1
|
Gęgotek A, Mucha M, Skrzydlewska E. Skin cells protection against UVA radiation - The comparison of various antioxidants and viability tests. Biomed Pharmacother 2024; 181:117736. [PMID: 39647320 DOI: 10.1016/j.biopha.2024.117736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
This study compares the effects of vitamins - including ascorbic acid, its derivative 3-O-ethyl-ascorbic acid (EAA), and tocopherol - as well as the main non-psychoactive phytocannabinoids on the viability of various skin cells, including healthy (keratinocytes/melanocytes/fibroblasts) and cancer cells (melanoma/SCC), under standard culture conditions and after the exposure to UVA radiation. All the conducted tests (MTT, SRB, and LDH) consistently indicate that the regenerative effect of EAA is stronger than that of ascorbic acid, while tocopherol acts selectively on healthy/cancer cells, inducing or inhibiting their proliferation, respectively. In the case of phytocannabinoids, only cannabidiol shows protective/regenerative properties for healthy cells. Moreover, the response of melanocytes to cannabigerol is divergent; however, only the LDH test indicates that cannabigerol strongly increases the membrane permeability of those cells. In summary it should be emphasized that various tests may give partially divergent results due to a variety of measured parameters. Nevertheless, despite the positive viability test results for the potential protective compound, caution should be taken as it may promote healthy skin cells but also protect cancer cells.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, Bialystok 15-222, Poland.
| | - Magda Mucha
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, Bialystok 15-222, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, Bialystok 15-222, Poland
| |
Collapse
|
2
|
Nagy R, Kun-Nemes A, Szőllősi E, Bíróné Molnár P, Cziáky Z, Murányi E, Sipos P, Remenyik J. Physiological potential of different Sorghum bicolor varieties depending on their bioactive characteristics and antioxidant potential as well as different extraction methods. Heliyon 2024; 10:e35807. [PMID: 39220962 PMCID: PMC11365355 DOI: 10.1016/j.heliyon.2024.e35807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
A comprehensive study of sorghum bran and flour was performed to explore the secondary metabolite profiles of differently coloured genotypes and to evaluate the variability in the antioxidant properties based on differences in polarity and solubility. This research included one red variety and one white variety. Among the samples, the red variety contained significantly greater amounts of secondary metabolites than did the white variety, with total polyphenol contents of 808.04 ± 63.89 mg.100 g-1 and 81.56 ± 3.87 mg.100 g-1, respectively. High-molecular-weight condensed tannin-type flavonoid extracts with high antioxidant activity were obtained by using relatively low-polarity acetone-water solvents, which was reflected by the measured antioxidant values. Among the methods used, the electron-donating Trolox equivalent antioxidant assay provided the highest antioxidant capacity, with values ranging from 118.5 to 182.6 μmol g-1 in the case of the red variety, in accordance with the electron donor properties of condensed tannins. Key secondary metabolites were identified using MS techniques and quantified using HPLC. Catechin and procyanidin B1 were found in the red variety at concentrations of 3.20 and 96.11 mg.100 g-1, respectively, while the concentrations in the white variety were under the limit of detection. All four tocopherols were found in sorghum, with the red variety containing a higher amount than the white variety, but the vitamin B complex concentrations were higher in the white variety. Overall, the red sorghum variety proved to be a better source of secondary metabolites with potential health benefits and could be used as a nutrient-rich food source.
Collapse
Affiliation(s)
- Róbert Nagy
- University of Debrecen, Faculty of Agriculture, and Food Sciences, and Environmental Management, Institute of Nutrition Science, 138 Böszörményi Street, 4032, Debrecen, Hungary
| | - Andrea Kun-Nemes
- University of Debrecen, Faculty of Agriculture and Food Sciences, and Environmental Management, Center for Complex Systems and Microbiome Innovations, 1 Egyetem Square, 4032, Debrecen, Hungary
| | - Erzsébet Szőllősi
- University of Debrecen, Faculty of Agriculture and Food Sciences, and Environmental Management, Center for Complex Systems and Microbiome Innovations, 1 Egyetem Square, 4032, Debrecen, Hungary
| | - Piroska Bíróné Molnár
- University of Debrecen, Faculty of Agriculture and Food Sciences, and Environmental Management, Center for Complex Systems and Microbiome Innovations, 1 Egyetem Square, 4032, Debrecen, Hungary
| | - Zoltán Cziáky
- University of Nyíregyháza, Institute of Technical and Agricultural Sciences, Agricultural and Molecular Research and Service Group, 31/b. Sóstói Street, 4400, Nyíregyháza, Hungary
| | - Eszter Murányi
- Hungarian University of Agriculture and Life Sciences, Research Institute of Karcag, 1 Páter Károly Str., 2100 Gödöllő, Hungary
| | - Péter Sipos
- University of Debrecen, Faculty of Agriculture, and Food Sciences, and Environmental Management, Institute of Nutrition Science, 138 Böszörményi Street, 4032, Debrecen, Hungary
| | - Judit Remenyik
- University of Debrecen, Faculty of Agriculture and Food Sciences, and Environmental Management, Center for Complex Systems and Microbiome Innovations, 1 Egyetem Square, 4032, Debrecen, Hungary
| |
Collapse
|
3
|
Zheng L, Zhu M, Zhang F, Jin J, Jin Q, Guo H. Activity and Characterization of Tocopherol Oxidase in Corn Germs and Its Relationship with Oil Color Reversion. Molecules 2023; 28:molecules28062659. [PMID: 36985631 PMCID: PMC10056654 DOI: 10.3390/molecules28062659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Color reversion has long been a major problem for the vegetable oil industry, and the enzymatic oxidation of γ-tocopherol is thought to trigger this phenomenon. In this study, first, the extraction, purification, and detailed characterization of tocopherol oxidase from fresh corn germs were performed. Then, the relationship between the enzyme reaction of γ-tocopherol and oil color reversion was verified. The results showed that the membrane-free extracts of raw corn germ performed specific catalysis of tocopherol in the presence of lecithin. In terms of the oxidation product, tocored (the precursor of color reversion) was detected in the mixture after the catalytic reactions, indicating that this anticipated enzyme reaction was probably correlated with the color reversion. Furthermore, the optimal pH and temperature for the tocopherol oxidase enzyme were 4.6 and 20 °C, respectively. In addition, ascorbic acid at 1.0 mM completely inhibited the enzymatic reaction.
Collapse
Affiliation(s)
- Liyou Zheng
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (L.Z.)
| | - Miaomiao Zhu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (L.Z.)
| | - Fei Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongyan Guo
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China; (L.Z.)
- Correspondence:
| |
Collapse
|
4
|
Huang Y, He C, Hu Z, Chu X, Zhou S, Hu X, Deng J, Xiao D, Tao T, Yang H, Chen AF, Yin Y, Yang X. The beneficial effects of alpha-tocopherol on intestinal function and the expression of tight junction proteins in differentiated segments of the intestine in piglets. Food Sci Nutr 2023; 11:677-687. [PMID: 36789053 PMCID: PMC9922147 DOI: 10.1002/fsn3.3103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Alpha (α)-tocopherol is a major component of dietary vitamin E. Despite being one of the most widely used food supplements in both animals and humans, its role in intestinal functions remains unknown. We were able to examine and accurately demonstrate its permeability effect in vitro and its differentiated effect on tight junction expression in different segments of the intestine in vivo using cultured intestinal porcine epithelial cell line (IPEC-J2) and piglets. A cultured IPEC-J2 demonstrated that α-tocopherol upregulated the expression of tight junction proteins and improved their integrity, with a maximum effect at concentrations ranging from 20 to 40 μmol/L. In vivo data from weaned pigs fed different doses of α-tocopherol for 2 weeks revealed that α-tocopherol effectively increases the expression of tight junction proteins in all sections of the intestinal mucosa, with the highest effect on the duodenum at an optimum dose of 20-50 mg/kg. In contrast, α-tocopherol did not affect intestinal inflammation. These findings suggest that α-tocopherol maintains intestinal integrity and increases the expression of tight junction proteins both in vitro and in vivo.
Collapse
Affiliation(s)
- Yanjun Huang
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Caimei He
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Zheng Hu
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Xuetong Chu
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Sichun Zhou
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Xin Hu
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Jun Deng
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Di Xiao
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Ting Tao
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Huansheng Yang
- Research Center for Healthy Breeding of Livestock and PoultryHunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical Agriculture, The Chinese Academy of SciencesChangshaChina
| | - Alex F. Chen
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Yulong Yin
- Research Center for Healthy Breeding of Livestock and PoultryHunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical Agriculture, The Chinese Academy of SciencesChangshaChina
| | - Xiaoping Yang
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
- Research Center for Healthy Breeding of Livestock and PoultryHunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical Agriculture, The Chinese Academy of SciencesChangshaChina
| |
Collapse
|
5
|
Khallouki F, Saber S, Bouddine T, Hajji L, Elbouhali B, Silvente-Poirot S, Poirot M. In vitro and In vivo oxidation and cleavage products of tocols: From chemical tuners to “VitaminEome” therapeutics. A narrative review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Brigelius-Flohé R. Vitamin E research: Past, now and future. Free Radic Biol Med 2021; 177:381-390. [PMID: 34756995 DOI: 10.1016/j.freeradbiomed.2021.10.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
The early history of vitamin E from its discovery by Herbert M. Evans and Katharine J. S. Bishop in 1922 up to its chemical synthesis by Paul Karrer and coworkers in 1938 and the development of the concept that vitamin E acts as an antioxidant in vivo are recalled. Some more recent results shedding doubt on this hypothesis are reviewed. They comprise influence of vitamin E on enzyme activities, signaling cascades, gene expression and bio-membrane structure. The overall conclusion is that our knowledge of the vitamin's mechanism of action still remains fragmentary. The metabolism of tocopherols and tocotrienols is presented and discussed in respect to bioactivity of the metabolites, interference with drug metabolism and the future design of clinical trials. Some strategies are recommended how to reach the final goal: the identification of the primary vitamin E target(s) and the analysis of the downstream events up to the physiological phenomena.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition Potsdam Rehbrücke, Arthur-Scheunert-Alle 114-116, 14558, Nuthetal, Germany.
| |
Collapse
|
7
|
Sun T, Zhang B, Ru QJ, Chen XM, Lv BD. Tocopheryl quinone improves non-alcoholic steatohepatitis (NASH) associated dysmetabolism of glucose and lipids by upregulating the expression of glucagon-like peptide 1 (GLP-1) via restoring the balance of intestinal flora in rats. PHARMACEUTICAL BIOLOGY 2021; 59:723-731. [PMID: 34139927 PMCID: PMC8871605 DOI: 10.1080/13880209.2021.1916542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Glucagon-like peptide 1 (GLP-1) and α-tocopheryl quinone can promote the growth of intestinal flora and affect the pathogenesis of non-alcoholic steatohepatitis (NASH). OBJECTIVE This study determines the molecular mechanism of the effect of tocopheryl quinone in the treatment of high cholesterol and cholate diet (HFCC)-induced NASH. MATERIALS AND METHODS Thirty-two male Sprague Dawley (SD) rats grouped as lean control (LC), LC + tocopheryl quinone (1 mL of 3 × 106 dpm tocopheryl quinone via i.p. injection), HFCC (5.1 kcal/g of fat diet), and HFCC + tocopheryl quinone. Profiles of intestinal flora were assessed by 16S ribosomal ribonucleic acid-based analysis. Levels and activity of GLP-1, interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α) in intestinal tissues were detected by immunohistochemistry (IHC), Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS HFCC rats presented higher levels of cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL), while tocopheryl quinone reversed the effects of HFCC. HFCC dysregulated malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), Vitamin E, 12-hydroxyeicosatetraenoic acid (12-HETE), 13-hydroxyoctadecadienoic acid (13-HODE) and nuclear factor kappa B (NF-κB), and the effects of HFCC were reversed by the treatment of tocopheryl quinone. Also, GLP-1 in the HFCC group was down-regulated while the IL-6 and TNF-α activity and endotoxins were all up-regulated. HFCC significantly decreased the number and diversity of bacteria, whereas tocopheryl quinone substantially restored the balance of intestinal flora and promoted the growth of both Bacteroides and Lactobacilli in vitro. DISCUSSION AND CONCLUSIONS α-Tocopheryl quinone relieves HFCC-induced NASH via regulating oxidative stress, GLP-1 expression, intestinal flora imbalance, and the metabolism of glucose and lipids.
Collapse
Affiliation(s)
- Tao Sun
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, PR China
- Department of Hepatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Bing Zhang
- Department of Traditional Chinese Medicine, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qing-jing Ru
- Department of Hepatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Xiao-mei Chen
- Department of Hepatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Bo-dong Lv
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, PR China
- CONTACT Bo-dong Lv The Second Clinical Medical College of Zhejiang Chinese Medicine University, No.318 Chaowang Road, Gongshu District, Hangzhou310005, PR China
| |
Collapse
|
8
|
Saleh MM, Lawrence KP, Jones SA, Young AR. The photoprotective properties of α-tocopherol phosphate against long-wave UVA1 (385 nm) radiation in keratinocytes in vitro. Sci Rep 2021; 11:22400. [PMID: 34789788 PMCID: PMC8599454 DOI: 10.1038/s41598-021-01299-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/12/2021] [Indexed: 11/14/2022] Open
Abstract
UVA1 radiation (340–400 nm), especially longwave UVA1 (> 370 nm), is often ignored when assessing sun protection due to its low sunburning potential, but it generates reactive oxygen species (ROS) and is poorly attenuated by sunscreens. This study aimed to investigate if α-tocopherol phosphate, (α-TP) a promising new antioxidant, could protect against long-wave UVA1 induced cell death and scavenge UVA1 induced ROS in a skin cell model. HaCaT keratinocyte cell viability (24 h) was assessed with Alamar Blue and Neutral Red assays. The metabolism of α-TP into α-T, assessed using mass spectrometry, and the compound's radical scavenging efficacy, assessed by the dichlorodihydrofluorescein (H2DCFDA) ROS detection assay, was monitored in HaCaTs. The mechanism of α-TP ROS scavenging was determined using non-cell based DPPH and ORAC assays. In HaCaT keratinocytes, irradiated with 226 J/cm2 UVA1 in low-serum (2%, starved) cell culture medium, pretreatment with 80 µM α-TP significantly enhanced cell survival (88%, Alamar Blue) compared to control, whereas α-T pre-treatment had no effect survival (70%, Alamar Blue). Pre-treatment of cells with 100 μM α-TP or 100 μM α-T before 57 J/cm2 UVA1 also significantly reduced ROS generation over 2 h (24.1% and 23.9% respectively) compared to the control and resulted in α-TP bioconversion into α-T. As α-TP displayed weak antioxidant activity in the cell-free assays thus its photoprotection was assigned to its bioconversion to α-T by cellular phosphatases. Through this mechanism α-TP prevented long-wave UVA1 induced cell death and scavenged UVA1 induced ROS in skin cells when added to the starved cell culture medium before UVA1 exposure by bioconversion into α-T.
Collapse
Affiliation(s)
- M M Saleh
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - K P Lawrence
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| | - S A Jones
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - A R Young
- St John's Institute of Dermatology, King's College London, London, SE1 9RT, UK
| |
Collapse
|
9
|
Faizo N, Narasimhulu CA, Forsman A, Yooseph S, Parthasarathy S. Peroxidized Linoleic Acid, 13-HPODE, Alters Gene Expression Profile in Intestinal Epithelial Cells. Foods 2021; 10:foods10020314. [PMID: 33546321 PMCID: PMC7913489 DOI: 10.3390/foods10020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Lipid peroxides (LOOHs) abound in processed food and have been implicated in the pathology of diverse diseases including gut, cardiovascular, and cancer diseases. Recently, RNA Sequencing (RNA-seq) has been widely used to profile gene expression. To characterize gene expression and pathway dysregulation upon exposure to peroxidized linoleic acid, we incubated intestinal epithelial cells (Caco-2) with 100 µM of 13-hydroperoxyoctadecadienoic acid (13-HPODE) or linoleic acid (LA) for 24 h. Total RNA was extracted for library preparation and Illumina HiSeq sequencing. We identified 3094 differentially expressed genes (DEGs) in 13-HPODE-treated cells and 2862 DEGs in LA-treated cells relative to untreated cells. We show that 13-HPODE enhanced lipid metabolic pathways, including steroid hormone biosynthesis, PPAR signaling, and bile secretion, which alter lipid uptake and transport. 13-HPODE and LA treatments promoted detoxification mechanisms including cytochrome-P450. Conversely, both treatments suppressed oxidative phosphorylation. We also show that both treatments may promote absorptive cell differentiation and reduce proliferation by suppressing pathways involved in the cell cycle, DNA synthesis/repair and ribosomes, and enhancing focal adhesion. A qRT-PCR analysis of representative DEGs validated the RNA-seq analysis. This study provides insights into mechanisms by which 13-HPODE alters cellular processes and its possible involvement in mitochondrial dysfunction-related disorders and proposes potential therapeutic strategies to treat LOOH-related pathologies.
Collapse
Affiliation(s)
- Nisreen Faizo
- Burnett School of Biomedical Sciences, Genomics and Bioinformatics Cluster, College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
| | - Chandrakala Aluganti Narasimhulu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (C.A.N.); (S.P.)
| | - Anna Forsman
- Department of Biology, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA;
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: ; Tel.: +1-407-823-5307
| | - Sampath Parthasarathy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA; (C.A.N.); (S.P.)
| |
Collapse
|
10
|
Yang CS, Luo P, Zeng Z, Wang H, Malafa M, Suh N. Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol Carcinog 2020; 59:365-389. [PMID: 32017273 DOI: 10.1002/mc.23160] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
Abstract
α-Tocopherol (α-T) is the major form of vitamin E (VE) in animals and has the highest activity in carrying out the essential antioxidant functions of VE. Because of the involvement of oxidative stress in carcinogenesis, the cancer prevention activity of α-T has been studied extensively. Lower VE intake or nutritional status has been shown to be associated with increased cancer risk, and supplementation of α-T to populations with VE insufficiency has shown beneficial effects in lowering the cancer risk in some intervention studies. However, several large intervention studies with α-T conducted in North America have not demonstrated a cancer prevention effect. More recent studies have centered on the γ- and δ-forms of tocopherols and tocotrienols (T3). In comparison with α-T, these forms have much lower systemic bioavailability but have shown stronger cancer-preventive activities in many studies in animal models and cell lines. γ-T3 and δ-T3 generally have even higher activities than γ-T and δ-T. In this article, we review recent results from human and laboratory studies on the cancer-preventive activities of different forms of tocopherols and tocotrienols, at nutritional and pharmacological levels. We aim to elucidate the possible mechanisms of the preventive actions and discuss the possible application of the available information for human cancer prevention by different VE forms.
Collapse
Affiliation(s)
- Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Philip Luo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Zishuo Zeng
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
11
|
Zingg JM. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2018; 71:456-478. [PMID: 30556637 DOI: 10.1002/iub.1986] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023]
Abstract
Vitamin E modulates signal transduction pathways by several molecular mechanisms. As a hydrophobic molecule located mainly in membranes it contributes together with other lipids to the physical and structural characteristics such as membrane stability, curvature, fluidity, and the organization into microdomains (lipid rafts). By acting as the main lipid-soluble antioxidant, it protects other lipids such as mono- and poly-unsaturated fatty acids (MUFA and PUFA, respectively) against chemical reactions with reactive oxygen and nitrogen species (ROS and RNS, respectively) and prevents membrane destabilization and cellular dysfunction. In cells, vitamin E affects signaling in redox-dependent and redox-independent molecular mechanisms by influencing the activity of enzymes and receptors involved in modulating specific signal transduction and gene expression pathways. By protecting and preventing depletion of MUFA and PUFA it indirectly enables regulatory effects that are mediated by the numerous lipid mediators derived from these lipids. In recent years, some vitamin E metabolites have been observed to affect signal transduction and gene expression and their relevance for the regulatory function of vitamin E is beginning to be elucidated. In particular, the modulation of the CD36/FAT scavenger receptor/fatty acids transporter by vitamin E may influence many cellular signaling pathways relevant for lipid homeostasis, inflammation, survival/apoptosis, angiogenesis, tumorigenesis, neurodegeneration, and senescence. Thus, vitamin E has an important role in modulating signal transduction and gene expression pathways relevant for its uptake, distribution, metabolism, and molecular action that when impaired affect physiological and patho-physiological cellular functions relevant for the prevention of a number of diseases. © 2018 IUBMB Life, 71(4):456-478, 2019.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
12
|
Abstract
The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL, United States.
| |
Collapse
|
13
|
Allen L, Ramalingam L, Menikdiwela K, Scoggin S, Shen CL, Tomison MD, Kaur G, Dufour JM, Chung E, Kalupahana NS, Moustaid-Moussa N. Effects of delta-tocotrienol on obesity-related adipocyte hypertrophy, inflammation and hepatic steatosis in high-fat-fed mice. J Nutr Biochem 2017; 48:128-137. [DOI: 10.1016/j.jnutbio.2017.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/30/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022]
|
14
|
Alpha-Tocopherol prevents esophageal squamous cell carcinoma by modulating PPARγ-Akt signaling pathway at the early stage of carcinogenesis. Oncotarget 2017; 8:95914-95930. [PMID: 29221176 PMCID: PMC5707070 DOI: 10.18632/oncotarget.21437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
The poor prognosis of esophageal squamous cell carcinoma (ESCC) emphasizes the urgent need to better understand the carcinogenesis and develop prevention strategies. Previous studies have highlighted the potential of using Vitamin E (tocopherols) for cancer chemoprevention, but the preventive activity of α-Tocopherol against ESCC remains to be elucidated. Our data showed that early-stage supplementation with α-Tocopherol significantly prevented esophageal carcinogenesis induced by N-nitrosomethylbenzylamine (NMBA) in ESCC rat model. In the Het-1A cell model, α-Tocopherol markedly suppressed cell proliferation, promoted cell cycle G2-phase arrest and increased apoptosis. Gene microarray and proteins array analysis indicated that Akt signaling was a potential target for α-Tocopherol. We further demonstrated that α-Tocopherol increased the expression of PPARγ and its downstream tumor suppressor PTEN. Knockdown of PPARγ activated Akt signaling transduction, whereas this process was attenuated by the presence of α-Tocopherol and PPARγ agonist Rosiglitazone. In contrast, the effect of α-Tocopherol on Akt inhibition was not observed in established tumors, neither in cancerous cell lines which constitutively expressed higher levels of PPARγ. These results were closely correlated with the ineffectiveness of α-Tocopherol in the late stage of ESCC carcinogenesis. Taken together, our study suggested that α-Tocopherol may serve as a PPARγ agonist for the chemoprevention of esophageal cancer.
Collapse
|
15
|
Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Özer NK. Vitamin E: Emerging aspects and new directions. Free Radic Biol Med 2017; 102:16-36. [PMID: 27816611 DOI: 10.1016/j.freeradbiomed.2016.09.017] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/11/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
The discovery of vitamin E will have its 100th anniversary in 2022, but we still have more questions than answers regarding the biological functions and the essentiality of vitamin E for human health. Discovered as a factor essential for rat fertility and soon after characterized for its properties of fat-soluble antioxidant, vitamin E was identified to have signaling and gene regulation effects in the 1980s. In the same years the cytochrome P-450 dependent metabolism of vitamin E was characterized and a first series of studies on short-chain carboxyethyl metabolites in the 1990s paved the way to the hypothesis of a biological role for this metabolism alternative to vitamin E catabolism. In the last decade other physiological metabolites of vitamin E have been identified, such as α-tocopheryl phosphate and the long-chain metabolites formed by the ω-hydroxylase activity of cytochrome P-450. Recent findings are consistent with gene regulation and homeostatic roles of these metabolites in different experimental models, such as inflammatory, neuronal and hepatic cells, and in vivo in animal models of acute inflammation. Molecular mechanisms underlying these responses are under investigation in several laboratories and side-glances to research on other fat soluble vitamins may help to move faster in this direction. Other emerging aspects presented in this review paper include novel insights on the mechanisms of reduction of the cardiovascular risk, immunomodulation and antiallergic effects, neuroprotection properties in models of glutamate excitotoxicity and spino-cerebellar damage, hepatoprotection and prevention of liver toxicity by different causes and even therapeutic applications in non-alcoholic steatohepatitis. We here discuss these topics with the aim of stimulating the interest of the scientific community and further research activities that may help to celebrate this anniversary of vitamin E with an in-depth knowledge of its action as vitamin.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Laboratory of Clinical Biochemistry and Nutrition, Via del Giochetto, 06126 Perugia, Italy.
| | - Angelo Azzi
- USDA-HNRCA at Tufts University, 711 Washington St., Boston, MA 02111, United States.
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany.
| | - Joan M Cook-Mills
- Allergy/Immunology Division, Northwestern University, 240 E Huron, Chicago, IL 60611, United States.
| | | | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy.
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena, Dornburger Str. 25, 07743 Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany.
| | - Nesrin Kartal Özer
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
16
|
Fajardo AM, MacKenzie DA, Olguin SL, Scariano JK, Rabinowitz I, Thompson TA. Antioxidants Abrogate Alpha-Tocopherylquinone-Mediated Down-Regulation of the Androgen Receptor in Androgen-Responsive Prostate Cancer Cells. PLoS One 2016; 11:e0151525. [PMID: 26986969 PMCID: PMC4795544 DOI: 10.1371/journal.pone.0151525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/28/2016] [Indexed: 01/27/2023] Open
Abstract
Tocopherylquinone (TQ), the oxidation product of alpha-tocopherol (AT), is a bioactive molecule with distinct properties from AT. In this study, AT and TQ are investigated for their comparative effects on growth and androgenic activity in prostate cancer cells. TQ potently inhibited the growth of androgen-responsive prostate cancer cell lines (e.g., LAPC4 and LNCaP cells), whereas the growth of androgen-independent prostate cancer cells (e.g., DU145 cells) was not affected by TQ. Due to the growth inhibitory effects induced by TQ on androgen-responsive cells, the anti-androgenic properties of TQ were examined. TQ inhibited the androgen-induced activation of an androgen-responsive reporter and inhibited the release of prostate specific antigen from LNCaP cells. TQ pretreatment was also found to inhibit AR activation as measured using the Multifunctional Androgen Receptor Screening assay. Furthermore, TQ decreased androgen-responsive gene expression, including TM4SF1, KLK2, and PSA over 5-fold, whereas AT did not affect the expression of androgen-responsive genes. Of importance, the antiandrogenic effects of TQ on prostate cancer cells were found to result from androgen receptor protein down-regulation produced by TQ that was not observed with AT treatment. Moreover, none of the androgenic endpoints assessed were affected by AT. The down-regulation of androgen receptor protein by TQ was abrogated by co-treatment with antioxidants. Overall, the biological actions of TQ were found to be distinct from AT, where TQ was found to be a potent inhibitor of cell growth and androgenic activity in androgen-responsive prostate cancer cells.
Collapse
Affiliation(s)
- Alexandra M. Fajardo
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Debra A. MacKenzie
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - Sarah L. Olguin
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
| | - John K. Scariano
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Ian Rabinowitz
- Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Todd A. Thompson
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, United States of America
- University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
17
|
Das Gupta S, Suh N. Tocopherols in cancer: An update. Mol Nutr Food Res 2016; 60:1354-63. [PMID: 26751721 DOI: 10.1002/mnfr.201500847] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 12/16/2022]
Abstract
Tocopherols exist in four forms designated as α, β, δ, and γ. Due to their strong antioxidant properties, tocopherols have been suggested to reduce the risk of cancer. Cancer prevention studies with tocopherols have mostly utilized α-tocopherol. Large-scale clinical trials with α-tocopherol provided inconsistent results regarding the cancer-preventive activities of tocopherols. This review summarizes our current understanding of the anticancer activities of different forms of tocopherols based on follow-up of the clinical trials, recent epidemiological evidences, and experimental studies using in vitro and in vivo models. The experimental data provide strong evidence in support of the anticancer activities of δ-tocopherol, γ-tocopherol, and the natural tocopherol mixture rich in γ-tocopherol, γ-TmT, over α-tocopherol. Such outcomes emphasize the need for detailed investigation into the cancer-preventive activities of different forms of tocopherols to provide a strong rationale for intervention studies in the future.
Collapse
Affiliation(s)
- Soumyasri Das Gupta
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
18
|
Chen JX, Li G, Wang H, Liu A, Lee MJ, Reuhl K, Suh N, Bosland MC, Yang CS. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice. Cancer Lett 2015; 371:71-8. [PMID: 26582657 DOI: 10.1016/j.canlet.2015.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Abstract
Tocopherols, the major forms of vitamin E, exist as alpha-tocopherol (α-T), β-T, γ-T and δ-T. The cancer preventive activity of vitamin E is suggested by epidemiological studies, but recent large-scale cancer prevention trials with high dose of α-T yielded disappointing results. Our hypothesis that other forms of tocopherols have higher cancer preventive activities than α-T was tested, herein, in a novel prostate carcinogenesis model induced by 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), a dietary carcinogen, in the CYP1A-humanized (hCYP1A) mice. Treatment of hCYP1A mice with PhIP (200 mg/kg b.w., i.g.) induced high percentages of mouse prostatic intraepithelial neoplasia (mPIN), mainly in the dorsolateral glands. Supplementation with a γ-T-rich mixture of tocopherols (γ-TmT, 0.3% in diet) significantly inhibited the development of mPIN lesions and reduced PhIP-induced elevation of 8-oxo-deoxyguanosine, COX-2, nitrotyrosine, Ki-67 and p-AKT, and the loss of PTEN and Nrf2. Further studies with purified δ-T, γ-T or α-T (0.2% in diet) showed that δ-T was more effective than γ-T or α-T in preventing mPIN formations and p-AKT elevation. These results indicate that γ-TmT and δ-T could be effective preventive agents of prostate cancer.
Collapse
Affiliation(s)
- Jayson X Chen
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ, USA; Joint Graduate Program in Toxicology, Piscataway, NJ, USA
| | - Guangxun Li
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Hong Wang
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Anna Liu
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Mao-Jung Lee
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Kenneth Reuhl
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ, USA; Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chung S Yang
- Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Piscataway, NJ, USA; Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
19
|
Wang H, Hong J, Yang CS. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells. Mol Carcinog 2015; 55:1728-1738. [PMID: 26465359 DOI: 10.1002/mc.22422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
The cancer preventive activity of vitamin E is suggested by epidemiological studies and supported by animal studies with vitamin E forms, γ-tocopherol and δ-tocopherol (δ-T). Several recent large-scale cancer prevention trials with high dose of α-tocopherol, however, yielded disappointing results. Whether vitamin E prevents or promotes cancer is a serious concern. A better understanding of the molecular mechanisms of action of the different forms of tocopherols would enhance our understanding of this topic. In this study, we demonstrated that δ-T was the most effective tocopherol form in inhibiting prostate cancer cell growth, by inducing cell cycle arrest and apoptosis. By profiling the effects of δ-T on the cell signaling using the phospho-kinase array, we found that the most inhibited target was the phosphorylation of AKT on T308. Further study on the activation of AKT by EGFR and IGFR revealed that δ-T attenuated the EGF/IGF-induced activation of AKT (via the phosphorylation of AKT on T308 induced by the activation of PIK3). Expression of dominant active PIK3 and AKT in prostate cancer cell line DU145 in which PIK3, AKT, and PTEN are wild type caused the cells to be reflectory to the inhibition of δ-T, supporting that δ-T inhibits the PIK3-mediated activation of AKT. Our data also suggest that δ-T interferes with the EGF-induced EGFR internalization, which leads to the inhibition of the receptor tyrosine kinase-dependent activation of AKT. In summary, our results revealed a novel mechanism of δ-T in inhibiting prostate cancer cell growth, supporting the cancer preventive activity δ-T. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hong Wang
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| | - Jungil Hong
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Food Science and Technology, College of Natural Science, Seoul Women's University, Seoul, Korea
| | - Chung S Yang
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
20
|
Drotleff AM, Büsing A, Willenberg I, Empl MT, Steinberg P, Ternes W. HPLC Separation of Vitamin E and Its Oxidation Products and Effects of Oxidized Tocotrienols on the Viability of MCF-7 Breast Cancer Cells in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8930-8939. [PMID: 26405759 DOI: 10.1021/acs.jafc.5b04388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tocotrienols, a vitamin E subgroup, exert potent anticancer effects, but easily degrade due to oxidation. Eight vitamin E reference compounds, α-, β-, γ-, or δ-tocopherols or -tocotrienols, were thermally oxidized in n-hexane. The corresponding predominantly dimeric oxidation products were separated from the parent compounds by diol-modified normal-phase HPLC-UV and characterized by mass spectroscopy. The composition of test compounds, that is, α-tocotrienol, γ-tocotrienol, or palm tocotrienol-rich fraction (TRF), before and after thermal oxidation was determined by HPLC-DAD, and MCF-7 cells were treated with both nonoxidized and oxidized test compounds for 72 h. Whereas all nonoxidized test compounds (0-100 μM) led to dose-dependent decreases in cell viability, equimolar oxidized α-tocotrienol had a weaker effect, and oxidized TRF had no such effect. However, the IC50 value of oxidized γ-tocotrienol was lower (85 μM) than that of nonoxidized γ-tocotrienol (134 μM), thereby suggesting that γ-tocotrienol oxidation products are able to reduce tumor cell viability in vitro.
Collapse
Affiliation(s)
- Astrid M Drotleff
- Department of Analytical Chemistry and ‡Department of Food Toxicology, Center for Food Sciences, Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover Foundation , Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Anne Büsing
- Department of Analytical Chemistry and ‡Department of Food Toxicology, Center for Food Sciences, Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover Foundation , Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Ina Willenberg
- Department of Analytical Chemistry and ‡Department of Food Toxicology, Center for Food Sciences, Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover Foundation , Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Michael T Empl
- Department of Analytical Chemistry and ‡Department of Food Toxicology, Center for Food Sciences, Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover Foundation , Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Pablo Steinberg
- Department of Analytical Chemistry and ‡Department of Food Toxicology, Center for Food Sciences, Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover Foundation , Bischofsholer Damm 15, D-30173 Hannover, Germany
| | - Waldemar Ternes
- Department of Analytical Chemistry and ‡Department of Food Toxicology, Center for Food Sciences, Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover Foundation , Bischofsholer Damm 15, D-30173 Hannover, Germany
| |
Collapse
|
21
|
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33136-6129;
| |
Collapse
|
22
|
Kwak Y, Ju J. Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells. Nutr Res Pract 2015; 9:11-6. [PMID: 25671062 PMCID: PMC4317473 DOI: 10.4162/nrp.2015.9.1.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/29/2014] [Accepted: 10/31/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVES Perilla frutescens Britton leaves are a commonly consumed vegetable in different Asian countries including Korea. Cancer is a major cause of human death worldwide. The aim of the current study was to investigate the inhibitory effects of ethanol extract of perilla leaf (PLE) against important characteristics of cancer cells, including unrestricted growth, resisted apoptosis, and activated metastasis, using human cancer cells. MATERIALS/METHODS Two human cancer cell lines were used in this study, HCT116 colorectal carcinoma cells and H1299 non-small cell lung carcinoma cells. Assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed for measurement of cell growth. Soft agar and wound healing assays were performed to determine colony formation and cell migration, respectively. Nuclear staining and cell cycle analysis were performed for assessment of apoptosis. Fibronectin-coated plates were used to determine cell adhesion. RESULTS Treatment of HCT116 and H1299 cells with PLE resulted in dose-dependent inhibition of growth by 52-92% (at the concentrations of 87.5, 175, and 350 µg/ml) and completely abolished the colony formation in soft agar (at the concentration of 350 µg/ml). Treatment with PLE at the 350 µg/ml concentration resulted in change of the nucleus morphology and significantly increased sub-G1 cell population in both cells, indicating its apoptosis-inducing activity. PLE at the concentration range of 87.5 to 350 µg/ml was also effective in inhibiting the migration of H1299 cells (by 52-58%) and adhesion of both HCT116 and H1299 cells (by 25-46%). CONCLUSIONS These results indicate that PLE exerts anti-cancer activities against colon and lung cancers in vitro. Further studies are needed in order to determine whether similar effects are reproduced in vivo.
Collapse
Affiliation(s)
- Youngeun Kwak
- Department of Food and Nutrition, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Chungbuk, 361-763, Korea
| | - Jihyeung Ju
- Department of Food and Nutrition, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Chungbuk, 361-763, Korea
| |
Collapse
|
23
|
Hardman WE. Diet components can suppress inflammation and reduce cancer risk. Nutr Res Pract 2014; 8:233-40. [PMID: 24944766 PMCID: PMC4058555 DOI: 10.4162/nrp.2014.8.3.233] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 12/24/2022] Open
Abstract
Epidemiology studies indicate that diet or specific dietary components can reduce the risk for cancer, cardiovascular disease and diabetes. An underlying cause of these diseases is chronic inflammation. Dietary components that are beneficial against disease seem to have multiple mechanisms of action and many also have a common mechanism of reducing inflammation, often via the NFκB pathway. Thus, a plant based diet can contain many components that reduce inflammation and can reduce the risk for developing all three of these chronic diseases. We summarize dietary components that have been shown to reduce cancer risk and two studies that show that dietary walnut can reduce cancer growth and development. Part of the mechanism for the anticancer benefit of walnut was by suppressing the activation of NFκB. In this brief review, we focus on reduction of cancer risk by dietary components and the relationship to suppression of inflammation. However, it should be remembered that most dietary components have multiple beneficial mechanisms of action that can be additive and that suppression of chronic inflammation should reduce the risk for all three chronic diseases.
Collapse
Affiliation(s)
- W Elaine Hardman
- Department of Biochemistry and Microbiology, Marshall University Joan C. Edwards School of Medicine, 1600 Medical Center Dr., Huntington, West Virginia 25701-3655, USA
| |
Collapse
|