1
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
2
|
Zhang Y, Cui X, Lin S, Lu T, Li H, Lu Y, Cao M, Lin X, Ling X. Knockout of a PLD gene in Schizochytrium limacinum SR21 enhances docosahexaenoic acid accumulation by modulation of the phospholipid profile. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:16. [PMID: 38291531 PMCID: PMC10826259 DOI: 10.1186/s13068-024-02465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The hydrolysis and transphosphatidylation of phospholipase D (PLD) play important roles in the interconversion of phospholipids (PLs), which has been shown to profoundly impact lipid metabolism in plants. In this study, the effect of the PLD1 gene of Schizochytrium limacinum SR21 (S. limacinum SR21) on lipid metabolism was investigated. RESULTS PLD1 knockout had little impact on cell growth and lipid production, but it significantly improved the percentage of polyunsaturated fatty acids in lipids, of which docosahexaenoic acid (DHA) content increased by 13.3% compared to the wild-type strain. Phospholipomics and real-time quantitative PCR analysis revealed the knockout of PLD1 reduced the interexchange and increased de novo synthesis of PLs, which altered the composition of PLs, accompanied by a final decrease in phosphatidylcholine (PC) and an increase in phosphatidylinositol, lysophosphatidylcholine, and phosphatidic acid levels. PLD1 knockout also increased DHA content in triglycerides (TAGs) and decreased it in PLs. CONCLUSIONS These results indicate that PLD1 mainly performs the transphosphatidylation activity in S. limacinum SR21, and its knockout promotes the migration of DHA from PLs to TAGs, which is conducive to DHA accumulation and storage in TAGs via an acyl CoA-independent pathway. This study provides a novel approach for identifying the mechanism of DHA accumulation and metabolic regulation strategies for DHA production in S. limacinum SR21.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Xiaowen Cui
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Shuizhi Lin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Tao Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Hao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
- The Key Laboratory for Chemical Biology of Fujian Province (Xiamen University), Xiamen, People's Republic of China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China
| | - Xihuang Lin
- Analysis and Test Center, Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, People's Republic of China.
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China.
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
3
|
Prabhakaran P, Nazir MYM, Thananusak R, Hamid AA, Vongsangnak W, Song Y. Uncovering global lipid accumulation routes towards docosahexaenoic acid (DHA) production in Aurantiochytrium sp. SW1 using integrative proteomic analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159381. [PMID: 37625782 DOI: 10.1016/j.bbalip.2023.159381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Aurantiochytrium sp., a marine thraustochytrid possesses a remarkable ability to produce lipid rich in polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA). Although gene regulation underlying lipid biosynthesis has been previously reported, proteomic analysis is still limited. In this study, high DHA accumulating strain Aurantiochytrium sp. SW1 has been used as a study model to elucidate the alteration in proteome profile under different cultivation phases i.e. growth, nitrogen-limitation and lipid accumulation. Of the total of 5146 identified proteins, 852 proteins were differentially expressed proteins (DEPs). The largest number of DEPs (488 proteins) was found to be uniquely expressed between lipid accumulating phase and growth phase. Interestingly, there were up-regulated proteins involved in glycolysis, glycerolipid, carotenoid and glutathione metabolism which were preferable metabolic routes towards lipid accumulation and DHA production as well as cellular oxidative defence. Integrated proteomic and transcriptomic data were also conducted to comprehend the gene and protein regulation underlying the lipid and DHA biosynthesis. A significant up-regulation of acetyl-CoA synthetase was observed which suggests alternative route of acetate metabolism for acetyl-CoA producer. This study presents the holistic routes underlying lipid accumulation and DHA production in Aurantiochytrium sp. SW1 and other relevant thraustochytrid.
Collapse
Affiliation(s)
- Pranesha Prabhakaran
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Mohamed Yusuf Mohamed Nazir
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Department of Food Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, UKM, Bangi, Malaysia
| | - Roypim Thananusak
- Duckweed Holobiont Resource & Research Center (DHbRC), Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Aidil Abdul Hamid
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Malaysia.
| | - Wanwipa Vongsangnak
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| | - Yuanda Song
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China.
| |
Collapse
|
4
|
Laviano HD, Gómez G, Escudero R, Nuñez Y, García-Casco JM, Muñoz M, Heras-Molina A, López-Bote C, González-Bulnes A, Óvilo C, Rey AI. Maternal Supplementation of Vitamin E or Its Combination with Hydroxytyrosol Increases the Gut Health and Short Chain Fatty Acids of Piglets at Weaning. Antioxidants (Basel) 2023; 12:1761. [PMID: 37760063 PMCID: PMC10526103 DOI: 10.3390/antiox12091761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
An adequate intestinal environment before weaning may contribute to diarrhea predisposition and piglet development. This study evaluates how the dietary supplementation of vitamin E (VE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg) or the combined administration (VE + HXT) given to Iberian sows from gestation affects the piglet's faecal characteristics, short chain fatty acids (SCFAs), fatty acid profile or intestinal morphology as indicators of gut health; and quantify the contribution of the oxidative status and colostrum/milk composition to the piglet's SCFAs content and intestinal health. Dietary VE increased isobutyric acid (iC4), butyric acid (C4), isovaleric acid (iC5), and ∑SCFAs, whereas HXT increased iC4 and tended to decrease ∑SCFAs of faeces. Piglets from HXT-supplemented sows also tended to have higher faecal C20:4n-6/C20:2 ratio C22:6 proportion and showed lower occludin gene expression in the duodenum. The combination of both antioxidants had a positive effect on iC4 and iC5 levels. Correlation analyses and regression equations indicate that faecal SCFAs were related to oxidative status (mainly plasma VE) and colostrum and milk composition (mainly C20:2, C20:3, C20:4 n-6). This study would confirm the superiority of VE over HXT supplementation to improve intestinal homeostasis, gut health, and, consequently piglet growth.
Collapse
Affiliation(s)
- Hernan D. Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), 13700 Tomelloso, Spain
| | - Rosa Escudero
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Yolanda Nuñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Ana Heras-Molina
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Clemente López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera—CEU, CEU Universities, C/Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Ctra Coruña km 7.5, 28040 Madrid, Spain
| | - Ana I. Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| |
Collapse
|
5
|
Feng Y, Zhu Y, Bao Z, Wang B, Liu T, Wang H, Yu T, Yang Y, Yu L. Construction of Glucose-6-Phosphate Dehydrogenase Overexpression Strain of Schizochytrium sp. H016 to Improve Docosahexaenoic Acid Production. Mar Drugs 2022; 21:md21010017. [PMID: 36662190 PMCID: PMC9866257 DOI: 10.3390/md21010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an important omega-3 polyunsaturated fatty acid (PUFA) that plays a critical physiological role in human health. Schizochytrium sp. is considered an excellent strain for DHA production, but the synthesis of DHA is limited by the availability of nicotinamide adenine dinucleotide phosphate (NADPH). In this study, the endogenous glucose-6-phosphate dehydrogenase (G6PD) gene was overexpressed in Schizochytrium sp. H016. Results demonstrated that G6PD overexpression increased the availability of NADPH, which ultimately altered the fatty acid profile, resulting in a 1.91-fold increase in DHA yield (8.81 g/L) and increased carbon flux by shifting it from carbohydrate and protein synthesis to lipid production. Thus, G6PD played a vital role in primary metabolism. In addition, G6PD significantly increased DHA content and lipid accumulation by 31.47% and 40.29%, respectively. The fed-batch fermentation experiment results showed that DHA production reached 17.01 g/L in the overexpressing G6PD strain. These results elucidated the beneficial effects of NADPH on the synthesis of PUFA in Schizochytrium sp. H016, which may be a potential target for metabolic engineering. Furthermore, this study provides a promising regulatory strategy for the large-scale production of DHA in Schizochytrium sp.
Collapse
Affiliation(s)
- Yumei Feng
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Zhendong Bao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Bohan Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tingting Liu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Huihui Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tianyi Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Ying Yang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
- Correspondence: ; Tel.: +86-2-787-792-264
| |
Collapse
|
6
|
Song Y, Hu Z, Xiong Z, Li S, Liu W, Tian T, Yang X. Comparative transcriptomic and lipidomic analyses indicate that cold stress enhanced the production of the long C18–C22 polyunsaturated fatty acids in Aurantiochytrium sp. Front Microbiol 2022; 13:915773. [PMID: 36204624 PMCID: PMC9530390 DOI: 10.3389/fmicb.2022.915773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aurantiochytrium sp. belonging to Thraustochytrids are known for their capacity to produce long-chain polyunsaturated fatty acids (PUFAs). However, effects of cold stress accompanied with staged-temperature control on the fatty acid metabolism in Aurantiochytrium sp. were rarely studied. In this study, cold stress (15°C, 5°C) was applied for Aurantiochytrium sp., with the physiological responses (morphology, growth, fatty acid profiling) and gene expression related FA synthesis, lipid metabolism, and regulatory processes was observed. Results showed that there is a significant change for the lipid types under 5°C (251 species) and 15°C (97 species) treatment. The 5°C treatment was benefit for the C18–C22 PUFAs with the yield of docosahexaenoic acid (DHA) increased to 1.25 times. After incubation at 15°C, the accumulation of eicosadienoic acid (EA) (20:2) was increased to 2.00-fold. Based on transcriptomic and qPCR analysis, an increase in genes involved in fatty acid synthase (FAS) and polyketide synthase (PKS) pathways was observed under low-temperature treatment. With upregulation of 3-ketoacyl-CoA synthase (2.44-fold), ketoreductase (2.50-fold), and dTDP-glucose 4,6-Dehydratase (rfbB) (2.31-fold) involved in PKS pathway, the accumulation of DHA was enhanced under 5°C. While, FAS and fatty elongase 3 (ELO) involved in the FAS pathway were upregulated (1.55-fold and 2.45-fold, respectively) to accumulate PUFAs at 15°C. Additionally, glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT), phosphatidic acid phosphatase (PAP), phosphatidylserine synthase (PSS), and phosphatidylserine decarboxylase (PSD) involved in glycerophospholipid biosynthesis were upregulated at 5°C increasing the accumulation of phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI). However, glycolysis and the TCA cycle were inhibited under 5°C. This study provides a contribution to the application of two-staged temperature control in the Aurantiochytrium sp. fermentation for producing cold stress-enhancing PUFAs, in order to better understand the function of the key genes for future genetic engineering.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zheng Xiong
- Shenzhen Institute of Modern Agricultural Equipment, Shenzhen, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wei Liu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tian Tian
- Shenzhen Institute of Modern Agricultural Equipment, Shenzhen, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Xuewei Yang,
| |
Collapse
|
7
|
Hu X, Luo Y, Man Y, Tang X, Bi Z, Ren L. Lipidomic and transcriptomic analysis reveals the self-regulation mechanism of Schizochytrium sp. in response to temperature stresses. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Bao Z, Zhu Y, Feng Y, Zhang K, Zhang M, Wang Z, Yu L. Enhancement of lipid accumulation and docosahexaenoic acid synthesis in Schizochytrium sp. H016 by exogenous supplementation of sesamol. BIORESOURCE TECHNOLOGY 2022; 345:126527. [PMID: 34896539 DOI: 10.1016/j.biortech.2021.126527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Schizochytrium sp. is one of the most promising marine oleaginous microorganisms for industrial production of docosahexaenoic acid (DHA). In this study, the exogenous supplementation of 1 mM sesamol to the fermentation medium effectively prevented the peroxidation of polyunsaturated fatty acids in the fermentation process, which thereby significantly increasing the lipid and DHA yield by 53.52% and 78.30%, respectively. The addition of sesamol also increased the total antioxidant capacity of cells and induce the gene expression of polyketide synthase and antioxidant enzyme system. Moreover, the supply of nicotinamide adenine dinucleotide phosphate was regulated by sesamol by inhibiting the malic enzyme activity and promoting the glucose-6-phosphate dehydrogenase activity. Finally, fed-batch fermentation showed that the addition of sesamol significantly enhanced the DHA yield by 90.76%. This study provides an important reference for enhancing the DHA productivity of Schizochytrium sp. in industrial fermentation.
Collapse
Affiliation(s)
- Zhendong Bao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yumei Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Kai Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Zhikuan Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan 430074, China.
| |
Collapse
|
9
|
Hu F, Clevenger AL, Zheng P, Huang Q, Wang Z. Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:172. [PMID: 33088342 PMCID: PMC7565746 DOI: 10.1186/s13068-020-01811-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/06/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Schizochytrium species are known for their abundant production of docosahexaenoic acid (DHA). Low temperatures can promote the biosynthesis of polyunsaturated fatty acids (PUFAs) in many species. This study investigates low-temperature effects on DHA biosynthesis in Schizochytrium sp. TIO01 and its underlying mechanism. RESULTS The Schizochytrium fatty acid biosynthesis pathway was evaluated based on de novo genome assembly (contig N50 = 2.86 Mb) and iTRAQ-based protein identification. Our findings revealed that desaturases, involved in DHA synthesis via the fatty acid synthase (FAS) pathway, were completely absent. The polyketide synthase (PKS) pathway and the FAS pathway are, respectively, responsible for DHA and saturated fatty acid synthesis in Schizochytrium. Analysis of fatty acid composition profiles indicates that low temperature has a significant impact on the production of DHA in Schizochytrium, increasing the DHA content from 43 to 65% of total fatty acids. However, the expression levels of PKS pathway genes were not significantly regulated as the DHA content increased. Further, gene expression analysis showed that pathways related to the production of substrates (acetyl-CoA and NADPH) for fatty acid synthesis (the branched-chain amino acid degradation pathway and the pentose phosphate pathway) and genes related to saturated fatty acid biosynthesis (the FAS pathway genes and malic enzyme) were, respectively, upregulated and downregulated. These results indicate that low temperatures increase the DHA content by likely promoting the entry of relatively large amounts of substrates into the PKS pathway. CONCLUSIONS In this study, we provide genomic, proteomic, and transcriptomic evidence for the fatty acid synthesis pathway in Schizochytrium and propose a mechanism by which low temperatures promote the accumulation of DHA in Schizochytrium. The high-quality and nearly complete genome sequence of Schizochytrium provides a valuable reference for investigating the regulation of polyunsaturated fatty acid biosynthesis and the evolutionary characteristics of Thraustochytriidae species.
Collapse
Affiliation(s)
- Fan Hu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - April L. Clevenger
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK USA
| | - Peng Zheng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430065 China
| | - Qiongye Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| | - Zhaokai Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
| |
Collapse
|
10
|
Wang S, Lan C, Wang Z, Wan W, Zhang H, Cui Q, Song X. Optimizing Eicosapentaenoic Acid Production by Grafting a Heterologous Polyketide Synthase Pathway in the Thraustochytrid Aurantiochytrium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11253-11260. [PMID: 32829640 DOI: 10.1021/acs.jafc.0c04299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eicosapentaenoic acid (EPA) is an essential nutritional supplement for human health. The most prominent dietary source of EPA is fish oil, which is unsustainable because of the decline in fishery resources and serious environmental pollution. Alternatively, a heterologous polyketide synthase pathway for EPA biosynthesis was assembled in Thraustochytrid Aurantiochytrium. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the EPA biosynthetic gene cluster from Shewanella japonica in Aurantiochytrium. In the shake flask fermentation, the lipid and PUFA yields of the mutant were increased by 26.9 and 36.0%, respectively, and led to about 5-fold increase of the EPA yield. The final EPA titer reached 2.7 g/L in fed-batch fermentation. This study provides a novel metabolic engineering strategy to regulate the EPA ratio in microalgal oil for human nutritional supplementation.
Collapse
Affiliation(s)
- Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Chuanzeng Lan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Huidan Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| |
Collapse
|
11
|
Xu X, Huang C, Xu Z, Xu H, Wang Z, Yu X. The strategies to reduce cost and improve productivity in DHA production by Aurantiochytrium sp.: from biochemical to genetic respects. Appl Microbiol Biotechnol 2020; 104:9433-9447. [PMID: 32978687 DOI: 10.1007/s00253-020-10927-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
The marine oleaginous protist Aurantiochytrium sp. (Schizochytrium sp.) is a well-known docosahexaenoic acid (DHA) producer and its different DHA products are the ideal substitute for the traditional fish oil resource. However, the cost of the DHA products derived from Aurantiochytrium sp. (Schizochytrium sp.) is still high, limiting their wide applications. In order to reduce the cost or improve the productivity of DHA from the microbial resource, many researches are focusing on exploring the renewable and low-cost materials as feedbacks, and/or the stimulators for biomass and DHA production. In addition, the genetic engineering is also being used in the Aurantiochytrium sp. (Schizochytrium sp.) system for further improvement. These break the bottleneck of the DHA production by Aurantiochytrium sp. (Schizochytrium sp.) in some degree. In this review, the strategies used currently to reduce cost and improve DHA productivity, mainly from the utilizations of low-cost materials and effective stimulators to the genetic engineering perspectives, are summarized, and the availabilities from the cost perspective are also evaluated. This review provides an overview about the strategies to revolve the production cost and yield of the DHA by Aurantiochytrium sp. (Schizochytrium sp.), a theoretical basis for genetic modification of Aurantiochytrium sp. (Schizochytrium sp.), and a practical basis for the development of DHA industry. KEY POINTS : • Utilizations of various low-cost materials for DHA production • Inducing the growth and DHA biosynthesis by the effective stimulators • Reducing cost and improving DHA productivity by genetic modification • The availability from cost perspective is evaluated.
Collapse
Affiliation(s)
- Xiaodan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Changyi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhexian Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Huixia Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Xinjun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
12
|
Lv M, Wang F, Zeng L, Bi Y, Cui J, Liu L, Bi Y, Chen L, Zhang W. Identification and metabolomic analysis of a starch-deficient Crypthecodinium cohnii mutant reveals multiple mechanisms relevant to enhanced growth and lipid accumulation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Wang S, Lan C, Wang Z, Wan W, Cui Q, Song X. PUFA-synthase-specific PPTase enhanced the polyunsaturated fatty acid biosynthesis via the polyketide synthase pathway in Aurantiochytrium. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:152. [PMID: 32874202 PMCID: PMC7457351 DOI: 10.1186/s13068-020-01793-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Phosphopantetheinyl transferase (PPTase) can change the acyl-carrier protein (ACP) from an inactive apo-ACP to an active holo-ACP that plays a key role in fatty acids biosynthesis. Currently, the PPTase has been proved to be involved in the biosynthesis of polyunsaturated fatty acids (PUFAs) via a polyketide synthase (PKS) pathway in Thraustochytrids, while its characteristics are not clarified. RESULTS Here, the heterologous PPTase gene (pfaE) from bacteria was first co-expressed with the PKS system (orfA-orfC) from Thraustochytrid Aurantiochytrium. Then, a new endogenous PPTase (ppt_a) in Aurantiochytrium was identified by homologous alignment and its function was verified in E. coli. Moreover, the endogenous ppt_a was then overexpressed in Aurantiochytrium, and results showed that the production and proportion of PUFAs, especially docosahexaenoic acid (DHA), in the transformant SD116::PPT_A were increased by 35.5% and 17.6%, respectively. Finally, higher DHA and PUFA proportion (53.9% and 64.5% of TFA, respectively) were obtained in SD116::PPT_A using a cerulenin feeding strategy. CONCLUSIONS This study has illustrated a PUFAs-synthase-specific PPTase in PKS system and provided a new strategy to improve the PUFA production in Thraustochytrids.
Collapse
Affiliation(s)
- Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
| | - Chuanzeng Lan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
| |
Collapse
|
14
|
Yang J, Song X, Wang L, Cui Q. Comprehensive analysis of metabolic alterations in Schizochytrium sp. strains with different DHA content. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122193. [PMID: 32949924 DOI: 10.1016/j.jchromb.2020.122193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/10/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
Along with the daily growth of the market requirements for docosahexaenoic acid (DHA) algae oil, a large DHA ingredients are needed to ensure worldwide supply. Undoubtedly a high-productive strain would be the prerequisite for high quality and yield. A comprehensive understanding of the processes of DHA synthesis from glycolysis to the lipid accumulation would be benefit to achieve the final optimization of DHA production. In this study, we comprehensively characterized the metabolic profiles of a Schizochytrium sp. strain, which has higher DHA content and different biomass amino acid composition compared with the wild type to explore the affected pathways and underlying mechanism. Combined with the multivariate statistical analysis, twenty-two differential metabolites were screened as relevant to the discrepancy between two strains. The results showed relatively downregulated glycolysis and saturated fatty acids (SFA) synthesis, and upregulated TCA cycle, amino acids and polyunsaturated fatty acids (PUFA) synthesis in DHA high yield strain. The current study provide a terminal picture of gene regulation from downstream metabolism and demonstrate the advantage of metabolomics in characterizing metabolic status which in turn could provide effective information for the metabolic engineering.
Collapse
Affiliation(s)
- Jie Yang
- Weihai Baihe Biology Technological CO., Ltd., Weihai, Shandong 264300, China; Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Lina Wang
- Weihai Baihe Biology Technological CO., Ltd., Weihai, Shandong 264300, China.
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
15
|
Functions of Enyolreductase ( ER) Domains of PKS Cluster in Lipid Synthesis and Enhancement of PUFAs Accumulation in Schizochytrium limacinum SR21 Using Triclosan as a Regulator of ER. Microorganisms 2020; 8:microorganisms8020300. [PMID: 32098234 PMCID: PMC7074904 DOI: 10.3390/microorganisms8020300] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/10/2023] Open
Abstract
The polyketide synthase (PKS) cluster genes are supposed to synthesize polyunsaturated fatty acids (PUFAs) in S. limacinum. In this study, two enyolreductase (ER) genes located on PKS cluster were knocked out through homologous recombination to explore their functions. The knock-out of OrfB-ER (located on OrfB subunit) decreased lipid content and had obvious decrease on PUFAs content, indicating OrfB-ER domain played a vital role on PUFAs synthesis; the knock-out of OrfC-ER (located on OrfC subunit) decreased SFAs content and increased total lipid content, indicating OrfC-ER domain was likely to be related with SFAs synthesis, and lipid production could be improved by down-regulating OrfC-ER domain expression. Therefore, the addition of triclosan as a reported regulator of ER domain induced the increase of PUFAs production by 51.74% and lipids yield by 47.63%. Metabolic analysis indicated triclosan played its role through inhibiting the expression of OrfC-ER to reduce the feedback inhibition of SFAs and further to enhance NADPH synthesis for lipid production, and by weakening mevalonate pathway and tricarboxylic acid (TCA) cycle to shift precursors for lipid and PUFAs synthesis. This research illuminates functions of two ER domains in S. limacinum and provides a potential targets for improving lipid production.
Collapse
|
16
|
Phytohormones as stimulators to improve arachidonic acid biosynthesis in Mortierella alpina. Enzyme Microb Technol 2019; 131:109381. [DOI: 10.1016/j.enzmictec.2019.109381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
|
17
|
Cui G, Wang Z, Hong W, Liu YJ, Chen Z, Cui Q, Song X. Enhancing tricarboxylate transportation-related NADPH generation to improve biodiesel production by Aurantiochytrium. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Yu XJ, Chen H, Huang CY, Zhu XY, Wang ZP, Wang DS, Liu XY, Sun J, Zheng JY, Li HJ, Wang Z. Transcriptomic Mechanism of the Phytohormone 6-Benzylaminopurine (6-BAP) Stimulating Lipid and DHA Synthesis in Aurantiochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5560-5570. [PMID: 30901205 DOI: 10.1021/acs.jafc.8b07117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The phytohormone 6-benzylaminopurine (6-BAP) significantly improves lipid synthesis of oleaginous microorganisms with the great potential applied in lipid production. In the current study, the lipid and DHA productions in oleaginous Aurantiochytrium sp. were found to be improved by 48.7% and 55.3%, respectively, induced by 6-BAP treatments. Then, using high-throughput RNA-seq technology, the overall de novo assembly of the cDNA sequence data generated 53871 unigenes, and 15902 of these were annotated in at least one database. The comparative transcriptomic profiles of cells with and without 6-BAP treatments revealed that a total of 717 were differently expressed genes (DE), with 472 upregulated and 245 downregulated. Further annotation and categorization indicated that some DE genes were involved in pathways crucial to lipid and DHA productions, such as fatty acid synthesis, central carbon metabolism, transcriptional factor, signal transduction, and mevalonate pathway. A regulation mode of 6-BAP, in turn, perception and transduction of 6-BAP signal, transcription factor, expression regulations of the downstream genes, and metabolic changes, respectively, was put forward for the first time in the present study. This research illuminates the transcriptomic mechanism of phytohormone stimulation of lipid and DHA production in an oleaginous microorganism and provides the potential targets modified using genetic engineering for improving lipid and DHA productivity.
Collapse
Affiliation(s)
- Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Hong Chen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Chang-Yi Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Xiao-Yu Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Zhi-Peng Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs , Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences , Qingdao 266071 , Shandong , People's Republic of China
| | - Dong-Sheng Wang
- Institute of Biological Resources , Jiangxi Academy of Sciences , Nanchang 330096 , Jiangxi , People's Republic of China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology , Huaiyin Normal University , Huaian 223300 , People's Republic of China
| | - Jie Sun
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Jian-Yong Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| | - Hui-Juan Li
- Department of Bioengineering, College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , People's Republic of China
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering , Zhejiang University of Technology , No. 18, Chaowang Road , Hangzhou 310014 , People's Republic of China
| |
Collapse
|
19
|
Ye J, Liu M, He M, Ye Y, Huang J. Illustrating and Enhancing the Biosynthesis of Astaxanthin and Docosahexaenoic Acid in Aurantiochytrium sp. SK4. Mar Drugs 2019; 17:md17010045. [PMID: 30634667 PMCID: PMC6357005 DOI: 10.3390/md17010045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
The marine thraustochytrids are a promising source of docosahexaenoic acid (DHA) and the ketocarotenoid astaxanthin. In this study, the biosynthetic pathways of these two important metabolites in Aurantiochytrium sp. SK4 was illustrated by the analyses of the genome, transcriptome, key enzymes, and pathway products. Two sets of genes were involved in two pathways for the biosynthesis of fatty acids. The absence of Δ-15 desaturase genes and the presence of docosapentaenoic acid (DPA), up to 12% of total fatty acids suggest that Aurantiochytrium sp. SK4 may synthesize DHA mainly via a polyketide synthase (PKS) pathway. Three enzymes, namely geranyl diphosphate synthase (GPPS), farnysyl diphosphate synthase (FPPS), and geranylgeranyle diphosphate synthase (GGPPS) were found to be involved in the formation of GGPP that was subsequently catalyzed to β-carotene by a trifunctional CrtIBY enzyme. β-Carotene might be ketolated and then hydroxylated into astaxanthin based on the carotenoid profiles. The formation of GGPP was proposed to be the limiting steps for carotenoid production. Overexpression of the Archaeoglobus GPS together with the Escherichia coli isopentenyl pyrophosphate isomerase, and Vitreoscilla hemoglobin resulted in not only 1.85- and 5.02-fold increases of total carotenoids and astaxanthin, but also 2.40- and 2.74-fold increases of total fatty acids and DHA. This study provides insights into the biosynthesis of carotenoids and fatty acids in Aurantiochytrium.
Collapse
Affiliation(s)
- Jingrun Ye
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengmeng Liu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingxia He
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Ying Ye
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junchao Huang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
20
|
Wang F, Bi Y, Diao J, Lv M, Cui J, Chen L, Zhang W. Metabolic engineering to enhance biosynthesis of both docosahexaenoic acid and odd-chain fatty acids in Schizochytrium sp. S31. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:141. [PMID: 31182976 PMCID: PMC6555965 DOI: 10.1186/s13068-019-1484-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/03/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Docosahexaenoic acid (DHA, C22:6) and odd-chain fatty acids (OCFAs, C15:0 and C17:0) have attracted great interest, since they have been widely used in food and therapeutic industries, as well as chemical industry, such as biodiesel production and improvement. The oil-producing heterotrophic microalgae Schizochytrium sp. 31 is one of main DHA-producing strains. Recently, it was found that Schizochytrium can also synthesize OCFAs; however, contents and titers of DHA and OCFAs in Schizochytrium are still low, which limit its practical application. RESULTS In this study, we found that acetyl-CoA carboxylase suffered from a feedback inhibition by C16-CoA in Schizochytrium, and relief of the inhibition resulted in improved both lipid content and the ratio of OCFAs in total fatty acids. Based on this finding, a novel strategy for elevating both DHA and OCFAs contents was established. First, the total lipid accumulation was increased by overexpressing a malic enzyme from Crypthecodinium cohnii to elevate NADPH supply. Second, the inhibition effect on acetyl-CoA carboxylase was relieved by overexpressing a codon-optimized ELO3 gene from Mortierella alpina, which encodes an elongase enzyme responsible for converting C16 into C18 fatty acids. After the above two-step engineering, contents of DHA and OCFAs were increased by 1.39- and 3.30-fold, reaching a level of 26.70 and 25.08% of dry cell weight, respectively, which are the highest contents reported so far for Schizochytrium. The titers of DHA and OCFAs were elevated by 1.08- and 2.57-fold, reaching a level of 3.54 and 3.32 g/L, respectively. Notably, the OCFAs titer achieved was 2.66-fold higher than the highest reported in Escherichia coli (1.25 g/L), implying potential value for industry application. To reveal the potential metabolic mechanism for the enhanced biosynthesis of both DHA and OCFAs, LC-MS metabolomic analysis was employed and the results showed that the pentose phosphate pathway and the glycolysis pathway were strengthened and intracellular propionyl-CoA concentration were also significantly increased in the engineered Schizochytrium, suggesting an increased supply of NADPH, acetyl-CoA, and propionyl-CoA for DHA and OCFAs accumulation. CONCLUSIONS The discovery provides a new source of OCFAs production, and proposes a new strategy to improve contents and titers of both DHA and OCFAs in Schizochytrium. These will be valuable for improving commercial potential of Schizochytrium and guiding the engineering strategy in other fatty acids producing heterotrophic microalga.
Collapse
Affiliation(s)
- Fangzhong Wang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
| | - Yali Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Mingming Lv
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300350 People’s Republic of China
| | - Weiwen Zhang
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, People’s Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300350 People’s Republic of China
| |
Collapse
|
21
|
Cloning of the pks3 gene of Aurantiochytrium limacinum and functional study of the 3-ketoacyl-ACP reductase and dehydratase enzyme domains. PLoS One 2018; 13:e0208853. [PMID: 30533058 PMCID: PMC6289434 DOI: 10.1371/journal.pone.0208853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022] Open
Abstract
Aurantiochytrium limacinum has received attention because of its abundance of polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA). DHA is synthesized through the polyketide synthase (PKS) pathway in A. limacinum. The related enzymes of the PKS pathway are mainly expressed by three gene clusters, called pks1, pks2 and pks3. In this study, the full-length pks3 gene was obtained by polymerase chain reaction amplification and Genome Walking technology. Based on a domain analysis of the deduced amino acid sequence of the pks3 gene, 3-ketoacyl-ACP reductase (KR) and dehydratase (DH) enzyme domains were identified. Herein, A. limacinum OUC168 was engineered by gene knock-in of KR and DH using the 18S rDNA sequence as the homologous recombination site. Total fatty acid contents and the degree of unsaturation of total fatty acids increased after the kr or dh gene was knocked in. The cloning and functional study of the pks3 gene of A. limacinum establishes a foundation for revealing the DHA synthetic pathway. Gene knock-in of the enzyme domain associated with PKS synthesis has the potential to provide effective recombinant strains with higher DHA content for industrial applications.
Collapse
|
22
|
Li Z, Chen X, Li J, Meng T, Wang L, Chen Z, Shi Y, Ling X, Luo W, Liang D, Lu Y, Li Q, He N. Functions of PKS Genes in Lipid Synthesis of Schizochytrium sp. by Gene Disruption and Metabolomics Analysis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:792-802. [PMID: 30136198 DOI: 10.1007/s10126-018-9849-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/03/2018] [Indexed: 05/26/2023]
Abstract
Schizochytrium sp. is a kind of marine microalgae with great potential as promising sustainable source of polyunsaturated fatty acids (PUFAs). Polyketide synthase-like (PKS synthase) is supposed to be one of the main ways to synthesize PUFAs in Schizochytrium sp. In order to study the exact relationship between PKS and PUFA biosynthesis, chain length factor (CLF) and dehydrogenase (DH) were cloned from the PKS gene cluster in Schizochytrium sp., then disrupted by homologous recombination. The results showed that DH- and CLF-disrupted strains had significant decreases (65.85 and 84.24%) in PUFA yield, while the saturated fatty acid (SFA) proportion in lipids was slightly increased. Meanwhile, the disruption of CLF decreased the C-22 PUFA proportion by 57.51% without effect on C-20 PUFA accumulation while DH-disrupted mutant decreased the production of each PUFA. Combined with analysis of protein prediction, it indicated that CLF gene exerted an enormous function on the carbon chain elongation in PUFA synthesis, especially for the final elongation from C-20 to C-22 PUFAs. Metabolomics analysis also suggested that the disruption of both genes resulted in the decrease of PUFAs but increase of SFAs, thus weakening glycolysis and tricarboxylic acid (TCA) cycle pathways. This study offers a broad new vision to research the mechanism of PUFA synthesis in Schizochytrium sp.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xi Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Lingwei Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Weiang Luo
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Dafeng Liang
- Guangxi State Farms Sugar Industrial Group Company Limited, Guangxi Sugarcane Industry R&D center, Guangxi, Nanning, 530002, People's Republic of China
- Guangdong Key Lab of Sugarcane Improvement and Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, Guangdong, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
23
|
Sun XM, Ren LJ, Bi ZQ, Ji XJ, Zhao QY, Huang H. Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis. BIORESOURCE TECHNOLOGY 2018; 267:438-444. [PMID: 30032058 DOI: 10.1016/j.biortech.2018.07.079] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 05/09/2023]
Abstract
Lipid accumulation of Schizochytrium sp. can be induced by stress condition, but this stress-induction usually reduce cell growth and cause oxidative damage, which can eventually lower the lipid yield. Here, adaptive laboratory evolution (ALE) combined high salinity was performed to enhance the antioxidant system and lipid accumulation. The final strain ALE150, which was obtained after 150 days, showed a maximal cell dry weight (CDW) of 134.5 g/L and lipid yield of 80.14 g/L, representing a 32.7 and 53.31% increase over the starting strain, respectively. Moreover, ALE150 exhibited an overall higher total antioxidant capacity (T-AOC) and lower reactive oxygen species (ROS) levels than the starting strain. Furthermore, the regulatory mechanisms responsible for the improved performance of ALE150 were analyzed by transcriptomic analysis. Genes related to the antioxidant enzymes and central carbon metabolism were up-regulation. Moreover, the metabolic fluxes towards the fatty acid synthase (FAS) and polyketide synthase (PKS) pathways were also changed.
Collapse
Affiliation(s)
- Xiao-Man Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), People's Republic of China.
| | - Zhi-Qian Bi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), People's Republic of China
| | - Quan-Yu Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), People's Republic of China
| |
Collapse
|
24
|
Geng L, Chen S, Sun X, Hu X, Ji X, Huang H, Ren L. Fermentation performance and metabolomic analysis of an engineered high-yield PUFA-producing strain of Schizochytrium sp. Bioprocess Biosyst Eng 2018; 42:71-81. [PMID: 30267145 DOI: 10.1007/s00449-018-2015-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
The ω-3/long-chain polyunsaturated fatty acids (LC-PUFAs) play an important role in human health, but they cannot be synthesized in sufficient amounts by the human body. In a previous study, we obtained an engineered Schizochytrium sp. strain (HX-RS) by exchanging the acyltransferase (AT) gene, and it was able to co-produce docosahexaenoic acid and eicosapentaenoic acid. To investigate the mechanism underlying the increase of PUFA content in HX-RS, the discrepancies of fermentation performance, key enzyme activities and intracellular metabolites between HX-RS and its wild-type parent strain (WTS) were analyzed via fed-batch fermentation in 5-L bioreactors. The results showed that the cell dry weight (CDW) of HX-RS was higher than that of the WTS. Metabolomics combined with multivariate analysis showed that 4-aminobutyric acid, proline and glutamine are potential biomarkers associated with cell growth and lipid accumulation of HX-RS. Additionally, the shift of metabolic flux including a decrease of glyceraldehyde-3-phosphate content, high flux from pyruvate to acetyl-CoA, and a highly active glycolysis pathway were also found to be closely related to the high PUFA yield of the engineered strain. These findings provide new insights into the effects of exogenous AT gene expression on cell proliferation and fatty acid metabolism.
Collapse
Affiliation(s)
- Lingjun Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Shenglan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaoman Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaojun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China
| | - Lujing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
25
|
Sun XM, Ren LJ, Ji XJ, Huang H. Enhancing biomass and lipid accumulation in the microalgae Schizochytrium sp. by addition of fulvic acid and EDTA. AMB Express 2018; 8:150. [PMID: 30242564 PMCID: PMC6150865 DOI: 10.1186/s13568-018-0681-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Enhancing lipid productivity and reducing oxidative damage is essential for lipid overproduction in microalgae. In this study, addition of 20 mg/L fulvic acid (FA) resulted a 34.4% increase of lipid yield in Schizochytrium sp. Furthermore, the cooperative effect of FA and EDTA on cell growth and lipid production was investigated. The combined addition of 20 mg/L FA and 1.0 g/L EDTA yielded a maximal cell dry weight of 130.7 g/L and lipid productivity of 1.16 g/L/h, representing 36.4% and threefold increase over the non-supplemented group, respectively. Moreover, compared with the non-supplemented group, the combined addition strategy exhibited overall lower levels of reactive oxygen species and malondialdehyde, which accompanied with 66.7% and 81.9% higher superoxide dismutase and catalase activity, respectively. Furthermore, a 24.1–37.1% increase of malic enzyme and 19.4–25.2% decrease of phosphoenolpyruvate carboxylase activity was observed during the entire fermentation stage (0–108 h). Results suggested that the combined addition strategy not only enhanced lipid accumulation, but also prevented the lipid peroxidation.
Collapse
|
26
|
Li D, Zhang K, Chen L, Ding M, Zhao M, Chen S. Selection of Schizochytrium limacinum mutants based on butanol tolerance. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
27
|
Ma Z, Tian M, Tan Y, Cui G, Feng Y, Cui Q, Song X. Response mechanism of the docosahexaenoic acid producer Aurantiochytrium under cold stress. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Song X, Ma Z, Tan Y, Zhang H, Cui Q. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production. BIORESOURCE TECHNOLOGY 2017; 235:79-86. [PMID: 28365352 DOI: 10.1016/j.biortech.2017.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL-1, respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production.
Collapse
Affiliation(s)
- Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Qingdao Engineering Laboratory of Single Cell Oil, Qingdao 266101, Shandong, China
| | - Zengxin Ma
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Qingdao Engineering Laboratory of Single Cell Oil, Qingdao 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanzhen Tan
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Huidan Zhang
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Qingdao Engineering Laboratory of Single Cell Oil, Qingdao 266101, Shandong, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China; Qingdao Engineering Laboratory of Single Cell Oil, Qingdao 266101, Shandong, China.
| |
Collapse
|
29
|
Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1. Appl Biochem Biotechnol 2016; 182:67-81. [DOI: 10.1007/s12010-016-2311-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/30/2016] [Indexed: 12/30/2022]
|
30
|
A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase. Enzyme Microb Technol 2016; 93-94:182-190. [DOI: 10.1016/j.enzmictec.2016.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/30/2016] [Accepted: 08/29/2016] [Indexed: 11/19/2022]
|
31
|
Cui GZ, Ma Z, Liu YJ, Feng Y, Sun Z, Cheng Y, Song X, Cui Q. Overexpression of glucose-6-phosphate dehydrogenase enhanced the polyunsaturated fatty acid composition of Aurantiochytrium sp. SD116. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Peng YF, Chen WC, Xiao K, Xu L, Wang L, Wan X. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria. PLoS One 2016; 11:e0162861. [PMID: 27649078 PMCID: PMC5029812 DOI: 10.1371/journal.pone.0162861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10–15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea.
Collapse
Affiliation(s)
- Yun-Feng Peng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wen-Chao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kang Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lin Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
- * E-mail:
| |
Collapse
|
33
|
Yu XJ, Sun J, Sun YQ, Zheng JY, Wang Z. Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis. Bioprocess Biosyst Eng 2016; 39:1297-304. [DOI: 10.1007/s00449-016-1608-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
35
|
Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 2016; 100:4309-21. [DOI: 10.1007/s00253-016-7498-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 01/09/2023]
|
36
|
Ren LJ, Zhuang XY, Chen SL, Ji XJ, Huang H. Introduction of ω-3 Desaturase Obviously Changed the Fatty Acid Profile and Sterol Content of Schizochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9770-6. [PMID: 26494394 DOI: 10.1021/acs.jafc.5b04238] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
ω-3 fatty acids play significant roles in brain development and cardiovascular disease prevention and have been widely used in food additives and the pharmaceutical industry. The aim of this study was to assess the feasibility of ω-3 desaturase for regulating fatty acid composition and sterol content in Schizochytrium sp. The exogenous ω-3 desaturase gene driven by ubiqutin promoter was introduced by 18S homologous sequence to the genome of Schizochytrium sp. Genetically modified strains had greater size and lower polar lipids than wild type strains. In addition, the introduction of ω-3 desaturase improved the ω-3/ω-6 ratio from 2.1 to 2.58 and converted 3% docosapentaenoic acid (DPA) to docosahexaenoic acid (DHA). Furthermore, squalene and sterol contents in lipid of the genetically modified strain reduced by 37.19 and 22.31%, respectively. The present study provided an advantageous genetically engineered Schizochytrium sp. for DHA production and effective metabolic engineering strategy for fatty acid producing microbes.
Collapse
Affiliation(s)
- Lu-jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-yan Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Sheng-lan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
37
|
Ye C, Qiao W, Yu X, Ji X, Huang H, Collier JL, Liu L. Reconstruction and analysis of the genome-scale metabolic model of schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genomics 2015; 16:799. [PMID: 26475325 PMCID: PMC4609125 DOI: 10.1186/s12864-015-2042-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/08/2015] [Indexed: 12/05/2022] Open
Abstract
Background Schizochytrium limacinum SR21 is a potential industrial strain for docosahexaenoic acid (DHA) production that contains more than 30–40 % DHA among its total fatty acids. Methods To resolve the DHA biosynthesis mechanism and improve DHA production at a systematic level, a genomescale metabolic model (GSMM), named iCY1170_DHA, which contains 1769 reactions, 1659 metabolites, and 1170 genes, was reconstructed. Results Based on genome annotation results and literature reports, a new DHA synthesis pathway based on a polyketide synthase (PKS) system was detected in S. limacinum. Similarly to conventional fatty acid synthesis, the biosynthesis of DHA via PKS requires abundant acetyl-CoA and NADPH. The in silico addition of malate and citrate led to increases of 24.5 % and 37.1 % in DHA production, respectively. Moreover, based on the results predicted by the model, six amino acids were shown to improve DHA production by experiment. Finally, 30 genes were identified as potential targets for DHA over-production using a Minimization of Metabolic Adjustment algorithm. Conclusions The reconstructed GSMM, iCY1170_DHA, could be used to elucidate the mechanism by which DHA is synthesized in S. limacinum and predict the requirements of abundant acetyl-CoA and NADPH for DHA production as well as the enhanced yields achieved via supplementation with six amino acids, malate, and citrate. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2042-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Weihua Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| | - Xiaojun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, China.
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, China.
| | - Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
38
|
Ma Z, Tan Y, Cui G, Feng Y, Cui Q, Song X. Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Sci Rep 2015; 5:14446. [PMID: 26403200 PMCID: PMC4585886 DOI: 10.1038/srep14446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.
Collapse
Affiliation(s)
- Zengxin Ma
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhen Tan
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| | - Guzhen Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao, Shandong, China
| |
Collapse
|
39
|
Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl Microbiol Biotechnol 2015; 99:8363-75. [DOI: 10.1007/s00253-015-6920-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023]
|
40
|
Liu B, Liu J, Sun P, Ma X, Jiang Y, Chen F. Sesamol Enhances Cell Growth and the Biosynthesis and Accumulation of Docosahexaenoic Acid in the Microalga Crypthecodinium cohnii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5640-5. [PMID: 26017014 DOI: 10.1021/acs.jafc.5b01441] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Sesamol is a strong antioxidant phenolic compound found in sesame seed. It possesses the ability to scavenge intracellular reactive oxygen species (ROS) and to inhibit malic enzyme activity and NADPH supply, resulting possibly in cell proliferation and alteration in the fatty acid composition. In the present study, the effect of sesamol on the growth and accumulation of docosahexaenoic acid (DHA) was investigated in the marine microalga Crypthecodinium cohnii, a prolific producer of DHA. C. cohnii showed a great decrease in the intracellular ROS level with the addition of sesamol. In contrast, the biomass concentration, DHA content (% of total fatty acids), and DHA productivity were significantly increased by 44.20, 11.25, and 20.00%, respectively (P < 0.01). Taken together, this work represents the first report of employing sesamol for enhanced production of DHA by C. cohnii, providing valuable insights into this alga for future biotechnological applications.
Collapse
Affiliation(s)
- Bin Liu
- †School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jin Liu
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
- #Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202, United States
| | - Peipei Sun
- †School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Xiaonian Ma
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yue Jiang
- ⊥School of Food Science, Jiangnan University, Wuxi 214122, China
| | - Feng Chen
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
- ΔSingapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore 138602
| |
Collapse
|
41
|
Liang YJ, Jiang JG. Characterization of malic enzyme and the regulation of its activity and metabolic engineering on lipid production. RSC Adv 2015. [DOI: 10.1039/c5ra04635a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nowadays, microbial lipids are employed as the feedstock for biodiesel production, which has attracted great attention across the whole world.
Collapse
Affiliation(s)
- Ying-Jie Liang
- School of Biological Science & Engineering
- South China University of Technology
- Guangzhou
- China
| | - Jian-Guo Jiang
- School of Biological Science & Engineering
- South China University of Technology
- Guangzhou
- China
- College of Food Science and Engineering
| |
Collapse
|
42
|
Suen YL, Tang H, Huang J, Chen F. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:12392-12398. [PMID: 25420960 DOI: 10.1021/jf5048578] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dissolved oxygen is a critical factor for heterotrophic cell growth and metabolite production. The aim of this study was to investigate the effects of an oxygen-involved protein on cell growth and fatty acid and astaxanthin production in the biologically important thraustochytrid Aurantiochytrium sp. The hemoglobin of the Vitreoscilla stercoraria (VHb) gene was fused upstream with a zeocin resistance gene (ble) and driven by the Aurantiochytrium tubulin promoter. The expression construct was introduced into two strains of Aurantiochytrium sp. by electroporation. Transgenic Aurantiochytrium sp. strains MP4 and SK4 expressing the heterologous VHb achieved significantly higher maximum biomass than their corresponding controls in microaerobic conditions. Furthermore, the transformants of Aurantiochytrium sp. SK4 produced 44% higher total fatty acid and 9-fold higher astaxanthin contents than the wild type control in aerobic conditions. The present study highlights the biotechnological application of VHb in high-cell density fermentation for enhanced biomass production as well as high-value metabolites.
Collapse
Affiliation(s)
- Yung Lee Suen
- School of Biological Sciences, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|
43
|
A study of the experimental and theoretical infrared, Raman, 1H and 13C NMR spectra of the biochemicals valeric and valproic acids. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Sun L, Ren L, Zhuang X, Ji X, Yan J, Huang H. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. BIORESOURCE TECHNOLOGY 2014; 159:199-206. [PMID: 24657750 DOI: 10.1016/j.biortech.2014.02.106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 05/27/2023]
Abstract
Four nutrient limitation cultures, namely monosodium glutamate (MSG-L), phosphate (P-L), ammonium sulfate (NH4(+)-L) and double (D-L, MSG and P limitation) limited, were designed to study how cell growth and biochemical components of Schizochytrium sp. were affected by nutrient limitations. All limited conditions caused decrease in biomass especially MSG-L and D-L conditions. MSG-L condition attained the highest lipid yield of 30.73 g/l but the lowest protein content. P-L condition shortened the fermentation time and obtained the highest DHA productivity of 291 mg/lh. D-L condition was the most cost-effective fermentation condition which gained the highest input-output ratio. NH4(+)-L condition got the highest squalene and DHA content in lipids. Meanwhile, nitrogen limited conditions promoted the accumulation of neutral lipids. All limited conditions benefit the PUFAs accumulation in the neutral lipids. In addition, the existence of NH4(+) or the absence of MSG and phosphate reduced the unsaponifiable matters content in lipid.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Lujing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| | - Xiaoyan Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiaojun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Jiacheng Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|