1
|
Ryza I, Granata C, Ribeiro N, Nalewajko-Sieliwoniuk E, Kießling A, Hryniewicka M, Plass W, Godlewska-Żyłkiewicz B, Cabo Verde S, Milea D, Gama S. Ga complexes of 8-hydroxyquinoline-2-carboxylic acid: Chemical speciation and biological activity. J Inorg Biochem 2024; 260:112670. [PMID: 39068684 DOI: 10.1016/j.jinorgbio.2024.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
The binding ability of 8-hydroxyquinoline-2-carboxylic acid (8-HQA) towards Ga3+ has been investigated by ISEH+ (Ion Selective Electrode, glass electrode) potentiometric and UV/Vis spectrophotometric titrations in KCl(aq) at I = 0.2 mol dm-3 and at T = 298.15 K. Further experiments were also performed adopting both the metal (with Fe3+ as competing cation) and ligand-competition approaches (with EDTA as competing ligand). Results gave evidence of the formation of the [Ga(8-HQA)]+, [Ga(8-HQA)(OH)], [Ga(8-HQA)(OH)2]- and [Ga(8-HQA)2]- species, the latter being so far the most stable, as also confirmed by ESI-MS analysis. Experiments were also designed to determine the stability constants of the [Ga(EDTA)]- and [Ga(EDTA)(OH)]2- in the above conditions. Due to the relevance of Ga3+ hydrolysis in aqueous systems, literature data on this topic were collected and critically analyzed, providing equations for the calculation of mononuclear Ga3+ hydrolysis constants at T = 298.15 K, in different ionic media, in the ionic strength range 0 < I / mol dm-3 ≤ 1.0. The synthesis and characterization (by ElectroSpray Ionization - Mass Spectrometry (ESI-MS), Attenuated Total Reflectance - Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and ThermoGravimetric Analysis (TGA)) of Ga3+/8-HQA complexes were also performed, identifying [Ga(8-HQA)2]- as the main isolated species, even in the solid state. Finally, the potential effects of 8-HQA and Ga3+/8-HQA complex towards human microbiota exposed to ionizing radiation were evaluated (namely Actinomyces viscosus, Streptococcus mutans, Streptococcus sobrinus, Pseudomonas putida, Pseudomonas fluorescens and Escherichia coli), as well as their anti-proliferative and anti-inflammatory properties. A radioprotective effect of Ga3+/8-HQA complex was observed on Actinomyces viscosus, while showing a potential radiosensitizing effect against Streptococcus mutans and Streptococcus sobrinus. No cytotoxicity on RAW264.7 murine macrophage cells was observed, neither for the free ligand or Ga3+/8-HQA complex. Nevertheless, Ga3+/8-HQA complex highlighted potential anti-inflammatory properties.
Collapse
Affiliation(s)
- Izabela Ryza
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Claudia Granata
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, CHIBIOFARAM, Università degli Studi di Messina, V.le F. Stagno d'Alcontres, 31, 98166 Messina, Italy
| | - Nadia Ribeiro
- Centro de Ciências e Tecnologias Nucleares, C2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
| | - Edyta Nalewajko-Sieliwoniuk
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Andreas Kießling
- Institut für Anorganische und Analytische Chemie, IAAC, Friedrich Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Marta Hryniewicka
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, IAAC, Friedrich Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany
| | - Beata Godlewska-Żyłkiewicz
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, C2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal; Departamento de Engenharia e Ciências Nucleares, DECN, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Demetrio Milea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, CHIBIOFARAM, Università degli Studi di Messina, V.le F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Sofia Gama
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland; Centro de Ciências e Tecnologias Nucleares, C2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
2
|
Sarkhel S, Roy A. Phytic acid and its reduction in pulse matrix: Structure–function relationship owing to bioavailability enhancement of micronutrients. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shubhajit Sarkhel
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering Birla Institute of Technology Ranchi Jharkhand India
| | - Anupam Roy
- Laboratory of Food Chemistry and Technology, Department of Chemical Engineering Birla Institute of Technology Ranchi Jharkhand India
| |
Collapse
|
3
|
Xu S, Chen A, Arai Y. Solution 31P NMR Investigation of Inositol Hexakisphosphate Surface Complexes at the Amorphous Aluminum Oxyhydroxide-Water Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14628-14638. [PMID: 34633799 DOI: 10.1021/acs.est.1c04421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Phytate (myo-inositol hexakisphosphate, myo-IHP) is one of the most common organic phosphorus (P) species in soils and sediments which can be mineralized to increase the concentration of dissolved phosphate in pore water. Because of its six phosphate functional groups, functional group-specific adsorption mechanisms in reactive soil minerals become important in predicting solubility. In this study, solution 31P NMR was used to elucidate the functional group-specific adsorption mechanisms of myo-IHP at the amorphous Al hydroxide (AAH)-water interface at pH 6.5 in conjunction with batch adsorption experiments and Zetasizer measurements. The adsorption maximum of myo-IHP with AAH was ∼312.50 mmol kg-1, and the charge reversal effects in IHP-reacted AAH particles suggested the presence of inner-sphere surface species. The upfield shifts of various phosphate groups in the NMR spectra further supported the formation of inner-sphere IHP complexes at the AAH-water interface. When the initial myo-IHP/AAH (mol kg-1) was decreased from 2.5 to 1.25-1.67, P1,3 and P4,6 functional groups were coordinated in addition to P2; P5 became reactive with the ratio being decreased to <0.84, P5. This multifunctional group coordination increased aggregate size. The study showed that the availability of surface sites of adsorbents influenced the functional group-specific myo-IHP adsorption.
Collapse
Affiliation(s)
- Suwei Xu
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ai Chen
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuji Arai
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Sun M, He Z, Jaisi DP. Role of metal complexation on the solubility and enzymatic hydrolysis of phytate. PLoS One 2021; 16:e0255787. [PMID: 34388208 PMCID: PMC8362945 DOI: 10.1371/journal.pone.0255787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/24/2021] [Indexed: 11/19/2022] Open
Abstract
Phytate is a dominant form of organic phosphorus (P) in the environment. Complexation and precipitation with polyvalent metal ions can stabilize phytate, thereby significantly hinder the hydrolysis by enzymes. Here, we studied the stability and hydrolyzability of environmentally relevant metal phytate complexes (Na, Ca, Mg, Cu, Zn, Al, Fe, Al/Fe, Mn, and Cd) under different pHs, presence of metal chelators, and thermal conditions. Our results show that the order of solubility of metal phytate complexes is as follows: i) for metal species: Na, Ca, Mg > Cu, Zn, Mn, Cd > Al, Fe, ii) under different pHs: pH 5.0 > pH 7.5), and iii) in the presence of chelators: EDTA> citric acid. Phytate-metal complexes are mostly resistant towards acid hydrolysis (except Al-phytate), and dry complexes are generally stable at high pressure and temperature under autoclave conditions (except Ca phytate). Inhibition of metal complex towards enzymatic hydrolysis by Aspergillus niger phytase was variable but found to be highest in Fe phytate complex. Strong chelating agents such as EDTA are insufficient for releasing metals from the complexes unless the reduction of metals (such as Fe) occurs first. The insights gained from this research are expected to contribute to the current understanding of the fate of phytate in the presence of various metals that are commonly present in agricultural soils.
Collapse
Affiliation(s)
- Mingjing Sun
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States of America
- Department of Physical Sciences, Emporia State University, Emporia, KS, United States of America
| | - Zhongqi He
- USDA-ARS Southern Regional Research Center, New Orleans, LA, United States of America
| | - Deb P. Jaisi
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States of America
- * E-mail:
| |
Collapse
|
5
|
Jastrzab R, Nowak M, Zabiszak M, Odani A, Kaczmarek MT. Significance and properties of the complex formation of phosphate and polyphosphate groups in particles present in living cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Zhang YY, Stockmann R, Ng K, Ajlouni S. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes. Crit Rev Food Sci Nutr 2020; 62:1696-1712. [PMID: 33190514 DOI: 10.1080/10408398.2020.1846014] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myo-Inositol hexakisphosphate or phytic acid concentration is a prominent factor known to impede divalent element bioavailability in vegetal foods including legumes. Both in vivo and in vitro studies have suggested that phytic acid and other plant-based constituents may synergistically form insoluble complexes affecting bioavailability of essential elements. This review provides an overview of existing investigations on the role of phytic acid in the binding, solubility and bioavailability of iron, zinc and calcium with a focus on legumes. Given the presence of various interference factors within legume matrices, current findings suggest that the commonly adapted approach of using phytic acid-element molar ratios as a bioavailability predictor may only be valid in limited circumstances. In particular, differences between protein properties and molar concentrations of other interacting ions are likely responsible for the observed poor correlations. The role of phytate degradation in element bioavailability has been previously examined, and in this review we re-emphasize its importance as a tool to enhance mineral bioavailability of mineral fortified legume crops. Food processing strategies to achieve phytate reduction were identified as promising tools to increase mineral bioavailability and included germination and fermentation, particularly when other bioavailability promoters (e.g. NaCl) are simultaneously added.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia.,CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | | | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Kremer C, Torres J, Bianchi A, Savastano M, Bazzicalupi C. myo-inositol hexakisphosphate: Coordinative versatility of a natural product. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Bretti C, Cardiano P, Cigala RM, De Stefano C, Irto A, Lando G, Sammartano S. Exploring various ligand classes for the efficient sequestration of stannous cations in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:704-714. [PMID: 29957435 DOI: 10.1016/j.scitotenv.2018.06.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Metal pollution, coming from both natural and anthropogenic sources, has become one of the most serious environmental problems. Various strategies have been tested with the aim of removing heavy metals from environment. In this contribution, containing a robust experimental work together with a critical literature analysis, the sequestering ability of a variety of ligands towards Sn2+ cation will be evaluated in the conditions of several natural fluids, i.e. sea water, fresh water, human blood plasma, urine and saliva. 13 structural and 11 thermodynamic descriptors will be selected for a total of thirty-eight molecules belonging to different classes (carboxylic acids, amines, amino acids, phosphonates, polyelectrolytes etc. …). For the filling of those missing data relative to the 11 thermodynamic descriptors, different strategies will be adopted, including simple correlations and Nipals algorithm. The evaluation of the sequestering ability of the ligands is assessed in terms of estimation of pL0.5 (total concentration of ligand required to bind the 50% of metal in solution), an empirical parameter that takes into account all the side reactions in solutions and does not depend on the speciation scheme. Partial least square calculations were performed to model the pL0.5 and to determine its correlation with the abovementioned descriptors. The possibility to design and build up new tailor-made molecules capable of effectively sequester Sn2+ in various conditions is crucial for practical applications in biosphere, hydrosphere and lithosphere.
Collapse
Affiliation(s)
- Clemente Bretti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166, Messina, Italy
| | - Paola Cardiano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166, Messina, Italy
| | - Rosalia Maria Cigala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166, Messina, Italy
| | - Concetta De Stefano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166, Messina, Italy
| | - Anna Irto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166, Messina, Italy
| | - Gabriele Lando
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166, Messina, Italy.
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166, Messina, Italy
| |
Collapse
|
9
|
Kaspchak E, Igarashi-Mafra L, Mafra MR. Influence of Ternary Complexation between Bovine Serum Albumin, Sodium Phytate, and Divalent Salts on Turbidity and In Vitro Digestibility of Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10543-10551. [PMID: 30227705 DOI: 10.1021/acs.jafc.8b03142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytate decreases mineral and protein availability and influences protein properties, such as solubility and stability. The binding constants and turbidity data can help with the understanding of the influence of phytate and divalent salts on protein behavior. Ternary complexes formed between bovine serum albumin, sodium phytate, and divalent salts were investigated by isothermal titration calorimetry, turbidity, and in vitro protein digestibility. Results showed a positive entropy change and a negative and small enthalpy change as a result of electrostatic binding forces and ternary and binary complex precipitation. The interaction was favored for the systems containing calcium and manganese, whereas those containing magnesium showed a low heat of interaction. Despite the high protein digestibility, the stability of divalent phytates in a wide pH range may decrease mineral bioavailability. These results can provide important insights for the study of mineral bioavailability and diverse processes that involve protein and minerals in several areas of knowledge.
Collapse
Affiliation(s)
- Elaine Kaspchak
- Chemical Engineering Department , Federal University of Paraná , Francisco H. dos Santos Street , 81531-980 Curitiba , Paraná , Brazil
| | - Luciana Igarashi-Mafra
- Chemical Engineering Department , Federal University of Paraná , Francisco H. dos Santos Street , 81531-980 Curitiba , Paraná , Brazil
| | - Marcos R Mafra
- Chemical Engineering Department , Federal University of Paraná , Francisco H. dos Santos Street , 81531-980 Curitiba , Paraná , Brazil
| |
Collapse
|
10
|
Laird S, Kühn I, Miller H. Super-dosing phytase improves the growth performance of weaner pigs fed a low iron diet. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system. Nat Chem Biol 2018; 14:841-843. [DOI: 10.1038/s41589-018-0101-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/08/2018] [Indexed: 02/01/2023]
|
12
|
Li P, Wang Z, Yang L, Zhao S, Song P, Khan B. A novel loose-NF membrane based on the phosphorylation and cross-linking of polyethyleneimine layer on porous PAN UF membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Cade-Menun BJ, Elkin KR, Liu CW, Bryant RB, Kleinman PJA, Moore PA. Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. GEOCHEMICAL TRANSACTIONS 2018; 19:7. [PMID: 29468334 PMCID: PMC5821619 DOI: 10.1186/s12932-018-0052-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/12/2018] [Indexed: 05/31/2023]
Abstract
Phosphorus (P) can limit crop production in many soils, and soil testing is used to guide fertilizer recommendations. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis for P, or by inductively coupled plasma-based spectrometry (ICP) for P and cations. However, differences have been observed in M3 P concentrations measured by these methods. Using 31P nuclear magnetic resonance (P-NMR) and mass spectrometry (MS), we characterized P forms in M3 extracts. In addition to the orthophosphate that would be detected during colorimetric analysis, several organic P forms were present in M3 extracts that would be unreactive colorimetrically but measured by ICP (molybdate unreactive P, MUP). Extraction of these P forms by M3 was confirmed by P-NMR and MS in NaOH-ethylenediaminetetraacetic acid extracts of whole soils and residues after M3 extraction. The most abundant P form in M3 extracts was myo-inositol hexaphosphate (myo-IHP, phytate), a compound that may not contribute to plant-available P if tightly sorbed in soil. Concentrations of myo-IHP and other organic P forms varied among soils, and even among treatment plots on the same soil. Extraction of myo-IHP in M3 appeared to be linked to cations, with substantially more myo-IHP extracted from soils fertilized with alum-treated poultry litter than untreated litter. These results suggest that ICP analysis may substantially over-estimate plant-available P in samples with high MUP concentrations, but there is no way at present to determine MUP concentrations without analysis by both colorimetry and ICP. This study also tested procedures that will improve future soil P-NMR studies, such as treatment of acid extracts, and demonstrated that techniques such as P-NMR and MS are complimentary, each yielding additional information that analysis by a single technique may not provide.
Collapse
Affiliation(s)
- Barbara J. Cade-Menun
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Box 1030, Gate 4, Airport Drive, Swift Current, SK S9H 3X2 Canada
| | - Kyle R. Elkin
- Pasture Systems and Watershed Management Research Unit, USDA-ARS, University Park, PA 16802 USA
| | - Corey W. Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine & ChEM-H–Stanford University, Stanford, CA USA
| | - Ray B. Bryant
- Pasture Systems and Watershed Management Research Unit, USDA-ARS, University Park, PA 16802 USA
| | - Peter J. A. Kleinman
- Pasture Systems and Watershed Management Research Unit, USDA-ARS, University Park, PA 16802 USA
| | - Philip A. Moore
- Poultry Production and Product Safety Research Unit, Plant Science 115, USDA-ARS, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|
14
|
Gama S, Frontauria M, Ueberschaar N, Brancato G, Milea D, Sammartano S, Plass W. Thermodynamic study on 8-hydroxyquinoline-2-carboxylic acid as a chelating agent for iron found in the gut of Noctuid larvae. NEW J CHEM 2018. [DOI: 10.1039/c7nj04889k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
8-HQA is a good sequestering agent towards Fe2+ and Fe3+ over a wide pH range.
Collapse
Affiliation(s)
- Sofia Gama
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Mariachiara Frontauria
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Nico Ueberschaar
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Giuseppe Brancato
- Scuola Normale Superiore
- Palazzo della Carovana
- Classe di Scienze Matematiche e Naturali
- Pisa
- Italy
| | - Demetrio Milea
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| |
Collapse
|
15
|
Cardiano P, Cigala RM, Crea F, Giacobello F, Giuffrè O, Irto A, Lando G, Sammartano S. Sequestration of Aluminium(III) by different natural and synthetic organic and inorganic ligands in aqueous solution. CHEMOSPHERE 2017; 186:535-545. [PMID: 28806680 DOI: 10.1016/j.chemosphere.2017.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The speciation of Al3+ in aqueous solutions containing organic and inorganic ligands important from a biological (citrate (Cit3-), gluconate (Gluc-), lactate (Lac-), silicate (H2SiO42-), carbonate (CO32-), fluoride (F-)) and industrial (Gantrez®; polymethyl-vinyl-ether-co-maleic acids; GTZ S95 and GTZ AN169) point of view is reported. The stability constants of Al3+/Lz- complexes (Lz- = ligand with z- charge) were determined by potentiometry at T = 298.15 K and 0.10 ≤ I/M ≤ 1.00 in NaCl(aq) (in NaNO3(aq) only for Al3+/GTZ S95 and Al3+/Gluc- acid systems). For Al3+/Cit3-, Al3+/Lac- and Al3+/GTZ AN1694- systems, the investigations were also carried out at 283.15 ≤ T/K ≤ 318.15. The dependence of the thermodynamic parameters on ionic strength and temperature was modelled with a Debye-Hückel type equation. Different speciation schemes of Al3+/Lz- systems were obtained, including protonated, simple metal-ligand, polynuclear and hydrolytic mixed species. At I → 0 M and T = 298.15 K the stability trend for the AlL(3-z) species is: 14.28 ± 0.02, 13.99 ± 0.03, 10.16 ± 0.03, 3.16 ± 0.08, 2.84 ± 0.10 for GTZ S95, GTZ AN169, Cit3-, Gluc- and Lac-, respectively. From the investigations at different temperatures, it results that the entropic contribution is the driving force of the reactions. The sequestering ability of the ligands towards Al3+ was investigated determining the pL0.5 parameter at different experimental conditions, finding the following trend: Cit3- » Gluc- > GTZ S954- > GTZ AN1694- > Lac- for the organic ligands, and pL0.5: F- » CO32- > H2SiO42- for the inorganic ones.
Collapse
Affiliation(s)
- Paola Cardiano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166 Messina, Vill. S. Agata, Italy
| | - Rosalia Maria Cigala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166 Messina, Vill. S. Agata, Italy
| | - Francesco Crea
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166 Messina, Vill. S. Agata, Italy
| | - Fausta Giacobello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166 Messina, Vill. S. Agata, Italy
| | - Ottavia Giuffrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166 Messina, Vill. S. Agata, Italy
| | - Anna Irto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166 Messina, Vill. S. Agata, Italy
| | - Gabriele Lando
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166 Messina, Vill. S. Agata, Italy
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31, I-98166 Messina, Vill. S. Agata, Italy.
| |
Collapse
|
16
|
Bretti C, Cigala RM, De Stefano C, Lando G, Sammartano S. Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant MGDA in biological fluids and natural waters. CHEMOSPHERE 2017; 183:107-118. [PMID: 28538167 DOI: 10.1016/j.chemosphere.2017.05.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/11/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Thermodynamic information about the metal-ligand interaction between Fe3+, Zn2+, Cu2+ and Sn2+, and a biodegradable ligand as MGDA is reported. The speciation scheme was obtained by means of potentiometric measurements and isothermal titration calorimetry (to determine enthalpy changes) in NaCl medium. The formation of the ML and MLOH species was evidenced for all the metal cations, and for Fe3+ also the ML2 and ML(OH)2 were found. The relative stability, for the ML species, follows the order: Sn2+ > Fe3+ > Cu2+ > Zn2+. Stability constants and enthalpy changes were obtained at different ionic strengths, and data were modeled using the Debye-Hückel and SIT approaches to obtain data in a standard state. At infinite dilution, the enthalpy changes are largely negative for Cu2+ (-34.1 kJ mol-1) and Sn2+ (-16.6 kJ mol-1), slightly negative for Fe3+ (-3.3 kJ mol-1) and positive for Zn2+ (8.7 kJ mol-1). In all cases, the entropic contribution to the stability is predominant. The sequestering ability of MGDA was evaluated determining the pL0.5 values in different conditions. Comparing the data reported in this work and literature ones, some empirical relationships were obtained with predictive purpose. For example, using 11 data in the test set we have: log K (M/MGDA) ± 0.1 = 1.13 + 0.84·log K (M/NTA) Case studies were built up in the conditions of seawater, fresh water and urine to study the possible use of MGDA towards the metal cations here studied. Some considerations were also done in the light of the ocean acidification.
Collapse
Affiliation(s)
- Clemente Bretti
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d'Alcontres, 31, I-98166 Messina (Vill. S. Agata), Italy.
| | - Rosalia Maria Cigala
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d'Alcontres, 31, I-98166 Messina (Vill. S. Agata), Italy.
| | - Concetta De Stefano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d'Alcontres, 31, I-98166 Messina (Vill. S. Agata), Italy.
| | - Gabriele Lando
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d'Alcontres, 31, I-98166 Messina (Vill. S. Agata), Italy.
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale Ferdinando Stagno d'Alcontres, 31, I-98166 Messina (Vill. S. Agata), Italy.
| |
Collapse
|
17
|
Tsopelas C, Hsieh W. Preparation of68Ga-Mg-Ca-phytate colloid and its evaluation as a liver imaging agent. J Labelled Comp Radiopharm 2017; 60:528-541. [DOI: 10.1002/jlcr.3530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Chris Tsopelas
- RAH Radiopharmacy, Nuclear Medicine Department; Royal Adelaide Hospital; Adelaide South Australia Australia
| | - William Hsieh
- RAH Radiopharmacy, Nuclear Medicine Department; Royal Adelaide Hospital; Adelaide South Australia Australia
| |
Collapse
|
18
|
Balaban NP, Suleimanova AD, Valeeva LR, Chastukhina IB, Rudakova NL, Sharipova MR, V. Shakirov E. Microbial Phytases and Phytate: Exploring Opportunities for Sustainable Phosphorus Management in Agriculture. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajmb.2017.71002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Cardiano P, Cigala RM, Cordaro M, De Stefano C, Milea D, Sammartano S. On the complexation of metal cations with “pure” diethylenetriamine-N,N,N′,N′′,N′′-pentakis(methylenephosphonic) acid. NEW J CHEM 2017. [DOI: 10.1039/c7nj00118e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexation of various metal cations by DTPMA obtained by an efficient synthetic procedure has been investigated, assessing its sequestering ability and speciation in real systems.
Collapse
Affiliation(s)
- Paola Cardiano
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Rosalia Maria Cigala
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Massimiliano Cordaro
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Concetta De Stefano
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Demetrio Milea
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| | - Silvio Sammartano
- Dipartimento di Scienze Chimiche
- Biologiche
- Farmaceutiche ed Ambientali
- Università di Messina
- 98166 Messina
| |
Collapse
|
20
|
Gabaza M, Muchuweti M, Vandamme P, Raes K. Can fermentation be used as a sustainable strategy to reduce iron and zinc binders in traditional African fermented cereal porridges or gruels? FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1196491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Molly Gabaza
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| | - Maud Muchuweti
- Department of Biochemistry, Faculty of Science, University of Zimbabwe, Harare, Zimbabwe
| | - Peter Vandamme
- Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Gent, Belgium
| | - Katleen Raes
- Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk, Belgium
| |
Collapse
|
21
|
Feng X, Yan Y, Wan B, Li W, Jaisi DP, Zheng L, Zhang J, Liu F. Enhanced Dissolution and Transformation of ZnO Nanoparticles: The Role of Inositol Hexakisphosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5651-5660. [PMID: 27159895 DOI: 10.1021/acs.est.6b00268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The toxicity, reactivity, and behavior of zinc oxide (ZnO) nanoparticles (NPs) released in the environment are highly dependent on environmental conditions. Myo-inositol hexakisphosphate (IHP), a common organic phosphate, may interact with NPs and generate new transformation products. In this study, the role of IHP in mediating the dissolution and transformation of ZnO NPs was investigated in the laboratory kinetic experiments using powder X-ray diffraction, attenuated total reflectance Fourier transform infrared spectroscopy, (31)P nuclear magnetic resonance spectroscopy, high-resolution transmission electronic microscopy, and synchrotron-based extended X-ray absorption fine structure spectroscopy. The results indicate that IHP shows a dissolution-precipitation effect, which is different from citrate and EDTA that only enhances Zn dissolution. The enhanced dissolution and transformation of ZnO NPs by IHP (<0.5 h) is found to be strikingly faster than that induced by inorganic phosphate (Pi, > 3.0 h) at pH 7.0, and the reaction rate increases with decreasing pH and increasing IHP concentration. Multitechnique analyses reveal that interaction of ZnO NPs with IHP induces rapid transformation of ZnO NPs into zinc phytate complexes initially and poorly crystalline zinc phytate-like (Zn-IHP) phase finally. Additionally, ZnO NPs preferentially react with IHP and transform to Zn-IHP when Pi and IHP concurrently coexist in a system. Overall, results from this study contribute to an improved understanding of the role of organic phosphates (e.g., IHP) in the speciation and structural transformation of ZnO NPs, which can be leveraged for remediation of ZnO-polluted water and soils.
Collapse
Affiliation(s)
- Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Yupeng Yan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Biao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| | - Wei Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University , Nanjing 210093, People's Republic of China
| | - Deb P Jaisi
- Department of Plant and Soil Sciences, University of Delaware , Newark, Delaware 19716, United States
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100039, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100039, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University , Wuhan 430070, People's Republic of China
| |
Collapse
|
22
|
Sun J, Sun Y, Gai L, Jiang H, Tian Y. Carbon-coated mesoporous LiTi 2 (PO 4 ) 3 nanocrystals with superior performance for lithium-ion batteries. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Veiga N, Macho I, Gómez K, González G, Kremer C, Torres J. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.05.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
|
25
|
De Stefano C, Lando G, Pettignano A, Sammartano S. Evaluation of the sequestering ability of different complexones towards Ag+ ion. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Sun Y, Gai L, Zhou Y, Zuo X, Zhou J, Jiang H. Polyhierarchically structured TiP2O7/C microparticles with enhanced electrochemical performance for lithium-ion batteries. CrystEngComm 2014. [DOI: 10.1039/c4ce01547a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhierarchically structured TiP2O7/C microparticles constructed by carbon-coated nanoflakes enchasing crystalline nanoparticles have been prepared and been found to show enhanced electrochemical performance due to the hierarchical architecture with carbon nano-coating and 3D open pores.
Collapse
Affiliation(s)
- Yanru Sun
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan 250353, People's Republic of China
| | - Ligang Gai
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan 250353, People's Republic of China
| | - Yan Zhou
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan 250353, People's Republic of China
| | - Xinzhu Zuo
- School of Material Science & Engineering
- Qilu University of Technology
- Jinan 250353, People's Republic of China
| | - Jianhua Zhou
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan 250353, People's Republic of China
| | - Haihui Jiang
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology
- Jinan 250353, People's Republic of China
| |
Collapse
|
27
|
Malignant H1299 tumour cells preferentially internalize iron-bound inositol hexakisphosphate. Biosci Rep 2013; 33:BSR20130079. [PMID: 24050387 PMCID: PMC3804887 DOI: 10.1042/bsr20130079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In colon enterocytes and in well-differentiated colon cancer CaCo-2 cells, InsP6 (inositol hexakisphosphate) inhibits iron uptake by forming extracellular insoluble iron/InsP6 complexes. In this study, we confirmed that CaCo-2 cells are not able to take up iron/InsP6 but, interestingly, found that the cells are able to internalize metal-free and Cr3+-bound InsP6. Thus, the inability of CaCo-2 cells to take up iron/InsP6 complexes seems to be due to the iron-bound state of InsP6. Since recently we demonstrated that the highly malignant bronchial carcinoma H1299 cells internalize and process InsP6, we examined whether these cells may be able to take up iron/InsP6 complexes. Indeed, we found that InsP6 dose-dependently increased uptake of iron and demonstrated that in the iron-bound state InsP6 is more effectively internalized than in the metal-free or Cr3+-bound state, indicating that H1299 cells preferentially take up iron/InsP6 complexes. Electron microscope and cell fraction assays indicate that after uptake H1299 cells mainly stored InsP6/iron in lysosomes as large aggregates, of which about 10% have been released to the cytosol. However, this InsP6-mediated iron transport had no significant effects on cell viability. This result together with our finding that the well-differentiated CaCo-2 cells did not, but the malignant H1299 cells preferentially took up iron/InsP6, may offer the possibility to selectively transport cytotoxic substances into tumour cells.
Collapse
|
28
|
Potential of phytase-mediated iron release from cereal-based foods: a quantitative view. Nutrients 2013; 5:3074-98. [PMID: 23917170 PMCID: PMC3775243 DOI: 10.3390/nu5083074] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/01/2013] [Accepted: 07/17/2013] [Indexed: 12/23/2022] Open
Abstract
The major part of iron present in plant foods such as cereals is largely unavailable for direct absorption in humans due to complexation with the negatively charged phosphate groups of phytate (myo-inositol (1,2,3,4,5,6)-hexakisphosphate). Human biology has not evolved an efficient mechanism to naturally release iron from iron phytate complexes. This narrative review will evaluate the quantitative significance of phytase-catalysed iron release from cereal foods. In vivo studies have shown how addition of microbially derived phytases to cereal-based foods has produced increased iron absorption via enzyme-catalysed dephosphorylation of phytate, indicating the potential of this strategy for preventing and treating iron deficiency anaemia. Despite the immense promise of this strategy and the prevalence of iron deficiency worldwide, the number of human studies elucidating the significance of phytase-mediated improvements in iron absorption and ultimately in iron status in particularly vulnerable groups is still low. A more detailed understanding of (1) the uptake mechanism for iron released from partially dephosphorylated phytate chelates, (2) the affinity of microbially derived phytases towards insoluble iron phytate complexes, and (3) the extent of phytate dephosphorylation required for iron release from inositol phosphates is warranted. Phytase-mediated iron release can improve iron absorption from plant foods. There is a need for development of innovative strategies to obtain better effects.
Collapse
|
29
|
Singh SP, Vogel-Mikuš K, Arčon I, Vavpetič P, Jeromel L, Pelicon P, Kumar J, Tuli R. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3249-60. [PMID: 23918965 PMCID: PMC3733147 DOI: 10.1093/jxb/ert160] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops.
Collapse
Affiliation(s)
- Sudhir P. Singh
- National Agri-Food Biotechnology Institute, Department of Biotechnology, C-127, Industrial Area, Phase-8, Mohali 160071, India
| | - Katarina Vogel-Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Iztok Arčon
- University of Nova Gorica, Vipavska 13, POB 301, SI-5001 Nova Gorica, Slovenia
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Vavpetič
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Luka Jeromel
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Primož Pelicon
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Department of Biotechnology, C-127, Industrial Area, Phase-8, Mohali 160071, India
| | - Rakesh Tuli
- National Agri-Food Biotechnology Institute, Department of Biotechnology, C-127, Industrial Area, Phase-8, Mohali 160071, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Landoni M, Cerino Badone F, Haman N, Schiraldi A, Fessas D, Cesari V, Toschi I, Cremona R, Delogu C, Villa D, Cassani E, Pilu R. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4622-30. [PMID: 23638689 DOI: 10.1021/jf400259h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Monogastric animals are unable to digest phytic acid, so it represents an antinutritional factor and also an environmental problem. One strategy to solve this problem is the utilization of low phytic acid (lpa) mutants that accumulate low levels of phytic P and high levels of free phosphate in the seeds; among the lpa maize mutants lpa1 exhibited the highest reduction of phytic acid in the seed. This study indicated that the low phytic acid mutations exerted pleiotropic effects not directly connected to the phytic acid pathway, such as on seed density, content of ions, and the antioxidant compounds present in the kernels. Furthermore some nutritional properties of the flour were altered by the lpa1 mutations, in particular lignin and protein content, while the starch does not seem to be modified as to the total amount and in the amylose/amylopectin ratio, but alterations were noticed in the structure and size of granules.
Collapse
Affiliation(s)
- Michela Landoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Speciation of tin(II) in aqueous solution: thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0961-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|