY1 in the regulation of lupulin biosynthesis may suggest the original physiological function of lupulin components in hop as flower and seed protective compounds.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Tomáš Kocábek
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| | - Jindřich Bříza
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Kristýna Siglová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Ajay Kumar Mishra
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Ganesh Selvaraj Duraisamy
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Anna Týcová
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Eiichiro Ono
- Research Institute, Suntory Global Innovation Center (SIC) Ltd., 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka, 618-8503, Japan
| | - Karel Krofta
- Hop Research Institute, Co. Ltd., Kadaňská 2525, 438 46, Žatec, Czech Republic
| |
Collapse
|
5
|
Jeong JK, Kang MH, Gurunathan S, Cho SG, Park C, Seo HG, Kim JH. Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR). BMC Res Notes 2014; 7:675. [PMID: 25256308 PMCID: PMC4181407 DOI: 10.1186/1756-0500-7-675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 09/05/2014] [Indexed: 01/26/2023] Open
Abstract
Background Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied. Results mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively. Conclusions These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions. Electronic supplementary material The online version of this article (doi:10.1186/1756-0500-7-675) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jin-Hoi Kim
- Department of Animal Biotechnology, KonKuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
6
|
Štajner N, Cregeen S, Javornik B. Evaluation of reference genes for RT-qPCR expression studies in hop (Humulus lupulus L.) during infection with vascular pathogen verticillium albo-atrum. PLoS One 2013; 8:e68228. [PMID: 23874551 PMCID: PMC3709999 DOI: 10.1371/journal.pone.0068228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
Hop plant (Humulus lupulus L.), cultivated primarily for its use in the brewing industry, is faced with a variety of diseases, including severe vascular diseases, such as Verticillium wilt, against which no effective protection is available. The understanding of disease resistance with tools such as differentially expressed gene studies is an important objective of plant defense mechanisms. In this study, we evaluated twenty-three reference genes for RT-qPCR expression studies on hop under biotic stress conditions. The candidate genes were validated on susceptible and resistant hop cultivars sampled at three different time points after infection with Verticillium albo-atrum. The stability of expression and the number of genes required for accurate normalization were assessed by three different Excel-based approaches (geNorm v.3.5 software, NormFinder, and RefFinder). High consistency was found among them, identifying the same six best reference genes (YLS8, DRH1, TIP41, CAC, POAC and SAND) and five least stably expressed genes (CYCL, UBQ11, POACT, GAPDH and NADH). The candidate genes in different experimental subsets/conditions resulted in different rankings. A combination of the two best reference genes, YLS8 and DRH1, was used for normalization of RT-qPCR data of the gene of interest (PR-1) implicated in biotic stress of hop. We outlined the differences between normalized and non-normalized values and the importance of RT-qPCR data normalization. The high correlation obtained among data standardized with different sets of reference genes confirms the suitability of the reference genes selected for normalization. Lower correlations between normalized and non-normalized data may reflect different quantity and/or quality of RNA samples used in RT-qPCR analyses.
Collapse
Affiliation(s)
- Nataša Štajner
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Cregeen
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, Ljubljana, Slovenia
| | - Branka Javornik
- Biotechnical Faculty, Agronomy Department, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Füssy Z, Patzak J, Stehlík J, Matoušek J. Imbalance in expression of hop (Humulus lupulus) chalcone synthase H1 and its regulators during hop stunt viroid pathogenesis. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:688-695. [PMID: 23395540 DOI: 10.1016/j.jplph.2012.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/08/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Viroid-derived small RNAs generated during hop stunt viroid (HSVd) pathogenesis may induce the symptoms found in the hop cultivar "Admiral", including observed shifts in phenylpropanoid metabolites and changes in petiole coloration. Using quantitative RT-PCR, we examined hop lupulin gland-specific genes that have been shown to be involved in phenylpropanoid metabolism, for altered expression in response to infection with two HSVd isolates, HSVd-g and CPFVd. Most notably, the expression of a gene encoding a key enzyme for phenylpropanoid synthesis, naringenin-chalcone synthase H1 (chs_H1), decreased up to 40-fold in infected samples. In addition, a marked decrease in the expression of HlbHLH2 and an increase in the expression of HlMyb3 were observed. These two genes encode transcription factors that form a ternary complex with HlWDR1 for chs_H1 promoter activation. In a transient expression assay, a decrease in the ternary complex potential to activate the chs_H1 promoter was observed upon the decrease of HlbHLH2 expression. In addition, targeting of the chs_H1 transcript by vd-sRNAs may contribute to these expression changes. Our data show that HSVd infection causes a significant imbalance in the expression of phenylpropanoid metabolite-affecting genes via a complex mechanism, possibly involving regulatory disorders and direct targeting by vd-sRNA.
Collapse
Affiliation(s)
- Zoltán Füssy
- University of South Bohemia, Faculty of Science, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | | | | | | |
Collapse
|
8
|
Clark SM, Vaitheeswaran V, Ambrose SJ, Purves RW, Page JE. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus). BMC PLANT BIOLOGY 2013; 13:12. [PMID: 23347725 PMCID: PMC3564914 DOI: 10.1186/1471-2229-13-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/12/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Bitter acids (e.g. humulone) are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus) which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA) degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP) pathway. We used RNA sequencing (RNA-seq) to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. RESULTS Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT) enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic) and reverse (catabolic) reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial) and catabolic (mitochondrial) clades. CONCLUSIONS Our analysis of the hop transcriptome significantly expands the genomic resources available for this agriculturally-important crop. This study provides evidence for the lupulin gland-specific biosynthesis of BCAAs and prenyl diphosphates to provide precursors for the production of bitter acids. The biosynthetic pathway leading to BCAAs in lupulin glands involves the plastidial enzyme, HlBCAT2. The mitochondrial enzyme HlBCAT1 degrades BCAAs as the first step in the catabolic pathway leading to branched chain-acyl-CoAs.
Collapse
Affiliation(s)
- Shawn M Clark
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Vinidhra Vaitheeswaran
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Stephen J Ambrose
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Randy W Purves
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Jonathan E Page
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
9
|
Matoušek J, Kocábek T, Patzak J, Füssy Z, Procházková J, Heyerick A. Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.). BMC PLANT BIOLOGY 2012; 12:27. [PMID: 22340661 PMCID: PMC3340318 DOI: 10.1186/1471-2229-12-27] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 02/20/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lupulin glands of hop produce a specific metabolome including hop bitter acids valuable for the brewing process and prenylflavonoids with promising health-beneficial activities. The detailed analysis of the transcription factor (TF)-mediated regulation of the oligofamily of one of the key enzymes, i.e., chalcone synthase CHS_H1 that efficiently catalyzes the production of naringenin chalcone, a direct precursor of prenylflavonoids in hop, constitutes an important part of the dissection of the biosynthetic pathways leading to the accumulation of these compounds. RESULTS Homologues of flavonoid-regulating TFs HlMyb2 (M2), HlbHLH2 (B2) and HlWDR1 (W1) from hop were cloned using a lupulin gland-specific cDNA library from the hop variety Osvald's 72. Using a "combinatorial" transient GUS expression system it was shown that these unique lupulin-gland-associated TFs significantly activated the promoter (P) of chs_H1 in ternary combinations of B2, W1 and either M2 or the previously characterized HlMyb3 (M3). The promoter activation was strongly dependent on the Myb-P binding box TCCTACC having a core sequence CCWACC positioned on its 5' end region and it seems that the complexity of the promoter plays an important role. M2B2W1-mediated activation significantly exceeded the strength of expression of native chs_H1 gene driven by the 35S promoter of CaMV, while M3B2W1 resulted in 30% of the 35S:chs_H1 expression level, as quantified by real-time PCR. Another newly cloned hop TF, HlMyb7, containing a transcriptional repressor-like motif pdLNLD/ELxiG/S (PDLNLELRIS), was identified as an efficient inhibitor of chs_H1-activating TFs. Comparative analyses of hop and A. thaliana TFs revealed a complex activation of Pchs_H1 and Pchs4 in combinatorial or independent manners. CONCLUSIONS This study on the sequences and functions of various lupulin gland-specific transcription factors provides insight into the complex character of the regulation of the chs_H1 gene that depends on variable activation by combinations of R2R3Myb, bHLH and WDR TF homologues and inhibition by a Myb repressor.
Collapse
Affiliation(s)
- Jaroslav Matoušek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Tomáš Kocábek
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Josef Patzak
- Hop Research Institute, Co. Ltd, Kadaňská 2525, 438 46 Žatec, Czech Republic
| | - Zoltán Füssy
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Jitka Procházková
- Biology Centre ASCR v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Arne Heyerick
- Laboratory of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
"Transgenic" metabolome of hop, some aspects of its development and prospects of utilization. KVASNY PRUMYSL 2012. [DOI: 10.18832/kp2012003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Gatica-Arias A, Farag MA, Stanke M, Matoušek J, Wessjohann L, Weber G. Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L. PLANT CELL REPORTS 2012; 31:111-9. [PMID: 21912858 DOI: 10.1007/s00299-011-1144-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 05/25/2023]
Abstract
Hop is an important source of secondary metabolites, such as flavonoids. Some of these are pharmacologically active. Nevertheless, the concentration of some classes as flavonoids in wild-type plants is rather low. To enhance the production in hop, it would be interesting to modify the regulation of genes in the flavonoid biosynthetic pathway. For this purpose, the regulatory factor PAP1/AtMYB75 from Arabidopsis thaliana L. was introduced into hop plants cv. Tettnanger by Agrobacterium-mediated genetic transformation. Twenty kanamycin-resistant transgenic plants were obtained. It was shown that PAP1/AtMYB75 was stably incorporated and expressed in the hop genome. In comparison to the wild-type plants, the color of female flowers and cones of transgenic plants was reddish to pink. Chemical analysis revealed higher levels of anthocyanins, rutin, isoquercitin, kaempferol-glucoside, kaempferol-glucoside-malonate, desmethylxanthohumol, xanthohumol, α-acids and β-acids in transgenic plants compared to wild-type plants.
Collapse
Affiliation(s)
- A Gatica-Arias
- Plant Breeding and Biotechnology, Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Matousek J, Orctová L, Skopek J, Pesina K, Steger G. Elimination of hop latent viroid upon developmental activation of pollen nucleases. Biol Chem 2008; 389:905-18. [PMID: 18627315 DOI: 10.1515/bc.2008.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hop latent viroid (HLVd) is not transmissible through hop generative tissues and seeds. Here we describe the process of HLVd elimination during development of hop pollen. HLVd propagates in uninucleate hop pollen, but is eliminated at stages following first pollen mitosis during pollen vacuolization and maturation. Only traces of HLVd were detected by RT-PCR in mature pollen after anthesis and no viroid was detectable in in vitro germinating pollen, suggesting complete degradation of circular and linear HLVd forms. The majority of the degraded HLVd RNA in immature pollen included discrete products in the range of 230-100 nucleotides and therefore did not correspond to siRNAs. HLVd eradication from pollen correlated with developmental expression of a pollen nuclease and specific RNAses. Activity of the pollen nuclease HBN1 was maximal during the vacuolization step and decreased in mature pollen. Total RNAse activity increased continuously up to the final steps of pollen maturation. HBN1 mRNA, which is abundant at the uninucleate microspore stage, encodes a protein of 300 amino acids (34.1 kDa, isoeletric point 5.1). Sequence comparisons revealed that HBN1 is a homolog of S1-like bifunctional plant endonucleases. The developmentally activated HBN1 and pollen ribonucleases could participate in the mechanism of HLVd recognition and degradation.
Collapse
Affiliation(s)
- Jaroslav Matousek
- Biological Center AS CR vvi, Institute of Plant Molecular Biology, Branisovská 31, Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|