1
|
Armah A, Jackson C, Kolba N, Gracey PR, Shukla V, Padilla-Zakour OI, Warkentin T, Tako E. Effects of Pea ( Pisum sativum) Prebiotics on Intestinal Iron-Related Proteins and Microbial Populations In Vivo ( Gallus gallus). Nutrients 2024; 16:1856. [PMID: 38931211 PMCID: PMC11206367 DOI: 10.3390/nu16121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.
Collapse
Affiliation(s)
- Abigail Armah
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Peter R. Gracey
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Viral Shukla
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Olga I. Padilla-Zakour
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Tom Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada;
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| |
Collapse
|
2
|
Yang D, Zhang M, Zhao M, Li C, Shang L, Zhang S, Wang P, Gao X. Study on the Effect of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Baicalin in Cells Based on MRP2, MRP3, and BCRP Efflux Transporters. Pharmaceutics 2024; 16:731. [PMID: 38931853 PMCID: PMC11206988 DOI: 10.3390/pharmaceutics16060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceutical excipient PEG400 is a common component of traditional Chinese medicine compound preparations. Studies have demonstrated that pharmaceutical excipients can directly or indirectly influence the disposition process of active drugs in vivo, thereby affecting the bioavailability of drugs. In order to reveal the pharmacokinetic effect of PEG400 on baicalin in hepatocytes and its mechanism, the present study first started with the effect of PEG400 on the metabolic disposition of baicalin at the hepatocyte level, and then the effect of PEG400 on the protein expression of baicalin-related transporters (BCRP, MRP2, and MRP3) was investigated by using western blot; the effect of MDCKII-BCRP, MDCKII-BCRP, MRP2, and MRP3 was investigated by using MDCKII-BCRP, MDCKII-MRP2, and MDCKII-MRP3 cell monolayer models, and membrane vesicles overexpressing specific transporter proteins (BCRP, MRP2, and MRP3), combined with the exocytosis of transporter-specific inhibitors, were used to study the effects of PEG400 on the transporters in order to explore the possible mechanisms of its action. The results demonstrated that PEG400 significantly influenced the concentration of baicalin in hepatocytes, and the AUC0-t of baicalin increased from 75.96 ± 2.57 μg·h/mL to 106.94 ± 2.22 μg·h/mL, 111.97 ± 3.98 μg·h/mL, and 130.42 ± 5.26 μg·h/mL (p ˂ 0.05). Furthermore, the efflux rate of baicalin was significantly reduced in the vesicular transport assay and the MDCKII cell model transport assay, which indicated that PEG400 had a significant inhibitory effect on the corresponding transporters. In conclusion, PEG400 can improve the bioavailability of baicalin to some extent by affecting the efflux transporters and thus the metabolic disposition of baicalin in the liver.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (D.Y.); (M.Z.); (L.S.); (P.W.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Department of Education of Guizhou, Guiyang 550025, China
| | - Min Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (D.Y.); (M.Z.); (L.S.); (P.W.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Department of Education of Guizhou, Guiyang 550025, China
| | - Mei Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (D.Y.); (M.Z.); (L.S.); (P.W.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Department of Education of Guizhou, Guiyang 550025, China
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Chaoji Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (D.Y.); (M.Z.); (L.S.); (P.W.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Department of Education of Guizhou, Guiyang 550025, China
| | - Leyuan Shang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (D.Y.); (M.Z.); (L.S.); (P.W.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Department of Education of Guizhou, Guiyang 550025, China
| | - Shuo Zhang
- Experimental Animal Center, Guizhou Medical University, Guiyang 550025, China
| | - Pengjiao Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (D.Y.); (M.Z.); (L.S.); (P.W.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Department of Education of Guizhou, Guiyang 550025, China
| | - Xiuli Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; (D.Y.); (M.Z.); (L.S.); (P.W.)
- Center of Microbiology and Biochemical Pharmaceutical Engineering, Department of Education of Guizhou, Guiyang 550025, China
| |
Collapse
|
3
|
Yunus FM, Jalal C, Das A, Afsana K, Podder R, Vandenberg A, DellaValle DM. Consumption of Iron-Fortified Lentils Is Protective against Declining Iron Status among Adolescent Girls in Bangladesh: Evidence from a Community-Based Double-Blind, Cluster-Randomized Controlled Trial. J Nutr 2024; 154:1686-1698. [PMID: 38458577 DOI: 10.1016/j.tjnut.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND In many low-income countries, iron deficiency (ID) and its anemia (IDA) pose significant health challenges, particularly among females and girls. Finding sustainable and effective solutions to address this issue is critical. OBJECTIVES This study aimed to evaluate the efficacy of incorporating iron-fortified lentils (IFLs) into the diets of rural Bangladeshi adolescent girls on their body iron (Fe) status. METHODS A community-based, double-blind, cluster-randomized controlled trial involved n = 1195 girls aged 10-17 y. A total of 48 adolescent clubs (n = ∼27 girls each) were randomized into 3 groups: 1) 200 g cooked IFLs, 2) 200 g cooked noniron-fortified lentils (NIFLs), and 3) a control group with no lentils (usual dietary intake). The intervention, administered 5 days a week for 85 feeding days, provided ∼8.625 mg Fe from each serving of IFLs and 2.625 mg from NIFLs. Blood samples collected at baseline, midpoint (42 feeding days), and endpoint (85 feeding days) assessed key Fe and inflammation biomarkers. Statistical analyses were filtered for inflammation. RESULTS Although all groups experienced a decline in Fe status over time, the IFL group exhibited a significantly reduced decline in serum ferritin (sFer -7.2 μg/L), and total body iron (TBI -0.48 mg/kg) level compared with NIFL (sFer -14.3 μg/L and TBI -1.36 mg/kg) and usual intake group (sFer -12.8 μg/L and TBI -1.33 mg/kg). Additionally, those in the IFL group had a 57% reduced risk of developing clinical ID (sFer <15 μg/L) compared with the usual intake group. CONCLUSIONS Our findings suggest that incorporating IFLs into the diet can help mitigate a decline in sFer, indicating a positive impact on the body Fe status of adolescent girls. This research underscores the potential role of fortified foods in addressing ID and IDA in vulnerable populations, emphasizing the significance of food-based interventions in public health. TRIAL REGISTRATION NUMBER This trial was registered at the clinicaltrials.gov on May 24, 2018 (https://clinicaltrials.gov/study/NCT03516734?locStr=Bangladesh&country=Bangladesh&distance=50&cond=Anemia&intr=Iron%20fortified%20lentils&rank=1) as NCT03516734.
Collapse
Affiliation(s)
- Fakir Md Yunus
- College of Pharmacy and Nutrition, The University of Saskatchewan, Saskatoon, SK, Canada; Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Chowdhury Jalal
- Evaluation and Strategic Research, Nutrition International, Ottawa, ON, Canada
| | - Anupom Das
- Civil Surgeon Office, Ministry of Health and Family Welfare, Jashore, Bangladesh
| | - Kaosar Afsana
- James P Grant School of Public Health, BRAC University, Mohakhali, Dhaka, Bangladesh
| | - Rajib Podder
- College of Agriculture and Bio-resources, The University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- College of Agriculture and Bio-resources, The University of Saskatchewan, Saskatoon, SK, Canada
| | - Diane M DellaValle
- Department of Health and Human Performance, King's College, Wilkes-Barre, PA, United States.
| |
Collapse
|
4
|
Langyan S, Yadava P, Khan FN, Bhardwaj R, Tripathi K, Bhardwaj V, Bhardwaj R, Gautam RK, Kumar A. Nutritional and Food Composition Survey of Major Pulses Toward Healthy, Sustainable, and Biofortified Diets. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.878269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The world's food demand is increasing rapidly due to fast population growth that has posed a challenge to meeting the requirements of nutritionally balanced diets. Pulses could play a major role in the human diet to combat these challenges and provide nutritional and physiological benefits. Pulses such as chickpeas, green gram, peas, horse gram, beans, lentils, black gram, etc., are rich sources of protein (190–260 g kg−1), carbohydrates (600–630 g kg−1), dietary fibers, and bioactive compounds. There are many health benefits of phytochemicals present in pulses, like flavonoids, phenolics, tannins, phytates, saponins, lectins, oxalates, phytosterols peptides, and enzyme inhibitors. Some of them have anti-inflammatory, anti-ulcerative, anti-microbial, and anti-cancer effects. Along with these, pulses are also rich in vitamins and minerals. In this review, we highlight the potential role of pulses in global food systems and diets, their nutritional value, health benefits, and prospects for biofortification of major pulses. The food composition databases with respect to pulses, effect of processing techniques, and approaches for improvement of nutritional profile of pulses are elaborated.
Collapse
|
5
|
Modulation of lentil antinutritional properties using non-thermal mediated processing techniques – A review. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Uyoga MA, Mzembe G, Stoffel NU, Moretti D, Zeder C, Phiri K, Sabatier M, Hays NP, Zimmermann MB, Mwangi MN. Iron Bioavailability from Infant Cereals Containing Whole Grains and Pulses: A Stable Isotope Study in Malawian Children. J Nutr 2021; 152:826-834. [PMID: 34958374 PMCID: PMC8891185 DOI: 10.1093/jn/nxab406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Compared with infant cereals based on refined grains, an infant cereal containing whole grains (WGs) and pulses with adequate amounts of ascorbic acid to protect against absorption inhibitors could be a healthier source of well-absorbed iron. However, iron absorption from such cereals is uncertain. OBJECTIVE We measured iron bioavailability from ferrous fumarate (Fefum) added to commercial infant cereals containing 1) refined wheat flour (reference meal), 2) WG wheat and lentil flour (WG-wheat-lentil), 3) WG wheat and chickpea flour (WG-wheat-chickpeas), and 4) WG oat flour (WG-oat) and from ferrous bisglycinate (FeBG) added to the same oat-based cereal (WG-oat-FeBG). METHODS In a prospective, single-blinded randomized crossover study, 6- to 14-mo-old Malawian children (n = 30) consumed 25-g servings of all 5 test meals containing 2.25 mg stable isotope-labeled iron and 13.5 mg ascorbic acid. Fractional iron absorption (FIA) was assessed by erythrocyte incorporation of isotopes after 14 d. Comparisons were made using linear mixed models. RESULTS Seventy percent of the children were anemic and 67% were iron deficient. Geometric mean FIA percentages (-SD, +SD) from the cereals were as follows: 1) refined wheat, 12.1 (4.8, 30.6); 2) WG-wheat-lentil, 15.8 (6.6, 37.6); 3) WG-wheat-chickpeas, 12.8 (5.5, 29.8); and 4) WG-oat, 9.2 (3.9, 21.5) and 7.4 (2.9, 18.9) from WG-oat-FeBG. Meal predicted FIA (P ≤ 0.001), whereas in pairwise comparisons, only WG-oat-FeBG was significantly different compared with the refined wheat meal (P = 0.02). In addition, FIAs from WG-wheat-lentil and WG-wheat-chickpeas were significantly higher than from WG-oat (P = 0.002 and P = 0.04, respectively) and WG-oat-FeBG (P < 0.001 and P = 0.004, respectively). CONCLUSION In Malawian children, when given with ascorbic acid at a molar ratio of 2:1, iron bioavailability from Fefum-fortified infant cereals containing WG wheat and pulses is ≈13-15%, whereas that from FeBG- and Fefum-fortified infant cereals based on WG oats is ≈7-9%.
Collapse
Affiliation(s)
| | - Glory Mzembe
- Training and Research Unit of Excellence (TRUE), Blantyre, Malawi,School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nicole U Stoffel
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Diego Moretti
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland,Swiss Distance University of Applied Sciences, Zurich, Switzerland
| | - Christophe Zeder
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Kamija Phiri
- Training and Research Unit of Excellence (TRUE), Blantyre, Malawi,School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Magalie Sabatier
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Vers-Chez-Les-Blanc, Lausanne, Switzerland
| | - Nicholas P Hays
- Nestlé Product Technology Center—Nutrition, Société des Produits Nestlé S.A., Vevey, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin N Mwangi
- Training and Research Unit of Excellence (TRUE), Blantyre, Malawi,School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| |
Collapse
|
7
|
Gannon BM, Glahn RP, Mehta S. Iron Bioavailability from Multiple Biofortified Foods Using an In Vitro Digestion, Caco-2 Assay for Optimizing a Cyclical Menu for a Randomized Efficacy Trial. Curr Dev Nutr 2021; 5:nzab111. [PMID: 34604692 PMCID: PMC8483813 DOI: 10.1093/cdn/nzab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Inadequate nutritional status contributes to substantial losses in human health and productivity globally. A multiple biofortified food crop trial targeting iron, zinc, and vitamin A deficiencies among young children and their breastfeeding mothers is being conducted in India. OBJECTIVE We sought to determine the relative iron bioavailability from biofortified and conventional crops and crop combinations representative of a cyclical menu using crops targeted for inclusion in the feeding trial. METHODS Crops were procured from India, cooked, freeze-dried, and analyzed with an established in vitro digestion/Caco-2 iron bioavailability assay using a fixed sample weight. Crop proportions representative of meals planned for the human study were determined and combined such that samples included either all biofortified or all control crops. Crops were analyzed as single crops (n = 4) or crop combinations (n = 7) by variety (biofortified or control) in triplicate. The primary outcome was iron uptake measured by Caco-2 ferritin production normalized to total Caco-2 protein (nanograms of ferritin/milligrams of cell protein) analyzed for effects of crop variety and crop proportion using generalized linear models. RESULTS Biofortified pearl millet alone demonstrated higher iron uptake than conventional varieties (5.01 ± 1.66 vs. 2.17 ± 0.96; P = 0.036). Addition of sweet potato or sweet potato + pulse improved iron uptake for all proportions tested in control varieties and select proportions for biofortified varieties (P ≤ 0.05). Two multiple crop combinations demonstrated modestly higher iron uptake from biofortified crops. CONCLUSIONS Optimizing total iron delivery should consider matrix effects, processing, and promoters/inhibitors of iron absorption in addition to total iron concentration. Future directions include evaluating recipes as prepared for consumption and comparison against human iron bioavailability studies.
Collapse
Affiliation(s)
- Bryan M Gannon
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| | - Raymond P Glahn
- USDA, Agricultural Research Service, Robert Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
- Institute for Nutritional Sciences, Global Health, and Technology (INSiGHT), Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Extraction Kinetics of Total Polyphenols, Flavonoids, and Condensed Tannins of Lentil Seed Coat: Comparison of Solvent and Extraction Methods. Foods 2021; 10:foods10081810. [PMID: 34441587 PMCID: PMC8393944 DOI: 10.3390/foods10081810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
The lentil seed coat is a waste by-product still rich in phenolic compounds, specifically condensed tannins. The effect of different solvents, as well as different processes, namely conventional solid-liquid extraction (CSLE) and ultrasound-assisted extraction (UAE), on the extraction yield of specific phenolic compound classes was studied. Four empirical two-parameter models were examined to select the one that better fit the experimental data obtained under different operating conditions. Additionally, ultra-high-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-ESI/QTOF-MS) was employed to profile the phenolic compounds obtained under distinct extraction conditions. In the operative conditions adopted here, the bioactive compounds yield achieved using UAE was lower than that obtained with CSLE. The kinetics of polyphenols, flavonoids, and condensed tannins extraction from the lentil seed coat were successfully fitted to the power-law models, yielding mean values of the root mean square < 5.4%, standard error of estimation < 0.53, and coefficient of determination > 0.8. In addition, the UHPLC-ESI/QTOF-MS of the lentil seed coat extracts allowed the putative recognition of nearly 500 compounds, mainly flavonoids and phenolic acids.
Collapse
|
9
|
Glahn RP, Noh H. Redefining Bean Iron Biofortification: A Review of the Evidence for Moving to a High Fe Bioavailability Approach. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.682130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iron biofortification of the common bean (Phaseolus vulgaris) commenced in earnest ~18 years ago. Based on knowledge at the time, the biofortification approach for beans was simply to breed for increased Fe concentration based on 3 major assumptions: (1) The average bean Fe concentration is ~50 μg/g; (2) Higher Fe concentration results in more bioavailable Fe delivered for absorption; (3) Breeding for high Fe concentration is a trait that can be achieved through traditional breeding and is sustainable once a high Fe bean sample is released to farmers. Current research indicates that the assumptions of the high Fe breeding approach are not met in countries of East Africa, a major focus area of bean Fe biofortification. Thus, there is a need to redefine bean Fe biofortification. For assumption 1, recent research indicates that the average bean Fe concentration in East Africa is 71 μg/g, thus about 20 μg/g higher than the assumed value. For assumption 2, recent studies demonstrate that for beans higher Fe concentration does not always equate to more Fe absorption. Finally, for assumption 3, studies show a strong environment and genotype by environment effect on Fe concentration, thus making it difficult to develop and sustain high Fe concentrations. This paper provides an examination of the available evidence related to the above assumptions, and offers an alternative approach utilizing tools that focus on Fe bioavailability to redefine Fe biofortification of the common bean.
Collapse
|
10
|
Podder R, Glahn RP, Vandenberg A. Dual-Fortified Lentil Products-A Sustainable New Approach to Provide Additional Bioavailable Iron and Zinc in Humans. Curr Dev Nutr 2021; 5:nzab004. [PMID: 33628987 PMCID: PMC7888699 DOI: 10.1093/cdn/nzab004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Iron (Fe) and zinc (Zn) deficiencies are global health problems affecting 20% and 33% of the world's population, respectively. Lentil (Lens culinaris Medik.), part of the staple food supply in many countries, can be a potential vehicle for Fe and Zn fortification. OBJECTIVE We developed a dual-fortification protocol to fortify 3 milled lentil product types (LPTs) [red-football (RF), red-split (RS), and yellow-split (YS)], with NaFeEDTA and ZnSO4.H2O to increase the bioavailable content of Fe and Zn. METHODS Appropriate Fe and Zn doses were determined to fortify lentils based on RDAs. Relative Fe bioavailability (RFeB%) and phytic acid (PA) content were assessed using an in vitro Caco-2 cell bioassay and PA analysis, respectively. One-factor ANOVA determined the differences in colorimetric score; concentrations of Fe, Zn, and PA; and RFeB% among samples. The least significant difference was calculated with significance level set at P < 0.05. RESULTS Fe and Zn concentration and RFeB% increased and PA concentration decreased significantly in dual-fortified lentils. Dual-fortified lentil samples had higher RFeB% compared with Fe-fortified (single) samples in all 3 LPTs, whereas RFeB% decreased in Zn-fortified (single) RF and YS samples by 43.4% and 36%, respectively. The RF, RS, and YS samples, fortified with 16 mg Fe and 8 mg Zn/100 g of lentils, provided 27 mg Fe and 14 mg Zn, 28 mg Fe and 13.4 mg Zn, and 29.9 mg Fe and 12.1 mg Zn, respectively. RFeB% of RF, RS, and YS lentil samples increased by 91-307%, 114-522%, and 122-520%, respectively. Again, PA concentrations of RF, RS, and YS lentils were reduced by 0.63-0.53, 0.83-0.71, and 0.96-0.79 mg/g, respectively. CONCLUSIONS Dual-fortified lentil consumption can cost-effectively provide a significant part of the daily bioavailable Fe and Zn requirements of people with these 2 globally important micronutrient deficiencies.
Collapse
Affiliation(s)
- Rajib Podder
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Raymond P Glahn
- Robert W Holley Center for Agriculture and Health, Agricultural Research Service, USDA, Ithaca, NY, USA
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
11
|
Podder R, Glahn RP, Vandenberg A. Iron- and Zinc-Fortified Lentil ( Lens culinaris Medik.) Demonstrate Enhanced and Stable Iron Bioavailability After Storage. Front Nutr 2021; 7:614812. [PMID: 33490100 PMCID: PMC7819975 DOI: 10.3389/fnut.2020.614812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023] Open
Abstract
Lentil (Lens culinaris Medik.) is a quick-cooking, rapidly expanding protein-rich crop with high iron (Fe) and zinc (Zn), but low bioavailability due to the presence of phytate, similar to other grains. Lentils dual fortified with Fe and Zn can significantly improve the bioavailable Fe and Zn content. Three milled lentil product types (LPTs) were fortified with Fe using NaFeEDTA [ethylenediaminetetraacetic acid iron (III) sodium salt] (Fe fortified) or Zn from ZnSO4·H2O (Zn fortified), or both (dual fortified). Fe, Zn, phytic acid (PA) concentration, and relative Fe bioavailability (RFeB%) were assessed for samples from two fortified batches (initial and for 1 year stored). Fe, Zn, and RFeB% increased significantly in two batches of samples from the three LPTs, and decreased by 5–15% after 1 year of storage. PA concentration decreased from 8 to 15% after fortification of all samples from two batches of the three LPTs but showed different patterns of influence after storage. Dual-fortified lentil fortified with 24 mg Fe and 12 mg Zn 100 g−1 lentil had the highest amount of Fe and Zn, and the lowest PA concentration, and RFeB% was increased from 91.3 to 519.5%. Significant (p ≤ 0.01) Pearson correlations were observed between Fe concentration vs. PA:Fe molar ratio (MR), Fe concentration vs. RFeB%, RFeB% vs. PA:Fe MR, and Zn concentration vs. PA:Zn MR in all samples from two batches of the three LPTs. In conclusion, dual-fortified lentil can contribute significant bioavailable Fe and Zn to populations at risk of Fe and Zn deficiency.
Collapse
Affiliation(s)
- Rajib Podder
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, United States
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Dold S, Zimmermann MB, Jeroense F, Zeder C, Habeych E, Galaffu N, Grathwohl D, Tajeri Foman J, Merinat S, Rey B, Sabatier M, Moretti D. Iron bioavailability from bouillon fortified with a novel ferric phytate compound: a stable iron isotope study in healthy women (part II). Sci Rep 2020; 10:5339. [PMID: 32210349 PMCID: PMC7093532 DOI: 10.1038/s41598-020-62307-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/04/2020] [Indexed: 11/23/2022] Open
Abstract
Bouillon cubes are widely consumed and when fortified with iron could contribute in preventing iron deficiency. We report the development (part I) and evaluation (current part II) of a novel ferric phytate compound to be used as iron fortificant in condiments such as bouillon. Ferric pyrophosphate (FePP), is the compound of choice due to its high stability in foods, but has a modest absorption in humans. Our objective was to assess iron bioavailability from a novel iron fortificant consisting of ferric iron complexed with phytic acid and hydrolyzed corn protein (Fe-PA-HCP), used in bouillon with and without an inhibitory food matrix. In a randomised single blind, cross-over study, we measured iron absorption in healthy adult women (n = 22). In vitro iron bioaccessibility was assessed using a Caco-2 cell model. Iron absorption from Fe-PA-HCP was 1.5% and 4.1% in bouillon with and without inhibitory matrix, respectively. Relative iron bioavailability to FeSO4 was 2.4 times higher than from FePP in bouillon (17% vs 7%) and 5.2 times higher when consumed with the inhibitory meal (41% vs 8%). Similar results were found in vitro. Fe-PA-HCP has a higher relative bioavailability versus FePP, especially when bouillon is served with an inhibitory food matrix.
Collapse
Affiliation(s)
- Susanne Dold
- ETH Zurich, Laboratory of Human Nutrition, Zurich, Switzerland
| | | | | | | | - Edwin Habeych
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Nicola Galaffu
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Dominik Grathwohl
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | | | - Sylvie Merinat
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Brigitte Rey
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Magalie Sabatier
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Diego Moretti
- ETH Zurich, Laboratory of Human Nutrition, Zurich, Switzerland.
- Swiss Distance University of Applied Sciences, Nutrition Research, Health Department, Regensdorf, Zurich, Switzerland.
| |
Collapse
|
13
|
Jha AB, Warkentin TD. Biofortification of Pulse Crops: Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2020; 9:E73. [PMID: 31935879 PMCID: PMC7020478 DOI: 10.3390/plants9010073] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/08/2023]
Abstract
Biofortification through plant breeding is a sustainable approach to improve the nutritional profile of food crops. The majority of the world's population depends on staple food crops; however, most are low in key micronutrients. Biofortification to improve the nutritional profile of pulse crops has increased importance in many breeding programs in the past decade. The key micronutrients targeted have been iron, zinc, selenium, iodine, carotenoids, and folates. In recent years, several biofortified pulse crops including common beans and lentils have been released by HarvestPlus with global partners in developing countries, which has helped in overcoming micronutrient deficiency in the target population. This review will focus on recent research advances and future strategies for the biofortification of pulse crops.
Collapse
Affiliation(s)
| | - Thomas D. Warkentin
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
14
|
Iron Fortification and Bioavailability of Chickpea ( Cicer arietinum L.) Seeds and Flour. Nutrients 2019; 11:nu11092240. [PMID: 31540391 PMCID: PMC6770251 DOI: 10.3390/nu11092240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022] Open
Abstract
Iron (Fe) deficiency is one of the most common nutritional disorders, and is mainly due to insufficient intake of bioavailable Fe. Chickpea (Cicer arietinum L.) was examined as a potential vehicle for Fe fortification. Fortificants (FeSO4·7H2O (ferrous sulfate hepta-hydrate), FeSO4·H2O (ferrous sulfate mono-hydrate) and NaFeEDTA (ethylenediaminetetraacetic acid iron (iii) sodium salt)) were applied by a spraying and drying method. At 2000 µg g-1 iron fortificant, the fortified split desi seeds (dal), desi flour and kabuli flour supplied 18-19 mg, 16-20 mg and 11-19 mg Fe per 100 g, respectively. The overall consumer acceptability using a nine-point hedonic scale for sensory evaluation demonstrated that NaFeEDTA-fortified cooked chickpea (soup and chapatti) scored the highest among the three fortificants. Lightness (L*), redness (a*) and yellowness (b*) of Fe-fortified products changed over time. However, no organoleptic changes occurred. Fe bioavailability was increased by 5.8-10.5, 15.3-25.0 and 4.8-9.0 ng ferritin mg-1 protein for cooked split desi seeds (soup), desi chapatti and kabuli chapatti, respectively, when prepared using Fe-fortified chickpea. Desi chapatti showed significantly higher Fe bioavailability than the other two. The increase in Fe concentration and bioavailability in fortified chickpea products demonstrated that these products could provide a significant proportion of the recommended daily Fe requirement.
Collapse
|
15
|
Yunus FM, Jalal C, Afsana K, Podder R, Vandenberg A, DellaValle DM. Iron-fortified lentils to improve iron (Fe) status among adolescent girls in Bangladesh - study protocol for a double-blind community-based randomized controlled trial. Trials 2019; 20:251. [PMID: 31046819 PMCID: PMC6498512 DOI: 10.1186/s13063-019-3309-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Background Lentils are generally considered to be a nutrient-dense food, and a good source of iron (Fe). This study aims to establish novel evidence of the effectiveness of the consumption of Fe-fortified lentils in improving the body Fe status and thus cognitive performance in non-pregnant adolescent girls in rural Bangladesh, compared to consumption of ordinary lentils. Methods We have designed a double-blind (both trial participants and outcome assessors), community-based, cluster-randomized controlled trial among 1260 Bangladeshi adolescent girls between the ages of 10–17 years who are non-smoking, not married, not pregnant, not breastfeeding, and generally healthy at the time of enrollment. The intervention will include three arms who will receive: (1) Fe-fortified lentils; (2) unfortified lentils; or (3) usual intake. Participants will be served a thick preparation of cooked Fe-fortified lentils (37.5 g raw lentils, approximately 200 g cooked lentils) 5 days per week for 85 feeding days (around 4 months) using a locally acceptable recipe. Lentils were fortified with Fe in the laboratory at the Department of Plant Sciences at the University of Saskatchewan in Canada. A subsample of participants (n = 360) will be randomly invited to be included in cognitive testing. Discussion Data on socio-demographic characteristics, household food security status, adolescent food habits and cognitive testing will be collected at baseline and endline (4 months). Venous blood samples will be collected at baseline, midline (2 months) and endline to measure adolescents’ Fe status. Computerized cognitive testing will include five common measures of attentional (three of attention) and mnemonic functioning (two of memory) carried out using DMDX software. The results of this study will be used to garner support for and to substantiate large-scale production and market expansion of Fe-fortified lentils, and will contribute to knowledge about how to enhance Fe status in adolescents worldwide in resource-poor settings, using staple food crops. Trial registration ClinicalTrials.gov NCT03516734. Registered on 24 May 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3309-4) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Zhong L, Fang Z, Wahlqvist ML, Wu G, Hodgson JM, Johnson SK. Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.07.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Penugonda K, Fiorentino NM, Alavi S, Lindshield BL. Bioavailable Iron and Vitamin A in Newly Formulated, Extruded Corn, Soybean, Sorghum, and Cowpea Fortified-Blended Foods in the In Vitro Digestion/Caco-2 Cell Model. Curr Dev Nutr 2018; 2:nzy021. [PMID: 30046768 PMCID: PMC6054154 DOI: 10.1093/cdn/nzy021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/08/2018] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fortified-blended foods (FBFs), particularly corn-soybean blend (CSB), are food aid products distributed in developing countries. The US Agency for International Development food aid quality review recommended developing extruded FBFs with the use of alternative commodities such as sorghum. OBJECTIVE The objective of the study was to determine bioavailable iron and vitamin A content from newly developed extruded corn, soybean, sorghum, and cowpea FBFs compared with the nonextruded traditional food aid FBFs, corn-soy blend 13 (CSB13) and corn-soy blend plus (CSB+). METHODS Eleven extruded FBFs-sorghum-cowpea (n = 7), sorghum-soy (n = 3), and corn-soy (n = 1)-along with 2 nonextruded FBFs-CSB13 and CSB+, and Cerelac (Nestlé), a commercially available fortified infant food, were prepared. Bioavailable iron and vitamin A contents were assessed by using the in vitro digestion/Caco-2 cell model. Dry FBFs, aqueous fractions, and Caco-2 cell pellet vitamin A contents were analyzed by HPLC. Dry FBF and aqueous fraction iron contents were measured by atomic absorptiometry, and bioavailable iron was assessed by measuring Caco-2 ferritin contents via ELISA. RESULTS Iron and vitamin A concentrations in Cerelac and dry FBFs ranged from 8.0 to 31.8 mg/100 g and 0.3 to 1.67 mg/100 g, respectively. All of the extruded FBFs contained 4- to 7-fold significantly higher (P < 0.05) aqueous fraction iron concentrations compared with CSB13 and CSB+. However, there were no significant differences in Caco-2 cell ferritin and vitamin A concentrations between extruded FBFs, nonextruded FBFs, and or the basal salt solution negative control. CONCLUSION Results support the theory that the consumption of newly developed extruded sorghum-cowpea, sorghum-soy, and corn-soy FBFs would result in iron and vitamin A concentrations comparable to traditional nonextruded CSB13 and CSB+ FBFs.
Collapse
Affiliation(s)
- Kavitha Penugonda
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS
| | - Nicole M Fiorentino
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS
| | - Sajid Alavi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS
| | - Brian L Lindshield
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS
| |
Collapse
|
18
|
Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal. Nutrients 2018; 10:nu10030354. [PMID: 29543712 PMCID: PMC5872772 DOI: 10.3390/nu10030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g−1) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g−1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g−1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant (p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.
Collapse
|
19
|
Lv Y, Glahn RP, Hebb RL, Rizvi SS. Physico-chemical properties, phytochemicals and DPPH radical scavenging activity of supercritical fluid extruded lentils. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Lin L, Zheng F, Zhou H, Li S. Biomimetic Gastrointestinal Tract Functions for Metal Absorption Assessment in Edible Plants: Comparison to In Vivo Absorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6282-6287. [PMID: 28685577 DOI: 10.1021/acs.jafc.7b02054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A biomimetic gastrointestinal tract, including in vitro digestion and biomimetic biomembrane extraction, has been proposed for absorption assessment of metals from edible plants. However, its validity is still unknown. Herein, two species of edible plants, Anoectochilus roxburghii and Radix astragali, were selected and digested in a bionic mouth, stomach, and intestine, and then trace metals (Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, As, and Pb) were transformed to their final metal species. To check model predictability, in vitro and in vivo metal absorption were imitated and tested by monolayer liposome extraction and rat stomach or single-pass duodenal intestine, respectively. A strong correlation was established between in vivo and in vitro metal absorption ratios, with 0.89 > R2 > 0.66, and a significant relationship (p < 0.05) was exhibited for stomach, intestine, two plant species, and 10 metal species. Our biomimetic system could be used as low-cost alternatives to animal and clinical studies for multi-metal absorption.
Collapse
Affiliation(s)
- Luxiu Lin
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology and §College of Chemistry and Environmental Science, Minnan Normal University , Zhangzhou, Fujian 363000, People's Republic of China
| | - Fengying Zheng
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology and §College of Chemistry and Environmental Science, Minnan Normal University , Zhangzhou, Fujian 363000, People's Republic of China
| | - Haifeng Zhou
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology and §College of Chemistry and Environmental Science, Minnan Normal University , Zhangzhou, Fujian 363000, People's Republic of China
| | - Shunxing Li
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology and §College of Chemistry and Environmental Science, Minnan Normal University , Zhangzhou, Fujian 363000, People's Republic of China
| |
Collapse
|
21
|
Glahn R, Tako E, Hart J, Haas J, Lung'aho M, Beebe S. Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda. Nutrients 2017; 9:nu9070787. [PMID: 28754026 PMCID: PMC5537901 DOI: 10.3390/nu9070787] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans (Phaseolus vulgaris) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan.
Collapse
Affiliation(s)
- Raymond Glahn
- USDA-ARS Robert Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Elad Tako
- USDA-ARS Robert Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Jonathan Hart
- USDA-ARS Robert Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| | - Jere Haas
- Division of Nutritional Sciences, 220 Savage Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Mercy Lung'aho
- International Center for Tropical Agriculture (CIAT), Regional Office for Africa, P.O. Box 823-00621, Nairobi 00100, Kenya.
| | - Steve Beebe
- International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira CP 763537, Apartado Aéreo 6713, Cali, Colombia.
| |
Collapse
|
22
|
Karnpanit W, Coorey R, Clements J, Benjapong W, Jayasena V. Calcium, Iron, and Zinc Bioaccessibilities of Australian Sweet Lupin (Lupinus angustifolius L.) Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4722-4727. [PMID: 28532146 DOI: 10.1021/acs.jafc.7b00445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we aimed to determine the effect of the cultivar and dehulling on calcium, iron, and zinc bioaccessibilities of Australian sweet lupin (ASL). Ten ASL cultivars grown in 2011, 2012, and 2013 in Western Australia were used for the study. The bioaccessibilities of calcium, iron, and zinc in whole seed and dehulled lupin samples were determined using a dialysability method. The cultivar had significant effects on calcium, iron, and zinc contents and their bioaccessibilities. Average bioaccessibilities of 6% for calcium, 17% for iron, and 9% for zinc were found for whole seeds. Dehulled ASL had average calcium, iron, and zinc bioaccessibilities of 11%, 21%, and 12%, respectively. Compared to some other pulses, ASL had better iron bioaccessibility and poorer calcium and zinc bioaccessibilities. Dehulling increased calcium bioaccessibilities of almost all lupin cultivars. The effect of dehulling on iron and zinc bioaccessibilities depends on the ASL cultivar.
Collapse
Affiliation(s)
- Weeraya Karnpanit
- School of Science and Health, Western Sydney University , Locked Bag 1797, Penrith, New South Wales 2751, Australia
- Institute of Nutrition, Mahidol University , 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Ranil Coorey
- School of Public Health, Faculty of Health Sciences, Curtin University , Bentley, Perth, Western Australia 6102, Australia
| | - Jon Clements
- Department of Agriculture and Food, Western Australia , 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia
| | - Wenika Benjapong
- Institute of Nutrition, Mahidol University , 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University , Locked Bag 1797, Penrith, New South Wales 2751, Australia
| |
Collapse
|
23
|
Hart JJ, Tako E, Glahn RP. Characterization of Polyphenol Effects on Inhibition and Promotion of Iron Uptake by Caco-2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3285-3294. [PMID: 28361541 DOI: 10.1021/acs.jafc.6b05755] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyphenolic compounds present in the seed coat of common bean (Phaseolus vulgaris L.) are known to act collectively as inhibitors of iron bioavailability. Recent research identified specific polyphenols as being potent Fe uptake inhibitors. That research also identified other polyphenols as being promoters of Fe uptake. The present study extends that work using a Caco-2 cell model to characterize the effects of 43 additional polyphenols on Fe uptake. In addition, this study indicates that the inhibitory compounds have a more potent effect that outweighs the ability of promoting compounds to increase Fe uptake. For example, a ratio of 100:0 epicatechin (a promoter)/myricetin (an inhibitor) produced 78.5 ± 6.7 ng ferritin/mg protein, 90:10 yielded 27.4 ± 3.0, 50:50 yielded 3.42 ± 0.54, and 0:100 yielded 2.26 ± 0.25 ng ferritin/mg protein. A simulation of the relative concentrations of eight major polyphenols (four inhibitors, four promoters) present in a sample of black bean seed coats demonstrated that most of the inhibitory compounds would need to be removed to reduce the negative effect on Fe uptake. In vivo studies are now warranted to confirm the above in vitro effects. Such work would be significant as other bean color classes exist that are likely to have polyphenolic profiles that are more favorable to Fe bioavailability.
Collapse
Affiliation(s)
- Jonathan J Hart
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University , Ithaca, New York 14853, United States
| | - Elad Tako
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University , Ithaca, New York 14853, United States
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
24
|
Subedi M, Willenborg CJ, Vandenberg A. Influence of Harvest Aid Herbicides on Seed Germination, Seedling Vigor and Milling Quality Traits of Red Lentil ( Lens culinaris L.). FRONTIERS IN PLANT SCIENCE 2017; 8:311. [PMID: 28352275 PMCID: PMC5349153 DOI: 10.3389/fpls.2017.00311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 05/29/2023]
Abstract
Most red lentil produced worldwide is consumed in dehulled form, and post-harvest milling and splitting qualities are major concerns in the secondary processing industry. Lentil producers in northern temperate regions usually apply pre-harvest desiccants as harvest aids to accelerate the lentil crop drying process and facilitate harvesting operations. This paper reports on field studies conducted at Scott and Saskatoon, Saskatchewan, Canada in the 2012 and 2013 cropping seasons to evaluate whether herbicides applied as harvest aids alone or tank mixed with glyphosate affect seed germination, seedling vigor, milling, and splitting qualities. The site-year by desiccant treatment interaction for seed germination, vigor, and milling recovery yields was significant. Glyphosate applied alone or as tank mix with other herbicides (except diquat) reduced seed germination and seedling vigor at Saskatoon and Scott in 2012 only. Pyraflufen-ethyl (20 g ai ha-1) applied with glyphosate as well as saflufenacil (36 g ai ha-1) decreased dehulling efficiency, while saflufenacil and/or glufosinate with glyphosate reduced milling recovery and football recovery, although these effects were inconsistent. Application of diquat alone or in combination with glyphosate exhibited more consistent dehulling efficiency gains and increases in milling recovery yield. Significant but negative associations were observed between glyphosate residue in seeds and seed germination (r = -0.84, p < 0.001), seed vigor (r = -0.62, p < 0.001), dehulling efficiency (r = -0.55, p < 0.001), and milling recovery (r = -0.62, p < 0.001). These results indicate application of diquat alone or in combination with glyphosate may be a preferred option for lentil growers to improve milling recovery yield.
Collapse
Affiliation(s)
- Maya Subedi
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | | | - Albert Vandenberg
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
25
|
The Combined Application of the Caco-2 Cell Bioassay Coupled with In Vivo (Gallus gallus) Feeding Trial Represents an Effective Approach to Predicting Fe Bioavailability in Humans. Nutrients 2016; 8:nu8110732. [PMID: 27869705 PMCID: PMC5133116 DOI: 10.3390/nu8110732] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/09/2016] [Indexed: 12/28/2022] Open
Abstract
Research methods that predict Fe bioavailability for humans can be extremely useful in evaluating food fortification strategies, developing Fe-biofortified enhanced staple food crops and assessing the Fe bioavailability of meal plans that include such crops. In this review, research from four recent poultry (Gallus gallus) feeding trials coupled with in vitro analyses of Fe-biofortified crops will be compared to the parallel human efficacy studies which used the same varieties and harvests of the Fe-biofortified crops. Similar to the human studies, these trials were aimed to assess the potential effects of regular consumption of these enhanced staple crops on maintenance or improvement of iron status. The results demonstrate a strong agreement between the in vitro/in vivo screening approach and the parallel human studies. These observations therefore indicate that the in vitro/Caco-2 cell and Gallus gallus models can be integral tools to develop varieties of staple food crops and predict their effect on iron status in humans. The cost-effectiveness of this approach also means that it can be used to monitor the nutritional stability of the Fe-biofortified crop once a variety has released and integrated into the food system. These screening tools therefore represent a significant advancement to the field for crop development and can be applied to ensure the sustainability of the biofortification approach.
Collapse
|
26
|
Mirali M, Purves RW, Stonehouse R, Song R, Bett K, Vandenberg A. Genetics and Biochemistry of Zero-Tannin Lentils. PLoS One 2016; 11:e0164624. [PMID: 27788158 PMCID: PMC5082924 DOI: 10.1371/journal.pone.0164624] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
The zero-tannin trait in lentil is controlled by a single recessive gene (tan) that results in a phenotype characterized by green stems, white flowers, and thin, transparent, or translucent seed coats. Genes that result in zero-tannin characteristics are useful for studies of seed coat pigmentation and biochemical characters because they have altered pigmentation. In this study, one of the major groups of plant pigments, phenolic compounds, was compared among zero-tannin and normal phenotypes and genotypes of lentil. Biochemical data were obtained by liquid chromatography-mass spectrometry (LC-MS). Genomic sequencing was used to identify a candidate gene for the tan locus. Phenolic compound profiling revealed that myricetin, dihydromyricetin, flavan-3-ols, and proanthocyanidins are only detected in normal lentil phenotypes and not in zero-tannin types. The molecular analysis showed that the tan gene encodes a bHLH transcription factor, homologous to the A gene in pea. The results of this study suggest that tan as a bHLH transcription factor interacts with the regulatory genes in the biochemical pathway of phenolic compounds starting from flavonoid-3',5'-hydroxylase (F3'5'H) and dihydroflavonol reductase (DFR).
Collapse
Affiliation(s)
- Mahla Mirali
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Randy W. Purves
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rob Stonehouse
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rui Song
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirstin Bett
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- Plant Sciences Department, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Vaz-Tostes MDG, Verediano TA, de Mejia EG, Brunoro Costa NM. Evaluation of iron and zinc bioavailability of beans targeted for biofortification using in vitro and in vivo models and their effect on the nutritional status of preschool children. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1326-1332. [PMID: 25899136 DOI: 10.1002/jsfa.7226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/16/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. RESULTS In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). CONCLUSION Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification.
Collapse
Affiliation(s)
- Maria das Graças Vaz-Tostes
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
- Department of Nutrition and Health, Federal University of Viçosa, PH Holfs, 36570-000, Viçosa, MG, Brazil
| | - Thaisa Agrizzi Verediano
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Neuza Maria Brunoro Costa
- Department of Pharmacy and Nutrition, Center for Agricultural Sciences, Federal University of Espirito Santo, Alto Universitario, 29500-000, Alegre, ES, Brazil
- Department of Nutrition and Health, Federal University of Viçosa, PH Holfs, 36570-000, Viçosa, MG, Brazil
| |
Collapse
|
28
|
DellaValle DM, Glahn RP, Shaff JE, O'Brien KO. Iron Absorption from an Intrinsically Labeled Lentil Meal Is Low but Upregulated in Women with Poor Iron Status. J Nutr 2015; 145:2253-7. [PMID: 26338889 DOI: 10.3945/jn.115.217273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/03/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Low iron absorption from important staple foods may contribute to iron deficiency in developing countries. To date, few studies have examined the iron bioavailability of pulse crops as commonly prepared and consumed by humans. OBJECTIVE The objectives were to characterize the iron absorption from a test meal of intrinsically labeled (57)Fe lentils prepared as dal, to compare the bioavailability of iron from (57)Fe in dal with that observed for a reference dose of (58)Fe as ferrous sulfate, and to assess associations between iron absorption and iron status indicators. METHODS This crossover study included 19 nonpregnant women (n = 6 anemic; hemoglobin: <12.0 g/dL) who consumed 2 test meals on consecutive days in a counter-balanced order, ferrous sulfate (7 mg FeSO4 plus 1 mg (58)Fe) and 330 g dal (lentils enriched to 85.1% with (57)Fe, 8 mg native (57)Fe). Iron absorption was determined by analyzing blood samples taken 14 d after dosing with the use of magnetic sector thermal ionization mass spectrometry. RESULTS We found that the mean iron absorption from the dal was 2.20% ± 3.40% and was significantly lower than the 23.6% ± 13.2% observed from the same iron load given as ferrous sulfate (P < 0.001). Absorption of non-heme iron from dal and from ferrous sulfate was inversely associated with serum ferritin (SF; r = -0.50, P = 0.05 and r = -0.81, P < 0.001, respectively) and serum hepcidin (r = -0.45, P = 0.05 and r = -0.60, P = 0.007, respectively). Anemic women absorbed more iron from either source (1.20% from dal, P = 0.10; 18.3% from ferrous sulfate, P = 0.001) compared with women who were iron replete. CONCLUSIONS Iron absorption from the dal was low overall but upregulated in anemic women. Both SF and hepcidin were inversely associated with iron absorption from both a supplemental and a food-based non-heme iron source in nonanemic and anemic women.
Collapse
Affiliation(s)
- Diane M DellaValle
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, USDA, Ithaca, NY; and
| | - Raymond P Glahn
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, USDA, Ithaca, NY; and
| | - Jon E Shaff
- Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, USDA, Ithaca, NY; and
| | | |
Collapse
|
29
|
Tako E, Reed S, Anandaraman A, Beebe SE, Hart JJ, Glahn RP. Studies of Cream Seeded Carioca Beans (Phaseolus vulgaris L.) from a Rwandan Efficacy Trial: In Vitro and In Vivo Screening Tools Reflect Human Studies and Predict Beneficial Results from Iron Biofortified Beans. PLoS One 2015; 10:e0138479. [PMID: 26381264 PMCID: PMC4575050 DOI: 10.1371/journal.pone.0138479] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/29/2015] [Indexed: 11/18/2022] Open
Abstract
Iron (Fe) deficiency is a highly prevalent micronutrient insufficiency predominantly caused by a lack of bioavailable Fe from the diet. The consumption of beans as a major food crop in some populations suffering from Fe deficiency is relatively high. Therefore, our objective was to determine whether a biofortified variety of cream seeded carioca bean (Phaseolus vulgaris L.) could provide more bioavailable-Fe than a standard variety using in-vivo (broiler chicken, Gallus gallus) and in-vitro (Caco-2 cell) models. Studies were conducted under conditions designed to mimic the actual human feeding protocol. Two carioca-beans, a standard (G4825; 58 μg Fe/g) and a biofortified (SMC; 106 μg Fe/g), were utilized. Diets were formulated to meet the nutrient requirements of Gallus gallus except for Fe (33.7 and 48.7 μg Fe/g, standard and biofortified diets, respectively). In-vitro observations indicated that more bioavailable-Fe was present in the biofortified beans and diet (P<0.05). In-vivo, improvements in Fe-status were observed in the biofortified bean treatment, as indicated by the increased total-body-Hemoglobin-Fe, and hepatic Fe-concentration (P<0.05). Also, DMT-1 mRNA-expression was increased in the standard bean treatment (P<0.05), indicating an upregulation of absorption to compensate for less bioavailable-Fe. These results demonstrate that the biofortified beans provided more bioavailable Fe; however, the in vitro results revealed that ferritin formation values were relatively low. Such observations are indicative of the presence of high levels of polyphenols and phytate that inhibit Fe absorption. Indeed, we identified higher levels of phytate and quercetin 3-glucoside in the Fe biofortified bean variety. Our results indicate that the biofortified bean line was able to moderately improve Fe-status, and that concurrent increase in the concentration of phytate and polyphenols in beans may limit the benefit of increased Fe-concentration. Therefore, specific targeting of such compounds during the breeding process may yield improved dietary Fe-bioavailability. Our findings are in agreement with the human efficacy trial that demonstrated that the biofortified carioca beans improved the Fe-status of Rwandan women. We suggest the utilization of these in vitro and in vivo screening tools to guide studies aimed to develop and evaluate biofortified staple food crops. This approach has the potential to more effectively utilize research funds and provides a means to monitor the nutritional quality of the Fe-biofortified crops once released to farmers.
Collapse
Affiliation(s)
- Elad Tako
- USDA-ARS Robert W. Holley Center for Agriculture & Health, Cornell University, Ithaca, NY, 14853, United States of America
| | - Spenser Reed
- USDA-ARS Robert W. Holley Center for Agriculture & Health, Cornell University, Ithaca, NY, 14853, United States of America
| | - Amrutha Anandaraman
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States of America
| | - Steve E. Beebe
- CIAT- International Center for Tropical Agriculture, Cali, 6713, Colombia
| | - Jonathan J. Hart
- USDA-ARS Robert W. Holley Center for Agriculture & Health, Cornell University, Ithaca, NY, 14853, United States of America
| | - Raymond P. Glahn
- USDA-ARS Robert W. Holley Center for Agriculture & Health, Cornell University, Ithaca, NY, 14853, United States of America
| |
Collapse
|
30
|
DellaValle DM, Glahn RP. Differences in Relative Iron Bioavailability in Traditional Bangladeshi Meal Plans. Food Nutr Bull 2014; 35:431-9. [DOI: 10.1177/156482651403500405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Iron deficiency is the most common nutrient deficiency worldwide. Large intakes of micronutrient-poor staple crops, coupled with low intakes of highly bioavailable dietary iron, are a major cause of this deficiency. Objective To examine the concentration and relative bioavailability of iron in several models ( n = 23) of traditional Bangladeshi meals (rice, lentils/dal, vegetable, and fish), as well as the effect of removal of the lentil seed coat on the nutritional quality of iron. Methods The relative bioavailability of iron was assessed by the in vitro/Caco-2 cell culture method, iron concentration by an inductively coupled argon-plasma emission spectrometer (ICAP-ES), and phytic acid concentration by colorimetric assay. The recipes contained 75% to 85% rice, 0% to 15% dal (containing whole or dehulled lentils), 0% to 15% vegetable curry, and 0% to 8% fish. Results While the iron concentrations of recipes containing dehulled dal were significantly lower than those of recipes containing whole dal ( p = .005), seed coat removal doubled relative iron bioavailability and increased phytic acid concentration ( p < .001). The addition of fish to the meals had no significant effect on relative iron bioavailability. Iron concentration and relative iron bioavailability were correlated in the recipes containing dehulled dal ( r = 0.48, p = .03), but not whole dal ( r = −0.047, p = .84). Conclusions The total amount of iron absorbed from traditional Bangladeshi meals is dependent upon iron concentration, and dehulling lentils removes inhibitory factors increasing iron uptake but also increases the density of phytic acid in the lentil sample. Thus, along with breeding for high iron concentration and bioavailability (i.e., biofortification), seed coat removal plus measures to lower phytic acid concentrations may be an important strategy to improve the bioavailability of iron in lentils and other pulse crops.
Collapse
|